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Econometrica, Vol. 67, No. 6 (November, 1999), 1435-1457 

AGGREGATION AND MARKET DEMAND: AN EXTERIOR 
DIFFERENTIAL CALCULUS VIEWPOINT 

BY P. A. CHIAPPORI AND I. EKELAND1 

We analyze under which conditions a given vector field can be disaggregated as a linear 
combination of gradients. This problem is typical of aggregation theory, as illustrated by 
the literature on the characterization of aggregate market demand and excess demand. 
We argue that exterior differential calculus provides very useful tools to address these 
problems. In particular, we show, using these techniques, that any analytic mapping in RW 
satisfying Walras Law can be locally decomposed as the sum of n individual, utility-maxi- 
mizing market demand functions. In addition, we show that the result holds for arbitrary 
(price-dependent) income distributions, and that the decomposition can be chosen such 
that it varies continuously with the mapping. Finally, when income distribution can be 
freely chosen, then decomposition requires only n/2 agents. 

KEYWORDS: Microeconomics, consumer theory, aggregation, market demand. 

1. INTRODUCTION: AGGREGATION AND GRADIENT STRUCTURES 

IN MANY SITUATIONS, economists are interested in the behavior of aggregates 
formed by adding several elementary demand or supply functions. In turn, each 
of these elementary components results from some maximizing decision process 
at the "individual" level. A standard illustration is the characterization of 
aggregate market demand or excess demand in an exchange economy, a problem 
initially raised by Sonnenschein (1973a, b). A number of authors have addressed 
this problem, starting with Mantel (1974) and Debreu (1974), and including 
McFadden et al. (1974), Mantel (1976, 1977), Diewert (1977), and Geanakopolos 
and Polemarchakis (1980). Here, agents maximize utility subject to a budget 
constraint, and individual demands add up to an aggregate demand or excess 
demand function. Recently this research has been extended to incomplete 
markets by Bottazzi and Hens (forthcoming) and Gottardi and Hens (1995). A 
different but related example is provided by Browning and Chiappori (1998), 
who consider the demand function of a two-person household, where each 
member is characterized by a specific utility function and decisions are only 
assumed to be Pareto-efficient. 

These models share a common feature: they lead to the same type of 
mathematical problem. In all cases, the economic context has the following 
translation: some given vector field X(p), mapping On to Rn, must be decom- 

'Paper presented at seminars in Chicago, Paris, Toulouse, Copenhagen, and Barcelona. We 
thank the participants and G. Debreu, B. Grodal, R. Guesnerie, J. Heckman, P. L. Lions, H. 
Polemarchakis, J. Scheinkman, and especially A. Mas-Colell for their suggestions, and the NSF 
(Grant SES-97 29559) and the Commissariat General du Plan for financial support. Helpful 
comments from the editor and two anonymous referees are gratefully acknowledged. Finally, we 
thank A. Eisfeldt for valuable research assistance. Errors are ours. 
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posed as a linear combination of k gradients. Here, k is the number of 
individuals, X(p) is the original (aggregate) function, and gradients are the 
natural mathematical translation of the underlying optimization problem. For- 
mally, one seeks to write X(p) as 

(1.1) X(p) = A1(p) DpV1(p) + * + Ak(p) DpVk(p) 

where the Aj(p) and the Vi(p) are scalar functions (V1 being in general 
interpreted as an indirect utility function), and where DPVW(p) is the gradient of 
Vi(p) at p: 

dvi dvi' 

.D Wi(p) = dp ..dp 

Note that, depending on the context, these functions may have to fulfill specific, 
additional conditions, such as positiveness, monotonicity, (quasi)-convexity, and 
budget constraints. 

The main purpose of this paper is to investigate what conditions on X make 
such a decomposition possible. 

From a mathematical point of view, the structure of (1.1) is highly specific. In 
the first half of this century, Elie Cartan (1945) developed a set of concepts, 
usually referred to as exterior differential calculus (from now on EDC), that 
proved especially convenient to deal with problems of this type. Surprisingly 
enough, however, these tools have hardly ever been used in the field of 
economic theory. One obvious exception is the pioneering paper by Russell and 
Farris (1993), which shows that Gorman's rank theorem is a consequence of 
well-known results on Lie groups. More recently, Russell (1994) proposes a 
measure of "quasi-rationality" directly based upon EDC. However, these works 
only consider individual behavior.2 

In this paper, we apply the tools of EDC to standard economic aggregation 
problems. Specifically, we describe in some detail how a very powerful theorem 
of EDC, due to Cartan and Kahler, can be used to address a range of issues 
related to the aggregation problem. To our knowledge, this result has not been 
used in economics thus far, although its scope potentially includes many impor- 
tant issues. To illustrate the latter claim, we consider the classical problem, 
initially raised by Sonnenschein (1993b), of the characterization of aggregate 
demand.3 Two versions have been considered in the literature. The first version 
considers the excess demand of an exchange economy. Given some arbitrary, 
continuous function Z that satisfies homogeneity and Walras Law, is it possible 
to construct an economy (i.e., a set of preferences and initial endowments) for 
which Z is the aggregate excess demand? This problem was solved by Mantel 

2A referee rightly points out that EDC is mentioned by Hurwicz, in the context of integration of 
consumer demand. 

3Another application to "collective" household behavior a la Browning and Chiappori is provided 
in a companion paper (Chiappori and Ekeland (1998a)). 



AGGREGATION AND MARKET DEMAND 1437 

(1974) and Debreu (1974), and additional results were derived by Geanakoplos 
and Polemarchakis (1980). The second problem is similar, except that it consid- 
ers market demand (instead of excess demands). Even in the local version put 
forth by Shafer and Sonnenschein (1982), this problem was still unresolved, 
except for the case of finite data sets (Andreu (1982)). 

