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Abstract We study equilibrium in hedonic markets, when consumers and suppliers
have reservation utilities, and the utility functions are separable with respect to price.
There is one indivisible good, which comes in different qualities; each consumer buys
0 or 1 unit, and each supplier sells 0 or 1 unit. Consumer types, supplier types and
qualities can be either discrete of continuous, in which case they are allowed to be
multidimensional. Prices play a double role: they keep some agents out of the mar-
ket, and they match the remaining ones pairwise. We define equilibrium prices and
equilibrium distributions, and we prove that equilibria exist, we investigate to what
extend equilibrium prices and distributions are unique, and we prove that equilibria are
efficient. In the particular case when there is a continuum of types, and a generalized
Spence–Mirrlees condition is satisfied, we prove the existence of a pure equilibrium,
where demand distributions are in fact demand functions, and we show to what extent
it is unique. The proofs rely on convex analysis, and care has been given to illustrate
the theory with examples.
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276 I. Ekeland

1 Introduction

1.1 Main results

In this paper, we show the existence and uniqueness of equilibrium in a hedonic market,
and we give uniqueness results. The main features of our model are as follows:

• There is a single, indivisible, good in the market, and it comes in different
qualities z.

• Consumers and producers are price-takers and utility-maximizers. They are char-
acterized by the values of some variables; each set of values is called a (multi-
dimensional) type.

• Consumers buy at most one unit of the good, and they buy none if their reservation
utility is not met; producers supply at most one unit of the good, and they supply
none if their reservation utility is not met. In other words, agents always have the
option of staying out of the market.

• The utilities of consumers and of producers are quasi-linear with respect to price:
the utility consumers with type x derive from buying one unit of quality z at price
p (z) is u (x, z)− p (z), and the utility producers with type y derive from selling
one unit of quality z at price p (z) is p (z)− v (y, z).

Our results are valid in the discrete case and in the continuous case. We show that
there is a (nonlinear) price system p (z) such that, for every quality z, the number
(or the aggregate mass) of consumers who demand z is equal to the number (or the
aggregate mass) of suppliers who produce z. In addition, agents who are staying out
of the market are doing so because by entering they would lower their utility. In other
words this price system exactly matches a subset of consumers with a subset of pro-
ducers, and the remaining consumers or producers are priced out of the market. This
is called an equilibrium price, and the resulting allocation of qualities is called an
equilibrium allocation. An example is given in Sect. 4.4, and the reader may proceed
there directly. We should stress, however, that we prove existence in full generality,
beyond the one-dimensional situation described in that example.

Every price system p (z) creates a matching between consumers and producers: for
every unit traded, there is a pair consisting of a consumer who buys it and a producer
who sells it. When summing their utilities, the price of the traded item cancels out,
so that the resulting utility of the pair is independent of the price system. Unmatched
consumers and producers get their reservation utility. It is then meaningful to take
the social planner’s point of view, and to ask for a matching between consumers and
producers which will maximize aggregate utility, where the utility of matched pairs
is the maximum utility they can get by trading, and the utility of unmatched agents is
their reservation utility. We will show that the solution of this problem coincides with
the equilibrium matching. This implies that every equilibrium is efficient.

An interesting feature of equilibrium pricing is that, even tough all technologically
feasible qualities are priced, not all of them will be traded in equilibrium. For each
non-traded quality, there is a non-empty bid-ask range: all prices which fall within that
range are equilibrium prices, that is, they will not lure customers or suppliers away
from traded qualities. This means that equilibrium prices cannot be uniquely defined on
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Existence, uniqueness and efficiency of equilibrium in hedonic markets 277

non-traded qualities. On the other hand, they are uniquely defined on traded qualities.
There is a corresponding degree of uniqueness for the equilibrium allocation.

The main drawback of our model is the assumption that utilities are quasi-linear. It
is quite a restriction, from the economic point of view, since it means that the marginal
utility of money is constant, but our proof seems to require it in an essential way. On
the other hand, it also enables us to prove some uniqueness results, which are probably
not to be expected in the more general case.

1.2 The literature

This paper inherits from two traditions in economics. On the one hand, it can be seen
as a contribution to the research program on hedonic pricing that was outlined by
Shervin Rosen in his seminal paper (Rosen 1974). The idea of defining a good as a
bundle of attributes (originating perhaps with Houthakker (1952), and developed by
Lancaster (1966); Becker (1965) and Muth (1966)), provides a systematic framework
for the economic analysis of the supply and demand for quality. The main direction of
investigation, however, has been towards econometric issues, such as the construction
of price indices net of changes in quality; see for instance the seminal work of Court
(1941) and the book Griliches (1971). The identification of hedonic models raises
specific questions which have been first discussed by Rosen (1974), and most recently
by Ekeland et al. (2004). Theoretical question, such as the existence and characteriza-
tion of equilibria, have attracted less attention. The papers by Rosen (1974) and later
Mussa and Rosen (1978) study the one-dimensional situation, that is, the case when
agents are fully characterized by the value of a single parameter. The multidimen-
sional situation has been investigated by Rochet and Choné (1998), but it deals with
monopoly pricing. The issue of equilibrium pricing in the multidimensional situation,
had to my knowledge not been addressed up to now (nor, for that matter, has the issue
of oligopoly pricing).

One of Rosen’s main achievement has been to recognize hedonic pricing as nonlin-
ear, against the prevailing tradition in econometric usage. As noted in Rosen (1974),
a buyer can force prices to be linear with respect to quality if certain types of arbi-
trage are allowed. In the present paper, buyers and sellers are restricted to trading one
unit of a single quality, and there is no second-hand market, so this kind of arbitrage
is unavailable, and prices will be inherently nonlinear. This would not be the case
if consumers and producers were allowed to buy and sell several qualities simulta-
neously.

On the other hand, this paper also belongs to the tradition of assignment prob-
lems. This tradition has several strands, one of which originates with Koopmans and
Beckmann (1957), and the other with Shapley and Shubik (1972). We refer to the
papers by Gretzki et al. (1992) and Gretzki et al. (1999), and to Ramachandran and
Ruschendorf (2002) for more recent work. In this literature, producers are not free
to choose the quality they sell: each quality is associated with a single producer,
who can produce that one and not any other one. The Shapley–Shubik model, for
instance, describes a market for houses. There are a certain number of sellers, each
one is endowed with a house, and a certain number of buyers. No seller can sell a
house other than his own, but a buyer can buy any house. This is in contrast with the
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situation in the present paper, where both buyers and sellers are free to choose the
quality they buy or sell.

1.3 Structure of the paper

Section 2 describes the mathematical model and the basic assumptions. As we
mentioned earlier, we do not require that the distribution of types be continuous,
nor that the number of consumers equals the number of producers. Mathematically
speaking, there is a positive measure µ on the set of consumer types X , and a mea-
sure ν on the set of producer types Y , both µ and ν can have atoms, and typically
µ (X) �= ν (Y ). These features, although very appealing from the point of view of
economic modelling, introduce great complications in the mathematical treatment.
In earlier work (Ekeland 2005), the author has given a streamlined proof in the par-
ticular case when µ and ν are non-atomic, µ (X) = ν (Y ) and an additional sorting
assumption on utilities is satisfied (extending to multidimensional types the classical
Spence–Mirrlees single-crossing assumption), so that all agents with the same type
do the same thing. Beside the fact that it does not apply when X or Y are finite, such
a model does not capture one of the essential role of prices, which serve not only to
match consumers and producers which enter the market (there must necessarily be
an equal number of both) but also to keep out of the market enough agents so that
matching becomes possible. The latter function is an essential focus of the present
paper.

