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Abstract The Chichilnisky criterion is an explicit social welfare function that satisfies1

compelling conditions of intergenerational equity. However, it is time inconsistent and2

has no optimal solution in the Ramsey model. By investigating stationary Markov 13

equilibria in the game that generations with Chichilnisky preferences play, this paper4

shows how, nevertheless, this criterion can be practically implemented in the Ramsey5

model, leading to attractive consequences. The time-discounted utilitarian optimum6

is the unique equilibrium path with a high-productive initial stock, implying that the7

weight on the infinite future in the Chichilnisky criterion plays no role. However, this8

part of the Chichilnisky criterion may lead to more stock conservation than the time-9

discounted utilitarian optimum with a low-productive initial stock. Based on the notion10

of von Neumann–Morgenstern abstract stability, we obtain uniqueness by assuming11
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that each generation coordinates on an almost best equilibrium and takes into account12

that future generations will do as well.13

Keywords Intertemporal decision making · Time inconsistency · Intergenerational14

equity15

JEL Classification C70 · D63 · D91 · O41 · Q0116

1 Introduction17

In spite of the development that accumulated reproducible and human capital has lead18

to in the recent past, there are clear conflicts of interest between generations: the well-19

being of future generations might be undermined unless we take costly action today.20

Abating greenhouse gas emissions, which reduces future climate change, has attracted21

much attention (Stern 2007; Nordhaus 2008) and is a prime example of costly cur-22

rent action with long-term future benefits. Other conflicts with similar characteristics23

include preserving biodiversity (which ensures future resilience), exploiting soil and24

water resources with caution (which avoids future malnutrition and decease) and using25

antibiotics with care (which reduces future health problems).26

These intergenerational conflicts raise the normative question: What should our27

generation as a collective do if the interests of all generations are considered from28

an impartial perspective? In line with Rawls’(1999) reflective equilibrium, to provide29

answers to this question we need both30

– axiom-based normative criteria of intergenerational equity,31

– growth models to explore the consequences of such normative criteria.32

This ensures that criteria for intergenerational equity are judged both by the ethical33

conditions on which they build and by their consequences in specific technological34

environments (this approach is endorsed by, e.g., Koopmans 1967; Dasgupta and Heal35

1979, p. 311; Atkinson 2001, p. 206).36

In this paper, we follow this program by considering Chichilnisky’s (1996) sus-37

tainable preference in Ramsey’s (1928) model of economic growth. We consider38

Chichilnisky’s sustainable preference because it is a first and important attempt to39

find principles for balancing the interests of the present and the future. We consider40

Ramsey’s one-sector growth model because it is simple and versatile.41

The Ramsey model, in which output depends on a one-dimensional stock k and42

is split between consumption c and stock accumulation k̇, is versatile because the43

stock can be interpreted in two ways. One possibility is to interpret the function that44

turns stock k into output c + k̇ as a net production function and k as an aggregate of45

accumulated reproducible and human capital. Then the initial rate of net productivity46

can be assumed to be high, and the question is to how much capital to accumulate.47

Another possibility is to interpret the function that turns k into c + k̇ as a natural growth48

function and k as an aggregate resource stock that indicates the status of the natural49

environment, including climatic conditions, biodiversity, soil and water resources and50

the efficiency of available medication. Then the initial rate of net productivity can be51

assumed to be low, and the question is how much resource to conserve.52
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Resource conservation across generations in a Ramsey…

Economists (see, e.g., Barro and Sala-i-Martin 2004) usually apply the time-53

discounted utilitarian (TDU) criterion, which seeks to maximize the time-discounted54

average of future utilities,55

δ

∫ ∞

0
e−δt u(c)dt,56

over all feasible paths. In this criterion, u is a utility function that turns consumption into57

transformed value (‘utility’). When the TDU criterion is applied to the Ramsey model,58

it leads to capital accumulation in the former interpretation, with a high-productive59

capital aggregate, but does not lead to resource conversation in the latter interpretation,60

with a low-productive resource aggregate.61

From a normative point of view, one might argue that the TDU criterion is deficient62

as a matter of principle—in spite of Koopmans’s (1960) axiomatization—as it does not63

treat generations equally. The TDU criterion leads also to problematic consequences in64

the Ramsey model, as it does not support the intuition—supported by both utilitarian65

and egalitarian arguments in technological environments with positive net productivity66

(cf. Asheim et al. 2001)—that we should be willing to assist an infinite future if all67

future generations are worse off than us.68

Alternatives like undiscounted utilitarianism and maximin treat generations equ-69

ally. They entail that future generations are assisted if they are worse off than us, but70

provide very different answers to the question of our responsibility to save for the71

benefit of future generations that are better than us (see Asheim 2010, Sect. 4.3):72

According to undiscounted utilitarianism, the responsibility to save for the bene-73

fit of future generations that are better than us is essentially unlimited, while there74

is no such responsibility when maximin is applied. Hence, compared to the TDU75

criterion, undiscounted utilitarianism and maximin might be claimed to lead to76

more desirable consequences when the Ramsey model is interpreted as a model of77

resource conservation, but these criteria lead to extreme and perhaps undesirable78

consequences when the Ramsey model is interpreted as a model of capital accu-79

mulation.80

Chichilnisky’s (1996) sustainable preference balances the interests of the present81

and the future by requiring that a criterion of intergenerational equity be neither a82

dictatorship of the present (also generations beyond any given T play a role) nor83

a dictatorship of the future (not only generations beyond any given T play a role).84

Chichilnisky (1996) makes the important observation that the TDU criterion is ruled85

out the by the former of these requirements, since under TDU, what happens beyond86

some finite future time does not play any role if two different consumption paths87

are strictly ranked. Criteria like the limit of the discounted average of utilities as the88

discount rate goes to zero and the long-run undiscounted average of utilities are ruled89

out by the latter of these requirements.90

In addition, a sustainable preference has the properties of (1) being numerically91

represented by an explicit social welfare function and (2) satisfying the Strong Pareto92

principle (in the sense of being sensitive to the interests of each generation). The93

former of these requirement rules out undiscounted utilitarianism and lexicographic94

maximin, while the latter rules out ordinary maximin.95
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In the present paper, we apply the following particular version of a sustainable96

preference within the class of representations considered in Chichilnisky’s (1996)97

Theorems 1 and 2, but adapted to our continuous time framework:98

(1 − α)

(

δ

∫ ∞

0
e−δt u(c)dt

)

+ α lim
ρ→0+

(

ρ

∫ ∞

0
e−ρt u(c)dt

)

, with 0 < α < 1.99

This version can be used to rank consumption paths for which the limit of the dis-100

counted average of utilities exists when the discount rate ρ goes to zero. Converging101

consumption paths is a special case; in this case, the criterion ranks paths by a convex102

combination of the TDU value and limit of utility as time goes to infinity.103

However, it is problematic to apply Chichilnisky’s criterion in the Ramsey model.104

These issues are discussed by Heal (1998) and they motivate the analyses of Figu-105

ières and Tidball (2012) and Ayong Le Kama et al. (2014). The problems that hinder106

application are twofold:107

– There is a generic problem of nonexistence in a class of technological environments108

that includes the Ramsey model. The reason is that the value of the first TDU part109

of the criterion is increased by the delaying the response to the second asymptotic110

part that captures the concern for the infinite future.111

– The criterion is time inconsistent, as the weight on any absolute time t in the TDU112

part increases when the time of evaluation is advanced, while the weight on the113

infinite future through the asymptotic part does not change.1114

Up to now, these problems have prevented an exploration of the consequences of115

Chichilnisky’s criterion in the Ramsey model. We take on this challenge and show116

how nevertheless the criterion can be practically implemented in the Ramsey model.2117

The problems of nonexistence and time inconsistency imply that searching for an118

optimal path when applying the Chichilnisky criterion in the Ramsey model is both119

futile and irrelevant. Consequently, this paper investigates stationary Markov equilibria120

in the game that generations with Chichilnisky preferences play in the Ramsey model.121

We show that the equilibrium path always coincides with the TDU optimum in the122

case of a high-productive initial stock, implying that the weight on the infinite future123

in the Chichilnisky criterion plays no role. However, we also show that this part of the124

Chichilnisky criterion may lead to more stock conservation than the time-discounted125

optimum in the case of a low-productive initial stock.126

These consequences of the Chichilnisky criterion might be considered attractive127

as it supports the intuition that we should seek to assist future generations if they are128

worse off than us, while not having an unlimited obligation to save for their benefit if129

they turn out to be better off.130

1 Jackson and Yariv (2015) provide another perspective on the time inconsistency of the Chichilnisky crite-
rion. They show that any Pareto-efficient and non-dictatorial aggregation of heterogeneous time preferences
leads to time inconsistency. A sustainable preference is essentially a Pareto-efficient and non-dictatorial
aggregation of positive and zero time preference.
2 It would be desirable to apply Chichilnisky’s criterion to more general models, e.g., with resources and
risk. Given the complexity of doing so even in the Ramsey model, this is a task for future research. An
application like Botzen et al. (2014) represents the future by the end period of the DICE model—not the
infinite future—and does not address the problem of time inconsistency.
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Resource conservation across generations in a Ramsey…

The paper is organized as follows. In Sect. 2, we introduce the Ramsey model and131

investigate TDU optimal paths when the stock is constrained to remain within restricted132

subintervals. This will serve as a building block for the analysis of stationary Markov133

equilibria when, in Sects. 3–7, applying the Chichilnisky criterion to the Ramsey134

model. In Sect. 3, we first establish that there does not exist an optimal path for the135

Chichilnisky criterion in the Ramsey model.136

In Sect. 4, we consider one-attractor stationary Markov equilibrium strategies on137

subintervals and establish that the Chichilnisky criterion is outcome equivalent to138

the TDU criterion. In Sects. 5 and 6, we then show that this conclusion is changed139

when we consider multiple-attractor stationary Markov equilibrium strategies. To be140

precise: The Chichilnisky criterion is still outcome equivalent to the TDU optimum141

when the Ramsey model is interpreted as a model of capital accumulation with a high-142

productive initial stock. However, when the Ramsey model is interpreted as a model143

of resource conversation with a low-productive initial stock, equilibrium strategies144

provide a bridge from the near future—whose interests are taken into account by145

the TDU part of Chichilnisky’s criterion—to the infinite future—whose interests are146

protected by the asymptotic part of the criterion. The reason is that all generations147

understand that, in equilibrium, any exploitation of the stock for short-term gains will148

have consequences also for the infinite future. This result is related to Krusell and149

