ERRATUM FOR "CONVEXITY METHODS IN HAMILTONIAN MECHANICS"

p. 2

Formula (7) should be:

$$
\log A=(2 i \pi)^{-1} \int(z I-A)^{-1} \log z d z
$$

p. 9

Third line from the bottom: read "Proposition 4" instead of "Proposition 2"

p. 17

Formula (14) should read:

$$
R\left(t_{n}\right) x_{n}=e^{i \theta_{n}} x_{n}, \quad\left(G x_{n}, x_{n}\right)=1
$$

p. 19-20-21

The proof of Proposition 4 (and probably the proposition itself) is wrong: in formula (25), the third equality does not hold, because $R(t) \xi_{k} \neq \lambda_{k} \xi_{k}$ in general. This was first pointed out to me by John Toland. As a result, pages 19 (starting from the third paragraph), 20 and 21 have to be replaced by the following:
To have a more complete picture, we now turn to Krein-indefinite eigenvalues.
Consider again the system (1), (2). Denote by D the set of $t \geq 0$ such that $R(t)$ has at least one Krein-indefinite eigenvalue λ on the unit circle \mathcal{U}.
If $t \in D$, then $R(t)$ must have a G-isotropic λ-eigenvector. Indeed, if λ is not semisimple, apply Proposition 2.7. If λ is semi-simple, the eigenspace $\operatorname{ker}(R(t)-\lambda I)$ coincides with the invariant subspace $\operatorname{ker}(R(t)-\lambda I)^{m}$, on which the Hermitian form G is assumed to be indefinite, and which therefore contains an isotropic vector.

Denote by D_{m} the set of all $t \in D$ such that all Krein-indefinite eigenvalues of $R(t)$ have multiplicity at most m, one of them having exactly multiplicity m. Note that $2 \leq m \leq 2 n$, that the D_{m} partition D :

$$
D=\cup D_{m}, \quad p \neq q \Rightarrow D_{p} \cap D_{q}=\emptyset
$$

and that the D_{m} are not closed in general: if $t_{i} \in D_{m}$ and $t_{i} \rightarrow t$, then $t \in D_{m^{\prime}}$ for some $m^{\prime} \geq m$

Proposition. D_{m} is a discrete set: every point in D_{m} is isolated

Proof. Assume otherwise. Then there is some point $t \in D_{m}$ and some sequence $t_{k} \in D_{m}$ with $t_{k} \rightarrow t$ and $t_{k} \neq t$ for every k. By the definition of D_{m} we find sequences $\lambda_{k} \in \mathcal{U}$ and $x_{k} \in \mathbb{C}^{2 n}$ such that:

$$
\begin{array}{ccc}
R\left(t_{k}\right) x_{k} & = & \lambda_{k} x_{k} \\
\left\|x_{k}\right\|=1 & \text { and } \quad & \left(G x_{k}, x_{k}\right)=0
\end{array}
$$

each λ_{k} being a root of the characteristic polynomial:

$$
P\left(t_{k} ; X\right)=\operatorname{det}\left(R\left(t_{k}\right)-X I\right)
$$

with multiplicity m, all other roots having multiplity $\leq m$. In other words, λ_{k} is a simple root of the m-th derivative:

$$
P^{(m)}\left(t_{k} ; \lambda_{k}\right)=0
$$

By compactness, after extracting a suitable subsequence, we find $\lambda \in \mathcal{U}$ and x with $\|x\|=1$ and:

$$
\begin{aligned}
\lambda_{k} & \rightarrow \lambda \\
x_{k} & \rightarrow x \\
(G x, x) & =0 \\
R(t) x & =\lambda x \\
P^{(m)}(t . ; \lambda) & =0
\end{aligned}
$$

By assumption, $t \in D_{m}$, so the multiplicity of λ is exactly m, that is, λ is a simple root of $P^{(m)}(t . ; X)$. By the implicit function theorem, there exists an $\epsilon>0$ and an $\eta>0$ such that, for $|s-t|<\epsilon$, the polynomial $P^{(m)}(s . ; X)$ has a unique (and simple) root $\varphi(s)$ satisfying $|\varphi(s)-\lambda|<\eta$, the function φ being smooth. Hence:

$$
\varphi\left(t_{k}\right)=\lambda_{k} \quad \text { and } \quad \varphi(t)=\lambda
$$

$$
\lim _{k \rightarrow \infty} \frac{\lambda_{k}-\lambda}{t_{k}-t}=\varphi^{\prime}(t) \in \mathbb{C}
$$