In our model, there is a single indivisible good, consumers are restricted to buying
one or zero unit, and producers are restricted to supply one or zero unit. The price is
a nonlinear function p (z) of the quality z. It is an equilibrium price if the market for
every quality clears. This implies that the number of consumers who trade is equal to
the number of suppliers who trade. The remaining, non-trading, agents, are kept out
of the market by the price system, which is either too high (for consumers) or too low
(for producer) to allow them to make more than their reservation utility.

It is important to note that in equilibrium consumers (or producers) which have
the same type may not be doing the same thing. This will typically occur when util-
ity maximisation does not result in a single quality being selected. To be precise,
given an equilibrium price p (z), consumers of type x maximize u (x, z)− p (z) with
respect to z. But there is no reason why there should be a unique optimal quality:
even if we assumed u (x, z) to be strictly concave with respect to z, the price p (z)
typically is nonlinear with respect to z, and no conclusion can be derived about unique-
ness.

If p (z) is an equilibrium price, and if there is a non-trivial subset D (x) ⊂ Z such
that any z ∈ D (x) is a utility maximizer for x , there will be a certain equilibrium prob-
ability Pαx on D (x). This means that, given A ⊂ D (x), the number Pαx [A] ∈ [0, 1]
is the proportion of agents of type x whose demands lie in A. Similarly, there will
be an equilibrium probability Pβy for every producer y, and the resulting demand and
supply for every quality z will balance out. A formal definition is given in Sect. 3. In
other words, in equilibrium, we cannot tell which agent of a given type does what, but
we can tell how many of them do this or that.
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Existence, uniqueness and efficiency of equilibrium in hedonic markets 279

The main results of the paper, together with the definition of equilibrium, are stated
in Sect. 3: equilibria exist, equilibrium prices are not unique, there is a unique equilib-
rium allocation, and it is efficient (Pareto optimal). Proofs are deferred to Appendices
C and D. These proofs combine two mathematical ingredients, the Hahn–Banach sep-
aration theorem on the one hand, and duality techniques which extend the classical
Fenchel duality for convex functions, and which have been developed in the context
of optimal transportation (see Villani (2003) for a recent survey). Everything relies in
studying a certain optimization problem (33), which is novel.

Section 4 gives additional assumptions which ensure that all agents of the same
type do the same thing in equilibrium: µ and ν should be non-atomic, and conditions
(9) and (10) should be satisfied. These conditions extend to multidimensional types
the classical single-crossing assumption of Spence and Mirrlees. The resulting equi-
libria are called pure, in reference to pure and mixed equilibria in game theory. Note
however that, even in this case, one cannot fully determine the behaviour of agents in
equilibrium: if consumers of type x are indifferent between entering the market or not
(either decision giving them their reservation utility), then, even with these additional
assumptions, we cannot say which ones will stay out and which ones will come in.
The equilibrium relations will only determine the proportion of each.

Section 4.4 describes an explicit example. It is strictly one-dimensional (types and
qualities are real numbers), which makes calculations possible, and a complete descrip-
tion of the equilibrium is provided. Unfortunately, the method uses does not extend to
multidimensional types.

Appendix A gives the mathematical results on u-convex and v-concave analysis
which will be in constant use in the text. Appendix B gives general mathematical
notations, and references about Radon measures. Appendices C and D contain proofs.

2 The model

2.1 Standing assumptions

Let X ⊂ Rd1 ,Y ⊂ Rd2 , and Z0 ⊂ Rd3 be compact subsets. We are given non-negative
finite measures µ on X and ν on Y. They are allowed to have point masses.

Typically, we will have µ (X) �= ν (Y ).
Let �1 be a neighbourhood of X × Z0 in Rd1+d3 , and �2 be a neighbourhood of

Y × Z0 in R
d2+d3 . We are given continuous functions u : �1 → R and v : �2 → R.

It is assumed that u is differentiable with respect to x , and that the derivative:

Dx u =
(
∂u

∂x1
, . . . ,

∂u

∂xd1

)

is continuous with respect to (x, z). Similarly it is assumed that v is differentiable with
respect to y, and that the derivative Dyv is continuous with respect to (y, z).

Note that X,Y and/or Z0 are allowed to be finite. If X is finite, the assumption on
u is satisfied. If Y is finite, the assumption on v is satisfied.
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2.2 Bid and ask prices

We are describing the market for a quality good: it is indivisible, and units differ by
their characteristics

(
z1, . . . , zd3

) ∈ Z0. The bundle z = (z1, . . . , zd3

)
will be referred

to as a (multidimensional) quality. So Z0 is the set of all technologically feasible
qualities; it is to be expected that they will not all be traded in equilibrium.

Points in X represent consumer types, points in Y represent producer types. If X is
finite, then µ (x) is the number of consumers of type x . If Y is finite, then ν (y) is the
number of producers of type y. If X is infinite, then µ is the distribution of types in
the consumer population, and the same interpretation holds for (Y, ν).

Each consumer buys zero or one unit, and each supplier sells zero or one unit. There
is no second-hand trade.

For the time being, we define a price system to be a continuous map p : Z0 → R.
This definition will be modified in a moment, as the set Z0 will be extended to a larger
set Z . Typically, pricing is nonlinear with respect to the characteristics. Once the price
system is announced, agents make their decisions according to the following rules:

• Consumers of type x maximize u (x, z)− p (z) over Z0. If the value of that max-
imum is strictly positive, the consumer enters the market and buys one unit of the
maximizing quality z. If there are several maximizing qualities, he is indifferent
between them, and the way he chooses which one to buy is not specified at this
stage. If the value of the maximum is 0, he is indifferent between staying out of
the market, and entering it to buy one unit of the maximizing quality. Again, the
way he chooses is not specified at this stage.

• Producers of type y maximize p (z) − v (y, z) over Z0. If the value of that max-
imum is strictly positive, the producer enters the market and sells one unit of the
maximizing quality z. If there are several maximizing qualities, he is indifferent
between them. If the value of the maximum is 0, he is indifferent between staying
out of the market, and entering it to sell one unit of the maximizing quality.

To model this procedure by a straightforward maximization, we introduce two extra
points ∅d /∈ Z0 and ∅s /∈ Z0, with ∅d �= ∅s , and we extend utilities and prices as
follows:

p (∅d) = u (x,∅d) = 0 ∀x ∈ X (1)

p (∅s) = v (y,∅s) = 0 ∀y ∈ Y (2)

u (x,∅s) = −1, v (y,∅d) = 1 (3)

The set of possible decisions for agents is now

Z = Z0 ∪ {∅d} ∪ {∅s}

so that

max {u (x, z)− p (z) | z ∈ Z} ≥ u (x,∅d)− p (∅d) = 0

max {p (z)− v (y, z) | z ∈ Z} ≥ p (∅s)− v (y,∅s) = 0
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and the procedure we just described amounts to maximizing over Z instead of Z0.
The relations (1) to (3) imply that consumers will never choose∅s (it is always better
to choose∅d ), and producers will never choose∅d (it is always better to choose∅s).
So our model does capture the intended behaviour.

Note that we have normalized reservation utilities to 0. This does not cause any loss
of generality. The behaviour of consumers, for instance, is fully specified by u (x, z)
and ū (x), the latter being the reservation utility, and we get the same behaviour by
replacing u (x, z) by u (x, z)− ū (x) and ū (x) by 0, the only restriction being that we
would require ū to be C1, to preserve the regularity properties of u.

