ERRATUM FOR "CONVEXITY METHODS IN HAMILTONIAN MECHANICS"

p. 2

Formula (7) should be:

$$\log A = (2i\pi)^{-1} \int (zI - A)^{-1} \log z \, dz$$

p. 9

Third line from the bottom: read "Proposition 4" instead of "Proposition 2"

p. 17

Formula (14) should read:

$$R(t_n) x_n = e^{i\theta_n} x_n, \quad (Gx_n, x_n) = 1$$

p. 19-20-21

The proof of Proposition 4 (and probably the proposition itself) is wrong: in formula (25), the third equality does not hold, because $R(t) \xi_k \neq \lambda_k \xi_k$ in general. This was first pointed out to me by John Toland. As a result, pages 19 (starting from the third paragraph), 20 and 21 have to be replaced by the following:

To have a more complete picture, we now turn to Krein-indefinite eigenvalues.

Consider again the system (1), (2). Denote by D the set of $t \ge 0$ such that R(t) has at least one Krein-indefinite eigenvalue λ on the unit circle \mathcal{U} .

If $t \in D$, then R(t) must have a *G*-isotropic λ -eigenvector. Indeed, if λ is not semisimple, apply Proposition 2.7. If λ is semi-simple, the eigenspace ker $(R(t) - \lambda I)$ coincides with the invariant subspace ker $(R(t) - \lambda I)^m$, on which the Hermitian form *G* is assumed to be indefinite, and which therefore contains an isotropic vector.

Denote by D_m the set of all $t \in D$ such that all Krein-indefinite eigenvalues of R(t) have multiplicity at most m, one of them having exactly multiplicity m. Note that $2 \leq m \leq 2n$, that the D_m partition D:

$$D = \cup D_m, \quad p \neq q \Rightarrow D_p \cap D_q = \emptyset$$

and that the D_m are not closed in general: if $t_i \in D_m$ and $t_i \to t$, then $t \in D_{m'}$ for some $m' \ge m$

Proposition. D_m is a discrete set: every point in D_m is isolated

Proof. Assume otherwise. Then there is some point $t \in D_m$ and some sequence $t_k \in D_m$ with $t_k \to t$ and $t_k \neq t$ for every k. By the definition of D_m we find sequences $\lambda_k \in \mathcal{U}$ and $x_k \in \mathbb{C}^{2n}$ such that:

$$R(t_k) x_k = \lambda_k x_k$$

||x_k|| = 1 and (Gx_k, x_k) = 0

each λ_k being a root of the characteristic polynomial:

$$P(t_k; X) = \det \left(R(t_k) - XI \right)$$

with multiplicity m, all other roots having multiplity $\leq m$. In other words, λ_k is a simple root of the *m*-th derivative:

$$P^{(m)}\left(t_k;\lambda_k\right) = 0$$

By compactness, after extracting a suitable subsequence, we find $\lambda \in \mathcal{U}$ and x with ||x|| = 1 and:

$$\lambda_k \rightarrow \lambda$$

$$x_k \rightarrow x$$

$$(Gx, x) = 0$$

$$R(t) x = \lambda x$$

$$P^{(m)}(t; \lambda) = 0$$

By assumption, $t \in D_m$, so the multiplicity of λ is exactly m, that is, λ is a simple root of $P^{(m)}(t; X)$. By the implicit function theorem, there exists an $\epsilon > 0$ and an $\eta > 0$ such that, for $|s - t| < \epsilon$, the polynomial $P^{(m)}(s; X)$ has a unique (and simple) root $\varphi(s)$ satisfying $|\varphi(s) - \lambda| < \eta$, the function φ being smooth. Hence:

$$\varphi(t_k) = \lambda_k \text{ and } \varphi(t) = \lambda$$

$$\lim_{k \to \infty} \frac{\lambda_k - \lambda}{t_k - t} = \varphi'(t) \in \mathbb{C}$$