Smith’s (2003) demonstration of multiple Markov equilibria in the Ramsey model150

under quasi-geometric discounting.151

In the penultimate Sect. 7, we address the problem of coordination: What if the152

first generation coordinates on an equilibrium strategy leading to an outcome that153

maximizes the value of the Chichilnisky criterion over all equilibrium strategies? What154

if the first generation takes into account that future generations will do so in turn?155

Our analysis, which is based on von Neumann–Morgenstern abstract stability (von156

Neumann and Morgenstern 1953, p. 40; Greenberg 1990, Chapter 4), demonstrates157

that uniqueness is obtained by assuming that each generation coordinates on an almost158

best equilibrium and takes into account that future generations will do as well. This159

uniqueness result allows us to perform comparative statics with respect to the discount160

rate δ and the weight α on the infinite future.161

In the final Sect. 8, we offer concluding remarks by comparing our results in the162

context of the Chichilnisky criterion with other criteria that also support the intuition163

that we should seek to assist future generations if they are worse off than us, while not164

having an unlimited obligation to save for their benefit if they turn out to be better off.165

An “Appendix” contains the proofs of all lemmas.166

2 TDU optimum in the Ramsey model167

Denote by k the stock of an augmentable good. In the Ramsey model, instantaneous168

output f (k) is split between flow of consumption c and stock accumulation k̇.169

To facilitate the analysis, let f : R+ → R+ be a continuously differentiable strictly170

increasing and strictly concave function satisfying f (0) = 0, limk→0+ f ′(k) = ∞,171

and limk→∞ f ′(k) = 0. The analysis can also be adapted to the case where f has172

an interior maximum, due to depreciation (when f is interpreted as a net production173
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G. B. Asheim and I. Ekeland

function and k as a stock of a capital aggregate) or reduced natural regeneration for174

stocks exceeding the maximum sustainable yield (when f is interpreted as a natural175

growth function and k as a stock of a resource aggregate). Furthermore, let u : R+ →176

R+ be a twice differentiable strictly increasing and strictly concave utility function177

satisfying u(0) = 0 and limc→0+ u′(c) = ∞.178

The technology can be described by the system:179

k̇ = f (k) − c, k (0) = k0 ≥ 0, (1)180

k : [0,∞) → R+, c : [0,∞) → R+. (2)181
182

Note that if k(t) is absolutely continuous on [0,∞), then c|(0,T )(t) ∈ L1 (0, T ) for183

all T > 0. Given k0 ≥ 0, a pair (k(t), c(t)) of stock and consumption paths defined184

for t ∈ [0,∞), satisfying (1) and (2), with k(t) absolutely continuous, will be called185

feasible. The set of all feasible pairs will be denoted by A (k0). If k0 = 0, then there186

is only one feasible path with (k(t), c(t)) being equal to (0, 0) at each point in time.187

So we will be concerned only with the non-trivial case where k0 > 0.188

Define k∞ : R++ → R++ by f ′(k∞(δ)) = δ. It follows from the assumptions on189

f that k∞ is well-defined continuous and strictly decreasing function of δ.190

Write k := k∞(δ). The following result is classical:191

Proposition 1 The unrestricted TDU problem:192

sup
A(k0)

δ

∫ ∞

0
e−δt u(c(t))dt193

has a unique solution (k∗ (t) , c∗ (t)) for every initial stock k0 > 0 and yields a finite194

value for the integral. Both k∗(t) and c∗(t) are monotonic in t , and:195

lim
t→∞

k∗(t) = k, lim
t→∞

c∗(t) = f
(

k
)

.196

It follows as a corollary that the discounted average of the utilities derived from197

consumption, δ
∫ ∞

0 e−δt u(c(t))dt , exists for every feasible path and all δ > 0 since198

δ
∫ T

0 e−δt u(c(t))dt is an non-decreasing function of T (as u(c(t)) ≥ 0 for all t) and199

has an upper bound.200

To study the implications of the Chichilnisky criterion in the Ramsey problem, we201

need first to understand the restricted TDU problem. Fix k0 > 0, and let I ⊆ R++202

be an interval with positive measure satisfying that k0 ∈ I . The interval I may be203

unrestricted and coincide with R++ or be an open, half-closed or closed subinterval204

of R++ within which the stock k is constrained to remain.205

Given k0 ∈ I , a pair (k(t), c(t)) of stock and consumption paths defined for t ∈206

[0,∞) satisfying (1) and (2), with k(t) absolutely continuous and remaining in I for207

all t ∈ [0,∞), will be called I -feasible. The set of all I -feasible pairs will be denoted208

by A (k0, I ). An I -feasible pair (k∗(t), c∗(t)) of stock and consumption paths defined209

for t ∈ [0,∞) is I -optimal if, for any other I -feasible pair (k(t), c(t)), we have:210
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Resource conservation across generations in a Ramsey…

[ ]

(a) (b) (c)

Fig. 1 TDU optimal paths in the Ramsey model

δ

∫ ∞

0
e−δt u(c∗(t))dt ≥ δ

∫ ∞

0
e−δt u(c(t))dt.211

Since the TDU criterion is strictly concave, we obtain the following observation.212

Lemma 1 If an I -optimum pair exists, then it is unique.213

With any I -feasible pair (k(t), c(t)), we associate the path of present-value con-214

sumption prices p : [0,∞) → R++ defined by:215

p(t) = e−δt u′(c(t)).216

An I -feasible pair (k∗(t), c∗(t)) of stock and consumption paths defined on for t ∈217

[0,∞) will be called I -competitive if c∗ is absolutely continuous, so that the associated218

present-value price path p∗(t) is differentiable almost everywhere, and, for almost all219

t ∈ [0,∞), k∗(t) satisfies profit maximization:3220

k∗(t) = arg maxk∈I {p∗(t) f (k) + ṗ∗(t)k}. (3)221

The pair (k∗(t), c∗(t)) satisfies the capital value transversality (CVT) condition if222

limT →∞ p∗(T )k∗(T ) = 0.223

We are now in a position to state a sufficient condition for optimality.224

Lemma 2 If an I -feasible pair (k∗(t), c∗(t)) is I -competitive and satisfies the CVT225

condition, then (k∗(t), c∗(t)) is I -optimal.226

This provides us with three cases, illustrated in Fig. 1, where an I -optimal pair of227

stock and consumption paths exists and is unique. Note that uniqueness follows from228

Lemma 1.229

3 The first term, p f (k), is the value of net production, while the negative of the second term, − ṗk =

(− ṗ/p)pk, is the cost of holding capital, with − ṗ/p being the consumption interest rate. Hence, p f (k)+ ṗk

can be interpreted as profit. Note that (3) cannot be defined at time at which c and thus p is not differentiable.
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(a) If k ∈ I, k = sup I /∈ I or k = inf I /∈ I , then there exists a unique I -competitive230

pair (k(t), c(t)) satisfying the CVT condition. If k0 = k, we have k (t) = k for231

all t . If k0 	= k, then k (t) belongs to the interior of I for all t > 0, and converges232

to, but never reaches, k. Condition (3) is satisfied for all t ∈ [0,∞), implying that233

net marginal productivity f ′(k) equals the consumption interest rate − ṗ/p. This234

leads to the Euler equation,235

u′′(c)ċ = (δ − f ′(k))u′(c),236

and the Keynes–Ramsey rule,237

f ′(k) = δ + η ċ
c
,238

where η = −u′′(c)c/u′(c).239

(b) If k < inf I ∈ I , then there exists a unique I -competitive pair (k(t), c(t)) sat-240

isfying the CVT condition. The stock path reaches min I in finite time T with241

k̇(T ) = 0 and stays at min I , with c(t) = f (min I ), for t ≥ T . We have that242

f ′(k) < − ṗ/p for t > T , implying that the Euler equation is satisfied only in the243

interior phase, for 0 < t < T . Note that (3) is not satisfied for t = T , as c and244

thus p are not differentiable at this point in time.245

(c) If k > sup I ∈ I , then there exists a unique I -competitive pair (k(t), c(t)) sat-246

isfying the CVT condition. The stock path reaches max I in finite time T with247

k̇(T ) = 0, and stays at max I , with c(t) = f (max I ), for t ≥ T . We have that248

f ′(k) > − ṗ/p for t > T , implying that the Euler equation is satisfied only in the249

interior phase, for 0 < t < T . Note that (3) is not satisfied for t = T , as c and250

thus p are not differentiable at this point in time.251

We claim that in the remaining cases, that is, k < inf I /∈ I or k > sup I /∈ I , there252

is no I -optimal pair. Indeed, suppose, for instance, k > sup I /∈ I . Set J = I ∪{sup I }.253

Clearly, the set of I -feasible pairs A(k0, I ) is a subset of the set of J -feasible pairs254

A(k0, J ), so the maximum of the TDU criterion over all J -feasible pairs is at least as255

large as the supremum over all I -feasible pairs:256

max
A(k0,J )

∫ ∞

0
e−δt u (c (t)) dt ≥ sup

A(k0,I )

∫ ∞

0
e−δt u (c (t)) dt257

We know from case (c) above that the J -maximum is unique and is achieved by a pair258

(k∗(t), c∗(t)) where k∗(t) stays in I for 0 ≤ t < T and is equal to sup I for t ≥ T . We259

approximate (k∗(t), c∗(t)) by a sequence of I -feasible pairs (kn(t), cn(t)) as follows.260

Denote by Tn the time when k∗(t) = sup I − 1
n

, and set:261

kn(t) =

{

k∗(t) for 0 ≤ t ≤ Tn

max I − 1
n

for Tn ≤ t
262

with cn being the associated consumption path. Clearly:263

sup
A(k0,I )

≥

∫ ∞

0
e−δt u (cn (t)) dt →

∫ ∞

0
e−δt u

(

c∗ (t)
)

dt = max
A(k0,J )

264
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so supA(k0,I ) = maxA(k0,J ). On the other hand, the maximum on the right-hand side is265

achieved only at (k∗(t), c∗(t)), which does not belong to A (k0, I ). So the supremum266

is not achieved. This establishes the converse of Lemma 2, namely:267

Lemma 3 If an I -feasible pair (k∗(t), c∗(t)) is I -optimal, then (k∗(t), c∗(t)) is268

I -competitive and satisfies the CVT condition.269

We summarize our results as follows:270

Proposition 2 The restricted TDU problem:271

sup
A(k0,I )

δ

∫ ∞

0
e−δt u(c)dt272

has a unique solution (k∗ (t) , c∗ (t)) for every initial stock k0 ∈ I if and only if the273

interval I ⊆ R++ satisfies k ∈ I, k = sup I /∈ I, k = inf I /∈ I, k > sup I ∈ I or274

k < inf I ∈ I . Both k∗(t) and c∗(t) are monotonic in t , and:275

lim
t→∞

k∗ (t) = k∞, lim
t→∞

c∗ (t) = f (k∞) ,276

where277

k∞ =

⎧

⎪

⎨

⎪

⎩

k if k ∈ I, k = sup I /∈ I or k = inf I /∈ I,

max I if k > sup I ∈ I,

min I if k < inf I ∈ I.