Normalizing reservation utilities to 0, we find that u (x, z) is the bid price for quality
z by consumers of type x , that is, the highest price that they are willing to pay for that
quality. Similarly, v (y, z) is the asking price for quality z by producers of type y , that
is, the lowest price they are willing to accept for supplying that quality. For a given
quality z ∈ Z , it is natural to consider the highest bid price from consumers and the
lowest ask price from producers:

Definition 1 The highest bid price b : Z → R is given by:

b (z) = max
x

u (x, z)

and the lowest ask price a : Z → R is given by:

a (z) = min
y
v (y, z)

Note that b (∅d) = a (∅s) = 0 and that a (∅d) = −b (∅s) = 1.
It follows from their definitions that b is u-convex and a is v-concave. More pre-

cisely, we have b (z) = 0�x and a (z) = 0�y where 0x and 0y denote the maps x → 0
and y → 0 on X and Y . Conversely, we have 0 = maxz {u (x, z)− b (z)} and 0 =
minz {v (y, z)− a (z)}, so that b� (x) = 0 and a� (y) = 0.

Note that if the price system is such that p (z) > b (z) for some quality z, then there
will be no buyers for this quality, and so it cannot be traded at that price. Similarly, if
p (z) < a (z), then there will be no sellers for this quality, and it cannot be traded at
that price. The following is obvious:

Proposition 2 (No-trade equilibrium) If a (z) > b (z) everywhere, then all consumers
and all producers stay out of the market.

2.3 Demand and supply

From now on, a price system will be a continuous map p : Z → R such that p (∅d) =
p (∅s) = 0. We will use the notations and results of Appendix A.

Given a price system p, the map p : Z → R is continuous and the set Z is compact,
so that the functions u (x, z)− p (z) and p (z)− v (y, z) attain their maximum on Z .
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Definition 3 Given a price system p, we define:

D (x) = arg max {u (x, z)− p (z) | z ∈ Z}
S (y) = arg min {v (y, z)− p (z) | z ∈ Z}

Both are compact and non-empty subsets of Z . We shall refer to D (x) as the demand
of type x consumers, and to S (y) as the supply of type y producers.

It follows from the definitions that if a consumer of type x is out of the market,
then we must have∅d ∈ D (x). If there is no other point in D (x), then all consumers
of the same type stay out of the market. If, on the other hand, D (x) contains some
point z ∈ Z0, then all consumers of type x are indifferent between staying out or
buying quality z, and we may expect that some of them actually buy quality z instead
of staying out. This remark will be at the core of our equilibrium analysis. Of course,
the same observation is valid for producers.

The following result clarifies the relation between D (x) and S (y) on the one hand,
and the sub- and supergradients ∂p� (x) and ∂p� (y) on the other. Recall that:

p� (x) = max {u (x, z)− p (z) | z ∈ Z}
p� (y) = min {v (y, z)− p (z) | z ∈ Z}

Proposition 4 We have D (x) ⊂ ∂p� (x) and S (y) ⊂ ∂p� (y). More precisely:

D (x) = {z ∈ ∂p� (x) | p (z) = p�� (z)
}

S (y) = {z ∈ ∂p� (y) | p (z) = p�� (z)
}

Proof The point x ∈ X being fixed, consider the functionsϕ : Z → R andψ : Z → R
defined by ϕ (z) = u (x, z) − p (z) and ψ (z) = u (x, z) − p�� (z). The subgradi-
ent ∂p� (x) is the set of points z where ψ attains its maximum (see Appendix A),
while D (x) is the set of points z where ϕ attains its maximum. But ψ ≥ ϕ and
maxψ = max ϕ. The result follows. �	

Definition 5 Given a price system p (z), consumers of type x are inactive if p� (x) <
0, so that D (x) = {∅d}, and they are active if p� (x) > 0, so that {∅d} /∈ D (x). They
are indifferent if p� (x) = 0, so that D (x) ⊃ {∅d} ∪ {z} for some z ∈ Z0. Similarly,
producers of type y are inactive, active or indifferent according to whether p� (y) is
positive, negative or zero.

2.4 Admissible price systems

We have seen that, if a (z) > b (z) everywhere, there is a no-trade equilibrium. We
are concerned with the more interesting case when a (z) ≤ b (z) for some z.
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Definition 6 Quality z ∈ Z is marketable if a (z) ≤ b (z). The set of marketable
qualities will be denoted by Z1 :

Z1 = {z ∈ Z | a (z) ≤ b (z)}
= {z ∈ Z | ∃ x , ∃ y : v (y, z) ≤ u (x, z)}

Note that staying out is not a marketable option: a (∅d) > b (∅d) and a (∅s) >

b (∅s). As mentioned earlier, this means that consumers will never choose∅s and that
suppliers will never choose ∅d . We have therefore the inclusions:

Z1 ⊂ Z0 � Z

If a quality z is not marketable, one will never be able to find a buyer/seller pair that
trade z. If a quality z is marketable, there is no sense in setting its price to be higher
than b (z) (there would be no buyers), or lower than a (z) (there would be no sellers).
Hence:

Definition 7 A price system p : Z → R will be called admissible if:

∀z ∈ Z1, a (z) ≤ p (z) ≤ b (z)

Let p be an admissible price system, so that a (z) ≤ p (z) ≤ b (z). Recall that
p� (x) is the indirect utility of type x consumers, and that −p� (y) is the indirect
utility of type y producers. Taking conjugates, we get:

∀x ∈ X, 0 ≤ p� (x)

∀y ∈ Y, 0 ≥ p� (y)

which means that all consumers and producers achieve at least their reservation utility.

3 Equilibrium

3.1 Demand distribution and supply distribution

Assume a price system p : Z → R is given. Let D (x) and S (y) be the associated
demand and supply. Recall that their graphs are compact sets.

We refer to Appendix B for notations and definitions concerning Radon measures
and probabilities.

Definition 8 A demand distribution associated with p is a positive measure αX×Z on
X × Z such that:

• αX×Z is carried by the graph of D
• its marginal αX is equal to µ

Similarly, a supply distribution associated with p is a positive measure βY×Z on
Y × Z such that:
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• βY×Z is carried by the graph of S
• its marginal βY is equal to ν

The conditional probabilities Pαx and Pβy then are carried by D (x) and S (y) respec-

tively. Given A ⊂ Z , the numbers Pαx [A] and Pβy [A] are readily interpreted as the
probability that consumers of type x demand some z ∈ A and the probability that
producers of type y supply some z ∈ A.

If S (y) is a singleton, so that the supply of type y producers is uniquely defined,
then Pβy reduces to a Dirac mass:

S (y) = {s (y)} 
⇒ Pβy = δs(y)

and similarly for consumers.