We now remember that R(t) is G -unitary. Therefore:

$$((R(t_k) - R(t)) x_k, Gx) = (R(t_k) x_k, Gx) - (R(t) x_k, Gx)$$

$$= \lambda_k (x_k, Gx) - (x_k, R(t)^* Gx)$$

$$= \lambda_k (x_k, Gx) - (x_k, GR(t)^{-1} x)$$

$$= \lambda_k (x_k, Gx) - (x_k, \overline{\lambda}Gx)$$

$$= (\lambda_k - \lambda) (x_k, Gx)$$

Divide both sides by $(t_k - t)$ and let $k \to \infty$. We get:

$$(JA(t) R(t) x, Gx) = \varphi'(t) (x, Gx)$$

The right-hand side vanishes since x is G-isotropic. As for the left-hand side, replacing G by -iJ, we get:

$$(JA(t) R(t) x, Gx) = (JA(t) R(t) x, -iJx)$$
$$= i\lambda (A(t) x, x)$$

which cannot vanish since A(t) is positive definite. This is a contradiction and proves the proposition.

Corollary. D is a closed set with empty interior

Proof. D is the set of $t \geq 0$ such that R(t) has an eigenvalue $\lambda \in \mathcal{U}$ with some g-isotropic λ -eigenvector, so it has to be closed. On the other hand, $D = \bigcup D_m$. Since D is closed, $D = \bigcup \overline{D_m}$. By the preceding proposition, each $\overline{D_m}$ has empty interior, and by Baire's Theorem, D itself has empty interior. \Box

It t_0 is an isolated point in D, we can describe precisely the behaviour of the Krein, indefinite eigenvalues: they immediately split up into Krein-definite eigenvalues, and eigenvalues which leave the unit circle:

Corollary. Let t_0 be an isolated point in D, and let $\lambda \in \mathcal{U}$ be an eigenvalue of $R(t_0)$ with Krein type (p_0, q_0) [The rest as in Corollary 5 p. 20]

Proof. Since t_0 is an isolated point in D, there is some open interval \mathcal{N} around t_0 such that, for $t \in \mathcal{N}$ and $t \neq t_0$, R(t) has only Krein-definite eigenvalues on \mathcal{U} . [The rest as in the proof of Corollary 5 p. 20]

In other words, Krein-positive and Krein-negative eigenvalues leave the unit circle in pairs, each one cancelling the other, while the remaining ones continue their motion on \mathcal{U} in the direction prescribed by their Krein sign, positive for positive ones and negative for the negative ones. A Krein-indefinite eigenvalue is a place wher a Krein-positive eigenvalue collides with a Krein-negative one. We formalize this idea by a definition.

Let t_0 be a (possibly non-isolated) point in D, and let $\lambda \in \mathcal{U}$ be an eigenvalue of $R(t_0)$ with Krein type (p_0, q_0) . Choose some neighbourhood \mathcal{N} of λ in \mathbb{C} (not \mathcal{U}) and some $\epsilon > 0$ such that, whenever $|t - t_0| < \epsilon$, the R(t) have the same number of eigenvalues in \mathcal{N} (counted with multiplicity), and they all converge to λ when $t \to t_0$.

By the first corollary, there exists a sequence $t_k \to t_0$, with $t_k < t_0$, such that the eigenvalues of $R(t_k)$ in $\mathcal{N} \cap \mathcal{U}$ are all Krein-definite. Inspecting the negative side of λ in $\mathcal{N} \cap \mathcal{U}$, we find p_k Krein-positive eigenvalues and q_k Krein-negative ones. The number:

$$p_0 = p_k - q_k$$

is non-negative and independent of k. To see this, use Corollary 3: as s increases from t_k to t_{k+1} , the Krein-negative eigenvalues move away from λ on $\mathcal{N} \cap \mathcal{U}$, and can be forced away from \mathcal{U} and back towards λ only by colliding with Krein-positive eigenvalues. In other words, in $\mathcal{N} \cap \mathcal{U}$, positive and negative eigenvalues are created or annihilated in pairs, so the difference $p_k - q_k$ is constant, and it has to be nonnegative, otherwise there would be one negative eigenvalue in excess, which would eventually move away from λ . Similarly, inspecting the positive side of λ in $\mathcal{N} \cap \mathcal{U}$, we find p'_k Krein-positive eingenvalues and q'_k Krein-negative ones, and we define:

$$q_0^- = q_k' - p_k'$$

which again is non-negative and independent of k.