In what follows, we provide a formal proof of the general conjecture already 
formulated in Sonnenschein's paper. Namely, we establish that when the num- 
ber of agents is at least equal to the number of goods, then any (smooth enough) 
function satisfying Walras Law can be locally seen as the aggregate market 
demand of some economy, even when the distribution of income is imposed a 
priori. Our approach is general-although, for the sake of brevity, we only 
consider the market demand case in the paper. 

In addition, we provide three other original results. The first result is general, 
while the second two are specific to market demand. 

* The first result states that the decomposition can be chosen such that it 
varies continuously with the initial, aggregate demand function. In other words, 
to any new demand that is "close" to the initial one, one can associate a 
decomposition "close" to the initial one. Although somewhat natural, this result 
turned out to be very difficult to prove using the Debreu-Mantel technique, 
whereas it is a simple consequence of our approach. 

* For the second result, assume that the initial distribution of income, instead 
of being price-independent as in the original setting, is some given function of 
prices. Then, again, any smooth enough function can be decomposed as an 
aggregate demand, provided that the number of agents is at least equal to the 
number of commodities. 

* Finally, for the third result, assume the income distribution is some arbitrary 
and a priori unspecified function of prices. When is it possible to decompose an 
arbitrary, smooth function as the aggregate demand of an economy where the 
(price-dependent) income distribution can be freely chosen? In this new setting, 
the number of agents required is considerably reduced. Technically, decomposi- 
tion is possible even when the number of agents is half the number of goods. 

The structure of the paper is as follows: In the next section, we quickly review 
the structure of the problems under consideration, and describe their formula- 
tion in terms of exterior differential calculus. Section 3 presents the main 
results, while the extensions are discussed in Section 4. 

2. CHARACTERIZATION OF AGGREGATE EXCESS AND MARKET DEMAND 

2.1. A Statement of the Problem 

The problem of characterizing the structure of aggregate excess and market 
demand was initially raised in Sonnenschein's seminal paper (1993b). The excess 
demand problem can be stated as follows. Take some continuous mapping Z(p): 
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IRI-- R, such that (Walras Law) 

(2.1) p * Z(p) = 0. 

Can we find n individual demand functions z1(p),... , zn(p) such that 

(2.2) X(p) = z'(p) + ?' +Zn(p) 

where zi(p) = xi(p) - c& and xi(p) is a solution of 

Vi(p) = max U'(x') 

(2.3) P. xi = P. Wi 

xi> 0 

for some well-behaved utility function Ui and some positive initial endowments 

The market demand problem is similar, except that the initial mapping X(p) 
should satisfy a different version of Walras Law, namely 

(2.4) p * X(p) = n 

and (2.2) and (2.3) should respectively be replaced by 

(2.5) X(p) = x1(p) + *. +xn(p) 

and 

Vi(p) = max U'(x'), 

(2.6) p-Xi= 19 

xi > 0. 

As is well known, the former question-the characterization of aggregate 
excess demand-has been solved by Mantel (1974) and Debreu (1974), whereas 
the so-called "market demand" problem is still unresolved. As a matter of fact, 
the techniques we shall now describe apply to both problems in basically the 
same way. This is partly due to the local nature of our approach. It has been 
known since Sonnenschein's original paper that, in contrast to the excess 
demand problem, when characterizing market demand one must account for 
complex nonnegativity restrictions. In particular, Sonnenschein exhibits a coun- 
terexample of a function X that cannot be globally decomposed as above 
because of these constraints. Recently, Brown and Matzkin (1996) have provided 
a precise characterization of the restrictions arising from nonnegativity con- 
straints. However, the local version of the question remains open: is it possible, 
for any given p > 0, to find individual demand functions x1(p),... , xn(p), defined 
in some neighborhood of p, such that (2.2) and (2.6) are fulfilled in this 
neighborhood? 
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A result initially demonstrated by Sonnenschein (1973b) and then generalized 
by Diewert (1977) and Mantel (1977), states that for n ?/ any continuous 
function satisfying Walras Law, when considered at some given point -p "looks 
like" aggregate market demand, in the following sense: It is possible to find 
individual demand functions x1(p),..., x n(p) such that 

X(-p) = Exi(jP), and D X(-p)=E D xi(). 
i i 

In their 1982 survey, Shafter and Sonnenschein ask whether it is possible to go 
beyond this result, and find the x'(p) such that X(p) coincides with Xix'(p) in an 
open neighborhood of -p. While Andreu (1982) has demonstrated this property 
for finite sets of price-income bundles, the continuous version had not yet been 
established. In what follows, we show that the answer to the question is yes, at 
least if we assume that the function X is analytic in such an open neighborhood 
of p (which implies, in particular, that it is infinitely differentiable). 

2.2. The Basic Partial Differential Equations 

Excess demand: Both problems can actually be stated as partial differential 
equations. We start with excess demand. If Vi denotes consumer i's indirect 
utility, utility maximization implies DPV'(p) = -a z'(p), where ai is the La- 
grange multiplier. It follows that 

11 
(2.7) Z(p) = - D D V1(p) DPVn(p) 

= Al (p) Dp V 1(P) + *Z+ An (p) DpVn(p) 

and Z(p) must be a linear combination of n gradients. In addition: 
* the Vi are (quasi) convex; 
* the Ai are negative; 
* furthermore, the budget constraint implies 

(2.8) p DPVi(p) = 0 Vi. 