3.2 Definition of equilibrium

Definition 9 An equilibrium is a triplet (p, αX×Z , βY×Z ), where p is an admissible
price system and αX×Z and βY×Z are demand and supply distributions associated with
p, such that:

αZ0 = βZ0

By αZ0 and βZ0 we denote the marginals of αX×Z and βY×Z on Z0. Let us write
down explicitly all the conditions on (p, α, β) implied by this definition:

1. p : Z → R is continuous, and p (z) ∈ [a (z) , b (z)] whenever a (z) ≤ b (z)
2. the marginal αX is equal to µ
3. the conditional probability Pαx is carried by D (x)
4. the marginal βY is equal to ν
5. the conditional probability Pβy is carried by S (y)
6. the marginals αZ and βZ coincide on Z0:

αZ [A] = βZ [A] ∀A ⊂ Z0

The interpretation is as follows. Given p, consumers of type x maximize their
utility, thereby defining their individual demand set D (x). If that set is a singleton,
D (x) = {d (x)}, the probability Pαx must be the Dirac mass carried by d (x), and all
consumers of type x do the same thing: they stay out of the market if d (x) = ∅d , and
they buy z ∈ Z0 if d (x) = z. If D (x) contains several points, then consumers of type
x are indifferent among these alternatives, and they all do different things. For any
Borel subset A ⊂ D (x), the probability Pαx [A] gives us the proportion of consumers
of type x who choose some z ∈ A in equilibrium.

Similar considerations hold for suppliers. Condition 6 just states that markets clear
in equilibrium: for every quality z ∈ Z0, the number (or the aggregate mass) of buyers
equals the number (or the aggregate mass) of suppliers. Note that this number (or this
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Existence, uniqueness and efficiency of equilibrium in hedonic markets 285

mass) might be zero, meaning that this particular quality is not traded. This will hap-
pen, for instance, if a (z) > b (z), so that quality z is not marketable. It follows that,
in equilibrium, demand and supply are carried by Z1, the set of marketable qualities:

αZ [Z1] = αZ [Z0] = βZ [Z0] = βZ [Z1]

The number (or the aggregate mass) of consumers who stay out of the market
is αZ ({∅d}), and the number (or the aggregate mass) of producers who stay out
of the market is βZ ({∅s}). As we mentioned several times before, we must have
αZ ({∅s}) = 0 and βZ ({∅d}) = 0.

3.3 Main results

We begin by an existence result:

Theorem 10 (Existence) Under the standing assumptions, there is an equilibrium.

As noted above, if the set Z1 of marketable qualities is empty, there is an equi-
librium, namely the no-trade equilibrium, and it is unique. From now on we assume
Z1 �= ∅. The Existence Theorem will be proved in Appendix C.

There is no uniqueness of equilibrium prices. For instance, if a quality z ∈ Z0 is non-
marketable, its price p (z) can be specified arbitrarily. More generally, in Appendix C
we will prove the following (see Proposition 37):

Theorem 11 (Non-uniqueness of equilibrium prices) The set of all equilibrium prices
p is convex and non-empty. If p : Z → R is an equilibrium price, then so is every
q : Z → R which is admissible, continuous, and satisfies:

p�� (z) ≤ q (z) ≤ p�� (z) ∀z ∈ Z (4)

For α- and β-almost every quality z which is traded in equilibrium, we have p�� (z) =
p (z) = p�� (z).

Note that q is also required to be admissible, so that in addition to (4) it has to
satisfy the inequality:

a ≤ q ≤ b (5)

The economic interpretation is as follows. If (p, αX×Z , βY×Z ) is an equilibrium,
there will be qualities z which are marketable, but which are not traded in equilib-
rium, because every supplier type y and every consumer type x prefers some other
quality, which means that the price p (z) is too low to interest suppliers, and too high
to interest consumers. Formulas (4) and (5) give the range of prices for which this
situation will persist. As long as the price p (z) stays in the open interval

]
max

{
a (z) , p�� (z)

}
,min

{
b (z) , p�� (z)

}[
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the quality z will not be traded. In other words, the price of non-traded qualities
can be changed, within a certain range, without affecting αX×Z or βY×Z , that is,
the equilibrium distribution of consumers and suppliers. This is the major source of
non-uniqueness in equilibrium prices. On the other hand, if a quality z is traded in
equilibrium, one cannot change the price p (z) without affecting αX×Z and βY×Z ,

that is, without destroying the given equilibrium.
The equilibrium price p is not unique, but the following result shows that the

demand and supply maps D (x) and S (y) almost are:

Theorem 12 (Quasi-uniqueness of equilibrium allocations) Let
(

p1, α
1
X×Z , β

1
Y×Z

)
and

(
p2, α

2
X×Z , β

2
Y×Z

)
be two equilibria. Denote by D1 (x) , D2 (x)and S1 (y) , S2 (y)

the corresponding demand and supply maps. Denote by P1
x , P1

y and P2
x , P2

y the cor-
responding conditional probabilities of demand and supply. Then:

P2
x [D1 (x)] = P1

x [D1 (x)] = 1 for µ-a.e. x

P2
y [S1 (y)] = P1

y [S1 (y)] = 1 for ν-a.e. y

In other words, any z which types x demands in the second equilibrium, when
prices are p2, must belong to the demand set of x when prices are p1 (even though x
might not demand it in the second equilibrium)

Corollary 13 If the demand of consumers of type x is single-valued in the first equi-
librium, D1 (x) = {d1 (x)}, then d1 (x) ∈ D2 (x). If their demand is single-valued in
the second equilibrium as well, then d1 (x) = d2 (x).

Proof We have P2
x [d1 (x)] = 1 = P2

x [D2 (x)]. So d1 (x)must belong to D2 (x), and
the remainder must have zero probability:

P2
x

[
D2 (x)� {d1 (x)}

] = 0

�	

Corollary 14 Let
(

p1, α
1
X×Z , β

1
Y×Z

)
and

(
p2, α

2
X×Z , β

2
Y×Z

)
be two equilibria. If con-

sumers of type x are inactive in the first equilibrium, they cannot be active in the
second.

Proof Since D1 (x) = {∅d}, we must have ∅d ∈ D2 (x). Assume consumers of type
x are active in the second equilibrium. We must have u (x, z) − p (z) > 0 for all
z ∈ D2 (x), including z = ∅d . Since u (x,∅d) = p (∅d) = 0, this is a contradiction.

�	

Finally, we will show that we can find equilibrium demand and supply as solutions
of the planner’s problem. With every pair of demand and supply distributions, α′

X×Z
and β ′

Y×Z , we associate the number:
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J
(
α′

X×Z , β
′
Y×Z

) =
∫

X×Z

u (x, z) dα′
X×Z −

∫
Y×Z

v (y, z) dβ ′
Y×Z

=
∫
X

Pα
′

x [u (x, z)] dµ (x)−
∫
Y

Pβ
′

y [v (y, z)] dν (y)

Note that all expectations are taken over Z = Z0 ∪ {∅d} ∪ {∅s}. For a given x ,
the first one Eα

′
x [u (x, z)] represents the average utility of consumers of type x . If

they are all out of the market, this average utility is zero, if some of them are out
and others in, the contribution of those who are out is zero. Similarly, the second one

Eβ
′

y [v (y, z)] represents the average cost of producers of type y. The sum J therefore
is the aggregate utility of society resulting from α′

X×Z and β ′
Y×Z consumers and

suppliers being equally weighted.
In the following, we restrict attention to demand and supply distributions α′

X×Z
and β ′

Y×Z such that the marginals α′
Z0

and β ′
Z0

are equal. These are the only ones
that are relevant to the planner’s problem, which consists of matching producers and
consumers so as to maximize social surplus. The solution to that problem turns out to
be precisely the equilibrium allocation.

Theorem 15 (Pareto optimality of equilibrium allocations) Let (p, αX×Z , βY×Z ) be
an equilibrium. Take any pair of demand and supply distributions α′

X×Z and β ′
Y×Z

such that α′
Z0

= β ′
Z0

. Then

J
(
α′

X×Z , β
′
Y×Z

) ≤ J (αX×Z , βY×Z ) =
∫
X

p� (x) dµ−
∫
Y

p� (y) dν (6)

The proof of the two last theorems will be given in Appendix D.

