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GENERIC FRECHET-DIFFERENTIABILITY AND PERTURBED

OPTIMIZATION PROBLEMS IN BANACH SPACESt1)

BY

IVAR EKELAND AND GERARD LEBOURG

ABSTRACT.  We define a function F on a Banach space V to be locally

e-supported by u* e V* at u 6 V if there exists an tj > 0 such that IIu — ut <

tj -* F(v) > F(u) + <u*, v — u> — ello — ui.  We prove that if the Banach space

V admits a nonnegative Fr¿chet-differentiable function with bounded nonempty

support, then, for any e > 0 and every lower semicontinuous function F, there

is a dense set of points u e V at which F is locally e-supported.  The applications

are twofold.   First, to the study of functions defined as pointwise infima; we

prove for instance that every concave continuous function defined on a Banach

space with Fréchet-differentiable norm is Frechet-differentiable generically (i.e.

on a countable intersection of open dense subsets).   Then, to the study of op-

timization problems depending on a parameter u e V; we give general condi-

tions, mainly in the framework of uniformly convex Banach spaces with uni-

formly convex dual, under which such problems generically have a single optimal

solution, depending continuously on the parameter and satisfying a first-order

necessary condition.

1.  Local e-supports.  Let F be a Banach space and V* its topological dual.

The canonical bilinear form onFxF* will be denoted by brackets <•, •>, the

norm of Fby 11-11, the norm of V* by HI*. Let F: V—>-RU{+°°}be a func-

tion on V; recall that the effective domain of F is denoted by dorn F and is de-

fined as the set of points where F is finite:

(1.1) dorn F = {v\F(v) < + °°}.

Definition 1.1.   A continuous linear functional u* E V* is locally e-sup-

porting to F at u iff F(u) < + °° and there exists an t¡> 0 such that

(1.2) b - uï< n -> F(v) > F(u) + <«*, v - u) - eh - «II.

The set of continuous linear functionals, e-supporting to Fat u, will be

called the e-support of Fat u, and denoted by SeF(u). If it is nonempty, we

shall say that F is locally e-supported at u.

The following are easy consequences of the definition:
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(1.3) SeF(u) = 0 if u £ dorn F.

(1.4) SeF(ü) is a convex subset of V*.

(1.5) S£F(u)+SeG(u)CSe+e(F + G)(u).

(1.6) SeF(u) C SeF(u) \/6>e.

(1.7) u* E £Q0 S£F(u) n - 5e(-F)(«) «=*"* = F'(zz) (Fréchet-derivative).

(1.8) SeF(u) =/= 0 => F is lower semicontinuous at u.

This last relation is proved by noting that in (1.2) the right-hand side is a

lower semicontinuous function of v which coincides with F at u.

Let us now state the main result. We shall need an assumption on the

Banach space V:

There exists on Va nonnegative continuous function *

(H) which is zero outside some bounded set, and Frechet-

differentiable at every point where it is nonzero.

This means that * is > 0 but is zero outside some ball B centered at the

origin.  By translation, we can assume that ty(0) > 0.  By homothety, we can

assume the ball B to be as small as need be.  In the sequel, we shall use the func-

tion <i> = 1/ty. It is well defined and lower semicontinuous as a mapping from

V to R U {4-°°}, and it is Frechet-differentiable on its effective domain.

Theorem 1.2.  Let e > 0 be given. If the Banach space V satisfies condi-

tion (H), then every lower semicontinuous function F is locally e-supported at

all points of a dense subset of dorn F.

Proof. Let there be given a point u0 E dorn F, a neighbourhood W of the

origin in V, and let us find in u0 + W a point where F is locally e-supported.

As F is lower semicontinuous, we can find a smaller neighbourhood of the

origin 1/C(|) such that F is bounded from below on uQ + V :

(1.9) 3m: Viz G u0 + V,     F(u) > zzz.

Take a Frechet-differentiable function ^l > 0 with support contained in 1/,

and define functions 4> and G on F by

(l.io) $(«) = *(«-«0r1,

(1.11) G(u) = F(u) + $(u).

The function G is lower semicontinuous and bounded from below on the

Banach space V. By Theorem 1.1 of [11], with X = 2, there exists a point ue

such that
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(1.12) VuEV,   G(u)>G(ue)-tteïue-u\\.

This implies that 0 E Se,2G(ue).  Let u* be the Fre'chet-derivative of -<ï>

at ue. By (1.7) we know that u* E Se/2 - $>(u£).  This implies by (1.5) that

(1.13) U*ES£(G-*XUe) = SeF(ue)-

Moreover, we conclude from (1.11) that

(1.14) dorn G = dorn F n dorn <ï> C dorn F n («0 4- [/).

Since ue E dorn G, our claim is proved.   Q

Condition (H) is satisfied whenever the Banach space V admits an equiva-

lent norm which is Frechet-differentiable on V\{0}; to see this, just take a non-

negative function <p on i?\{0} with compact nonempty support, and define $>(«)

= <¿>([ImII). A converse has been proved for weakly compactly generated spaces

[13].

Typically, Hilbert spaces, IP spaces (1 < p < °°), Banach spaces with sepa-

rable dual, all satisfy condition (H); lx and /" do not, nor does any space which

contains one of them isomorphically.

Theorem 13.   The following properties are equivalent:

(1.15) the function F is Fréchet-differentiable at u E V,

(1.16) for every e > 0, both F and -F are e-supported at u.

Proof. It is clear from (1.7) that (1.15) implies (1.16). Let us prove the

converse. Assuming (1.16), we replace e by 1/n and F by -F in formula (1.2) to

get

VnEN, 3t?„>0, 1u*EV*:
(1.17) "

Hu - ull < v„ ■* F(v) > F(u) + <«*, v - u) - h - uUn,

(1.18) ynEN' *£n>0,lv*nEV*:

\\v -ull <e„ =>F(v) <F(u) + <u*. v~u)+\\u- ulln.

Take any m > n, write (1.17) for m, and compare it with (1.18). This

yields

(1.19) lit» - ull < min(7jm, e„) => <«* - v*, v - u) < 2b - «11/«

and hence

(1.20) WnEN,    Vm>«,    II«* - y*||^ < 2/n.