The problem is thus to find, in a neighborhood of some given jp, functions 
A1 ... ., An and V1, .. ., Vn satisfying (2.7) and the set of conditions (2.8). 

Market demand: The statement of the market demand problem is similar. 
First, if Vi denotes consumer i's indirect utility, we know that utility maximiza- 
tion implies DPV'(p) = - * x'(p), where ai is the Lagrange multiplier. It 
follows that 

1 ~~~~~~~1 
(2.9) X(p) = - D V'(p) -. a () DpVn(p) 

= A(P ) 1 (P) ( . An P) D Vn p 
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and X(p) must be a linear combination of n gradients. In addition: 
* the Vi are (quasi) convex and decreasing; 
* the Ai are negative; 
* furthermore, the budget constraint implies 

(2.10) p*DpVi(p) = 1/Ai Vi. 

The problem is thus to find, in a neighborhood of some given jp, functions 
A1,..., AAn and Vl, ... , Vn satisfying (2.9) and the set of conditions (2.10). 

It should be noted that the two problems above are basically similar; in both 
cases, we have to solve a partial differential equation in a set of functions that 
satisfies specific constraints. The only difference lies in the fact that the 
constraints ((2.8) in one case, (2.10) in the other), although similar, are not 
identical. Surprisingly, this minor difference results in important discrepancies 
in the solution process. As we shall see, the market demand problem is much 
more difficult to solve than the excess demand one, even when the power of the 
EDC techniques is fully exploited. This may explain why the former remained 
unsolved for twenty five years whereas a solution to the latter was found within a 
few months. It must be emphasized that these differences are totally indepen- 
dent of the nonnegativity restrictions; they are related to the mathematical 
nature of the (local) problem. 

2.3. Mathematical Resolution: The Basic Strategy 

Let us now describe the general strategy used throughout the proof. 
One approach might be to consider the basic partial differential equations on 

FRI directly, and try to solve them using some standard technique.- However, this 
strategy does not work here. For example, in the case of market demand, the 
problem is to find (quasi convex) functions V1,..., Vn that solve 

n~ D Vi(P) 
(2*11) X(p) .E D iP) 

P'i pDPV(p) 

But this PDE does not belong to any usual class, and we cannot apply 
standard existence results. Thus, the problem must be reformulated. 

The basic idea of the following proof is to enlarge the space under considera- 
tion, and to adopt a geometric viewpoint. Let us consider the space E = 

{pA1, ..., A A,.., An} = +n +/n, where the vector A' will later be inter- 
preted as the gradient DpV'. Assume that the original problem is solved-say, 
(Ai(p), A'(p)). Then the equations Ai = Aj(p) and A' = A'(p) define a (f-dimen- 
sional) manifold Y in E (which is the graph of the map p -> (Ai, Ai)). It is clear 
from (2.9) and (2.10) that 5 is contained in the fn-dimensional manifold XF 
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defined by 

X(p)= EkiA', 
(2.12) 

p -A = 1/Ai Vi. 

In addition, since each function A'(p) is the gradient of a quasi-convex 
function, it satisfies the cross-derivative restrictions: 

dA' dA' 
(2.13) Vi, j 

dpj dPj 

plus some positivity conditions.4 
In summary: 
* if (Ai(p), A'(p)) solves the original problem, then the manifold Y it defines 

satisfies (2.12) and (2.13), plus the positivity constraints; 
* conversely, if we can find functions Aj(p) and A'(p) satisfying (2.12) and 

(2.13) plus the positivity constraints, then each Ai(p) is the gradient of some 
function V', and the (V1, ... , V') solve the original problem. 

In other words, the mathematical problem can be stated as follows: solve the 
system of partial differential equations (2.13) on the manifold Xd' defined by (2.12). 

3. THE MAIN RESULT 

3.1. Mathematical Preliminaries 

As it turns out, one of the most important applications of EDC is precisely to 
provide existence theorems for partial differential equations on manifolds. 
Although we do not attempt to present EDC in detail,' we briefly indicate the 
main intuitions underlying the approach through a few examples. 

Cauchy Theorem: Let us start from the simplest version of our problem, 
namely the Cauchy Theorem for ordinary differential equations. It states that, 
given a point xc EO R and a C1 function f, defined from some neighborhood D' of 
(0, x) into lR, there exists some E > 0 and a C1 function p: ] - E, E > ? that 
solves 

df 
(3.1) - =f(t, 9(t)) Vt E]- E, E[ 

dt 

with the initial condition 

'p(0) =x. 

In particular, dp(O)/dt =f(O, x0. If f(O, x) = 0, the solution is trivial (p(t) =x 
for all t); so we assume that f(O, xc) does not vanish. 

4The latter will turn out to be manageable in our local approach, since if they hold at some point, 
they will hold in the neighborhood as well. 

5See Bryant et al. (1991), Arnold (1978), Griffiths and Jensen (1987), or Chiappori and Ekeland 
(1996) for a pedagogical summary. 
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Clearly, a differential equation on R is the simplest case of a system of PDE 
on a manifold. Now, how do we solve this system locally around O? Intuition 
suggests considering the linearized version of the differential equation. We thus 
look for some linear function - = at + /3, which solves the system obtained by 
replacing in the right-hand side the function f(t, (p(t)) with its value at t = 0, 
namely f(O, x). Such a solution obviously exists, and is given by 

a =f(O4.), 3 =x. 
Now, the question is whether the existence of a solution for the linearized 

version of the problem implies the existence of a solution for the initial, 
nonlinear equation. The Cauchy theorem essentially states that the answer is 
yes, under mild regularity conditions on f. The intuition is clear. Take some 
v << , and construct a linear approximation to the solution as follows. First, 
take p(t) =f(O, x) t +x on [0, v[; then ~(v) =f(O, x) v +x and from (3.1) 

d p 
d_ (v) = f(v, f(O,x5) v+x5). 
dt 

Next, take (p(t)= p(v) +f(v,f(O,x). v?+)(t - v) on [v,2v[ (that is, a linear 
continuation with slope dep(v)/dt). Finally, continue until the neighborhood 
consists of only [e - v, e[. 