3.4 Example 1: the case of a single quality

Let Z0 = {z}. In other words, there is a single technologically feasible quality. While
this example does not have great economic interest, it is quite illuminating to see what
the various assumptions mean and how the preceding results apply to this case.

We introduce Z = {z} ∪ {∅d} ∪ {∅s}. For the sake of simplicity, consider the case
when X and Y are finite. Set u (x, z) = u (x) and v (y, z) = v (y) and p (z) = p.
Indirect utilities are given by:

max {u (x)− p, 0} = p�x for x

max {p − v (y) , 0} = −p�y for y

The highest bid price for z is b = maxx u (x), and the lowest ask price is
a = miny v (y).

If b < a, then the quality z is not marketable, and the no-trade equilibrium prevails.
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Suppose b ≥ a. A price p is admissible if a ≤ p ≤ b. Set:

I1 (p) = {x ∈ X | u (x) < p }
I2 (p) = {x ∈ X | u (x) = p }
I3 (p) = {x ∈ X | u (x) > p }

and define J1 (p) , J2 (p) , J3 (p) in a similar way for producers. An equilibrium is a
set (p, α, β) such that

• α = (αx ) , x ∈ X , where each αx is a probability on {z} ∪ {∅d}
• β = (βy

)
, y ∈ Y, where each βy is a probability on {z} ∪ {∅s}

• ∑
x αx (z) =∑y βy (z)

Let us translate this. If x ∈ I1 (p), then consumers of type x stay out of the
market, so that αx (z) = 0. If x ∈ I3 (p), then consumers of type x buy z, so that
αx (z) = 1. If i ∈ I2 (p) , then αx (z) is the proportion of consumers of type x who
buy z in equilibrium. Denote by # [A] the number of elements in a finite set A. The
equilibrium condition implies that:

# [I3 (p)] ≤ # [J2 (p) ∪ J3 (p)] (7)

# [J3 (p)] ≤ # [I2 (p) ∪ I3 (p)] (8)

Conversely, if these two inequalities are satisfied, we will always be able to find
numbers αx and βy such that 0 ≤ αx ≤ 1, αx = 0 if x ∈ I1 (p) and αx = 1 if
x ∈ I3 (p), with corresponding constraints for the βy . So, in that particular case, the
equilibrium conditions boil down to the inequalities (7) and (8).

Note that there is no uniqueness of the equilibrium price p. If for instance ux̄ > vȳ ,
with ux < vȳ for all x �= x̄ and vy > ux̄ for all y �= ȳ, then any price p ∈ [ux̄ , vȳ

]
is

an equilibrium price. There is no uniqueness of the equilibrium allocation either. If for
instance ux = vy = p for all x, y, then the unique equilibrium price is p, so that all
consumers and producers are indifferent in equilibrium. For any choice of coefficients
αx (z) and βy (z) such that:

0 ≤ αx (z) ≤ 1, 0 ≤ βy (z) ≤ 1,
∑

x

αx (z) =
∑

y

βy (z)

(p, α, β) is an equilibrium allocation.

3.5 Example 2: more on uniqueness

We give an example to clarify the uniqueness statement in Theorem 12. There are
three goods, z1, z2, z3, two consumers x1, x2, three producers y1, y2,y3. The utility
functions are:

u (x1, z1) = 2, u (x1, z2) = 1, u (x1, z3) = 0.1

u (x2, z1) = 3, u (x2, z2) = 2, u (x2, z3) = 0.1
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and the cost functions are:

v (y1, z1) = 0, v (y1, z2) = 5, v (y1, z3) = 5

v (y2, z1) = 5, v (y2, z2) = 0, v (y2, z3) = 5

v (y3, z1) = 5, v (y1, z2) = 5, v (y1, z3) = 0

It is easy to check that there are two equilibria:

1 y1 produces z1, y2 produces z2, y3 produces nothing; x1 chooses z1, x2 chooses
z2; prices are p (z1) = 1, p (z2) = 0, p (z3) = 0

2 y1 produces z1, y2 produces z2, y3 produces nothing; x1 chooses z2, x2 chooses
z1; prices are p (z1) = 1.9, p (z2) = 0.9, p (z3) = 0

The demand set of x1 is {z1, z2} := D1 (x1) in the first equilibrium and
{z1, z2, z3} := D2 (x1) in the second. The demand distribution, on the other hand,
is P1

x1
(z) = δz1 (Dirac mass at z1) in the first equilibrium (simply expressing the

fact that x1 chooses z1 and nothing else in her demand set) and P2
x1
(z) = δz2 in the

second. Theorem 12 then states that δz2 [D1 (x1)] = δz1 [D1 (x1)] = 1, which simply
expresses the fact that both z1 and z2 belong to D1 (x1).

Note for instance that the social utility is the same for both equilibria, namely 4:

1. In the first one:

u (x1, z1)− v (y1, z1)+ u (x2, z2)− v (y2, z2) = 2 − 0 + 2 − 0 = 4

2. In the second one:

u (x1, z2)− v (y2, z2)+ u (x2, z1)− v (y1, z1) = 1 − 0 + 3 − 0 = 4

This is a general fact: the social utility is the same at all equilibria. Indeed, equi-
librium prices are found by maximizing the right-hand side of (6): it may be achieved
at different p1 and p2, but the value of the maximum is the same.

4 Pure equilibrium

4.1 Definition

In equilibrium, consumers of type x demand quality z with probability Pαx (z) , and

suppliers of type y supply quality z with probability Pβy (z). The equilibrium is pure
if all agents of the same type who are in the market at the same time are doing the
same thing (buying or selling the same quality), so that these probabilities are Dirac
masses. Formally:

Definition 16 An equilibrium (p, αX×Z , βY×Z ) is pure if:

• for µ-almost every x , the set D (x) ∩ Z0 contains at most one point
• for ν-almost every y, the set S (y) ∩ Z0 contains at most one point
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Denote by X p the set of active or indifferent consumers. If (p, αX×Z , βY×Z ) is a
pure equilibrium, there is a Borel map d : X p → Z0 with d (x) ∈ D (x) such that,
for µ-almost every x , one and only one of the following holds:

• either consumers of type x are inactive, so that D (x) = ∅d

• or consumers of type x are indifferent; then D (x) = ∅d ∪ {d (x)}
• or consumers of type x are active; then D (x) = {d (x)}

We can then rewrite the definition of equilibrium directly in terms of s and d.

Definition 17 A pure equilibrium is a triplet (p, d, s) where:

1. d is a Borel map from the set X p = {x | p� (x) ≥ 0
}

into Z0

2. s is a Borel map from the set Yp = {y | p� (y) ≤ 0
}

into Z0

3. For µ- almost every x with p� (x) > 0, the function z → u (x, z)− p (z) attains
its maximum at a single point z = d (x) ∈ Z0

4. For ν-almost every y with p� (y) < 0, the function z → p (z) − v (y, z) attains
its maximum at a single point z = s (y) ∈ Z0

5. For µ- almost every x with p� (x) = 0, the function z → u (x, z)− p (z) attains
its maximum at two points, ∅d and z = d (x) ∈ Z0

6. For ν-almost every y with p� (y) = 0, the function z → p (z) − v (y, z) attains
its maximum at two points, ∅s and z = s (y) ∈ Z0

7. The demand and supply distributions α and β associated with d and s have the
same marginals on Z0:

∀A ⊂ Z0, µ [x | d (x) ∈ A] = ν [y | s (y) ∈ A]

For the sake of simplicity, we shall now assume that a (z) < b (z) for every z ∈ Z .
As a consequence, Z1 = Z .