Similarly, writing (1.18) for m and comparing it to (1.17)
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(1.21) VnEN,   Wm>n,    Bu* - vm I, < 2/zz.

This proves that both un and vn axe Cauchy sequences converging (as V*

is complete) to the same limit u* E V*. We claim that u* is the Fre'chet-deriva-

tive of F at u.

To see this, take any e > 0. Choose zz > 3/e. Let 77 be minÍT?,,, e„). By

(1.17) and (1.18), Itz - ull < r¡ implies that

(1.22) <u*, v - u) - Iiz- ulln < F(v) - F(u) < <v*, v - u) + flu - ulln.

Letting zzz —+ °° in (1.20) and (1.21), we get

(1.23) Hz/* -u*l*< 2/zz   and    flu*-«%< 2/zz.

Replacing u* and v* by u* in (1.22), we get

(1.24)<u*, u - u) - 3llu - uB/zz < F(u) - F(m) < <«*, u - tz> + 3Bu - ulln.

As 3/zz < e, this is exactly the Fre'chet-differentiability of F at u, and con-

cludes our proof, a

For the next corollary, recall that a G5 is a countable intersection of open

subsets.

Corollary 1.4.   Assume that, for every e > 0, the set of points where

F is locally e-supported is a Gs; likewise for -F. Assume also that F is contin-

uous on V.  Then F is Frechet-differentiable at every point of a dense G& subset

ofV.

Proof. As F is continuous, both F and -F are lower semicontinuous.

By Theorem 1.2, the set of points where F is locally 1/zz-supported is dense in

V; let us denote it by T¿. By assumption, it is a G6. Likewise, denote by T^

the set of points where -F is locally 1/zz-supported:  it is a dense Gs.

Let T = n"=i itf n T~). By the Baire category theorem, T is again a

dense G6. But T is just the set of points where F and -F axe locally e-supported

for every e > 0, and the result follows by (1.7).   n

The following remarks are due to Frank H. Clarke (private communication):

Remark 15.   There is another (equivalent) way of stating Definition 1.1:

uE Vis locally e-supporting at uEV iff the function

(1.25) u i-> F(v) - <u*, v) + eh - uH

attains at u a local minimum.

Remark 1.6. Let V be any Banach space, and F a lower semicontinuous

function on V.  Then there is a dense set of points uEV with the following

"vertical cone" property:

(1.26) 3tj>0,   3Jfc>0: lo-al <t? =*F(u)>F(u)-zcllu-uB.
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Clearly (1.2) implies (1.26), but (1.26) holds even when the Banach space

does not satisfy condition (H). The proof is the same as for Theorem 1.2, using

for $ the function

tyu) = (n - lu - ujT1   ifO«-u0Kij,
(1.27)

$(«) = 4- o»   otherwise,

where t? > 0 is chosen so small that the ball of radius tj lies inside the prescribed

neighbourhood I/. The function -$ is no longer differentiable, but it is easily

seen to have the vertical cone property at every point of its effective domain.

Relation (1.12) can be written:

(1.28)      V«e dorn*,   F(u) > F(ue) + $(ue) - $<u) - | Ou - ue I.

The right-hand side is a function which has the vertical cone property and

coincides with F at ue. Hence (1.28) implies that F itself has the vertical cone

property at ue.

2. Application to functions defined as pointwise ínfima. Introduce now

an abstract set X, and a function

(2.1) f:VxX-^R.

We define a function F on V by

(2.2) F(u) = inf f(u, x)
xGX

assuming always that this infimum is well defined:

(2.3) F(«)>-~   V«£K

Definition 2.1. Fix u E V. Associate with every 6>0the subset

(2.4) Ag={xE X\f(u, x) < F(u) + 0 }.

The family Ae,d>0,of subsets form the basis of a filter FM on X, called the mini-

mizing filter of fat u.

We refer the reader to [6] for information about filters. In the present

case, it is sufficient to check that F„ is nonempty and does not contain the

empty subset, and that the intersection of two members of Fu contains a mem-

ber of F„. Both properties follow at once from the definition; in particular, it

follows from (2.4) that

(2-5) ^n^=^min(e,e)-

We now apply Definition 1.1 to this situation.

Proposition 2.2. Assume that
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(2.6) F is locally e-supported at u

and that there exist a subset AEfuofX and a neighbourhood Uofu in V such

that

(2.7) Vx EA,   v r—*f(v, x) is Fréchet-derivable at u.

(2.8) { v i—► f'vip, x) Ix G A } is equicontinuous at u.

Then there exists a subset CE \~uof Xand a neighbourhood 1/ of u in V

such that

(2.9) diameter {fv(v, x)\vE\l,xEC}< 8e   zzz V*-norm.

Proof.   Let zz* G 5eF(zz). There exists an i?, > 0 such that

(2.11) II« - vl < T?! => F(v) > F(u) + <«*, v - u) - eh - vl.

By (2.8) we can find an n2 < zjj such that

(2.12) lu-vl<r¡2*\\fv(u,x)-fv(v,x)h<e   VxG¿.

Note that

(2.13) f(v, x) = £ (fu(u + t(v - u), x), v-u)dt+ f(u, x)

so that (2.12) implies

(2.14) II« - oil < 7?2 =>/(u, x) <f(u, x) + <fv(u, x), v-u) + eh - «II   Vx EA.

Remember now that A belongs to the minimizing filter FM at «, and this

means that it contains a subset Ae as in (2.4). Using (2.5), we may assume

6 < ex}2, so that

(2.15) Vx€i40,   f(u, x) < F(«) + eq2.

Remember also that, by (2.2)

(2.16) F(v)<f{v,x).

Adding (2.14), (2.15) and (2.16) together, we obtain

(2.17) II« - ü II < r?2 => F(iz) < F(«) 4- (fv(u, x), v - u) + 2eq2.

Adding the inequalities (2.11) and (2.17), we obtain

(2.18) II« - oil < T}2 ■» <«* -/>. x), v - «X 3en2,

(2.19) sup   <M*-/>,x),w><3eT,2,
UwO<T)2
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(2.20) \\u*-f'v(u,x)h<3e.

By the triangle inequality, we obtain from (2.12) and (2.20)

(2.21) II« - wl < rj2 => llu* -fv(v, x)lt < 4e.