This piecewise linear function can be made arbitrarily close to the "true" 
solution when v becomes arbitrarily small (this is where the mild regularity 
conditions are needed). This indicates why one may expect a link between 
existence problems in the linear and the nonlinear versions. 

Can this result be generalized? I.e., can we expect that, for any system of 
PDE, the existence of a solution for its linearization guarantees the existence of 
a (local) solution to the general system? The Cartan-Kahler theorem essentially 
states that this is the case, but only under specific conditions. Indeed, the above 
statement would certainly not be true in full generality. To see why, consider the 
following two counterexamples. 

Counterexample 1: We modify the previous example as follows: Take two 
functions f and g from R2 into R, with f(O, )= g(O, 5) = y #0 and consider 
the differential equation: 

dt =f(t, (p(t)) VtE] - , 

dp 
dt = g(t, (p(t)) Vt E - E[, 

with the initial condition 
q(0) =x. 

Clearly, a solution does not exist in general (unless f and g coincide in some 
open neighborhood of (0, x)). However, if we linearize around (0, x), the linear 
version does have a solution, namely: 

a =f(, 0) =g(O, ) =y, 3 =x. 
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Hence the linearized problem has a solution, but the solution does not locally 
extend. The reason is that the equality f(t, x) = g(t, x)-which is necessary for 
the existence of a solution-holds at (0, x), but not in the neighborhood; the 
technical translation in Cartan's language is that (0, x) is not an ordinary point. 
What we need is a regularity condition that will exclude such pathological 
situations. Technically, this condition will state that the relevant equality holds 
at ordinary points. This requires a general definition of the concept of an 
ordinary point, which is quite easy in the case above, but may be more complex 
in general. The Cartan-Kahler theorem provides such a definition. 

Counterexample 2: The first counterexample introduced a system of differen- 
tial equations. We now introduce several variables. Take two functions f and g 
from O2 into R, and consider the system: 

-=f (tl,t) 

(3.2) dt, 

-= g (tl I 02) 
at2 

with some initial condition (say, p(0, 0) = 0). As is well known, a solution cannot 
exist unless f and g satisfy 

af ag 

at2 atl 

However, the linear version (linearized around (0,0)) does have a solution, 
namely < = a1t, + a2t2, with 

a1 =f(0,0), a2 =g(0,0). 

We still are in a case where the linearized problem has a solution, but the 
latter does not locally extend. The issue, here, is not whether the point is 
ordinary or not; all points are ordinary in this context. Rather, the problem 
comes from the fact that the system (3.2) is not "complete," in the following 
sense. If these two equations are satisfied for all (t1, t2) in some open neighbor- 
hood, then we can differentiate them; in particular, it must be the case that 

d 2( df(tl It2) 

atl at2 at2 
(3.3) 

d29 dg(tl I t2) 

atl at2 at1 

These two equations are immediate analytic consequences of the previous 
ones. But, algebraically, they are independent. In particular, the linearization of 
the system consisting of (3.2) and (3.3) is different from that of (3.2) alone. 

The system (3.2) is incomplete (or, in the language of EDC, "not closed") in 
the sense that it does not include some equations (such as (3.3)) that are 
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algebraically different from, but analytically implied by the initial ones. A 
second condition for applying Cartan-Kahler is that the system must be closed in 
the previous sense. 

3.2. The Argument 

We now come to the resolution of the market demand problem. An important 
remark, first, is that the system is closed, in the sense of the previous section. 
Hence, the second condition needed to apply Cartan-Kahler is automatically 
fulfilled. 

Following the approach alluded to above, the proof is in two steps. 

Step One: Solve the linearized problem (at some given point p). Specifically, 
choose the values of A1 and A'= DpV'-say, Ai and A1- at p arbitrarily. In 
particular, choose Ai <0, AI<< 0 and A = (A',...,An) invertible; if these 
properties hold at p, they will hold by continuity in a neighborhood as well. Also, 
these values must satisfy the relations: 

EA Al = X(p) 

and 

p A1= l/Ai Vi. 

Now, linearize Ai and A' (as functions of p) around p: 
dAi 

=Nil 
dpi 

dAlk 
= Mkt' 

dpi 

Solving the linearized problem is equivalent to finding vectors N1 = (NiA) and 
matrices M1 = (Mk j) that satisfy the integration equations, i.e., (2.13), plus the 
equations expressing that Ai and z2 remain on the manifold X (the latter are 
obtained by differentiating (2.12)). In addition, we want the Vi to be convex. 

Formally, we need the following conditions: 
-A' is the gradient of a convex function; this implies that 

Mi is symmetric positive (i = 1,..., n); 

-"the point remains on the manifold," which leads to 

(3.4) DPX(P)= E(Dp Ai + Ai DP A) = ANi' + AiM% 
i i 

Ti 

This is the set of linear equations that have to be solved in M' and Ni. 
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e Step Two: The second, and more tricky step is to show that all points in X' 
are ordinary in the sense of Cartan. This step is crucial in order to go from a 
solution to the linearized version at each point to a solution to the general, 
nonlinear problem. This move may not be possible otherwise, as illustrated by 
the counterexamples in the previous section. Formally, this requirement means 
that the co-dimension of the space of solutions has to be computed in two 
different ways and that the final results must agree. 