278

3 Chichilnisky criterion in the Ramsey model279

Fix k0 > 0 and consider the class B(k0) of feasible pairs of stock and consumption280

paths (k(t), c(t)) for which the limit281

φ(u(c(·))) = lim
ρ→0+

(

ρ

∫ ∞

0
e−ρt u(c(t))dt

)

282

exists. Any feasible pair of stock and consumption paths for which consumption con-283

verges as time goes to infinity is in B(k0), but as we will return to in Sect. 4, the set284

B(k0) contains also pairs where consumption does not converge.285

A pair (k∗(t), c∗(t)) ∈ B(k0) of stock and consumptions paths is Chichilnisky286

optimal (C-optimal) if287

(1 − α)δ

∫ ∞

0
e−δt u(c∗(t))dt + αφ(u(c∗(·)))

≥ (1 − α)δ

∫ ∞

0
e−δt u(c(t))dt + αφ(u(c(·)))

(4)288

for any pair (k(t), c(t)) ∈ B(k0) of stock and consumption paths.289
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The Chichilnisky criterion (C-criterion), as given by (4), consists of a TDU part and290

a part that depends on the behavior of the consumption path at infinity. It is a special291

case of what Chichilnisky (1996) calls a sustainable preference. The C-criterion is292

clearly time inconsistent, as the weight on the elements in the consumption path in the293

TDU part is increased when the time of evaluation is advanced, while the weight on the294

asymptotic part is not affected when the time of evaluation is advanced. Furthermore,295

there is no optimal path in the Ramsey model, as established by the following result.296

Pro po s i t i o n 3 There does not exist an optimal pair of stock and consumption paths297

for the C-criterion, as given by (4), when applied in the Ramsey model.298

Proof Step 1: A pair (k(t), c(t)) ∈ B(k0) satisfying that c(t) converges to f (k) is299

not C-optimal. Since f is strictly increasing, there is k′ > k with f (k′) > f (k).300

By following the TDU-optimal stock path converging to k for a sufficiently long time301

before the deviating to a stock path converging to some k′ with associated consumption302

path converging to f (k′), any pair (k(t), c(t)) ∈ B(k0) satisfying limt→∞ c(t) = f (k)303

can be improved, leading to a contradiction.304

Step 2: A pair (k(t), c(t)) ∈ B(k0) satisfying that c(t) does not converge to f (k) is305

not C-optimal. Suppose that there is a Chichilnisky-optimal pair (k(t), c(t)) ∈ B(k0)306

where c(t) does not converge to f (k). By following the TDU-optimal stock path307

converging to k for a sufficiently long time before deviating to a pair of paths of308

capital and consumption with the same limiting properties as (k(t), c(t)), the pair309

(k(t), c(t)) can be improved, leading to a contradiction. ⊓⊔310

In the supnorm topology, the C-criterion is continuous in the consumption paths.311

However, in this topology the set of feasible paths in the Ramsey model is not compact,312

even if consumption is restricted to remain within a compact interval. Hence, the313

Bolzano–Weierstrass Extreme Value Theorem cannot be invoked to establish existence314

of an optimal path.315

The fact that the C-criterion is time inconsistent and does not have an optimal path316

in the Ramsey model implies that seeking an optimal path is both irrelevant and futile.317

For the rest of the paper, we therefore investigate stationary Markov equilibria in the318

game that generations with Chichilnisky preferences play in the Ramsey model.319

4 One-attractor equilibrium strategies320

In this section, we consider stationary Markov strategies on subintervals corresponding321

to basins of attraction. We show that such a one-attractor Markov strategy is continuous322

if it satisfies the equilibrium property stated in Definition 2 below. The analysis of these323

continuous equilibrium strategies prepares the ground for introducing discontinuous324

stationary Markov strategies in the subsequent sections.325

Definition 1 A one-attractor stationary Markov strategy is a pair (I, σ ), where I ⊆326

R++ is an interval with positive measure and σ : I → R+ satisfies:327

– for any initial k0 ∈ I , there is a unique absolutely continuous solution κ(· ; k0) :328

[0,∞) → I to k(0) = k0 and k̇ = f (k) − σ(k) for t ∈ [0,∞), so that the pair329

(κ(t; k0), σ (κ(t; k0))) is I -feasible,330
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– there is k∞ ∈ I , such that, for any initial k0 ∈ I, limt→∞ κ(t; k0) = k∞, so that331

k∞ is an attractor with I as the corresponding basin of attraction.332

Since k∞ is the unique attractor in I , it follows that the capital path, κ(t; k0), from333

k0 ∈ I as a function of t is constant if k0 = k∞, increasing on [k0, k∞) if k0 < k∞,334

and decreasing on (k∞, k0] if k0 > k∞. In particular:335

– If k0 = k∞, then σ(k0) = f (k0).336

– If k0 < k∞, then σ(k) < f (k) for all k ∈ [k0, k∞).337

– If k0 > k∞, then σ(k) > f (k) for all k ∈ (k∞, k0 ].338

Furthermore, even though σ(κ(t; k0)) need not converge as t → ∞ (as consumption339

may shatter), ρ
∫ ∞

0 e−ρt u(σ (κ(t; k0))) converges to u( f (k∞)) as ρ → 0+. Hence,340

the associated value according to the C-criterion of σ for any k0 ∈ I is given by:341

J (k0, I, σ ) := (1 − α)

(

δ

∫ ∞

0
e−δt u(σ (κ(t; k0)))dt

)

342

+ α lim
ρ→0+

(

ρ

∫ ∞

0
e−ρt u(σ (κ(t; k0)))dt

)

.343

344

We now introduce the concept of a stationary Markov equilibrium strategy on I :345

It is a strategy such that deviating on a short time interval is not profitable, provided346

that the stock k remains in I . The intuition is that the current generation takes the347

future behavioral rule as given, but is able to make a near-instantaneous deviation. To348

formalize this, let (I, σ ) be a strategy with solution converging to some k∞. Take the349

initial stock k0 ∈ I and a time ∆ > 0, and any control c(t) ≥ 0, t ∈ [0,∆). Extend it350

to a control ck0,∆(t) on [0,∞) by:351

ck0,∆(t) =

{

c(t) for t ∈ [0,∆ ]

σ(k) for t ∈ (∆,∞) .
(5)352

We call ck0,∆ I -admissible if there is a unique absolutely continuous solution k :353

[0,∞) → I to k(0) = k0 and k̇ = f (k) − ck0,∆(t) for t ∈ [0,∞), so that the pair354

(k(t), ck0,∆(t)) is I -feasible.355

Definition 2 A one-attractor stationary Markov strategy (I, σ ) is an equilibrium strat-356

egy if, for all k0 ∈ I , there exists ∆ > 0 such that, for every I -admissible ck0,∆,357

J (k0, I, σ ) ≥ (1 − α)

(

δ

∫ ∞

0
e−δt u(ck0,∆(t))dt

)

+ α lim
ρ→0+

(

ρ

∫ ∞

0
e−ρt u(ck0,∆(t))

)

dt.

(6)358

Proposition 4 The pair (I, σ ) is an equilibrium strategy if and only if, for every359

k0 ∈ I , the solution κ(· ; k0) : [0,∞) → I to k(0) = k0 and k̇ = f (k) − σ(k) for360

t ∈ [0,∞) satisfies that (κ(t; k0), σ (κ(t; k0)) is I -optimal.361
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The proof makes use of the following lemma.362

Lemma 4 If the pair (I, σ ) is an equilibrium strategy, then, for every k0 ∈ I , the363

solution κ(·; k0) : [0,∞) → I to k(0) = k0 and k̇ = f (k) − σ(k) for t ∈ [0,∞)364

has the properties that (κ(t; k0), σ (κ(t; k0)) is I -competitive and satisfies the CVT365

condition.366

Any I -admissible ck0,∆(t) has the same limiting properties as κ(t; k0) so that367

lim
ρ→0+

(

ρ

∫ ∞

0
e−ρt u(ck0,∆(t))

)

= u( f (k∞)) = lim
ρ→0+

(

ρ

∫ ∞

0
e−ρt u(σ (κ(t; k0)))

)

.368

This allows the proof of Lemma 4 to focus on the TDU part of the C-criterion.369

Proof (Proof of Proposition 4) Assume that, for every k0 ∈ I , the solution κ(t; k0)370

satisfies that (κ(t; k0), σ (κ(t; k0)) is I -optimal. Then deviating from κ(t; k0) on371

any bounded time interval cannot improve the TDU part of J (k0, I, σ ) and can-372

not influence the part that depends on the limit of the consumption path. Therefore,373

(κ(t; k0), σ (κ(t; k0)) is an equilibrium.374

Conversely, assume that pair (I, σ ) is an equilibrium. By Lemma 4, for every k0 ∈ I ,375

the solution κ(t; k0) has the properties that (κ(t; k0), σ (κ(t; k0))) is I -competitive and376

satisfies the CVT condition. By Lemma 2, (κ(t; k0), σ (κ(t; k0))) is I -optimal. ⊓⊔377

Proposition 4 implies that, in the Ramsey model, if there is a single attractor on378

I = R++, then the stationary Markov equilibrium strategy of the C-criterion yields379

the same outcome as the unrestricted TDU-optimal path, and moreover, the attractor380

equals k. This one-attractor equilibrium on R++ will be denoted
(

R++, σk

)

.381

Furthermore, for every k ∈ R++\{k}, if (1) k > k and I = [k,∞) or (2) k < k382

and I = (0, k], then there is a unique one-attractor equilibrium on I . In these cases,383

the attractor equals k. Such one-attractor equilibria will be denoted (I, σk).384

Propositions 2 and 4 imply that the class of one-attractor equilibrium strategies385