Thus the set {f'v(v, x)\ llu - u\\ < t\2, x E Ae) is contained in a ball of

radius 4e centered at u*. This implies that its diameter is less than 8e:

llu -ull <tj,   xEAñ
(2.22) , => Wfv(v, x) - fv(w, y)h< 8e.   °

llu - wll < t}2 y E Ae

Note that the family of subsets of V*

(2.23) A*(rt, 6) = {/>, x)\ llu - ul< i), f(u, x) < F(u) + 0 },      tj > 0, 8 > 0,

is a filter basis.  Let us associate with the point « 6 F the filter G„ on V* gener-

ated by the A*(r], 0).

Denote by T€ the set of points uEV such that the filter Gu has an ele-

ment of diameter less than e.

(2.24) u E T£ «=» 3r? > 0, 30 > 0: diameter ̂ *(t?, 0) < e.

Proposition 2.3. Assume that

(2.25) u G Te

and that there exists a > 0 and ß > 0 such that

(2.26) {/>, jc)I Hu - ull < a, f(v, x) < F(u) + ß] is bounded in V*.

Then Te is a neighbourhood of u.

Proof.  By (2.25) there exist r¡ > 0 and 0 > 0 such that the diameter of

A*(r], 6) is less than e. The proof goes by showing that for all u in a certain

neighbourhood of u, the set A*(q, 6) contains an element of Gu.

Denote a' = min(o¡, r¡) and ß' = miniß, 0).

Note first that the /(•, x) are continuous, and that F is their pointwise in-

fimum. Hence F must be upper semicontinuous. We can find y > 0 so small

that

(2.27) Ilv - u II < 7 =* F(v) < F(u) + ß'/3.

Note also that, by (2.26), there is a constant c such that

(2.28) Hu -«Ko'   and   f(v, x) <F(u) + ß' => ll/>, *).„ < c.

Take now a positive number 5 < min(7, a'/2,1373c). We claim that the
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ball or radius ô centered at « lies entirely inside Te, i.e. h - «Il < 5 =*■ v G Te.

Indeed, let w G K and x G Z be such that

(2.29) Hw - ull < S    and   f(v, x) < F(v) + ß'13.

This implies that llw - «Il < a and, by adding (2.27)

(2.30) f(v, x) < F(u) + 2/373.

Now consider the real function y(t) = f(v + t(u - w), x) -f(v, x) with

derivative

(2.31) ¿(t) = (/> + t(v - w)), v - w).

Now, v?(0) = 0.  Let t0 G [0, 1] be the first instant where <¿>(f) > ß'/3.

Using (2.28)

(2.32) tff0) = ¡1° /(f)dt < ct0lv - wl,

(2.33) ß'/3 < ct08.

Hence t0 > 1.  Using the fact that y>(l) = f(w, x) - f{v, x), this yields

(2.34) f{w, x) <f(v, x) + civ - wl.

Adding (2.30) and (2.34), and noting that llw - izll < S < ß'/3c:

(2.35) f(w,x)<F(u) + ß'

which is true for any w such that IIw — tzII < 5.  Particularizing w at u, we finally

get

(2.36) Bo - «II < S =>A$S, ß'13) C A*(a', ß') C A*(r¡, 6).

If the right-hand side of the inclusion has diameter less than e, then so

does the left-hand side. This concludes the proof,   a

We thus have some information on the behavior of the filter Gu- We shall

translate it in terms of the behaviour of F at « by use of the following

Proposition 2.4.  If assumptions (2.7), (2.8) and (2.26) are satisfied, then

F is lipschitzian on some neighbourhood of u. If moreover the filter Gu con-

verges to «* zzz V*-norm, then F admits u* as Fréchet-derivative at u.

Proof.   The first assertion is a consequence of (2.26).  Indeed, by the

preceding proof, there is a S > 0 such that (2.34) holds

(2.37) lu-ul <6    and    Biz- wl<S =>/(w, x) </(v, x) 4- clw -vl.

Exchanging the roles of v and w, we get likewise
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(2.38) llu- w II < 5    and    llw -ull < 5 =>f(v, x) <f(w, x) + cllu - m/1.

Hence, by adding the inequalities:

(2.39) Hu-uIK |   and    Hu - wll <|=> l/(w, x)-f(v, x)\ <ch- wl.

Now for the second assertion.  Let e > 0 be given.

Let xn be a minimizing sequence in X at u:

(2.40) f(u,xn)-+F(u).

By (2.8) there is ap EN and an tj > 0 such that n >p and llu - ull <r?

imply (compare (2.14))

(2.41) f(u, x„) + (fv(u, xn), v - u) + eh - ull > f(v, x„).

By assumption, the sequence f'u(u, xn) converges to u* in V*. Choose a

q > p sufficiently large for llu* - fv(u, x„)ll* < e for every n > q, and write it

into (2.41):

(2.42) f(u, xn) + <u*, v-u) + 2ellu - ull >f(v, xn)

for Hu - ull < r¡ and n> q.  Letting n go to infinity, and taking into account

(2.40) and the inequality f(v, x) > F(v), we get the first half of the Fre'chet-

differentiability formula:

(2.43) Hu - u l< 7? =» F(u) + <u*, v - u) + 2eiv - ul > F(v).

To get the other half, take 17 > 0 and 0 > 0 such that

llu - ull< T? and f(u, x) < F(u) + 6 =*• H/>, x) - «*H* < e
(2.44)

and f(v, x) > f(u, x) + (f'v(u, x), v-u)- e||u - u||.

We have just seen ((2.29) =» (2.35) with w = u) that there exists a S > 0

such that llu - ull < 5 and/(u, x) < F(v) + 0/3 imply llu - ull < 17 and

f(u, x) < F(u) + 0. Writing that into (2.44) we get

llu - ull < 5   and   f(v, x) < F(v) + 0/3
(2.46) V     '       W

■*/(». x)>f(u, x) + <u*, v-u)~ 2ellu - ul.

This formula holds for all points xn of a minimizing sequence at u (at

least for n sufficiently large).  Lettingn go to infinity, f(v, xn)—+ F(v), and we

obtain

(2.47) Hu - uH < 6 => F(v) > F(u) + <u*, v-u)- 2eHu - ull.