Is it possible to find vectors N' and matrices M' that satisfy the previous 
conditions? The answer is yes. Three remarks are relevant at this point: 

e The technique used in this proof applies not only to the aggregate demand 
problem, but also to other problems of the same type. In particular, the case of 
incomplete markets is considered in Chiappori and Ekeland (1998b). 

e In the case of market demand, the existence of a solution to the linearized 
problem (Step One above) is in fact a consequence of known results in the 
literature, due to Sonnenschein (1973b), Diewert (1977), and Mantel (1977). 
These results,. however, are not sufficient for the present purpose, because they 
do not allow us to check the codimension properties of Step Two. The proof we 
provide allows us to compute the required dimensions. 

* It is important to understand that finding one particular solution of the 
linearized problem is not enough. What we need is a characterization of all 
possible solutions to the linearized problem, since we shall have to compute the 
dimensions of the corresponding spaces. This is of course more difficult than 
finding one solution. But it is a problem for which the whole apparatus of linear 
algebra can be used. 

e Finally, and for the sake of completeness, it can be noted that in the 
language of EDC, the system (2.13) can be rewritten simply as 

(3.6) EdAj A dpj = O Vi 

(see Chiappori-Ekeland (1996) for a detailed explanation). We are looking for 
an n-dimensional integral manifold of the exterior differential system (3.6) on 
the manifold X. 

The proof then relies upon the Cartan-Kahler theorem. 

THEOREM 3.1: Consider some open set S{ in R\{01 and some analytic mapping 
X: F/ I R n such that p X(p) = n. For all - 

E { and for all (x'l, ...n) E n2 and 
(A1,.. ., An) e FRn that satisfy 

+L* n = X(p), 

Vi, A > O, 

there exist n functions Ul'..., Un, where each Ui is defined in some convex 
neighborhood /i of xi and is analytic and strictly concave, n mappings (x1, ... , xn) 
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and n functions (Al,... An), all defined in some neighborhood 7 of -p and analytic 
in X', such that, for all p e %': 

p xi(p) = 1 (i= 1, n), 

Ui(xi(p)) = max{Ui(x)Ix E 'i, p x < 1) (i = n), 

ixU 

n 
E Xi(p) = X(p), 

i=l 

Xi(-)=x (i= 1,.n), 

Ai(p Ai (i=1 ,n). 

PROOF: See Appendix A. 

Note that both the individual demands and the Lagrange multipliers (i.e., 
each agent's marginal utility of income) can be freely chosen at p. In particular, 
nonnegativity constraints can be ignored, since one can choose individual 
demands to be strictly positive at p, and they will remain positive in a neighbor- 
hood. 

3.3. Continuity of the Decomposition 

A nice property of our approach relates to what can be called the "coptinuity" 
of the decomposition with respect to small perturbations of the initial function. 

Let X(p) be some given, analytic function. From the previous theorem, we 
know that, in a neighborhood Z/ of some given point p, X(p) can be decomposed 
as the sum of n individual market demands: 

n 

X(p) = E Xi(p). 

Let us fix a particular decomposition of this kind, and let e be a positive 
scalar. Is it possible to find some positive e' with the following property: for any 
analytic function Y(p) such that 

11 X(p) - Y(p-) 11 < ', 

it is possible to find, in some neighborhood Z/ c Z/ of p, a decomposition of Y(p) 
as 

n 

Y(p)= Eyi(P) 
i=l 

such that 
* for all i, yi(p) is an individual demand function, with p yi(p) 1; 
* Ix(p) - yi(P)II < e for all p E /? 
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In words, the decomposition described in the main theorem must be "robust" 
to small perturbations of the initial function, in the sense that any function 
"close to" the initial one can be decomposed into individual demands that are 
"close to" the initial ones. 

The answer is yes, and is in fact an immediate consequence of the technique 
we adopt here. Remember that the value, at p, of individual demands can be 
chosen arbitrarily (provided they add up to X(-p)). So we can choose the yi(jp) 
such that 

yi(p) = xi(P) VP) - Y( 
n 

which implies that 
8 

(3 .7) tYi (P) - xi (P) <1 n- 

Also, both the xi(p) and the yi(p) are analytic on Z/ so that for any 8, one can 
always find some e' such that (3.7) implies 

II xi(p) - yi(p) 11 < e for all p E 9/. 

In fact, one can even do (slightly) better. Assume that, at p, Y is close to X in 
the C' sense; i.e., assume that 

|| Dp X(P p- DpY( p) || < . 

Now, consider the basic equations of the linearized version, i.e., (3.4) and 
(3.5). Replacing X by Y does not change the latter, while in the former the 
left-hand side is modified only by 8'. We know, then, that the solution chosen to 
construct the M1 matrices (i.e., the partials of xi(p)) can then be approximated 
to construct the partials of yi(p). It follows that the yi(p) can be chosen close to 
the xi(p) in the C' sense as well; i.e., such that 

IIDpxi(p) - Dpyi(p) 11 < e for all p E Z'. 

4. TWO EXTENSIONS 

We now consider two extensions of our main result. 

4.1. Arbitrary Income Distributions 

In the previous section, Theorem 3.1 has been established under the assump- 
tion that each member's income was constant, and equal to 1: 

p-xi(p)= 1 (i= l,...,n). 