4.2 Uniqueness

Theorem 18 Let (p1, d1, s1) and (p2, d2, s2) be two pure equilibria. Every consumer
x who is active in one equilibrium is active or indifferent in the other, and we have
d1 (x) = d2 (x). Similarly, every producer y who is active in one equilibrium is active
or indifferent in the other, and s1 (y) = s2 (y) .

Proof It is an immediate consequence of the quasi-uniqueness theorem for
equilibrium allocations. �	

4.3 Existence

Theorem 19 Assume that the standard assumptions hold. Assume moreover that µ
and ν are absolutely continuous with respect to the Lebesgue measure, and that the
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partial derivatives Dx u and Dyv with respect to z are injective:

∀x ∈ X, Dx u (x, z1) = Dx u (x, z2) 
⇒ z1 = z2 (9)

∀y ∈ Y, Dyv (y, z1) = Dyv (y, z2) 
⇒ z1 = z2 (10)

Then any equilibrium is pure.

Corollary 20 In the above situation, there is a pure equilibrium.

Proof We know that there is an equilibrium, by the Existence Theorem, and we know
that it has to be pure. �	

If X and Z are one-dimensional intervals, condition (9) is satisfied if

∂2u

∂x∂z
�= 0

so that condition (9), or (10) for that matter, is a multi-dimensional generalization of
the classical Spence–Mirrlees condition in the economics of assymmetric information
(Carlier 2003). It is satisfied, for instance, by u (x, z) = ‖x − z‖α , provided α �= 0
and α �= 1; if α < 1, one should add the requirement that X ∩ Z �= ∅, so that u is
differentiable on X × Z .

4.4 Example

4.4.1 A case when Za = ∅ = Zb

Set X = [1, 2] and Y = [2, 3]. Both are endowed with the Lebesgue measure. Set
Z0 = [0, 1] and

u (x, z) = −1

2
z2 + xz, ū (x) = 0

v (y, z) = 1

2
yz2, v̄ (y) = 0

so that suppliers are ordered on the line according to efficiency, the most efficient ones
(those with the lowest cost, near y = 2) being on the left, and consumers are ordered
according to taste, the most avid ones (those with the highest utility, near x = 2) being
on the right (note the order reversal).

We compute the lowest ask a (z) and the highest bid b (z):

b (z) = ū� (z) = max
1≤x≤2

{
−1

2
z2 + xz − 0

}
= −1

2
z2 + 2z

a (z) = v̄� (z) = min
2≤y≤3

{
1

2
yz2 − 0

}
= z2
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Note that b (z) is the bid price for consumer x = 2 (the most avid one), and a (z) is
the ask price for supplier y = 2 (the least efficient one). We have a ≤ b as expected.

Note that the generalized Spence–Mirrlees assumptions (9) and (10) are satisfied:

Dx u (x, z) = z

Dyv (y, z) = 1

2
z2

and both are injective with respect to z. So Theorem 19 applies, and there is a pure
equilibrium, with some degree of uniqueness.We shall now compute it.

Assume for the moment that every agent is active. This is possible here sinceµ (X)
happens to be equal to ν (Y ) (in other words, there are as many consumers as suppli-
ers). This means that Za = ∅ = Zb, and Z1 = Z0, so that we can try the reduction
method we described in the preceding section.

We start with finding the optimal matching between X and Y . Given x and y, the
quality z (x, y) which maximizes the utility of the pair (x, y) is obtained by maximiz-
ing the expression −z2/2 + xz − yz2/2 with respect to z, which yields:

z (x, y) = x

1 + y

w (x, y) = 1

2

x2

1 + y

wherew (x, y) is the resulting utility for the pair. We then seek the measure-preserving
map σ : [1, 2] → [2, 3] which maximizes the integral:

2∫
1

w (x, σ (x)) dx =
2∫

1

x2

1 + σ (x)
dx

We have:

∂2w

∂x∂y
= − x

(1 + y)2
< 0

sow satisfies the Spence–Mirrlees assumption. By the general theory of optimal trans-
portation (Villani 2003), the map σ is uniquely defined. We find that:

σ (x) = y = 4 − x

either by deciding that σ must be continous and comparing directly the two candidates
y = 4 − x (decreasing) and y = x + 1 (increasing), or, more rigorously, by checking
directly that σ is the subgradient of a w-convex function, which, by the general the-
ory again, implies that it is the minimizer. Hence the supply and demand maps s (y)
and d (x):
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d (x) = x

5 − x
(11)

s (y) = 4 − y

1 + y
(12)

and the set of traded qualities is Zt = [ 1
4 ,

2
3

]
, which is a strict subset of Z0: again,

not all technologically feasible qualiities are traded in equilibrium. On Zt , the price
is uniquely defined, and is found by writing the first-order condition for optimality,
p′ (z) = ∂u

∂z (x, z) where z = d (x). Inverting this map, we get a differential equation

for p, namely p′ (z) = z + 5z (1 + z)−1, yielding:

p (z) = −1

2
z2 + 5z − 5 ln (z + 1)+ c for

1

4
≤ z ≤ 2

3
(13)

We can now try to validate our assumption that every agent is active. Compute the
indirect utilities:

p� (x) = u (x, d (x))− p (d (x)) = x + 5 (ln 5 − ln (5 − x))− c

−p� (y) = p (s (y))− v (y, s (y)) = (4 − y) (6 + y)

2 (1 + y)
− 5 (ln 5 − ln (1 + y))+ c

Every agent is active if and only if p� (x) > ū (x) for every x and p� (y) < −v̄ (y)
for every y. This leads us to explicit bounds for c:

− 0.00928 = −9

8
+ 5 ln

5

4
≤ c ≤ 1 + 5 ln

5

4
= 2.1157 (14)

For any c in that interval, the function p (z) given by formula (13) is the restriction
to Zt = [ 1

4 ,
2
3

]
of an equilibrium price, the equilibrium supply and demand being

given by (12) and (11).
We now have to extend pt to Z0 = [0, 1] in such a way that the qualities z ∈[

0, 1
4

] ∪ [ 2
3 , 1

]
are not traded. For z = 1

4 , the least efficient supplier y = 3 provides
the least avid consumer x = 1, and the price of qualities z ≤ 1

4 must be such that each
of them prefers staying at 1

4 . This yields the inequalities:

p (z)− v (3, z) ≤ p

(
1

4

)
− v

(
3,

1

4

)

u (1, z)− p (z) ≤ u

(
1,

1

4

)
− p

(
1

4

)

and hence:

− 1

2
z2 + z + 1 − 5 ln

5

4
+ c ≤ p (z) ≤ 3

2
z2 + 9

8
− 5 ln

5

4
+ c for 0 ≤ z ≤ 1

4
(15)
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Similarly, for z ≥ 2
3 , we get the inequalities:

− 1

2
z2 + 2z + 2 − 5 ln

5

3
+ c ≤ p (z) ≤ z2 + 8

3
− 5 ln

5

3
+ c for

2

3
≤ z ≤ 1

(16)

In summary, given any c satisfying (14), any function p (z) satisfying (13), (15),
and (16) is an equilibrium price. By Theorem 18, s and d are uniquely determined, in
the sense that any pure equilibrium such that all agents are active will have the same
supply and demand. This implies that the pure equilibria we have just found are the
only ones for which Z0 = Z̄ .