Together with (2.43), this completes the proof,   o

We now state our main result. Let us first, for the reader's convenience,
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recall the definitions of the filters involved. With every point u E V we associate

the filters VU,GU,HU, on V, V*, V*, respectively generated by the subsets:

(F„) Ae = {x G X\f(u, x) < F(«) + 6 },

(Gu) Ae,n = {/>• x)\lv-ul<n, f{u, x) < F(«) + 8 },

(Hu) B*tTt = {/>, x)l Hi; - «II < v, f(v, x) < F(«) + 0},

with the convention that if/(•, x) is not Fre'chet-differentiable at «, then fv(u, x)

is considered to be the whole space V*.

Theorem 2.5.  Let V be a Banach space satisfying condition (H), X an

abstract set, and fa function on V x X such that

(2.48) V« G V,   F(u) = inf /(«, x) > -~.
xex

Assume there is an open subset £2 C V every point « of which has the

following property '•

(2.49) there is a B*e E Hu which is norm-bounded in V*,

(2 50) tnere zs an ^e S ^» such ^fli {&( ' > x)^x ^ A} is an

equicontinuous family of functions at u.

Then the function F is locally lipschitzian on £2. Moreover, there is a

dense G6 subset T C V, at every point u of which

(2.51) the filter Gu converges in V*-norm,

(2.52) F is Frechet-differentiable,

the derivative F'(u) being exactly the limit of Gu, and being a continuous func-

tion of u on T.

Proof.  Assumptions (2.49) and (2.50) imply (2.7), (2.8) and (2.26) at

every point of Í2. By Proposition 2.4 the function F is locally lipschitzian on

Í2. By Theorem 1.2, for every e > 0, the set Se of points where F is locally e-

supported is dense in £2.  By Proposition 2.2, 5e is contained in the set Te of

points u where the filter Gu has an element of diameter less than 8e. Thus the

set Te is dense in Í2 for every e > 0, and by Proposition 2.3 it is open.

We now apply the Baire category theorem to £2, which is an open subset

of a complete metric space V, and to the sequence Tx ,n of open dense subsets.

The intersection

(2-53) T=f)   Tx/n
n=l
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is a dense G6 subset of Í2.  Let u E T.  For every nEN, the filter Gu has an

element of diameter less than 1/«. But this simply means that Gu is a Cauchy

filter in V*. Since V* is norm-complete, the filter Gu converges towards u* E V*.

By Proposition 2.4, the function F admits u* as Fréchet-derivative at u.

There only remains to prove the continuity.  Let u E T and e > 0 be given.

As u G Te, there exists in Gu an element A*(r¡, 6) with diameter less than e. By

formula (2.36) we can find 5 > 0 such that, for llu - ull < 5, there is an element

ARS, ß) of filter Gv contained in A*(t¡, 6). But F'(u) E A*(r¡, 0), and if u E T,

thenF'(v)EA*(8,ß). Hence

(2.54) llu - ull < S    and   u E T => F'(v) E A*(rj, 6).

This yields the desired result

(2.55) llu - ull < 5    and   u G T => llF'(u) - F'(u)ll* < e.    □

Let us give an application.

Theorem 2.6.   Let Vbe a Banach space satisfying condition (H), and G

a lower semicontinuous convex function on V.   The interior of dorn G then

contains a dense G5 subset T at every point of which G is Fréchet-differentiable,

the mapping G': T—+ V* being continuous.

Proof. We shall use some tools of convex analysis (see [12] for instance).

Denote by G* the conjugate convex function of G on V:

(2.56) G*(u*) = sup <u, u*> - G(u).
u£V

We know that G = G**, that is

(2.57) G(u)=    sup   <«, u*> - G*(u*).
a'eK*

The result now follows from Theorem 2.5, with X = V* and F = -G,

provided we check assumptions (2.49) and (2.50) for the function

(2.58) f(u, u*) = G*(u*) - <u, u*>
o 0

with Í2 = dorn G. Let u G dorn G.

Of course, fu(v, u*) is just the linear functional u* on V, so that (2.49)

and (2.50) will both be implied by the following property: for every b E R,

there exist 77 > 0 and C> 0 such that

(2.59) llu - ull < tj/2,     f(v, v*)<b=> llu*I, < C

So let us prove (2.59).  It follows from the assumption on G that it is

continuous on the interior of its effective domain (e.g. [12, Corollary 1.2.5]),
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and hence bounded on a neighbourhood of «. There exist a ER and 7, > 0

such that

(2.60) lu-«Il < t? =» G(u) < a

Taking conjugates

(2.61) G*(v*) > T)lliz*fl* + <«, v*)-a,   Vu G V.

Now write the assumption f(v, v*) < b

(2.62) b > G*(v*) - <v, v*).

Adding (2.61) and (2.62)

(2.63) a + b > r¡lv*l* + <« - v, u*>.

If we now assume that II« - izll < tj/2, this yields

(2.64) a + b > T)lv*U - KnJu*U

hence (2.59) with C = 2(a + 6)/n.   □

In the terminology of Asplund [1], every Banach space satisfying assump-

tion (H) is a strong differentiability space. This does not follow from the known

differentiability theorems, inasmuch as V is not assumed to be weakly compactly

generated, and in fact answers an open question [7, VII, 4A, (7)].

3. Application to optimization. The aim of this section is to investigate

existence and stability properties for solutions of optimization problems depend-

ing on parameters. To that purpose, we shall use the results and notations of

the preceding section. Let us review (2.1)-(2.4) from the point of view of

optimization theory.

We are interested in the optimization problem:

i?o) inf/(0,x)
xex

which by (2.3) is nontrivial. We look for optimal solutions, i.e. points x where

the minimum is attained:

(3.1) /(0,x)</(0,x)   VxEX

We want to know whether an optimal solution exists at all, and if so,

whether it is unique. We also want to know something about the behaviour of

the minimizing filter F0 defined by (2.4).  Let us call the problem well-behaved

when there exists a unique optimal solution x, and the minimizing filter conver-

ges to x for some topology on X: this ensures easy practical computation of the

theoretical solution. This is not always the case, except for stringent assumptions
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which we do not make {X should be a compact convex set and /(0, •) should be

lower semicontinuous and strictly convex). But we shall prove that, for certain

types of perturbed problems, it is almost always the case.