A natural question to ask is whether it extends to more general income 
distributions. Hence, we consider the following, general version of the problem. 
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Take some arbitrary functions u1(p),..., un(p) that satisfy /ii(j) > 0, i = 1,..., n, 
and E gi(p) = n for all p. Here, ,ui(p) is interpreted as i's nominal income, which 
is allowed to depend on p in an arbitrary (but given) way. Now, can we locally 
(around p) decompose some arbitrary, analytic function X(p) as the sum of n 
individual demands xi(p), such that each xi(p) is a solution to the program 

max U(x1), 

px= =i(P) 

for some well-chosen utility functions? 
Again, the answer is yes, at least when the distributions gi(p) are analytic, as 

stated in the following theorem: 

THEOREM 4.1: Consider some open set Z{ in Rn n {-}, some analytic functions 
,up1(p), . . ., Un(p) that satisfy gi(p) > 0, i = 1,..., n, and E gi(p) = n for all p, and 
some analytic mapping X: { ,-F RFn such that p * X(p) = 1. For all p / E and for all 

(x in) E Rn and (A1, ... . An) E IRn that satisfy 

FL1 + ,+n = X(p) 

Vi, Ai > O, 

there exist n functions Ul'...,Un, where each Ui is defined in some convex 
neighborhood Wi of xi where it is analytic and strictly concave, n mappings 
(xl.... , xn) and n functions (A1,..., An), all defined in some neighborhood %' of p 
and analytic in 7/, such that, for all p E Y: 

p * xi(p) = Pi(P) n), 

Ui (xi(p)) = max{U (x)lx p E i, P x < /1i(p) ( = 1 n) 

dx' (xi(p)) =,ki(p)pj (i L ,. ., n; j = 1, ... ., n), 

n 

E Xi(p) = X(p), 
i=l 

xi(-p) = x-i (i = 1, ... ., n), 

Ai (P) = Ai (i = 1, ... ., n). 

The proof is in Appendix B; in fact, it is exactly identical to the previous one, 
since the ,ui(p) only introduce minor changes into the basic argument. Note that 
this result applies to the case where p xi(p) = ui for some fixed income 
distribution pl,u ., ,n that satisfies E gi = n; this is the way the problem is often 
stated in the literature. 



AGGREGATION AND MARKET DEMAND 1449 

4.2. Unknown Income Distributions 

Finally, we consider a different version of the problem. In the previous 
section, we asked the following question: Given functions (X(p), gj(p)) repre- 
senting market demand and individual incomes (as function of prices), do there 
exist individual demand functions xi(p) such that 

X(p) = Exi(p), 

p*Xi(p) = Hti(p) Vi, p. 

Now we ask: Given X(p), do there exist functions xi(p) and gj(p) such that 

X(p) = Exi(P), 

p, Xi(p) = Hti(p) Vi,p. 

The difference is that instead of being initially given, the gj(p) can be 
arbitrarily chosen to "match" the initial function X. Economically, the interpre- 
tation is that there exists some price-dependent income distribution, about 
which we have no information. 

How iiany individual agents are necessary to decompose the market demand 
X in this new setting? The answer to this question is a direct consequence of a 
recent result (Chiappori and Ekeland (1997)). It can be shown that, under this 
new formulation, only (n - 1)/2 consumers are necessary to decompose an 
arbitrary, smooth aggregate market demand. 

This result can in turn be related to another problem, namely the characteri- 
zation of household demand (see Browning and Chiappori (1998), Chiappori and 
Ekeland (1998a). In this context, the emphasis is put on the properties of 
aggregate demand in "small" economies, where the internal distribution of 
income is not observed. The main result is that in an economy (a household) 
with k members, the Slutsky matrix must be the sum of a symmetric, negative 
matrix and a matrix of rank at most (k - 1). This condition does not generate 
additional restrictions upon the aggregate demand function unless n ? 2k + 1. 
Note, however, that the latter result is more general, since the model allows for 
public goods, externalities, etc. (see Chiappori and Ekeland (1998a) for a 
detailed presentation). 
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APPENDIX 

A. PROOF OF THEOREM 3.1 

A.1. The Linearized Problem 

We look for matrices M1 and vectors Ni such that 

M' is symmetric positive definite (i=1 n), 
and 

(A.1) DP X(-) A dDp Xi + Ai DP A') A (dNi' + Ai M%) 
i i 

1 
(A.2) mi P + Ati = -Ni =Nj' =-A2(p'Mi+ A") 

(the last two equations reflecting the fact that "the point remains on the manifold"). 
* Substituting (A.2) into (A.1) gives 

(A.3) S + EA? AiAi = E Aimi _1 EA? dip, M 

where S = D X(p) is given and is such that 
p'S= -X, 

which implies that 

P (S?+ A? AiAi) = -XI+ EAiAi,=O. 

We now concentrate upon the set of all solutions to (A.3). In our case, (A.3) should be considered 
as an equation on the set of symmetric, positive definite matrices. However, for reasons that will 
become clear in the computation of Cartan characters that follows, we shall also consider (A.3) as an 
equation on the set of all (n X n) matrices. 

As a consequence, let us first study the two operators P and cIs defined respectively by: 

(R f12 ) {(Ml. Mn)jMi E } 
2 

A, 
(A.4) li(Ml'... Mn)= EAiMi_ Alpu M, 

and 

= {(M1,..., Mn)jMi E S} A, 
(A.5) PS(Ml'... Mn ) = EAm Ai Aip' Mi 

i i 

where S is the set of (n X n) symmetric matrices, and A is the set of (n X n) matrices such that 
p'A = 0; note that Os is simply the restriction of (P to the space ?fn, which is obviously a subspace of 
(RD1 )n* 

A.1.1. Kernel of P and Os 

We first characterize the kernels of P and Os. This is done in the following Lemma: 

LEMMA 1: (Ml,...,M") belong to ker O (resp. to ker s) if and only if there exist a symmetric, 
(n x n) matrix l3 = ((1k,)) such that 

(A.6) Mkp= EA2S3k As, 
s 

(A.7) YAkMk EASAk2 Ak(AsyA. 
k k,s 
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PROOF: We prove the result for Os (the proof for P is identical). The kernel is defined as 

(A.8) kerOs = ((Mi... Mn)eS E AiM_ E A? AiP'M i 0) 

Transposing, 

E AiMi- M A- Mip Ai = 0. 