Using sequences $t_k \to t_0$ with $t_k > t_0$, we define p_0^+ (on the positive side of λ) and q_0^+ (on the negative side). Arguing as in the second corollary, one proves that:

$$p_0^+ - q_0^+ = p_0 - q_0 = p_0^- - q_0^-$$

Definition. Set:

$$\begin{array}{rcl} r_0^- &=& p_0 - p_0^- = q_0 - q_0^- \\ r_0^+ &=& p_0 - p_0^+ = q_0 - q_0^+ \end{array}$$

We refer to $2r_0^-$ as the number of eigenvalues which arrive on the unit circle at λ and to $2r_0^+$ as the number of eigenvalues which leave the unit circle at λ .

The rest as in the book, from p. 21, line 3 from the bottom. Note that Proposition 5.11 holds without changes.

p. 23

Formula (42) should read:

$$\lambda \left(A\left(t_{0}\right) \xi,\xi\right) =0$$

p. 25

Formula (18) should read:

$$\|\Pi_s u\|^2 = \sum_{n \neq 0} \frac{s^2}{4n^2 \pi^2} |u_n|^2$$
$$\leq \sum_{n \neq 0} \frac{s^2}{4\pi^2} |u_n|^2 = \frac{s^2}{4\pi^2} \|u\|^2$$

p. 35

Middle of the page: read "Proposition 4.2" instead of "Proposition 3.2"

p. 41

Formula (58): the second line should be:

$$=\frac{1}{2}\int_{0}^{T}\left[\left(J\dot{x},\int_{0}^{t}J\dot{x}\left(s\right)ds\right)+\left(B\left(t\right)J\dot{x},J\dot{x}\right)\right]dt$$

p.50

(a) Formulas (126) and (127) should read

$$j_T (e^{i0}) = j_T (1) + \frac{m_0}{2} + n$$

$$j_T (e^{-i0}) = j_T (1) + \frac{m_0}{2} + n$$

(b) In the proof, read Proposition 13 instead of Proposition 11

p. 56

(a) Corollary 6. In the statement, add the condition $\omega \neq 1.$ In the proof, replace Corollary 5.15 by Corollary 5.14.

(b) Insert a new corollary, for which I am indebted to Salem Mathlouti

Corollary. Denote by $m \ge 2$ the multiplicity of 1 as a Floquet multiplier. Then, for any $\omega_0 \in \mathcal{U}$ with $\omega_0 \ne 1$, we have:

$$j\left(\omega_0\right) \geq \frac{m}{2}$$

Proof. We have:

$$j\left(\omega_0 e^{-i0}\right) \le j\left(\omega_0\right) + p_0 \le j\left(\omega_0\right) + m_0$$

On the other hand, denoting by (p_k, q_k) the Krein types of all the Floquet multipliers lying between ω_0 and 1, we have:

$$n \le j \left(\omega_0 e^{-i0}\right) + \sum p_k - \sum q_k$$

It follows that:

$$\sum p_k - \sum q_k \ge n - j\left(\omega_0 e^{-i0}\right) \ge n - m_0 - j\left(\omega_0\right)$$

Counting the eigenvalues, we find:

$$\sum p_k - \sum q_k \le n - m_0 - \frac{m}{2}$$

and the result follows by comparing the two last inequalities.

5

p. 58-59-60

Formulas (31), (32), (33), (37), (38), (40), (47), replace $\sum by \Sigma$

p. 62

Middle of the page, replace ker $(A(t/\theta - I))$ by ker $(R_{\theta}(t/\theta) - I)$

p. 63

In formulas (65), (66) and (67), replace \sum by Σ

p.72

In Proposition 6, add two new formulas after (64) and (65):

ERRATUM FOR "CONVEXITY METHODS IN HAMILTONIAN MECHANICS"