(I, σ ) can be divided into three subclasses (where the notation σk corresponds the one386

just introduced in the two previous paragraphs):4387

(a) I satisfies that k ∈ I . Then, for any k0 ∈ I\{k}, the solution κ(t; k0)to k(0) = k0388

and k̇ = f (k)−σ(k) for t ∈ [0,∞) converges to, but never reaches, k, while, for389

k0 = k, the stock equals k for all t . In this case, σ = σk |I .390

(b) I satisfies that k < inf I ∈ I . Then, for any k0 ∈ I , the solution κ(t; k0) to391

k(0) = k0 and k̇ = f (k)− σ(k) for t ∈ [0,∞) reaches inf I in finite time. In this392

case, σ = σmin I |I .393

(c) I satisfies that k > sup I ∈ I . Then, for any k0 ∈ I , the solution κ(t; k0) to394

k(0) = k0 and k̇ = f (k) − σ(k) for t ∈ [0,∞) reaches sup I in finite time. In395

this case, σ = σmax I |I .396

4 The case where k = inf I /∈ I or k = sup I /∈ I does not correspond to an equilibrium since the I -optimal
stock path converges to k which is not in I (contradicting Definition 1). The case where k < inf I /∈ I

or k > sup I /∈ I does not correspond to an equilibrium since it must generate an I -optimal pair (by
Proposition 4) and there is no I -optimal pair in this case (by Propositions 2).
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The following section shows that additional possibilities arise when considering397

strategies with multiple attractors. We end this section with the following result.398

Corollary 1 If the pair (I, σ ) is an equilibrium strategy, then for every k0 ∈ int I , we399

have:400

∂ J
∂k0

(k0, I, σ ) = (1 − α)δu′(σ (k0)).401

5 Multiple-attractor equilibrium strategies402

A multiple-attractor stationary Markov strategy combines a finite number of one-403

attractor stationary Markov strategies, to obtain a strategy defined on R++.404

Definition 3 A multiple-attractor stationary Markov strategy is a collection405

σ = {(I1, σ |I1), . . . , (In, σ |In )}406

where {I1, . . . , In} is a partition of the set of possible stock sizes R++ and, for every407

i ∈ {1, . . . , n}, (Ii , σ |Ii
) is a one-attractor stationary Markov strategy.408

Adopt the convention that the sets I1, I2, …, In are ordered in the sense that if409

i < j, k′ ∈ Ii and k′′ ∈ I j , then k′ < k′′. Since, for every i ∈ {1, . . . , n}, (Ii , σ |Ii
) is a410

one-attractor stationary Markov strategy, we can define the associated value function411

Vσ : R++ → R as follows: For every k > 0,412

Vσ (k) = J (k, Ii , σ |Ii
),413

where i ∈ {1, . . . , n} satisfies that k ∈ Ii .414

When analyzing one-attractor equilibrium strategies for any interval Ii , we have415

assumed that deviations that push the stock path outside Ii are not feasible. From416

interior points of Ii (with i < n), deviating toward I j with j > i is indeed infeasible417

if the interval of time, (0,∆), during which the deviation takes place is sufficiently418

short, since consumption cannot be reduced below zero. However, even such near-419

instantaneous deviations can push the stock path into Ii+1 from max Ii (if the maximum420

exists) or into I j with j < i from any point in Ii (provided that i > 1) since consump-421

tion is unbounded.422

Consider ck0,∆ as defined in (5). We call ck0,∆ admissible if there is a unique423

absolutely continuous solution k : [0,∞) → R++ to k(0) = k0 and k̇ = f (k) −424

ck0,∆(t) for t ∈ [0,∞), so that the pair (k(t), ck0,∆(t)) is feasible. Note that the solution425

k(t) is not required to remain in one particular element of the partition {I1, . . . , In}.426

Definition 4 A multiple-attractor stationary Markov strategy427

σ = {(I1, σ |I1), . . . , (In, σ |In )}428

is an equilibrium strategy if, for all k0 > 0, there exists ∆ > 0 such that, for every429

admissible ck0,∆,430
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Vσ (k0) ≥ (1 − α)

(

δ

∫ ∞

0
e−δt u(ck0,∆(t))dt

)

+ α lim
ρ→0+

(

ρ

∫ ∞

0
e−ρt u(ck0,∆(t))

)

dt.431

If σ = {(I1, σ1), . . . , (In, σn)} is a multiple-attractor equilibrium strategy, then it432

follows directly from Definitions 2 and 4 that, for every i ∈ {1, . . . , n}, (Ii , σi ) is a433

one-attractor equilibrium strategy. Furthermore, the value function Vσ must be upper434

semi-continuous. To see this, suppose that Vσ were not upper semi-continuous. That435

is, there would exist a point of discontinuity, k, such that the functional value of Vσ436

is strictly greater than Vσ (k) for arguments near k. Then there would be a profitable437

deviation at k for all ∆ > 0, contradicting that σ is a multiple-attractor equilibrium438

strategy. We have established the following characterization.439

Lemma 5 If a multiple-attractor stationary Markov strategy440

σ = {(I1, σ |I1), . . . , (In, σ |In )}441

is an equilibrium, then442

(i) for every i ∈ {1, . . . , n}, (Ii , σ |Ii
) is a one-attractor equilibrium strategy, and443

(ii) the value function Vσ : R++ → R is upper semi-continuous.444

Let σ = {(I1, σ |I1), . . . , (In, σ |In )} be a multiple-attractor equilibrium strategy. By445

Lemma 5, for every i ∈ {1, . . . , n}, (Ii , σ |Ii
) is a one-attractor equilibrium strategy,446

and thus, by Proposition 4, J (·, I, σ |Ii
) is a continuous function on Ii . Hence, it447

follows that Vσ is a piecewise continuous function. Furthermore, since for every i ∈448

{1, . . . , n}, J (·, I, σ |Ii
) is a continuously differentiable function on the interior of Ii ,449

it follows that Vσ is a piecewise continuously differentiable function. Finally, every450

point of discontinuity is an extreme point of some interval Ii .451

It follows from cases (b) and (c) of Sect. 4 that Vσ is continuous from the left for452

k < k and continuous from the right for k > k. Furthermore, case (a) of Sect. 4 implies453

that k cannot be a point of discontinuity, as k is interior in the interval Ii to which k454

belongs.5455

Lemma 6 Let σ satisfy the conditions (i) and (ii) of Lemma 5. If k is a point of456

discontinuity of Vσ : R++ → R, then k > k.457

It follows from Lemmas 5 and 6 that any point of discontinuity of Vσ must exceed458

k, ruling out case (c). This implies that there cannot be an extreme point of some459

interval Ii for k ≤ k.6 Hence, for any multiple-attractor equilibrium strategy, σ =460

{(I1, σ |I1), . . . , (In, σ |In )}, there is k > k, such that I1 = (0, k) and k is the attractor461

5 To see this, consider, e.g., the case where there is some i ∈ {1, . . . , n} such that k = max Ii . Since
{I1, . . . , In} is a partition of R++, there is j ∈ {1, . . . , n} such that k = inf I j /∈ I j . However, as pointed
out in footnote 4, this does not correspond to a one-attractor equilibrium strategy.
6 To see this, suppose that there is an extreme point k′ ≤ k of some interval Ii . Footnote 5 implies that k′ < k.
By case (c) of Sect. 4, this implies that k′ = max Ii . Since {I1, . . . , In} is a partition of the set R++, there
is j ∈ {1, . . . , n} such that k′ = inf I j /∈ I j , where, for every k0 ∈ I j , the solution κ(·, k0) : [0, ∞) → I j

to k(0) = k0 and k̇ = f (k)− σ |I j
(k) for t ∈ [0, ∞) has the property that k∞ = limt→∞ κ(t, k0) satisfies

k∞ = max I j < k or k∞ = k. Furthermore, if k0 ∈ (k′, k∞), then κ̇(t, k0) > 0 for all t ∈ (0, ∞), so that
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in I1 for the system k̇ = f (k) − σ |I1(k), where σ |I1 is the restriction of σk to I1.462

Therefore, for any initial stock k0 ≤ k, the stock will converge toward k. However,463

if the initial stock k0 exceeds k and there exists an interval Ii (with i > 1) which464

contains k0, then there is a point of discontinuity k∞ = min Ii > k such that the stock465

converges to k∞. This is summarized in the following proposition.466

Proposition 5 Let σ = {(I1, σ |I1), . . . , (In, σ |In )} be a multiple-attractor equilib-467

rium strategy. Then I1 ⊃ (0, k] and, for all i > 1, Ii ⊂ (k,∞). Furthermore:468

(a) If k0 ∈ I1, then k∞ = limt→∞ κ(t, k0) = k,469

(b) If k0 ∈ Ii with i > 1, then k∞ = limt→∞ κ(t, k0) = min Ii > k,470

where, for j ∈ {1, . . . , n} with k0 ∈ I j , κ(·, k0) : [0,∞) → I j is the solution to471

k(0) = k0 and k̇ = f (k) − σ |I j
(k).472

The former case corresponds to the interpretation of f as a net production function473

and k as a stock of a capital aggregate. In this interpretation, the initial capital stock k0474

is high productive, and the question is to how much capital to accumulate. Proposition475

5 implies that in a multiple-attractor equilibrium strategy, capital is accumulated as476

in the TDU-optimal path. Hence, the C-criterion leads to the same behavior as the477

TDU criterion, independently of which multiple-attractor equilibrium strategy the478

generations coordinate on.479

The latter case corresponds to the interpretation of f as a natural growth function480

and k as a stock of a resource aggregate. In this interpretation, the initial resource stock481

k0 is low productive, and the question is how much resource to conserve. Proposition482

5 implies that in a multiple-attractor equilibrium strategy, more resource might be483

conserved than in the TDU-optimal path. Hence, the C-criterion might lead to more484

conservation than the TDU criterion does, depending on which multiple-attractor equi-485

librium strategy the generations coordinate on.486

6 The scope for resource conservation487

The discussion and results of the previous section suggest that there are many multiple-488

attractor equilibrium strategies all satisfying the properties of Proposition 5. Even489

though k is the smallest (positive) attractor, there may be one or more attractors that490

exceed k. In this section, we discuss what outcomes are consistent with some multiple-491

attractor equilibrium strategy, while the following section will be devoted to whether492

coordination on a best multiple-attractor equilibrium strategy can be used to identify493

a unique outcome for any initial stock.494

Footnote 6 continued
σ |I j

(k) < f (k) for all k ∈ (k′, k∞). Therefore, Corollary 1 implies

V ′
σ (k) = (1 − α)δu′(σ |I j

(k)) < (1 − α) f ′(k)u′( f (k)) < u′( f (k)) f ′(k) = d
dk

[u ( f (k))]

by the strict concavity of u since f ′(k) > δ for k ∈ (k′, k∞) and α > 0. Combining this observation with
steps 1 and 2 of the proof of Lemma 6 contradicts that Vσ is continuous at k′.
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For the study of the scope for resource conservation for the Ramsey model under495

the C-criterion, we first establish the converse of Lemma 5, leading to the following496

result.497

Proposition 6 A multiple-attractor stationary Markov strategy498

σ = {(I1, σ |I1), . . . , (In, σ |In )}499

is an equilibrium if and only if500

(i) for every i ∈ {1, . . . , n}, (Ii , σ |Ii
) is a one-attractor equilibrium strategy, and501