If/(•, x) is continuous in u for every fixed x, the optimization problem:

(PM) inf /(«, x)
xex

appears as a perturbed problem associated with (P0); F(«) defined by (2.2) will

be its value. The nearer « to the origin, the smaller the perturbation. This is of

particular interest in the case where the perturbed problems are better-behaved

than the original one, because we may simply choose « small enough for the per-

turbation to be insignificant for all practical purposes, and deal with (Pu) instead

of(P0).

The following definition will be the main tool in adjusting Theorem 2.5

to this new framework:

Definition 3.1. Let <t>: X—*- Y be a continuous mapping between topo-

logical spaces. It will be called proper iff every filter $on X whose image by <¡>

converges admits a cluster point.

We refer to Bourbaki [6] for further properties of proper maps, among

which we cite the following (recall that a mapping is closed iff it sends every

closed set onto a closed set):

Proposition 3.2. Let X be Hausdorff.  Then a continuous map <p is

proper iff it is closed and <p~x({y}) is compact for every y EY.

Proposition 3.3. Let <¡> be continuous and injective.  The following are

equivalent:

(3.2) <¡> is proper,

(3.3) <¡> is closed,

(3.4) <l>is a homeomorphism of X onto a closed subset of Y.

We now state a general theorem on perturbations.   It is an easy consequence

of Theorem 2.5, but we shall show that it yields all the examples known up to

date, and more.

Theorem 3.4.   Let Vbe a Banach space satisfying condition (H), X a

topological space, and f a function on V x X such that

(3.5) V« G V,   F(u) = inf /(«, x) > —.
xex

Assume there is an open subset £2 C V, every point u of which has the

following properties:

(3.6) there is a B*e E Hu which is norm-bounded in V*,
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(3.7) there is an A0 E F„ such that {/„'(-, x)\x EAg}isan equicontinuous

family of functions at u,

(3.8) the function x •—>/(«, x) is lower semicontinuous on X,

(3.9) the mapping x *-*■ fv(u, x) from X to V* is continuous and proper.

Then F is locally lipschitzian on Í2. Moreover, there exists a dense Gs set

T C SI, at every point u of which:

(3.10) F is Fréchet-differentiable and Gu converges to F'(u) in V*,

(3.11) the set Su of optimal solutions for (?u) is nonempty, and is exactly

the set of cluster points of the minimizing filter Fu,

(3.12) every x E Su satisfies the necessary condition for optimality,

fv(u, x) = F'(u).

Proof.   Formula (3.6) has been copied from (2.49) and formula (3.7)

from (2.50), so that we may apply Theorem 2.5. Hence formula (3.10).

Denote by <j> the mapping x r-+fv(u, x). The image of F„ by <¡> is finer

than Gu, and as Gu converges to F'(u), so does 0(Ftt). As <p is proper it follows

that the set Su of cluster points of Fu is nonempty. As q) is continuous, it sends

Su on the limit of Gu, hence

(3.13) VjcG5„,   f'v(u, x) = F'(u).

It only remains to prove that Su is the set of optimal solutions for (Pu).

Let x he an optimal solution for (?u); then f(u, x) = F(u), hence x E Ae for

every 0 > 0; this proves that 3c belongs to the intersection of all elements of Fu,

hence xESu. Conversely, let x be a cluster point of FM. By definition, there

exists a filter F'u which is finer than F„ and converges to 3c. By assumption (3.8),

we have

f
(3.14) f(u, x) < lim f(u, x)   as je—^ jc.

But the filter F„ is just the inverse image by f(u, ■) of the filter of neigh-

bourhoods of F(u) in R. The image by the same mapping of any finer filter,

such as f'u, must perforce converge to F(u):

P
(3.15) F(u) = lim f(u,x)   asjc-^i.

Comparing (3.14) and (3.15), we get

(3.16) /(u,3t)<F(u).

As the converse inequality is true by definition (formula (2.2)) equality

holds in (3.16), which shows that 3c is an optimal solution of (Pu) and concludes

the proof,   a
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Corollary 3.5.   The set-valued mapping u—*Su from T to X is upper

semicontinuous with compact nonempty values.

Proof.   By its definition, Su is clearly closed, either as the set of points

where a lower semicontinuous function attains its minimum, or as the set of

cluster points of a filter (see (3.11)).  Moreover, Theorem 3.4 states that

(3.17) 0#5„C{xl/>,x) = F'(«)}   VwGT.

As the mapping f'v(u, •) is proper, the right-hand set is compact (Proposition

3.2), and so are all its closed subsets, particularly Su.

To prove upper semicontinuity on T, take any closed subset A of X not

intersecting Su. We have to prove that A f) 5,, = Zffor all u G T in a neighbour-

hood of «. Assume it is not so. Then, for every 6 > 0, the set

(3.18) Se = \JSv    for u G T and Iv-uKO

intersects A. Thus the family Se, 6 > 0, generates a filter on X which we denote

by0„.

Recall from the preceding section ((2.29) => (2.35) with w = u) that for

any e > 0, there exists t? > 0 such that

(3.19) Im-zjKt?   and   f(v, x) < F(v) + | =>/(«, x) < F(«) + e.

This implies that 5   is a member of Fu, and hence that 0U is finer than

F„.  Therefore, the image of @u by the proper mapping fv(u, •) is finer than Gu,

which converges to F'(u) since « G T.   Hence 0U has one cluster point x at least;

as A is closed, x EA; since ®u is finer than fu, x is a cluster point of Fu, x G

Su. Hence x EA H 5U, which was assumed to be empty,   a

Corollary 3.6.   Assume in addition that, for every « G £2, the mapping

fv(u, •) is injective.   Then, for every uET, the problem (?u) has a unique opti-

mal solution s(u), and the minimizing filter Fu converges towards s(u). Moreover,

the mapping s: T —* X is continuous.

Proof.  Indeed, all optimal solutions of (Vu) have to satisfy equation

(3.12), which has at most one solution. So there cannot be more than one

optimal solution, and we know there is at least one. The set Su is then reduced

to the singleton {«(«)}. As the set-valued mapping « —► {s(u)} is upper semi-

continuous, the map u —► s(u) is continuous.