6

• for $1 < \beta \leq 2$: $i_{k} = i_{1} + (k-1)(i_{1} + n + 1) = (i_{1} + n + 1)k - (n+1)$

$$i_k = i_1 + (k - 1)(i_1 + n + 1) = (i_1 + n + 1)k - (n + 1)k$$

• for $\alpha > 2$:

$$i_k = i_1 + (k-1)(i_1 + n) = (i_1 + n)k - n$$

p.75

Line before formula (5): remove "unique"

p. 82

In formula (8) for F, and in the formula for $F^{\star\star}$ in the middle of the page, replace $\sum_{x^{\star} \in X^{\star}}$ by $\sup_{x^{\star} \in X^{\star}}$

p. 90

Formula (37) should read:

$$\partial \left(G \circ A \right) (x) = A^{\star} \partial G \left(A x \right) \ \forall x \in X$$

p. 105

(a) Proof of Proposition 5, second line, read "Theorem 3.2 and Corollary 3.3"

(b) Replace formula (62) and the preceding line by:

We now wish to apply Theorem 2. Introduce the space X of all $x \in L^{\alpha}$ such that $\dot{x} \in L^{\beta}$ and x(T) = Mx(0), and consider the functional Ψ on X defined by:

$$\Psi(x) = \frac{1}{2} \langle Ax, x \rangle + \mathcal{H}^{\star}(Ax)$$
$$= \int_{0}^{T} \left[\frac{1}{2} (J\dot{x}, x) + H^{\star}(t, -J\dot{x}) \right] dt$$

p. 106

(a) First line after formula (67): $\overline{q}(t) := (q_1 - q_0) t/T + q_0$

(b) Formula (73) should read:

$$\Psi(p,q): = \int_0^T \left[-p\dot{q} + p\overline{q} + H^{\star}\left(\dot{q} + \frac{d\overline{q}}{dt}, -\dot{p}\right) \right] dt$$
$$= \int_0^T \left[-p\left(\dot{q} + \frac{d\overline{q}}{dt}\right) + H^{\star}\left(\dot{q} + \frac{d\overline{q}}{dt}, -\dot{p}\right) \right] dt + q_1 p\left(T\right) - q_0 p\left(0\right)$$

7

p. 112

The action functional on the middle of the page should read:

$$\Phi(x) = \int_0^T \left[\frac{1}{2} \left(J\dot{x} + A_{\infty}(t) \, x, x \right) + N(t, x) \right] dt$$

p.115

Formula (33) should read:

$$x := \Lambda_0^{-1}u + x_0$$

p. 134

After formula (14), insert "with $\overline{q}(t) := tT^{-1} (q_1 - q_0)$

p. 136

Formula (4) should read:

$$\forall x \in X, \quad \Phi(x) \ge \Phi(y) - \epsilon d(x, y)$$

p. 149

Formula (7) should read:

$$\dot{x} = JH'(t, x)$$
$$x(0) = x(T)$$

p. 154

- (a) The last term in formula (50) is $c_1 ||w||_{\beta}$
- (b) There should be \geq instead of \leq in the second line

p. 156

The last term in the unnumbered formula between (69) and (70) is (w_n, ϵ_n)

p. 158

Fourth paragraph, line 4: read $\beta < 2$ instead of $\beta > 2$

p. 174

(a) Formula (28) should read $u_k + he_k \in \mathcal{P}_0$

(b) The two lines between formulas (34) and (35) should be: "Since u_k is kT/2-periodic, the phase shift does not affect the value of the integral

p. 187

Introduction, line before last: "and refer the"

p. 221

Line after formula (47) should read: "It is *essential* if it *i*-essential for infinitely many $i \ge 1$.

p. 222

Second line after Lemma 8, replace $c_{(n_1)p}$ with $c_{(n+1)p}$

p. 223

Formula (63) should read:

$$\gamma_{\alpha}^{-}(\Sigma) = \liminf_{i \to \infty} \left[\left(-c_i \right)^{\frac{2-\alpha}{\alpha}} i \right]^{-1}$$

p. 225

(a) Formula (84) should read:

$$\hat{i}(x) = \lim_{k \to \infty} \frac{1}{k} i_{kT}(x)$$

(b) In the following line, read Theorem I.7.7 instead of Theorem I.7.8

p. 231

(a) The unnumbered formula should read:

$$\hat{i}\left(x^{i}\right) = \frac{2}{\alpha_{i}} \sum_{j} \alpha_{j}$$

(b) The last sentence should read: "Hence the mean <u>index</u> per unit of action:"