(ii) the value function Vσ : R++ → R is upper semi-continuous.502

The necessity of (i) and (ii) follows from Lemma 5. To show the sufficiency of503

these two conditions, let σ = {(I1, σ |I1), . . . , (In, σ |In )} satisfy (i) and (ii). Since504

Proposition 5 relies on these conditions only, for all k0 > 0, the value Vσ (k0) depends505

solely on k∞ as determined by (a) and (b) of Proposition 5. This permits the following506

notation, given that σ = {(I1, σ |I1), . . . , (In, σ |In )} satisfies (i) and (ii):507

(a) If k0 ∈ I1, then k∞ = k and508

υk∞(k0) = J (k0, I1, σk |I1) = Vσ (k0).509

(b) If k0 ∈ Ii with i > 1, then k∞ = min Ii > k and510

υk∞(k0) = J (k0, Ii , σmin Ii
|Ii

) = Vσ (k0).511

Lemma 7 For (k∞, k0) ∈ [k,∞) × (k∞,∞), ∂
∂k∞

υ ′
k∞

(k0) > 0.512

Proof (Proof of Proposition 6, sufficiency part) Assume that conditions (i) and (ii) are513

satisfied by σ = {(I1, σ |I1), . . . , (In, σ |In )}. Consider k0 ∈ Ii .514

By condition (i), there are no profitable deviation within Ii . This completes the515

proof if n = 1. If n > 1, then we have two cases to consider.516

If i < n, there is no feasible deviation to Ii+1, …, In−1, In . The reason is that,517

by Lemmas 5 and 6 and footnote 5, it follows that sup Ii = min Ii+1 ∈ Ii+1 so that518

sup Ii /∈ Ii . Therefore, since consumption cannot be reduced below zero, the stock519

cannot be pushed out of Ii into Ii+1 during a near-instantaneous deviation.520

If i > 1, implying by Lemmas 5 and 6 and footnote 5 that k0 > k, the stock can521

be pushed out of Ii into I1, I2, …, Ii−1 also during a near-instantaneous deviation522

as consumption is unbounded. By Lemmas 5 and 6 and footnote 5, the stock path523

determined by k0 and σ |Ii
converges to min Ii , and a deviation from k0 to I j , j ∈524

{1, . . . , i −1}, during some interval (0,∆) with ∆ > 0 leads to a stock path converging525

to k∞ := k if j = 1 and k∞ := min I j if j > 1. To establish that no such deviation is526

profitable, it is sufficient to show that527

υk∞(k0) ≤ υmin Ii
(k0)528
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Resource conservation across generations in a Ramsey…

as the left-hand side is the maximal value associated with a stock path originating at529

k0 and converging to k∞ and, by condition (i), the right-hand side is value associated530

with the stock path determined by k0 and σ |Ii
. We have that531

υmin Ii
(k0) − υk∞(k0) = υmin I j+1(min I j+1) − υk∞(min I j+1)532

+

i
∑

ℓ= j+2

(

υmin Iℓ(min Iℓ) − υmin Iℓ−1(min Iℓ)
)

533

+

i−1
∑

ℓ= j+1

∫ min Iℓ+1

min Iℓ

(

υmin Iℓ(k) − υmin I j
(k)

)

dk534

+

∫ k0

min Ii

(

υmin Ii
(k) − υmin I j

(k)
)

dk.535

536

Condition (ii) implies that the terms of the second line are non-positive since at points537

of discontinuity, min Iℓ, the value Vσ jumps upwards from538

lim
k↑min Iℓ

Vσ (k) = υmin Iℓ−1(min Iℓ)539

(if ℓ > 2 and υk∞(min Iℓ) if ℓ = 2) to Vσ (min Iℓ) = υmin Iℓ(min Iℓ), while Lemma 7540

implies that the terms of the third line are non-positive. ⊓⊔541

To determine the scope for resource conservation for the Ramsey model under the542

C-criterion, it will turn out to be sufficient to consider a class of strategies, σ κ , with two543

attractors, k and κ (> k), where σ κ restricted to each of the two basins of attractions is a544

one-attractor equilibrium. It follows from Sect. 4 that this leads to basins of attractions545

being (0, κ) and [κ,∞) and two one-attractor equilibrium strategies being σk |(0,κ) and546

σκ (using the notation introduced in Sect. 4):547

σ κ =
{(

(0, κ), σk |(0,κ)

)

, ([κ,∞), σκ)
}

, (7)548

Hence, for each κ > k, this two-attractor strategy consists of the unique one-attractor549

equilibrium strategy on R++, but restricted to (0, κ), coupled with the unique one-550

attractor equilibrium strategy on [κ,∞). Then551

Vσ κ (k) =

{

υk(k) if k ∈ (0, κ),

υκ(k) if k ∈ [κ,∞).
552

The two-attractor strategy σ κ is illustrated in Fig. 2.553

Note that σ κ approaches the one-attractor equilibrium strategy
(

R++, σk

)

as κ ↓ k,554

since σκ approaches σk |[k,K ) as κ ↓ k. Thus υκ(k) is a continuous function of κ on555

[k, k]. Lemma 7 means that the gradient of the value function for given stock size k556

increases with the point of discontinuity κ . Furthermore, for all κ ∈ [k,∞), σκ (κ) =557

f (κ) so that558
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Fig. 2 The two-attractor
strategy σ κ

υκ(κ) = (1 − α)δ

∫ ∞

0
e−δt u( f (κ))dt + αu( f (κ)) = u( f (κ)). (8)559

Finally, by Corollary 1:560

υ ′
k(k) = (1 − α)δu′(σk(k)) = (1 − α) f ′(k)u′( f (k)) < u′( f (k)) f ′(k),561

since f ′(k) = δ and α > 0. Hence, the gradient of υk(k) is smaller than the gra-562

dient of u( f (k)) when evaluated at k. And it remains smaller than the gradient of563

u( f (k)) for all k ∈ [k, k̄ ], where k̄ := k∞ ((1 − α)δ), since υ ′
k(k) < υ ′

k(k) =564

(1 − α)δu′(σk(k)), σk(k) = f (k) and (1 − α)δ = f ′(k̄) ≤ f ′(k) for k ∈ (k, k̄ ], so565

that566

υ ′
k(k) < υ ′

k(k) = (1 − α)δu′(σk(k)) = (1 − α)δu′( f (k)) ≤ u′( f (k)) f ′(k) (9)567

for k ∈ (k, k̄ ]. This implies that568

K := {k ∈ R++ : υk(k) ≤ u( f (k))}569

is a non-empty closed set satisfying min K = k and [k, k ] ⊆ K for some k > k̄.570

By part (ii) of Proposition 6, σ κ is a two-attractor equilibrium strategy if and only571

κ ∈ K . Figure 2 illustrates this case. Hence, any stock k ∈ K can be conserved if572

the initial stock k0 exceeds k. For the converse result, that a stock k > k cannot be573

conserved if k /∈ K even if the initial stock k0 exceeds k, we have to consider multiple-574

attractor equilibrium strategies with more than two attractors. Using Proposition 6,575

Lemmas 7 and expressions (8) and (9), the converse result can also be established,576

showing that it is sufficient to consider two-attractor equilibrium strategies of the form577

(7) when analyzing the scope for resource conservation.578

Combined with our previous results, this analysis shows that:579

– max K is the maximum stock that can be conserved if K is bounded above and580

the initial stock k0 is at least as large as max K .581

– max{k ∈ K : k ≤ k0} is the maximum stock that can be conserved if the initial582

stock k0 is as least as large as k but not an upper bound for K , as the stock cannot583

be accumulated beyond k0 in an equilibrium strategy if k0 ≥ k. In particular, k0 is584

the maximal stock that can be conserved if k0 ∈ [k, k̄], as [k, k̄] ⊂ K .585
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Resource conservation across generations in a Ramsey…

– The stock accumulates to k for any equilibrium strategy if the initial stock k0 is586

smaller than k.587

7 Coordinating on an equilibrium strategy588

Assume now that the generation at time 0 is endowed with the stock k0 and seeks to589

coordinate on an equilibrium strategy that leads to an outcome maximizing the value590

of the C-criterion. Of central interest for the analysis of this question is the stock591

k̄ = k∞ ((1 − α)δ) defined by592

f ′(k̄) = (1 − α)δ.593

The importance of the stock k̄ can been seen by observing that, by Corollary 1,594

limk↓κv′
κ(k) = (1 − α)δu′( f (κ)),595

since limk↓κ σκ(k) = f (κ). The strict concavity of f gives the following conse-596

quences:597

If κ > k̄, then (1−α)δ > f ′(κ) and the gradient of vκ(k) is greater than the gradient598

of u( f (k)) (= f ′(k)u′( f (k))) for k greater than but sufficiently near κ . Therefore, if599

the initial stock k0 is larger than k̄, then there exists κ ∈ (k̄, k0) such that the increase600

in the TDU part of the C-criterion achieved by running down the stock to κ—and thus601

temporarily increasing consumption—more than compensates for the reduced value602

of asymptotic part of the criterion that such a rundown of the stock leads to.603