Thus s(u) is the only cluster point of Fu- We conclude that Fu converges

to s(u). Indeed, if it were not so, there would be a neighbourhood \J of s(u) in

X such that every element of Ftt intersects Cf.  These intersections generate a

filter V'u which is finer than F„.  Its image by the proper mapping f'v(u, •) is
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finer than Gu, which converges to F'(u). Hence Fu has a cluster point 3c.  But

3c has to be a cluster point for the coarser filter Fu, and it cannot belong to the

interior of I/.  Hence x =£ s(u), and we have two cluster points for Tu, a contra-

diction,   o

Example 1. Linear perturbations.   Let X be a topological space and Va

Banach space which satisfies condition (H).  Let g: X —> R be lower semi-

continuous and bounded from below, and let A: X—*■ V* be continuous and

proper. Assume A(X) is norm-bounded in V*. Define /: V x X —► R by

(3.20) f(u, x) - g(x) + <Ax, u).

Since /¿(u, jc) is just Ax, all the assumptions of Theorem 3.4 are trivially

satisfied with ft = V. We conclude that

Proposition 3.7.   Consider the optimization problem

(P„) inf g(x) + (Ax, u)
xBX

with value F(u). Then F is locally lipschitzian on V and there exists a dense G6

subset TC V, at every point u of which:

(3.21) F is Frèchet-differentiable,

(3.22) the set Su of optimal solutions for (Pu) is compact nonempty,

(3.23) VjcG5„,/1jc = F'(u),

(3.24) the restriction to T of the mapping F': V—► V* is continuous,

(3.25) the set-valued mapping u '—► Su from T to X is u.s.c.

For instance, if X is a closed bounded subset of some Banach space Y, we

can take for V the Banach space Y*, inasmuch as it satisfies condition (H), and

for A the canonical isometry from X into V**, which is obviously continuous

and proper. It is even linear and injective, so that we can apply Corollary 3.6

and get

Corollary 3.8. Let X be a closed bounded subset of a Banach space Y

and g a lower semicontinuous function on X, bounded from below. Assume

that the dual Y*ofY satisfies condition (H>   With every y* E Y* associate the

optimization problem:

(Pv.) inf g(x) + <x, y*)
K y ' xbx

with value F(y*). Then F is a concave continuous function on Y*. and there

exists a dense Gs subset TC Y*, on which the Fréchet-derivative F' is well

defined and continuous. Moreover, for every y* C T, there is a single optimal
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solution s(y*) for (Py,), depending continuously on y*. It is the limit of all

minimizing sequences

(3.26) g(x) + (xn,y*)-* Fiy*) =* ls(y*) - x„ II -* 0

and satisfies the necessary condition for optimality

(3.27) S(y*) « F'iy*).

Recall that Y is reflexive if and only if Y* can be equivalently renormed

in a Frechet-differentiable way [8, II.3, V.5]. This is an important case where

the assumption of Corollary 3.8 is satisfied.

Applying Proposition 3.7 to the special case where X is a closed bounded

subset of V* and A is the identity map, one gets an earlier result of Asplund [1].

By a classical argument (Asplund [1]), we get another consequence of

Proposition 3.7.

Corollary 3.8 bis.  Let Y be a Banach space whose dual Y* satisfies

condition (H). 77zezz every closed convex and bounded subset of Y is the closed

convex hull of its strongly exposed points.

Proof. We apply Corollary 3.8 to the special case where X is convex and

g is zero. The conclusion then reads that there is a dense Gs subset T C Y*,

every point y* of which strongly exposes some point s(y*) E X.

Let 5 be the set of strongly exposed points of X, and assume X ¥* cô~ S.

Then there is some point x G X which does not belong to co 5. Applying the

Hahn-Banach theorem, there is some y* G Y* such that

sup (y*. s) = a< (y*, x>.
ses

Let e = (y*, x> - a, and M = supxejr Axil. If y* E Y* is such that

ly* -y*h< e/2M, we get

sup (y*,s)<a + e/2<(y*,x> - e/2 <(y*,x).
ses

This means that the open ball of radius e/2Af around y* contains no con-

tinuous linear functional which attains its maximum on X at some strongly ex-

posed point. But this contradicts the fact that the set T of such functionals is

dense in Y*,   a

It is a theorem of Lindenstrauss (Diestel [8, V.6]) that every convex and

weakly compact subset of a Banach space is the closed convex hull of its strongly

exposed points. This theorem and Corollary 3.8 bis have different scopes, except

in the case of reflexive Banach spaces, where both apply to yield the same result.
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Example 2.   Perturbations by norm functions.   Let again F be a Banach

space and V* its dual.  In the sequel, we shall always assume that both Fand

V* are uniformly convex. This means that for every e > 0, there exist 77 > 0

and 77* > 0 such that

(3.28) HulKl,    HulKl,    lu-ul>e"> llu + ull < 2(1-77),

(3.29) lu*l#< 1,    lu*I»<l,    llu*-u*IU>e=> llu*+u*IU<2(l-7?*).

Such is the case, for instance, for Hubert spaces, and for IP spaces with

1< p < 00.

It is known that all uniformly convex Banach spaces are reflexive. More-

over, we shall use the following two lemmas:

Lemma 3.9. 77ie norm of V is Fréchet-differentiable at every point ui=0,

and the restriction of its derivative j to any closed bounded subset of V not con-

taining the origin is uniformly continuous.

Proof.  We shall use the language and some of the results of convex analy-

sis. The mapping u 1—► Hull is continuous and convex, and we denote by J(u)

its subgradient at u ¥= 0:

(3.30) J(u) = {u* G v*\luHm = 1, <u, u*> = Hull}.

Let B be a closed bounded subset with 0$B. We shall prove that, for

every e > 0, there exists S > 0 such that

(3.31) (u, u) G B x B,   (u*, u*) G J(u) x J(v),    llu - u II < 8 => llu* - u* II < e.