Adding up, 

E k? [ A'p'M' - Mip A" ]=o. 

Define y1 = A?Ai and zi = M1p; then the previous relation becomes 

(yizi, _ Ziyi ) = O. 

By a celebrated Lemma due to Elie Cartan (see Bryant and al. (1991)), this is equivalent to the 
existence of some symmetric matrix ,3 such that 

z1=M'p= E J piys EA2 As i,s. 
s s 

Substituting in (A.8) leads to 

EAkMk EA2A PksAk( Asy 
F k k,s 

These two relations fully characterize the kernel of Os. 

We must check that these two equations are compatible. We have that 

EAkMkp EAkA2k,sAs 
k s 

from (A.6), and 

EAkMkp = A2A2k k,sk(AsYp 
k k,s 

from (A.7). But since (AsYp = l/As, and /3 is symmetric, these relations are equivalent. 

A.1.2. Dimension of ker P and ker Os 

Let L1 denote the subspace generated by the right-hand sides of (A.6) and (A.7): 

Ll= ((W1..,w n,W) E -Rn2 x ? EA2 As i s = wi and E As2A2 k, sAk( As w} 
s k, s 

It can be readily checked that the operator /3 (wl,...,wn, W) is injective; it follows that 

n(n + 1) 
dim L1 2 

Then 

kerPs = ((Ml...,Mn) GSn (MlP,...Mn p, EAkMk) ELL. 
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Consider the operator G: (M M.Mn) -+ (MIpp... Mnp,EkAkMk). Its image belongs to the 
subspace L2 defined by 

2 (.wl,...,w,,W) E R / 2x SlWp =Akwk. 

By the compatibility condition, just verified, 

L1 nL2=Ll. 

Then 

co dim ker s = dim L2 - dim L1 

n(n + 1) 2 n(n + 1) 
+n -n 2 

=n 2-n; 

hence 

dimker Os = {n2(n + 1) -n(n -1) 

and 

dimImOs=n(n- 1). 

But P maps S' to A, with dimA = n2 - n = n(n - 1). Lemma 2 follows: 

LEMMA 2: Os, considered as a linear mapping from S' to A, is onto. 

All these results can be summarized as follows: 

LEMMA 3: For any matrix S such that p'S =-X', there exist n symmetric matrices (Ml,..., Mn) 
such that 

(A.9) S + EA2 Adi i = EAiMi - EAk A1ip' Mi. 
i i i 

Moreover, the set of all such n-uples is an affine space of dimension -n2(n + 1) - n(n - 1). 

The case for P is exactly similar, except for the initial space, which is (R 1?2)n (and hence of 
dimension n3) instead of Sn (which is of dimension }n2(n + 1)). The corresponding result is as 
follows. 

LEMMA 4: For any matrix S such that p'S =-X', there exist n matrices (Ml,..., Mn) such that 

(A.l0) S + EA, AiAi, = E AiMi _ Ek AiAip Mi. 
i i i 

Moreover, the set of all such n-uples is an affine space of dimension n3 - n(n - 1). 

These two results, and particularly the dimensions of the kernels, will be used in the computation 
of Cartan characters in the next subsection. 
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A.1.3. Looking for a particular, positive solution 

The final step is to show that there exists a solution to the previous equation such that all 
matrices (M',..., M') are positive definite. The key idea is to show the following Lemma: 

LEMMA 5: There exist n symmetric, positive definite matrices Ql,..., Q' such that 

(Q'. Qn) E ker P. 

Assume this Lemma holds true, and let (Ml,..., Mn) be any n-uple of symmetric matrices such 
thaf.(A.10) is satisfied. Then for any positive scalar k, the n-uple (Ml + kQ',..., Mn + kQn) satisfies 
(A.10); moreover, for k large enough, these matrices are positive definite, which would complete the 
proof. 

We now prove Lemma 5. We know from Lemma 1 that, to any n-uple of symmetric matrices 
(Q',...,Q'1) in the kernel, one can associate a symmetric matrix ,3 satisfying the relations (A.6) and 
(A.7). For the sake of simplicity, define pk and yk, s by 

pkAkQk Yk,s-AsAk .l3 

The Pl must be negative (remember Ak < 0), and satisfy the equations 

pkp Yk,S 'AS ek As==,AF-, 
s Ak Ak 

E pk = Yk Ak(AAsy)=AF 

k k,s 

where e'k = (0,...,1 0) is the kth vector of the canonical basis, F denotes the matrix (yk s), and 
A denotes the matrix (A'. An). 

Using the fact that the matrix A is invertible, we may define rk by: 

pk = ArkA . 

Note that there is a one-to-one correspondence between the pk and the rk and that, in 
addition, pk is symmetric (resp. negative definite) if and only if rk is symmetric (resp. negative 
definite). Also, we have that p-Ak = l/Ak for all k, which implies that A'p = Zi(ei/Ai). So we are 
looking for n matrices rk that are symmetric, negative definite, and such that 

rk ( E) = E ri 

(then F= EirF). 