On the other hand, if κ < k̄, then (1 − α)δ < f ′(κ) and the gradient of vκ(k)604

for k smaller than the gradient of u( f (k)) (= f ′(k)u′( f (k))) for all k between κ and605

k̄. Therefore, if the initial stock k0 does not exceed k̄, then, for all κ ∈ (0, k0), the606

increase in the TDU part of the C-criterion achieved by running down the stock to κ607

does not compensate for the reduced value of asymptotic part of the criterion that such608

a rundown of the stock leads to. Hence, if k0 ∈ (k, k̄], then it pays to conserve the stock609

at k0, given that an equilibrium strategy does not allow the stock to be accumulated610

beyond k0 if k0 > k, while if the initial stock k0 does not exceed k, then any equilibrium611

strategy leads to accumulation of the stock to k.612

These results can be summarized as follows: Assume that the generation at time 0613

has the stock k0 and coordinates a multiple-attractor equilibrium strategy σ designed614

to maximize the value of the C-criterion.615

(1) If k0 ∈ (0, k]: All equilibrium strategies induce the same behavior as the TDU616

optimum, accumulating the stock to k. Accumulation beyond k is not possible.617

(2) If k0 ∈ (k, k̄]: The value of the C-criterion is maximized by staying put, e.g., by618

choosing σ k0 . It is not possible to accumulate, and not worthwhile to decrease the619

stock, given the trade-off between the two parts of the C-criterion.620

(3) If k0 ∈ (k̄,∞): It is not worthwhile to stay put, as the increase in TDU part of621

the C-criterion achieved by running down the stock exceeds the cost in terms of a622
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G. B. Asheim and I. Ekeland

reduced value of the part depending on the infinite future. The path will converge623

to some k∞ ≥ k̄ satisfying k∞ ∈ K .7624

In case (3), convergence to some k∞ > k̄ is not consistent with taking into account625

that future generations will coordinate on a best equilibrium strategy in turn, since626

they will not stay put at k∞. However, due to the time inconsistency of the C-criterion,627

it might indeed be the case that initially the value of the C-criterion is maximized by628

choosing k∞ > k̄. This will be optimal initially, but not later, as advancing the time629

of evaluation increases the weight on the elements in the TDU part of the C-criterion,630

while not affecting the weight on the asymptotic part.631

To handle this kind of time inconsistency in the coordination on a preferred equilib-632

rium, we present a modeling that is inspired by the analysis of renegotiation-proofness633

in repeated games. In particular, our formulation is based on von Neumann–634

Morgenstern abstract stability as revived by Greenberg (1990) and applied in, e.g.,635

Asheim (1997), while maintaining the restriction to stationary Markov strategies.636

Let σ = {(I1, σ |I1), . . . , (In, σ |In )} be a multiple-attractor equilibrium strategy.637

Say that k′′ can be reached from k′ by σ if there exist i1, . . . , im such that638

(a) k′
1 := k′ ∈ Ii1 and k′′

m := k′′ ∈ Iim ,639

(b) for all ℓ ∈ {1, . . . , m − 1}, k′
ℓ+1 ∈ Iiℓ+1 can be accessed from k′′

ℓ ∈ Iiℓ during a640

near-instantaneous deviation, and641

(c) for all ℓ ∈ {1, . . . , m}, the solution κ(·; k′
ℓ) : [0,∞) → Iiℓ to k(0) = k′

ℓ and642

k̇ = f (k) − σiℓ(k) for t ∈ [0,∞) has the property that κ(τ ; k′
ℓ) = k′′

ℓ for some643

τ ≥ 0.644

Hence, we consider stocks that can be reached by following σ , but allowing for a finite645

number of near-instantaneous deviations.646

The analysis of Sect. 5 leads to the following observation.647

Lemma 8 Let σ = {(I1, σ |I1), . . . , (In, σ |In )} be a multiple-attractor equilibrium648

strategy.649

(i) If k′ ∈ (0, k], then k′′ can be reached from k′ if and only if k′′ ∈ (0, k].650

(ii) If k′ ∈ (k,∞), then k′′ can be reached from k′ if and only if k′′ ∈ (0, k′].651

Let Σ = {σ = {(I1, σ |I1), . . . , (In, σ |In )} | σ is a multiple-attractor equilibrium652

strategy} denote the class of equilibrium strategies. Consider the set D = R++ × Σ ,653

and define the dominance relation ≻ε on D, where ε is a positive real number:654

(k′, σ ′) ≻ε (k, σ )655

if and only if656

k′ can be reached from k by σ and Vσ ′(k′) − Vσ (k′) > ε.657

We refer to (D,≻ε) as the ε-system for the Ramsey–Chichilnisky game.658

7 Since, as shown in Sect. 6, [k, k] ⊆ K for some k > k̄, there are equilibrium strategies for which the
stock converges to some k∞ > k̄ for initial stocks k0 satisfying k0 ∈ (k̄, ∞).
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Resource conservation across generations in a Ramsey…

Let A be a subset of D. The ε-dominion of A,∆ε(A) is defined as follows:659

∆ε(A) = {(k, σ ) ∈ D : ∃(k′, σ ′) ∈ A s.t. (k′, σ ′) ≻ε (k, σ )}.660

We say that the set A, where A ⊆ D, is:661

vNM internally ε-stable for the system (D,≻ε) if A ⊆ D\∆ε(A),662

vNM externally ε-stable for the system (D,≻ε) if A ⊇ D\∆ε(A),663

vNM ε-stable if A = D\∆ε(A).664

Hence, if a ε-stable set exists and is unique, then ε-stability uniquely divides D into665

a good set Gε and a bad set Bε = D\Gε, where no element in Gε is dominated by666

another element in Gε and every element in Bε is dominated by some element in Gε.667

Consider any system (D,≻). It is well established that a stable set need not exist,668

and if it exists, it may not be unique. von Neumann and Morgenstern (1953) provide a669

sufficient condition for the existence of a unique stable set: Say that the dominance rela-670

tion ≻ is strictly acyclic if there does not exist an infinite sequence {a1, a2, . . . , a j , . . .}671

of elements in D such that, for all j ∈ N, a j+1 ≻ a j .672

Theorem 1 (von Neumann and Morgenstern 1953) Consider any system (D,≻). If673

the dominance relation ≻ is strictly acyclic, then there exists a unique vNM stable set674

for the system (D,≻).675

Lemma 9 Consider the ε-system (D,≻ε) for the Ramsey–Chichilnisky game, where676

ε is some positive number. Then ≻ε is strictly acyclic.677

Proposition 7 Consider the ε-system (D,≻ε) for the Ramsey–Chichilnisky game,678

where ε is some positive number. There exists a unique vNM ε-stable set, Gε, for the679

system (D,≻ε).680

Proof By vNM’s theorem, this follows from Lemma 9. ⊓⊔681

The following lemmas fully characterize the ε-stable set for k ∈ (0, k̄ ] and partially682

characterize the ε-stable set for k ∈ (k̄,∞).683

Lemma 10 If k ∈ (0, k ], then (k, σ ) ∈ Gε if and only if (k, σ ) ∈ D.684

Lemma 11 If k ∈ (k, k̄ ], then (k, σ ) ∈ Gε if and only if (k, σ ) ∈ D and u( f (k′)) −685

Vσ (k′) ≤ ε for all k′ ∈ (k, k].686

Lemma 12 If k ∈ (k̄,∞), then (k, σ ) ∈ Gε only if (k, σ ) ∈ D and vk̄(k
′)− Vσ (k′) ≤687

ε for all k′ ∈ (k, k].688

These three characterization results allow us to prove the following result.689

Proposition 8 For all ζ > 0 and k0 ∈ (k, k̄ ], there exists ε > 0 such that if σ satisfies690

that (k0, σ ) ∈ Gε, then the solution κ(·; k0) : [0,∞) → R++ to k(0) = k0 and691

k̇ = f (k) − σ(k) for t ∈ [0,∞) satisfies that k∞ = limt→∞ κ(t; k0) ∈ (k0 − ζ, k0 ].692

For all ζ > 0 and k0 ∈ [k̄ + ζ,∞), there exists ε > 0 such that if σ satisfies693

that (k0, σ ) ∈ Gε, then the solution κ(·; k0) : [0,∞) → R++ to k(0) = k0 and694

k̇ = f (k) − σ(k) for t ∈ [0,∞) satisfies that k∞ = limt→∞ κ(t; k0) ∈ [ k̄, k̄ + ζ ).695
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Fig. 3 The limiting strategy σ

as ε → 0

Proof Part 1. We must show that, for all ζ > 0 and k ∈ (k, k̄ ], there exists ε > 0696

such that if (k, σ ) ∈ Gε, then σ has a discontinuity in (k − ζ, k ]. By Lemma 7 and the697

definition of k̄, if σ ∈ Σ has no discontinuity in (k − ζ, k ], then Vσ (k) ≤ vk−ζ (k) <698

u( f (k)). By Lemma 11, (k, σ ) /∈ Gε by choosing ε > 0 sufficiently small.699

Part 2. We must show that, for all ζ > 0 and k ∈ [k̄ + ζ,∞), there exists ε > 0700

such that if (k, σ ) ∈ Gε, then σ has no discontinuity in [k̄ + ζ,∞). By Lemmas701

5 and 7 and the definition of k̄, if σ ∈ Σ has a discontinuity in [k̄ + ζ,∞), then702

Vσ (k̄ + ζ ) ≤ u( f (k̄ + ζ )) < vk̄(k̄ + ζ ). By Lemma 12, (k, σ ) /∈ Gε by choosing703

ε > 0 sufficiently small. ⊓⊔704

The interpretation is that, in the limit, when ε → 0, (k, σ ) ∈ Gε implies that:705

– σ(k) = σk(k) if k ∈ (0, k]: The stock is accumulated to k, corresponding to the706

TDU optimum.707

– σ(k) = σk(k) if k ∈ (k, k̄]: The stock is conserved at k.708

– σ(k) = σk̄(k) if k ∈ (k̄,∞): The stock is decumulated to k̄.709

The strategy σ is illustrated in Fig. 3. This is essentially a uniqueness result, although710

the limiting strategy is not a multiple-attractor equilibrium strategy. Rather, as ε → 0,711

the points of discontinuity appear closer and closer, so that the outcome from any initial712

k0 ∈ (k, k̄ ] approaches the path where the stock remains constant at k0. Hence, in the713

limit the intervals within (k, k̄ ] are reduced to points, which contradicts Definitions 1714

and 3.715

The uniqueness result allows for comparative statics.716

– As δ → 0 for fixed α ∈ (0, 1), the outcome for any k0 > 0 becomes identical717

with the TDU-optimal path, which in turn approaches the undiscounted utilitarian718

optimum (if it exists). Hence, the weight on the infinite future in the C-criterion719

plays no role.720

– As α → 1 for fixed δ > 0, the outcome is the TDU optimum for k0 ∈ (0, k ],721

while k0 is conserved if k0 ∈ (k,∞). Hence, increasing the weight on the infinite722

future in the C-criterion does not change the behavior for small k0, but ensures723

that resource conservation is the outcome any initial k0 ∈ (k,∞).724

8 Concluding remarks725

We have shown that Markov equilibria, when the C-criterion is applied in the Ramsey726

model, support the intuition that we should seek to assist future generations if they727
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are worse off than us, but not having an unlimited obligation to save for their benefit728

if they turn out to be better off.729

This reinforces the results obtained by Asheim and Mitra (2010) and Zuber and730

Asheim (2012) for the criteria of sustainable discounted utilitarianism (SDU) and rank731

discounted utilitarianism (RDU), respectively. These criteria are also numerically732

representable, and they are neither a dictatorship of the present (also generations733

beyond any given T play a role) nor a dictatorship of the future (not only generations734

beyond any given T play a role). However, they do not satisfy the Strong Pareto735

principle and are thus not examples of sustainable preferences.736

When applied to the Ramsey model, both SDU and RDU lead to capital accumula-737

tion (leading to outcomes that are identical to the TDU optimal path) when k0 ∈ (0, k],738

while k0 is conserved if k0 ∈ (k,∞). Moreover, these optimal paths are time consistent739

so that a game-theoretic analysis is not called for.740

The problems of nonexistence and time inconsistency of the C-criterion arise741

because it combines a TDU part, treating the near future in advantageous manner,742

with a part that depends solely on the behavior of the consumption path at infinity.743