It follows immediately that / is in fact a singleton,/(u) = {/(u)}, the map-

ping/: V—+V* being uniformly continuous on B. By [12, Proposition 1.5.3]

the norm is Gâteaux-differentiable at u with derivative/(u), and by [11, Defini-

tion 2.1] it is even Fre'chet-differentiable.

It only remains to prove (3.31).  Suppose it were not true. Then there

would exist sequences un, vn in B, u*, u* in V*, such that

(3.32) u*EJ(un),   v*EJ(vn),    llu„-u„ll->0,    llu*-u*IU>e.

Applying (3.29), we get

(3.33) <u* + v*, un) < HuJHIu* + u*ll* < 2(1 - ij*)luBl.

Using the definition (3.30) of J, this becomes

(3.34) \\Un || + llu„II + <u*, u„ - u„> < 2(1 - 77*)Hu„ I.

Transforming the left-hand side by the triangle inequality



GENERIC FRÉCHET-DIFFERENTIABILITY 211

2 ll«„ Il - hn - «„ Il < 2(1 - r,*)lu„ Il + <u„ - un, u*>

(3.35)
<2(1-T,*)ll«nll + IIiz„-m„».

As zz goes to infinity, ll«„ - vn II —► 0; since un E B, its norm is bounded

away from zero and from infinity, and the II«„ II must have a cluster point X E

]0, +°°[. Passing to the limit in (3.35), we get a contradiction:

(3.36) 2X < 2(1 - î?*)A.    n

The mapping/: F\{0} —► V* is usually called the duality map from F to

V*. We have seen (3.30) that it is characterized by the equalities

(3.37) V« =¿ 0, |/(ii)|4 = 1    and   <j(u), u) = lui.

Of course the same lemma applies to V*, with a duality map/* from V*

to V. Now for the next lemma.

Lemma 3.10.   77ze restriction of the duality mapping j to any closed

bounded subset of V not containing the origin is a proper map.

Proof.   Denote by B a closed bounded subset of V such that B £ 0. Let

F be a filter on B such that /(F) converges to some point «* in V*. As B is

bounded and V reflexive, there is a finer filter G on B such that v G-converges

to some point « in the weak topology of V, and Hull G-converges to some num-

ber p in R. As the norm is weakly lower semicontinuous, we have

(3.38) luKlimlul.
G

Taking (3.37) into account, we have

(3.39) lim lui = lim <j(v), v) = <«*, «>
G G

and hence

(3.40) Il «IK lim lui = <«*,«>.
G

But we know that /(F) converges to u* and that ll/(u)ll* = 1 for every

v ¥= 0. We conclude that llw* II* = 1, and finally

(3.41) lim lull = lui.
G

c c
We have proved that u —► u weakly and lull —► II«II.   It is a well-

known fact from the theory of uniformly convex Banach spaces that this implies

that u —*■ u strongly.  Indeed, if it were not so, the filter G would not be

Cauchy, and hence there would exist an e > 0 such that all elements of G had

diameter greater than 2ell«ll.
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(3.42) V4GG,   3vEA,   3w EA: h - wB > 2eHuH.

By the triangle inequality, noting that A C B $ 0:

(3.42) llu/llull - w/M II > Hu - wll/llull - llwll(l /UuH - 1 /HwH).

As Hull —► Hull and Hwll —► HuH, the last term goes to zero.   Hence

there is a D EG such that, for every A EG, there exist u and w in A C\ D with

(3.43) llu/llull-w/llwIIII >e.

Using (3.28), this implies

(3.44) llu/llull + wlWwW II < 2(1 - 77).

Taking scalar products with j(u)

(3.45) (u/Hull 4- w/llwll,/(u)> < 2(1 -17).

Since we know that G converges weakly to u, we can take the G-limit of

the left-hand side to get the desired contradiction

(3.46) 2<u/llull, /(«)> = 2 < 2(1 - 77).

We have thus proved that G converges in B, and hence that the coarser

filter F has a cluster point,    a

With these preliminary lemmas on uniformly convex Banach spaces out of

the way, we now proceed to the statement and proof of our main example.

Theorem 3.11. Let V be a Banach space and V* its dual, both uniformly

convex, and X a topological space. Let A be a continuous proper mapping from

X into V, with A(X) bounded.   We consider the family of optimization problems:

(p ) inf £0c) + /z(IIu-/1jcII)

where g is a lower semicontinuous function on X, bounded from below, and h

a continuous function on [0, 4-°°], with derivative h! continuous and nonzero

on ] 0, + °°[.  We denote by F(u) the value of (Vu) and assume that h(0) = 0.

Then V can be partitioned into a closed set G and an open set ft. At

every point u of G, there is an optimal solution x for (Pu) satisfying Ax = u.

There is a dense G5 subset T of ft, at every point u of which (Pu) has a compact

nonempty set of optimal solutions, all of which satisfy h'(lu-Axl)j(u -Ax) =

F'(u).

Proof. We define G as the set of all points uEV such that (Pu) has an

optimal solution satisfying Ax = u.  Clearly, it is the image by A of the set
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(3-47) {xEX\g(x)<F(Ax)}.

This is a closed set, because g is lower semicontinuous and F, being the

pointwise infimum of a family of continuous functions, is upper semicontinuous.

Since A is proper, it maps a closed set onto a closed set (Proposition 3.2). Hence

G is closed.

It is now straightforward to apply Theorem 3.4 to £2 = CG and /(«, x) =

g(x) + h(h - .4x11). If « belongs to £2, which is open in V, we can find an ele-

ment D of the minimizing filter Tu and a ball (/ of radius e > 0 around u such

that

(3.48) VxGA   VtzG(/,   Ax* v.

Indeed, if it were not so, the image by A of any element of Ftt would inter-

sect any neighbourhood of w. But this means that there exists some filter which

is finer than Fu and whose image by A converges towards u. Since A is proper,

this filter would then have some cluster point x satisfying Ax = u. But x would

also be a cluster point for the coarser filter Fu, thus contradicting the fact that

u$G.