4.4.2 A case when Za is non-empty

Let us now increase the number of consumers: say Y = [2, 3] is unchanged, while
X = [h, 2] with 0 < h < 1. Both intervals are endowed with the Lebesgue measure.
In equilibrium, if all suppliers are active, then consumers in the range [h, 1] must be
priced out of the market. This is done by fixing c in formula (14) to its highest possible
value, namely 1 + 5 ln 5

4 :

p (z) = −1

2
z2 + 5z − 5 ln

4 (z + 1)

5
+ 1 for

1

4
≤ z ≤ 2

3
(17)

Then consumer x = 1 makes precisely his/her reservation utility, which means that
he/she is indifferent.

Recall that d (1) = 1
4 = s (3). For 0 < z < 1

4 , consider the bid price for quality z
by consumer x = 1:

b (1, z) = −1

2
z2 + z

Consumers of type x < 1 will have a lower bid price. Choose a continuous function
p such that:

− 1

2
z2 + z < p (z) < p

(
1

4

)
− v

(
3,

1

4

)
+ v (3, z) = 3

2
z2 + 17

8
for 0 ≤ z ≤ 1

4
(18)

The left inequality ensures that consumers or type x < 1 are not bidders for quality z,
so they just buy quality 0 at price 0, that is, they revert to their reservation utility. The
right inequality ensures that the least efficient producer will not become interested in
producing quality z, so that the more efficient ones will not either.

Any function p (z) satisfying (17), (18) and (16) (with c = 1 + 5 ln 5
4 ) is an

equilibrium price. Note that for all consumers x ∈ [h, 1[ demand is uniquely defined:
d (x) = 0.
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5 Open problems

In this paper, we have assumed that the good is indivisible, and that consumers and
producers are limited to buying and selling one unit. That assumption can be relaxed.
Indeed, our results carry through if we assume that suppliers, for instance, are restricted
to producing one quality, but have the choice of the quantity they produce, their profit
then being np−v (y, z, n), where z is the quality produced, n the quantity, p the price,
and y the type of the supplier.

As we mentioned in the beginning, the main limitation of our model is the
assumption that utilities are separable. A truly general model would introduce a quan-
tity good beside the quality good, and consumers of type x would solve the problem:

max {u (x, z, t) | p (z)+ π t ≤ w}

where t is the quantity of the second good, and π its (linear) price. Our methods do
not readily apply to this situation, and we plan to investigate it further.

Finally, we wish to stress that although we have what appears as a complete equi-
librium theory for multidimensional hedonic models, the numerical aspects are far
from being as well understood. The method we used in the example is strictly one-
dimensional, and there is no easy way to extend it to the multidimensional case. The
obvious way to proceed is to follow the theoretical argument, and try to minimize the
integral I (p) in (33), but we have made no progress in that direction. It certainly is
a good topic for future research. So will all the econometric aspects (characterization
and identification). This investigation has been started in Ekeland et al. (2004), but is
far from being complete.

Appendix A: Fundamentals of u-convex analysis

In this section, we basically follow Carlier (2003).

A.1 u-convex functions

We will be dealing with function taking values in R∪ {+∞}.
A function f : X → R∪ {+∞} will be called u-convex iff there exists a non-empty

subset A ⊂ Z × R such that:

∀x ∈ X, f (x) = sup
(z,α)∈A

{u (x, z)+ a} (19)

A function p : Z → R∪ {+∞} will be called u-convex iff there exists a non-empty
subset B ⊂ X × R such that:

p (z) = sup
(x,b)∈B

{u (x, z)+ b} (20)
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A.2 Subconjugates

Let f : X → R∪ {+∞}, not identically {+∞}, be given. We define its subconjugate
f � : Z → R∪ {+∞} by:

f � (z) = sup
x

{u (x, z)− f (x)} (21)

It follows from the definitions that f � is a u-convex function on Z (it might be
identically {+∞}).

Let p : Z → R∪ {+∞}, not identically {+∞}, be given. We define its subconju-
gate p� : X → R∪ {+∞} by:

p� (x) = sup
z

{u (x, z)− p (z)} (22)

It follows from the definitions that p� is a u-convex function on X (it might be
identically {+∞}).
Example 21 Set f (x) = u (x, z̄)+ a. Then

f � (z̄) = sup
x

{u (x, z̄)− u (x, z̄)− a} = −a

Conjugation reverses ordering: if f1 ≤ f2, then f �1 ≥ f �2 , and if p1 ≤ p2, then p�1 ≥
p�2. As a consequence, if f is u-convex, not identically {+∞}, then f � is u-convex,
not identically {+∞}. Indeed, since f is u-convex, we have f (x) ≥ u (x, z)+ a for
some (z, a), and then f � (z) ≤ −a < ∞.

Proposition 22 (the Fenchel inequality) For any functions f : X → R∪ {+∞} and
p : Z → R∪ {+∞}, not identically {+∞}, we have:

∀ (x, z) , f (x)+ f � (z) ≥ u (x, z)

∀ (x, z) , p (z)+ p� (x) ≥ u (x, z)

A.3 Subgradients

Let f : X → R∪ {+∞} be given, not identically {+∞}. Take some point x ∈ X . We
shall say that a point z ∈ Z is a subgradient of f at x if the points x and z achieve
equality in the Fenchel inequality:

f (x)+ f � (z) = u (x, z) (23)

The set of subgradients of f at x will be called the subdifferential of f at x and
denoted by ∂ f (x). Specifically:
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Definition 23 ∂ f (x) = arg maxz
{
u (x, z)− f � (z)

}
.

Similarly, let p : Z → R∪ {+∞} be given, not identically {+∞}. Take some point
z ∈ Z . We shall say that a point x ∈ X is a subgradient of p at z if:

p� (x)+ p (z) = u (x, z) (24)

The set of subgradients of p at z will be called the subdifferential of p at z and denoted
by ∂p (z).

Definition 24 ∂p (z) = arg maxx
{
u (x, z)− p� (x)

}
.

Proposition 25 The following are equivalent:

1. z ∈ ∂ f (x)
2. ∀x ′, f

(
x ′) ≥ f (x)+ u

(
x ′, z

)− u (x, z)

If equality holds for some x ′, then z ∈ ∂ f
(
x ′) as well.

Proof We begin with proving that the first condition implies the second one. Assume
z ∈ ∂ f (x). Then, by (23) and the Fenchel inequality, we have:

f
(
x ′) ≥ u

(
x ′, z

)− f � (z) = u
(
x ′, z

)− [u (x, z)− f (x)]

We then prove that the second condition implies the first one. Using the inequality,
we have:

f � (z) = sup
x ′

{
u
(
x ′, z

)− f
(
x ′)}

≤ sup
x ′

{
u
(
x ′, z

)− f (x)− u
(
x ′, z

)+ u (x, z)
}

= u (x, z)− f (x)

so f (x) + f � (z) ≤ u (x, z). We have the converse by the Fenchel inequality, so
equality holds.