We now remember that $R(t)$ is G-unitary. Therefore:

$$
\begin{aligned}
\left(\left(R\left(t_{k}\right)-R(t)\right) x_{k}, G x\right) & =\left(R\left(t_{k}\right) x_{k}, G x\right)-\left(R(t) x_{k}, G x\right) \\
& =\lambda_{k}\left(x_{k}, G x\right)-\left(x_{k}, R(t)^{\star} G x\right) \\
& =\lambda_{k}\left(x_{k}, G x\right)-\left(x_{k}, G R(t)^{-1} x\right) \\
& =\lambda_{k}\left(x_{k}, G x\right)-\left(x_{k}, \bar{\lambda} G x\right) \\
& =\left(\lambda_{k}-\lambda\right)\left(x_{k}, G x\right)
\end{aligned}
$$

Divide both sides by $\left(t_{k}-t\right)$ and let $k \rightarrow \infty$. We get:

$$
(J A(t) R(t) x, G x)=\varphi^{\prime}(t)(x, G x)
$$

The right-hand side vanishes since x is G-isotropic. As for the left-hand side, replacing G by $-i J$, we get:

$$
\begin{aligned}
(J A(t) R(t) x, G x) & =(J A(t) R(t) x,-i J x) \\
& =i \lambda(A(t) x, x)
\end{aligned}
$$

which cannot vanish since $A(t)$ is positive definite. This is a contradiction and proves the proposition.

Corollary. D is a closed set with empty interior
Proof. D is the set of $t \geq 0$ such that $R(t)$ has an eigenvalue $\lambda \in \mathcal{U}$ with some g-isotropic λ-eigenvector, so it has to be closed. On the other hand, $D=\cup D_{m}$. Since D is closed, $D=\cup \overline{D_{m}}$. By the preceding proposition, each $\overline{D_{m}}$ has empty interior, and by Baire's Theorem, D itself has empty interior.

It t_{0} is an isolated point in D, we can describe precisely the behaviour of the Krein, indefinite eigenvalues: they immediately split up into Krein-definite eigenvalues, and eigenvalues which leave the unit circle:
Corollary. Let t_{0} be an isolated point in D, and let $\lambda \in \mathcal{U}$ be an eigenvalue of $R\left(t_{0}\right)$ with Krein type $\left(p_{0}, q_{0}\right)$ [The rest as in Corollary 5 p. 20]

Proof. Since t_{0} is an isolated point in D, there is some open interval \mathcal{N} around t_{0} such that, for $t \in \mathcal{N}$ and $t \neq t_{0}, R(t)$ has only Krein-definite eigenvalues on \mathcal{U}. [The rest as in the proof of Corollary 5 p. 20]

In other words, Krein-positive and Krein-negative eigenvalues leave the unit circle in pairs, each one cancelling the other, while the remaining ones continue their motion on \mathcal{U} in the direction prescribed by their Krein sign, positive for positive ones and negative for the negative ones. A Krein-indefinite eigenvalue is a place wher a Krein-positive eigenvalue collides with a Krein-negative one. We formalize this idea by a definition.
Let t_{0} be a (possibly non-isolated) point in D, and let $\lambda \in \mathcal{U}$ be an eigenvalue of $R\left(t_{0}\right)$ with Krein type $\left(p_{0}, q_{0}\right)$. Choose some neighbourhood \mathcal{N} of λ in \mathbb{C} (not \mathcal{U}) and some $\epsilon>0$ such that, whenever $\left|t-t_{0}\right|<\epsilon$, the $R(t)$ have the same number of eigenvalues in \mathcal{N} (counted with mutliplicity), and they all converge to λ when $t \rightarrow t_{0}$.
By the first corollary, there exists a sequence $t_{k} \rightarrow t_{0}$, with $t_{k}<t_{0}$, such that the eigenvalues of $R\left(t_{k}\right)$ in $\mathcal{N} \cap \mathcal{U}$ are all Krein-definite. Inspecting the negative side of λ in $\mathcal{N} \cap \mathcal{U}$, we find p_{k} Krein-positive eigenvalues and q_{k} Krein-negative ones. The number:

$$
p_{0}^{-}=p_{k}-q_{k}
$$

is non-negative and independent of k. To see this, use Corollary 3: as s increases from t_{k} to t_{k+1}, the Krein-negative eigenvalues move away from λ on $\mathcal{N} \cap \mathcal{U}$, and can be forced away from \mathcal{U} and back towards λ only by colliding with Krein-positive eigenvalues. In other words, in $\mathcal{N} \cap \mathcal{U}$, positive and negative eigenvalues are created or annihilated in pairs, so the difference $p_{k}-q_{k}$ is constant, and it has to be nonnegative, otherwise there would be one negative eigenvalue in excess, which would eventually move away from λ.