From (3.48) we conclude that for every x ED, the function /(•, x) is

Frechet-differentiable on the neighbourhood I/, with derivative fv(v, x) =

h'(h - Axl)j (v - Ax). Since h' is continuous on ]0, +°°[ it is bounded and

uniformly continuous on every compact subset. But we know that A(X) is

bounded, and it follows from (3.48) that flu - .4x11 > e/2 for every x in D and v

in 1//2. This proves condition (3.6), and, together with Lemma 3.9, condition

(3.7).  Condition (3.8) is clearly satisfied, and we are left with condition (3.10),

i.e. to prove that the map x •—*f'v(u, x) = h'(lu -Axl)j(u-Ax) is proper.

Let E he any filter on X such that its image by fv(u, •) converges in V. Its

image by the mapping x i—* h'(h - .4x11) is bounded in R, because A(X) is

bounded, and so must have cluster points; by taking a finer filter if necessary,

we may even assume that it converges. Either its limit is zero or not. The first

case, A'(II« -4x11) —*■ 0, can only occur if Ax —> «, because h'(f) =£ 0 for every

t > 0; since A is proper, it implies that E has a cluster point. The only case left

to consider is when lim h'(lu - Axl) i= 0 and lim Ax - u * 0. Then, on some

closed subset X' of X not containing the origin, E induces a filter the image of

which by the mapping x r-+ j(u - Ax) converges; by Lemma 3.10 we con-

clude that this filter must have a cluster point. Thus E always has a cluster

point, and we are through with the proof.   □

To keep down the length of the theorem, we have spared the reader the

detailed properties of F. It is locally lipschitzian on £2, by Theorem 3.4. For

every u in G, we have F(u) = g(u). It follows that the restriction of F to G is
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continuous (l.s.c. because it coincides with g, and u.s.c. because it is a pointwise

infimum of continuous functions).  Recall also that u •—»■ Su is upper semicontin-

uous as a set-valued mapping from T to X.

The general result can be refined in two ways, either seeking uniqueness of

the optimal solution on T, or getting rid of the exceptional set G. For unique-

ness, we use Corollary 3.6.

Corollary 3.12. Assumptions of Theorem 3.11. Assume in addition

that A is injective, and one of the following:

(3.49) g = 0,

or

(3.50) tí is injective on ] 0, +°°[.

Then, for every u in T, there is a unique solution s(u) for (Pu). The map-

ping s: T—+X is continuous, and all minimizing sequences for (Pu) converge

to s(u).

Proof.   Suppose there were two optimal solutions jc and v for (Vu), u G

T.  Then we would have

(3.51) g(x) + h(lu - Axl) =g(y) + h(ly -Axl);

(3.52) h'(lu - ,4jcII)/(u - Ax) = h'(\u - Ay \\)j(u - Ay).

If (3.49) is fulfilled, it follows from (3.51) and the fact that h is strictly

monotone that llu -Axl = llu - Ay\. If (3.50) is fulfilled, it follows from

(3.52) by taking norms that llu -.4*11 = lu-AyI. In any case we have

(3.53) lu-Ax\\ = lu - Ay II    and   j(u - Ax) = j(u - Ay).

This of course means that u - Ax = u- Ay, and hence x = y.   o

The exceptional set G cannot be dispensed with if the function

u t—»• h(IIull) is not differentiable at the origin. It can even be the whole space

V, as in the case where X = V, A is the identity on V, h is the identity on [0,

4-00] and g satisfies the Lipschitz condition \g(u) -g(v)\ < II« - ull. Problem

(Pu) then always has jc = u as an optimal solution, and F(u) = g(u); there is no

differentiability property of F nor any nice first-order condition for optimality.

It is, of course, more interesting to know when we can take G =0:

Corollary 3.13. Assumptions of Theorem 3.11. Assume in addition that

(3.54) h(t)/t —*■ 0   when t —*■ 0.

Then the conclusions hold with G = çSand ft = V.
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Of course Corollaries 3.12 and 3.13 can be combined.  For instance, take

for X a bounded closed subset of V, for A: X —*■ V the canonical injection, and

for h the function t —> tp (or t —*-tP), with 1 < p < °°. Then both corollaries

hold, and we get the following statements; we always denote by F a Banach

space with dual V*, both uniformly convex, by X a bounded closed subset of V,

by g a lower semicontinuous function on X, bounded from below:

Proposition 3.14.   Under the above assumptions, consider the optimiza-

tion problem:

(Pu) inf g(x)+ llx-«llp
xex

with value F(u).  There is a dense Gs subset T of V, at every point « of which

F is Frechet-differentiable and all minimizing sequences for (Pu) converge to a

single optimal solution.   This solution depends continuously on « zzz T, and

satisfies the first-order condition for optimality:

(3.55) pllx - «lp-xj(x -u) = F'(u).

Taking g = 0, we get the nearest point problem:

Corollary 3.15. Denote by d(u) = inf^g^ll« - xll the distance from u

to X.   There is a dense Gs subset of V, at every point of which d is Frechet-

differentiable and is attained at a single point of X.

Proposition 3.16.   Under the above assumptions, consider the optimiza-

tion problem:

inf g(x)-\\x-ulp
xex

with value F(u).  There is a dense Gs subset Tof V, at every point « of which F

is Fréchet-differentiable and all minimizing sequences for (Pu) converge to a

single optimal solution.   This solution depends continuously on u in T, and

satisfies the first-order condition for optimality:

(3.56) p llx - « \\p-xj(x -u) + F'(u) = 0.

Taking g = 0, we get the farthest point problem:

Corollary 3.17.   Denote by 8(u) = supxGJrll« - xll.  There is a dense

Gs subset of V, at every point of which S is Fréchet-differentiable and is attained

at a single point of X.

We conclude with some references for this example; the easiest way to

classify them is by the assumptions on h. Theorem 3.11 assumes mainly that h

(K)
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is strictly increasing or strictly decreasing, and is new. The main additional

assumption of Corollary 3.12 is that h is strictly convex or strictly concave; of

this, only the concave decreasing case was known (Baranger-Temam [4]), the

other ones are new. Proposition 3.14 is due to Baranger [3] and Proposition

3.16 to Bidaut [5]. Corollary 3.15 has been proved by SteSkin [14], Edel-

stein [10], and Corollary 3.17 by Edelstein [9], Asplund [1], [2], all under

various, generally weaker, assumptions on the Banach space V.  A general feature

is that there was up to now no common treatment of both types of perturba-

tions, the convex ones and the concave ones.
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