This does not by itself protect the interests of the far but finite future. Since almost every744

generation will live in the far but finite future, this is a potentially serious concern.745

Our analysis of stationary Markov strategies in the Chichilisky-Ramsey model746

shows how equilibrium strategies indeed provide a bridge from the near future—747

whose interests are taken into account by the TDU part—to the infinite future—whose748

interests are protected by the asymptotic part of the C-criterion. The reason is that all749

generations understand that, in equilibrium, any exploitation of the stock for short-term750

gains will have consequences also for the infinite future.751

Appendix: Proofs752

Proof (Proof of Lemma 1) It is easily checked that the set of all I -feasible consumption753

paths is convex. Since u is strictly concave, the TDU criterion is strictly concave, and754

the maximum, if it exists, is unique. ⊓⊔755

Proof (Proof of Lemma 2) Assume that the I -feasible pair (k∗(t), c∗(t)) is I -compe-756

titive and satisfies the CVT condition. For any other I -feasible pair (k(t), c(t)) we757

have, using the definition of p∗(t) and the concavity of u:758

∫ T

0
e−δt

(

u(c∗(t)) − u(c(t))
)

dt ≥

∫ T

0
p∗(t)

(

c∗(t) − c(t)
)

dt.759

Hence, by Eq. (1) and the property that (3) holds for almost all t :760

∫ T

0
e−δt

(

u(c∗(t)) − u(c(t))
)

dt761

≥

∫ T

0

(

p∗(t)
(

k̇(t) − k̇∗(t)
)

+ ṗ∗(t)
(

k(t) − k∗(t)
))

dt.762
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Integrating by parts the right-hand side, and using the fact that k (0) = k0 = k∗ (0):763

∫ T

0
e−δt u(c∗(t))dt −

∫ T

0
e−δt u(c(t)dt ≥ p∗(T )k(T ) − p∗(T )k∗(T ). (10)764

765

Letting T → ∞ (keeping in mind that limits exist) and using the CVT condition:766

∫ ∞

0
e−δt u(c∗(t))dt ≥

∫ ∞

0
e−δt u(c(t)dt.767

Hence, (k∗(t), c∗(t)) is I -optimal. ⊓⊔768

Proof (Proof of Lemma 4) Assume that the pair (I, σ ) is a one-attractor stationary769

Markov equilibrium and fix an arbitrary k0 ∈ I , leading to a unique and absolutely770

continuous capital path, κ(t; k0) converging to k∞.771

Step 1: σ is continuous. Let τ∞(k0) be the finite or infinite time at which k∞ is reached.772

Since σ is Markovian, the capital path from k0 ∈ I is constant if k0 = k∞, increasing773

on [k0, k∞) if k0 < k∞ and decreasing on (k∞, k0] if k0 > k∞.774

Assume k0 	= k∞. Let τ(·; k0) denote the inverse function of κ(·; k0), defined on775

[k0, k∞) if k0 < k∞ and on (k∞, k0] if k0 > k∞. For fixed (I, σ ), write J (k0, I, σ ) =776

(1 − α)V (k0) + α limρ→0+

(

ρ
∫ ∞

0 e−ρt u(σ (κ(t; k0)))dt
)

, so that V (k0) is the value777

of the TDU part of the C-criterion when σ is followed from k0.778

V (k0) = δ

∫ ∞

0
u (σ (κ(t; k0))) e−δt dt779

= δ

∫ k∞

k0

u (σ (k))

f (k) − σ(k)
e−δτ(k;k0)dk + u( f (k∞))e−δτ∞(k0)

780

781

if k0 < k∞ and782

V (k0) = δ

∫ ∞

0
u (σ (κ(t; k0))) e−δt dt783

= δ

∫ k0

k∞

−
u (σ (k))

f (k) − σ(k)
e−δτ(k;k0)dk + u( f (k∞))e−δτ∞(k0)

784

785

if k0 > k∞. By means of this change of variable, we will show that σ must be786

continuous for all values of k0 if σ is an equilibrium strategy.787

For values of k0 for which σ is continuous, we have that788

∂τ(k; k0)

∂k0
= −

1

f (k0) − σ(k0)
for all k, and

dτ∞(k0)

dk0
= −

1

f (k0) − σ(k0)
.789

Therefore, for values of k0 for which σ is continuous, it follows that790

V ′(k0) = δ ·
V (k0) − u (σ (k0))

f (k0) − σ(k0)
, (11)791

independently of whether k0 < k∞ or k0 > k∞.792
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Resource conservation across generations in a Ramsey…

Since σ is an equilibrium strategy, it follows that for all values of k0 for which σ is793

continuous,794

σ(k0) maximizes δu(c) + V ′(k0) ( f (k0) − c) over all c (12)795
796

by considering a deviation from σ in a sufficiently short time interval (0,∆). Since797

σ is an equilibrium strategy, it follows also that for all values of k0 for which σ is798

continuous,799

V (k0) ≥ u( f (k0)), (13)800
801

since otherwise staying put at k0 for t ∈ (0,∆) by choosing c(t) = f (k∞) would be a802

profitable deviation. Furthermore, Eqs. (11) and (12) imply that V (k0)−u(σ (k0)) > 0803

if k0 < k∞ and V (k0) − u(σ (k0)) < 0 if k0 > k∞.804

Suppose that k̃ is a point of discontinuity of σ . Write c− = lim
k0↑k̃

σ(k0) and805

c+ = lim
k0↓k̃

σ(k0). It follows from Eqs. (11) and (12) that806

c− maximizes u(c) +
V (k̃) − u

(

c−
)

f (k̃) − c−
·
(

f (k̃) − c
)

over all c, (14)807

c+ maximizes u(c) +
V (k̃) − u

(

c+
)

f (k̃) − c+
·
(

f (k̃) − c
)

over all c. (15)808

809

Since k̃ is a point of discontinuity of σ , we have that c− 	= c+. However, if Eq. (13) is810

satisfied with strict inequality,8 then the strict concavity of u implies that the equation811

u′(c̃) =
V (k̃) − u (c̃)

f (k̃) − c̃
(16)812

813

is solved by a unique c̃′ < f (k̃), corresponding to the case where k̃ < k∞ and a unique814

c̃′′ > f (k̃), corresponding to the case where k̃ > k∞. This contradicts that both (14)815

and (15) can be satisfied and proves that σ must be continuous for k0 	= k∞.816

It remains to be shown that σ is continuous at k∞. With k0 = k∞, Eq. (13) is satisfied817

with equality. Furthermore, V is continuous at k∞ as (i) σ(κ(t; k0)) → f (k∞) for all818

t as k0 → k∞ in the case where τ∞(k0) = ∞ for k0 	= k∞, and (ii) τ∞(k0) → 0+
819

as k0 → k∞ otherwise. It follows from the strict concavity of u and the property that820

σ(k0) solves (16) for k̃ = k0 that σ(k0) approaches f (k∞) continuously also in case821

(ii).822

Step 2: (κ(t; k0), σ (κ(t; k0))) satisfies Eq. (3) for almost all t ∈ [0,∞). Since (I, σ )823

is a one-attractor stationary Markov equilibrium, then there exists ∆ > 0 such that824

∫ ∆

0
e−r t

(

u(σ (κ(t, k0)) − u(ck0,∆(t))
)

dt ≥ 0 (17)825

8 If Eq. (13) is satisfied with equality, then (16) cannot be satisfied for any k̃ 	= k∞, contradicting the case
we consider in this part of the proof.
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for every I -admissible choice ck0,∆ where the solution k : [0,∞) → I to k(0) = k0826

and k̇ = f (k) − ck0,∆(t) for t ∈ [0,∞) satisfies that k(∆) = k1 := τ(∆, k0), since827

then σ(κ(t, k0)) = ck0,∆(t) for t ∈ (∆,∞).828

There exists a pair k̂ : [0,∆] → I and ĉ : [0,∆] → R+ such that (i) ĉ is829

absolutely continuous, so that the associated present-value price path p̂(t) defined830

p̂(t) = e−δt u′(ĉ(t)) is differentiable almost everywhere, (ii) Eq. (3) is satisfied for831

almost all t ∈ [0,∆], and (iii) k̂(0) = k0 and k̂(∆) = k1. By (10) and the strict832

concavity of the TDU criterion, we have that833

∫ ∆

0
e−r t

(

u(σ (κ(t, k0)) − u(ĉ(t))
)

dt < 0834

if (κ(t, k0), σ (κ(t, k0))) does not coincide with (k̂(t), ĉ(t)) for t ∈ [0,∆], contra-835

dicting (17). Hence, the pair (κ(t, k0), σ (κ(t, k0))) satisfies Eq. (3) for almost all836

t ∈ [0,∆]. Since k0 ∈ I is arbitrary, it follows that (κ(t; k0), σ (κ(t; k0))) satisfies837

Eq. (3) for almost all t ∈ [0,∞).838

Step 3: (κ(t; k0), σ (κ(t; k0)) is I -competitive and satisfies the CVT condition.839

By Step 1, σ : I → R++ is continuous, so that, for every k0 ∈ I , the840

solution κ(t; k0) has the properties that σ(κ(t; k0)) is an absolutely continuous841

function of t and, by Step 2, (κ(t; k0), σ (κ(t; k0)) satisfies Eq. (3) for almost all842

t ∈ [0,∞). Moreover, by Definition 1, (κ(t; k0), σ (κ(t; k0)) is I -feasible, so that843