Similarly, inspecting the positive side of λ in $\mathcal{N} \cap \mathcal{U}$, we find p_{k}^{\prime} Krein-positive eingenvalues and q_{k}^{\prime} Krein-negative ones, and we define:

$$
q_{0}^{-}=q_{k}^{\prime}-p_{k}^{\prime}
$$

which again is non-negative and independent of k.
Using sequences $t_{k} \rightarrow t_{0}$ with $t_{k}>t_{0}$, we define p_{0}^{+}(on the positive side of λ) and q_{0}^{+}(on the negative side). Arguing as in the second corollary, one proves that:

$$
p_{0}^{+}-q_{0}^{+}=p_{0}-q_{0}=p_{0}^{-}-q_{0}^{-}
$$

Definition. Set:

$$
\begin{aligned}
r_{0}^{-} & =p_{0}-p_{0}^{-}=q_{0}-q_{0}^{-} \\
r_{0}^{+} & =p_{0}-p_{0}^{+}=q_{0}-q_{0}^{+}
\end{aligned}
$$

We refer to $2 r_{0}^{-}$as the number of eigenvalues which arrive on the unit circle at λ and to $2 r_{0}^{+}$as the number of eigenvalues which leave the unit circle at λ.
The rest as in the book, from p. 21, line 3 from the bottom. Note that Proposition 5.11 holds without changes.
p. 23

Formula (42) should read:

$$
\lambda\left(A\left(t_{0}\right) \xi, \xi\right)=0
$$

p. 25

Formula (18) should read:

$$
\begin{aligned}
\left\|\Pi_{s} u\right\|^{2} & =\sum_{n \neq 0} \frac{s^{2}}{4 n^{2} \pi^{2}}\left|u_{n}\right|^{2} \\
& \leq \sum_{n \neq 0} \frac{s^{2}}{4 \pi^{2}}\left|u_{n}\right|^{2}=\frac{s^{2}}{4 \pi^{2}}\|u\|^{2}
\end{aligned}
$$

p. 35

Middle of the page: read "Proposition 4.2" instead of "Proposition 3.2"

p. 41

Formula (58): the second line should be:

$$
=\frac{1}{2} \int_{0}^{T}\left[\left(J \dot{x}, \int_{0}^{t} J \dot{x}(s) d s\right)+(B(t) J \dot{x}, J \dot{x})\right] d t
$$

p. 50
(a) Formulas (126) and (127) should read

$$
\begin{aligned}
j_{T}\left(e^{i 0}\right) & =j_{T}(1)+\frac{m_{0}}{2}+n \\
j_{T}\left(e^{-i 0}\right) & =j_{T}(1)+\frac{m_{0}}{2}+n
\end{aligned}
$$

(b) In the proof, read Proposition 13 instead of Proposition 11
p. 56
(a) Corollary 6. In the statement, add the condition $\omega \neq 1$. In the proof, replace Corollary 5.15 by Corollary 5.14.
(b) Insert a new corollary, for which I am indebted to Salem Mathlouti

Corollary. Denote by $m \geq 2$ the multiplicity of 1 as a Floquet multiplier. Then, for any $\omega_{0} \in \mathcal{U}$ wit $h \omega_{0} \neq 1$, we have:

$$
j\left(\omega_{0}\right) \geq \frac{m}{2}
$$

Proof. We have:

$$
j\left(\omega_{0} e^{-i 0}\right) \leq j\left(\omega_{0}\right)+p_{0} \leq j\left(\omega_{0}\right)+m_{0}
$$

On the other hand, denoting by $\left(p_{k}, q_{k}\right)$ the Krein types of all the Floquet multipliers lying between ω_{0} and 1 , we have:

$$
n \leq j\left(\omega_{0} e^{-i 0}\right)+\sum p_{k}-\sum q_{k}
$$

It follows that:

$$
\sum p_{k}-\sum q_{k} \geq n-j\left(\omega_{0} e^{-i 0}\right) \geq n-m_{0}-j\left(\omega_{0}\right)
$$

Counting the eigenvalues, we find:

$$
\sum p_{k}-\sum q_{k} \leq n-m_{0}-\frac{m}{2}
$$

and the result follows by comparing the two last inequalities.

p. 58-59-60

Formulas (31), (32), (33), (37), (38), (40), (47), replace \sum by Σ
p. 62

Middle of the page, replace $\operatorname{ker}\left(A(t / \theta-I)\right.$ by $\operatorname{ker}\left(R_{\theta}(t / \theta)-I\right)$
p. 63

In formulas (65), (66) and (67), replace \sum by Σ
p. 72

In Proposition 6, add two new formulas after (64) and (65):