We may suppose Ak = 1 Vk. Indeed, assume that the rk are solutions of the previous problem 
with Ak = 1; define Pk by ^-yk = A.A1-kf; then the rk are solutions of the initial problem. We are 
thus faced with the problem 

(A.11) rk (Eei) = (EF ek 

to be solved by symmetric, negative definite matrices rk. 
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We can now exhibit a particular solution rp() = (f(i)i. p(i)n) by 

71 12 13 1- Vi V2 V3 V-- I 

... ... ... ... ... 

1 1 1 ii 

V2 V2 V3 *-- 
1 1 1 ii 

(12 1 1 11 
V2 V2 V3 -- 7 

1 1 1 2 

1 1 1 1 

(1)n = 7'1 1 1 1 p()n )/ 
VIn VIn ... I 

1 1 1 1 V VI V . *-I 

These matrices are symmetric and satisfy (A.11); moreover, one can easily fix the coefficients such 
that they are all negative. The only problem left is that, among them, only rF1)1 is definite. Thus the 
final step is to define other solutions using permutations of rows and columns; i.e., we define 
rF(i) (F(i)i.. (i)n) by 

Vi V.. Yi Vi+ 1 i .I 

eli+l *-- el~~i+ -11+ 
1 

... 'In, 

... ... ... ... ... ... 

V.)t 
... In' 'in .V.+. 'i 

eii ei ... eii ei~'11 i+ 1 ... 'In 

Vi Vi Vti Vi+i 

r(' y= ii 111 1 '1-1 Yii+ 1 ... 'tIn 

V +i V .i . V.. ..i V.i ... . . 

F (i)il= zn zn ,n - ,i 
... ... . .. ... ... 

zYni Yn ,>ni .. * * n>i 

V. V.. V.. V. . 

VY VYn 'Yn . Y 
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These matrices have the same properties as the F(1)k, except that only F(i)i is definite here. 
Finally, take the rk defined by 

rk= lair(i)k, ai > O. 
i 

These matrices are symmetric, negative definite, and solve the equation above. Q.E.D. 

A.2. Computing the Cartan Characters 

We now proceed to the second step of our proof. Remember that we are looking for an 
n-dimensional integral manifold of the exterior differential system: 

.dA'jAdpj=0 Vi<n, 

i 

satisfying 

(A.12) dpl A ... A dpn = ? 

in the n2-dimensional manifold M. 
Our first task is to compute the codimension of G?Z (see subsection 4.5). To do this, take 

x = (p, A, A) eM. Any n-dimensional subspace E of the tangent space T,M satisfying (A.12) is 
defined by the set of equations: 

dAi= EN/dpj, 
i 

k E Mk,dpj, 
i 

where the N/ and the Mk,j satisfy (A.1) and (A.2). The mapping E -+ (NA/, Mk,j) is well-defined and 
one-to-one, so that the (N/, Mk,j) provide a local coordinate system for the set of n-dimensional 
subspaces of TIM. Also, Lemma 4 above shows that the set of (NA, Mk,) that satisfy (A.1) and (A.2) 
is a subspace of dimension n3 - n(n -1). This is precisely the dimension of Rn X pn(Rn), as 
expected. 

We now have to find the codimension of Gn in R"' x P'(Rn). In the (Nii, Mkj) coordinate system, 
G?Z is defined by (A.1) and (A.2) plus the additional equations Mk,j = ML1. Lemma 3 above shows that 
the set of solutions to these has dimension {n2(n + 1) - n(n - 1). The codimension of Gn is thus 

c= [n3 - n(n - 1)] - [ln2(n + 1) -n(n - 1)] 

=1n2(n-1). 

Now, fix x = (p, A, A) E M, with A << 0. From the previous subsection, we know that we can find 
Nil and MkJ such that the matrices Mk are symmetric and positive definite. Let E be the 
corresponding integral element; we claim that it is ordinary. Indeed, consider the 1-forms given by 

T d= E Mk dpj, 

i 

so that E is defined by iTk = 0, 1iT = 0. We have 

Ed A dpi= E (Tk - EMjj dpj )A dp 
k = k / 

~1k 
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since Mk is symmetric. By the criterion described in Section 4.5, we have that, for 0 < A < n, 

Hz = Span{TkIk < n, i </}. 

Therefore cl=fn for /< n, and 

co + *-- +c,l 1 =n(O + 1 + *-- +n-1) 

2n 
- 1 

n- 
2 

This coincides with the codimension of Gn. So (x, E) is ordinary and we can apply the 
Cartan-Kahler Theorem. 

B. PROOF OF THEOREM 4.1 

This proof obtains by slightly modifying the previous proof. Indeed, the problem at p becomes 

x(p)= EAAi, 

.Ai Vi; 
Ai 

hence equation (A.1) is unchanged, while (A.2) becomes 

pJi(P) A i A. 
(B.1) P +Al Ni + Ai Ni'= (i_ (p'Mi +Ai,) + Ai (DP Ai 

Substituting (B.1) into (A.1) yields 

(B .2) S+E (p) I i)i_ Ai(Dp Y E imi _ E I Ai p, mi 

Note that 

p E () A1(DpDpi E(DP)= O since Eyi =n, 

so that we still have 

p, S + A? AA -E A(DP ) =0. 

Now, the proof does not depend on the left-hand side of (B.2). As for the right-hand side, we may 
define: 

Ai = 
A 

so that 

-,1 
p*A - Vi. 

Ai 

Then the right-hand side of (B.2) becomes 

E iMi-E Ai2 Aip, mi 
i i 

and the previous proof applies exactly. 
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