(κ(t; k0), σ (κ(t; k0)) is I -competitive. Finally, by Definition 1, κ(t; k0) converges,844

implying that (κ(t; k0), σ (κ(t; k0)) satisfies the CVT condition. ⊓⊔845

Proof (Proof of Corollary 1) Assume that the pair (I, σ ) is an equilibrium, and let846

k0 ∈ intI . Let V (k0) be defined as in the proof of Lemma 4. We need to show that847

V ′(k0) exists and equals δu′(σ (k0)).848

Case 1: k0 	= k∞. The result follows from (12) of the proof of Lemma 4.849

Case 2: k0 = k∞ Since k0 ∈ intI , we are in case (a) of the cases considered in the850

text preceding the corollary, so that k0 = k. The result follows since851

V (k0) = δ

∫ ∞

0
u (σ (κ(t; k0))) e−δt dt852

is differentiable as a function of k0 at k0 = k and V (k0) ≥ u( f (k0)) for all k0 ∈ I .853

⊓⊔854

Proof (Proof of Lemma 5) Included in the main text. ⊓⊔855

Proof (Proof of Lemma 6) Let σ = {(I1, σ1), . . . , (In, σn)} be a multiple-attractor856

equilibrium strategy.857

Step 1: At a point of discontinuity k′ of Vσ , Vσ (k′) = u( f (k′)). By Propositions 2858

and 4 and the observation that Vσ cannot be discontinuous at k, if k′ is a point of859

discontinuity, then there is i ∈ {1, . . . , n} such that either Ii ⊂ (0, k) and k′ = max Ii860

or Ii ⊂ (k,∞) and k′ = min Ii . In both cases,861
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Vσ (k′) = (1 − α)δ

∫ ∞

0
e−δt u( f (k′))dt + αu( f (k′)) = u( f (k′))862

since σ |Ii
(k′) = f (k′) and δ

∫ ∞
0 e−δt dt = 1.863

Step 2: For all k′ ∈ (0, k), Vσ (k′) ≥ u( f (k′)). By Propositions 2 and 4, if k′ ∈ (0, k),864

then there is i ∈ {1, . . . , n} such that k′ ∈ Ii , where the solution κ(·, k′) : [0,∞) → Ii865

to k(0) = k′ and k̇ = f (k) − σ |Ii
(k) for t ∈ [0,∞) has the property that k∞ =866

limt→∞ κ(t, k′) satisfies k∞ = max Ii < k or k∞ = k. In either case,867

u( f (k∞)) ≥ u( f (k′)) (18)868
869

since k′ ≤ k∞, and both f and u are strictly increasing. Moreover, since the pair870

(k(t), c(t)) with k(t) = k′ and c(t) = f (k′) for all t ∈ [0,∞) is Ii -feasible, it follows871

from the Ii -optimality of (κ(t, k′), σi (κ(t, k′))) that872

δ

∫ ∞

0
e−δt u(σi (κ(t, k′)))dt ≥ δ

∫ ∞

0
e−δt u( f (k′))dt = u( f (k′)) . (19)873

874

Hence, by (18) and (19), Vσ (k′) ≥ (1 − α)u( f (k′)) + αu( f (k′)) = u( f (k′)).875

The two steps imply that discontinuity of the value function Vσ for k ∈ (0, k) is876

inconsistent with Vσ being upper semi-continuous. Combined with Lemma 5, this877

establishes the result since, as argued in footnote 5, Vσ cannot be discontinuous at k.878

⊓⊔879

Proof (Proof of Lemma 7) It follows from Corollary 1 and the definition of vk∞(k0)880

that881

∂
∂k∞

υ ′
k∞

(k0)=
∂

∂k∞

[

(1 − α)δu′(σk∞(k0))
]

= (1−α)δu′′(σk∞(k0))
∂

∂k∞

(

σk∞(k0)
)

>0882

for (k∞, k0) ∈ [k,∞) × (k∞,∞), by the strict concavity of u and the properties of883

I -competitive paths in the phase diagram in (k, c)-space. ⊓⊔884

Proof (Proof of Lemma 9) Consider the ε-system (D,≻ε) for the Ramsey–885

Chichilnisky game, where ε is some positive number. Suppose that ≻ε is not strictly886

acyclic, that is, there exists an infinite sequence {(k1, σ1), (k2, σ2), . . . , (k j , σ j ), . . .}887

of elements in D such that, for all j ∈ N, (k j+1, σ j+1) ≻ε (k j , σ j ). In each of two888

exhaustive cases, this leads to a contradiction.889

Case 1. There exists j ∈ N such that k j ∈ (0, k]. If k ∈ (0, k ], then (k, σ ) ∈ D890

only if σ = {(I1, σ |I1), . . . , (In, σ |In )} satisfies that there is κ ∈ (k,∞) ∪ {∞} such891

that I1 = (0, κ) and σ |I1 = σk |(0,κ). Furthermore, by Lemma 8(i), k′ is reachable892

from k ∈ (0, k] if and only if k′ ∈ (0, k]. Therefore, for any ε > 0, if k j ∈ (0, k ], then893

there is no (k j+1, σ j+1) ∈ D such that (k j+1, σ j+1) ≻ε (k j , σ j ). This establishes the894

contraction in this case.895

Case 2. There does not exist j ∈ N such that k j ∈ (0, k]. By Lemma 8(ii), {k j } j∈N896

is a non-increasing sequence; hence, there is k̂ ∈ [k,∞) such that k̂ = lim j→∞ k j .897

The set {Vσ (k̂) : σ ∈ Σ} is bounded, with—as argued in Sect. 6—υk(k̂) being898
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the greatest lower bound, and (1 − α) sup
A
(

k̂
) δ

∫ ∞
0 e−δt u(c(t))dt + αu( f (k̂)) being899

an upper bound.9 For any ζ > 0 and any σ ∈ Σ, Vσ (k) is Lipschitz continu-900

ous on [k̂, k̂ + ζ ]. Hence, for any ε > 0, the existence of an infinite sequence901

{(k j , σ j ), (k j+1, σ j+1), . . . , (k j+ℓ, σ j+ℓ), . . . )} with k̂ ≤ · · · ≤ k j+ℓ ≤ · · · ≤902

k j+1 ≤ k j ≤ k̂ + ζ such that, for all ℓ ∈ N, (k j+ℓ+1, σ j+ℓ+1) ≻ε (k j+ℓ, σ j+ℓ)903

contradicts that the set {Vσ (k̂) : σ ∈ Σ} is bounded, for ζ > 0 chosen sufficiently904

small. ⊓⊔905

Proof (Proof of Lemma 10) If k ∈ (0, k ], then (k, σ ) ∈ D if σ = {(R++, σk)}906

and (k, σ ) ∈ D only if σ = {(I1, σ |I1), . . . , (In, σ |In )} satisfies that there is κ ∈907

(k,∞) ∪ {∞} such that I1 = (0, κ) and σ |I1 = σk |(0,κ). Furthermore, k′ is reachable908

from k ∈ (0, k] if and only if k′ ∈ (0, k]. Therefore, for any ε > 0, if k ∈ (0, k ] and909

(k, σ ) ∈ D, then there is no (k′, σ ′) ∈ D such that (k′, σ ′) ≻ε (k, σ ). This establishes910

the lemma. ⊓⊔911

Proof (Proof of Lemma 11) Using Proposition 6, Lemma 7 and expressions (8) and912

(9), it follows that, for all κ ∈ (k, k̄ ], u( f (κ)) = maxσ∈Σ Vσ (κ). Fix k ∈ (k, k̄ ]. If913

σ = {(I1, σ |I1), . . . , (In, σ |In )} ∈ Σ , then (k, σ ) ∈ Gǫ if u( f (k′)) − Vσ (k′) ≤ ε914

for all k′ ∈ (k, k ], since then there is no (k′, σ ′) ∈ D such that (k′, σ ′) ≻ε (k, σ ),915

using the observation in the proof of Lemma 10 that no domination is possible for916

k′ ∈ (0, k).917

It follows that, for all k′ ∈ (k, k ], (k′, σ ′) ∈ Gε, provided that σ ′ =918

{(I ′
1, σ

′|I ′
1
), . . . , (I ′

n, σ ′|I ′
n
)} ∈ Σ satisfies that u( f (k′′)) − Vσ ′(k′′) ≤ ε for all919

k′′ ∈ (k, k′ ]. This is consistent with I ′
n = [k′,∞) and σ ′|I ′

n
= σk′ |I ′

n
so that920

Vσ ′(k′) = u( f (k′)). This shows that (k, σ ) ∈ Gǫ only if u( f (k′)) − Vσ (k′) ≤ ε921

for all k′ ∈ (k, k ], since otherwise there is (k′, σ ′) ∈ Gε such that (k′, σ ′) ≻ε (k, σ ).922

Proof (Proof of Lemma 12) Suppose k ∈ (k̄,∞), (k, σ ) ∈ Gε and vk̄(k
′)−Vσ (k′) > ε923

for some k′ ∈ (k, k]. By internal ε-stability, there does not exist (k′, σ ′) ∈ Gε where924

σ ′ = {(I1, σ
′|I1), . . . , (In, σ ′|In )} satisfies that In = [k̄,∞). It follows from Lemmas925

10 and 11 that, by choosing sufficiently many points of discontinuity in (k, k̄ ], there926

exists σ ′ = {(I1, σ
′|I1), . . . , (In, σ ′|In )} such that, for all k′′ ∈ [0, k̄ ], (k′′, σ ′) ∈ Gε.927

Hence, by external ε-stability, there exists k′′ ∈ (k̄, k′ ] and (k′′, σ ′′) ∈ Gε such that928

Vσ ′′(k′′)−vk̄(k
′′) > ε. However, by Lemmas 5 and 7, vk̄(k

′′) > Vσ (k′′) for k′′ ∈ (k̄, k′ ]929

so that Vσ ′′(k′′) − Vσ (k′′) > ε and (k′′, σ ′′) ≻ε (k, σ ). Since (k, σ ), (k′′, σ ′′) ∈ Gε,930

this contradicts internal ε-stability and shows that vk̄(k
′)−Vσ (k′) ≤ ε for all k′ ∈ (k, k]931

if k ∈ (k̄,∞) and (k, σ ) ∈ Gε. ⊓⊔932
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