- for $1<\beta \leq 2$:

$$
i_{k}=i_{1}+(k-1)\left(i_{1}+n+1\right)=\left(i_{1}+n+1\right) k-(n+1)
$$

- for $\alpha>2$:

$$
i_{k}=i_{1}+(k-1)\left(i_{1}+n\right)=\left(i_{1}+n\right) k-n
$$

p. 75

Line before formula (5): remove "unique"

p. 82

In formula (8) for F, and in the formula for $F^{\star \star}$ in the middle of the page, replace $\sum_{x^{\star} \in X^{\star}}$ by $\sup _{x^{\star} \in X^{\star}}$

p. 90

Formula (37) should read:

$$
\partial(G \circ A)(x)=A^{\star} \partial G(A x) \forall x \in X
$$

p. 105

(a) Proof of Proposition 5, second line, read "Theorem 3.2 and Corollary 3.3"
(b) Replace formula (62) and the preceding line by:

We now wish to apply Theorem 2. Introduce the space X of all $x \in L^{\alpha}$ such that $\dot{x} \in L^{\beta}$ and $x(T)=M x(0)$, and consider the functional Ψ on X defined by:

$$
\begin{aligned}
\Psi(x) & =\frac{1}{2}\langle A x, x\rangle+\mathcal{H}^{\star}(A x) \\
& =\int_{0}^{T}\left[\frac{1}{2}(J \dot{x}, x)+H^{\star}(t,-J \dot{x})\right] d t
\end{aligned}
$$

p. 106

(a) First line after formula (67): $\bar{q}(t):=\left(q_{1}-q_{0}\right) t / T+q_{0}$
(b) Formula (73) should read:

$$
\begin{aligned}
\Psi(p, q): & =\int_{0}^{T}\left[-p \dot{q}+p \bar{q}+H^{\star}\left(\dot{q}+\frac{d \bar{q}}{d t},-\dot{p}\right)\right] d t \\
& =\int_{0}^{T}\left[-p\left(\dot{q}+\frac{d \bar{q}}{d t}\right)+H^{\star}\left(\dot{q}+\frac{d \bar{q}}{d t},-\dot{p}\right)\right] d t+q_{1} p(T)-q_{0} p(0)
\end{aligned}
$$

p. 112

The action functional on the middle of the page should read:

$$
\Phi(x)=\int_{0}^{T}\left[\frac{1}{2}\left(J \dot{x}+A_{\infty}(t) x, x\right)+N(t, x)\right] d t
$$

p. 115

Formula (33) should read:

$$
x:=\Lambda_{0}^{-1} u+x_{0}
$$

p. 134

After formula (14), insert "with $\bar{q}(t):=t T^{-1}\left(q_{1}-q_{0}\right)$
p. 136

Formula (4) should read:

$$
\forall x \in X, \quad \Phi(x) \geq \Phi(y)-\epsilon d(x, y)
$$

p. 149

Formula (7) should read:

$$
\begin{aligned}
\dot{x} & =J H^{\prime}(t, x) \\
x(0) & =x(T)
\end{aligned}
$$

p. 154
(a) The last term in formula (50) is $c_{1}\|w\|_{\beta}$
(b) There should be \geq instead of \leq in the second line
p. 156

The last term in the unnumbered formula between (69) and (70) is $\left(w_{n}, \epsilon_{n}\right)$

p. 158

Fourth paragraph, line 4: read $\beta<2$ instead of $\beta>2$
p. 174
(a) Formula (28) should read $u_{k}+h e_{k} \in \mathcal{P}_{0}$
(b) The two lines between formulas (34) and (35) should be: "Since u_{k} is $k T / 2$ periodic, the phase shift does not affect the value of the integral

p. 187

Introduction, line before last: "and refer the"

p. 221

Line after formula (47) should read: "It is essential if it i-essential for infinitely many $i \geq 1$.
p. 222

Second line after Lemma 8, replace $c_{\left(n_{1}\right) p}$ with $c_{(n+1) p}$
p. 223

Formula (63) should read:

$$
\gamma_{\alpha}^{-}(\Sigma)=\liminf _{i \rightarrow \infty}\left[\left(-c_{i}\right)^{\frac{2-\alpha}{\alpha}} i\right]^{-1}
$$

p. 225
(a) Formula (84) should read:

$$
\hat{i}(x)=\lim _{k \rightarrow \infty} \frac{1}{k} i_{k T}(x)
$$

(b) In the following line, read Theorem I.7.7 instead of Theorem I.7.8
p. 231
(a) The unnumbered formula should read:

$$
\hat{i}\left(x^{i}\right)=\frac{2}{\alpha_{i}} \sum_{j} \alpha_{j}
$$

(b) The last sentence should read: "Hence the mean index per unit of action:"