Finally, if equality holds for some x ′ in condition (2), then f
(
x ′) − u

(
x ′, z

) =
f (x)− u (x, z), so that:

∀x ′′, f
(
x ′′) ≥ f (x)− u (x, z)+ u

(
x ′′, z

)
= f

(
x ′)− u

(
x ′, z

)+ u
(
x ′′, z

)

which implies that z ∈ ∂ f
(
x ′). �	

There is a similar result for functions p : Z → R∪ {+∞}, not identically {+∞}:
we have x ∈ ∂p (z) if and only if

∀ (x ′, Z̄
)
, p

(
Z̄
) ≥ p (z)+ u

(
x, Z̄

)− u (x, z) (25)
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A.4 Biconjugates

It follows from the Fenchel inequality that, if p : Z → R∪ {+∞} is not identically
{+∞}:

p�� (z) = sup
x

{
u (x, z)− p� (x)

} ≤ p (z) (26)

Example 26 Set p (z) = u (x̄, z)+ b. Then

p�� (z) = sup
x

{
u (x, z)− p� (x)

}

≥ u (x̄, z)− p� (x̄)

= u (x̄, z)+ b = p (z)

This example generalizes to all u-convex functions. Denote by Cu (Z) the set of
all u-convex functions on Z .

Proposition 27 For every function p : Z → R∪ {+∞}, not identically {+∞}, we
have

p�� (z) = sup
ϕ

{ϕ (z) | ϕ ≤ p, ϕ ∈ Cu (Z) }

Proof Denote by p̄ (z) the right-hand side of the above formula. We want to show that
p�� (z) = p̄ (z).

Since p�� ≤ p and p�� is u-convex, we must have p�� ≤ p̄.
On the other hand, p̄ is u-convex because it is a supremum of u-convex functions.

So there must be some B ⊂ X × R such that:

p̄ (z) = sup
(x,b)∈B

{u (x, z)+ b}

Let (x, b) ∈ B. Since p̄ ≤ p, we have u (x, z) + b ≤ p̄ (z) ≤ p (z). Taking
biconjugates, as in the preceding example, we get u (x, z) + b ≤ p�� (z). Taking
the supremums over (x, b) ∈ B, we get the desired result. �	
Corollary 28 Let p : Z → R∪ {+∞} be a u-convex function, not identically {+∞}.
Then p = p��, and the following are equivalent:

1. x ∈ ∂p (z)
2. p (z)+ p� (x) = u (x, z)
3. z ∈ ∂p� (x)

Proof We have p�� ≤ p always by relation (26). Since p is u-convex, we have:

p (z) = sup
(x,b)∈B

{u (x, z)+ b}
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for some B ⊂ X × R. By proposition 27, we have:

sup
(x,b)∈B

{u (x, z)+ b} ≤ p�� (z)

and so we must have p = p��. Taking this relation into account, as well as the defini-
tion of the subgradient, we see that condition (2) is equivalent both to (1) and to (3)

�	
Definition 29 We shall say that a function p : Z → R∪ {+∞} is u-adapted if it is
not identically {+∞} and there is some (x, b) ∈ X × R such that:

∀z ∈ Z , p (z) ≥ u (x, z)+ b

It follows from the above that if p is u-adapted, then so are p�, p�� and all fur-
ther subconjugates. Note that a u-convex function which is not identically {+∞} is
u-adapted.

Corollary 30 Let p : Z → R∪ {+∞} be u-adapted. Then :

p��� = p�

Proof If p is u-adapted, then p� is u-convex and not identically {+∞}. The result
then follows from Corollary 28. �	

A.5 Smoothness

Since u is continuous and X × Z is compact, the family

{u (x, ·) | x ∈ X }

is uniformly equicontinuous on Z . It follows from Definition 19 that all u-convex
functions on Z are continuous (in particular, they are finite everywhere).

Denote by k the upper bound of ‖Dx u (x, z)‖ for (x, z) ∈ X × Z . Since Dx u is
continuous and X × Z is compact, we have k < ∞, and the functions x → u (x, z)
are all k-Lipschitzian on X . Again, it follows from the Definition 19 that all u-con-
vex functions on X are k-Lipschitz (in particular, they are finite everywhere). By
Rademacher’ theorem, they are differentiable almost everywhere with respect to the
Lebesgue measure.

Let f : X → R be convex. Since f = f ��, we have:

f (x) = sup
z

{
u (x, z)− f � (z)

}

Since f � is u-convex, it is continuous, and the supremum is achieved on the right-
hand side, at some point z ∈ ∂ f (x). This means that all u-convex functions on X are
subdifferentiable everywhere on X .

123



300 I. Ekeland

The following result will also be useful:

Proposition 31 Let p : Z → R be u-adapted, and let x ∈ X be given. Then there is
some point z ∈ ∂p� (x) such that p (z) = p�� (z).

Proof Assume otherwise, so that for every z ∈ ∂p� (x) we have p�� (z) < p (z). For
every z ∈ ∂p� (x), we have x ∈ ∂p�� (z), so that, by Proposition 25, we have

p��
(
z′) ≥ u

(
x, z′)− u (x, z)+ p�� (z)

for all z′ ∈ Z , the inequality being strict if z′ /∈ ∂p� (x) . Set ϕz
(
z′) = u

(
x, z′) −

u (x, z)+ p�� (z). We have:

z′ /∈ ∂p� (x) 
⇒ ϕz
(
z′) < p��

(
z′) ≤ p

(
z′)

z′ ∈ ∂p� (x) 
⇒ ϕz
(
z′) ≤ p��

(
z′) < p

(
z′)

so that ϕz
(
z′) < p

(
z′) for all

(
z, z′). Since Z is compact, there is some ε > 0 such

that ϕz
(
z′)+ ε ≤ p

(
z′) for all

(
z, z′). Taking the subconjugate with respect to z′, we

get:

p� (x) ≤ sup
z′

{
u
(
x, z′)− ϕz

(
z′)}− ε

= sup
z′

{
u
(
x, z′)− u

(
x, z′)+ u (x, z)− p�� (z)

}− ε

= u (x, z)− p�� (z)− ε = p� (x)− ε

which is a contradiction. The result follows �	
Corollary 32 If ∂p� (x) = {z} is a singleton, then:

p (z) = p�� (z) (27)

and:

p� (x) = u (x, z)− p (z) (28)

Proof Just apply the preceding proposition, bearing in mind that ∂p� (x) contains
only one point, namely ∇u p� (x). This yields Eq. (27). Equation (28) follows from
the definition of the subgradient and Eq. (27). �	

A.6 v-concave functions

Let us now consider the duality between Y and Z . Given v : Y × Z → R, we say that a
map g : Y → R∪ {−∞} is v-concave iff there exists a non-empty subset A ⊂ Z ×R
such that:

∀y ∈ Y, g (y) = inf
(z,a)∈A

{v (y, z)+ a} (29)
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and a function p : Z → R∪ {−∞} will be called v-concave iff there exists a non-
empty subset B ⊂ X × R such that:

p (z) = inf
(x,b)∈B

{v (y, z)+ b} (30)

All the results on u-convex functions carry over to v-concave functions, with
obvious modifications. The superconjugate of a function g : Y → R∪ {−∞}, not
identically {−∞}, is defined by:

g� (z) = inf
y

{v (y, z)− g (y)} (31)

and the superconjugate of a function p : Z → R∪ {−∞}, not identically {−∞}, is
given by:

p� (y) = inf
z

{v (y, z)− p (z)} (32)

The superdifferential ∂p� is defined by:

∂p� (y) = arg min
z

{v (y, z)− p (z)}

and we have the Fenchel inequality:

p (z)+ p� (y) ≤ v (y, z) ∀ (y, z)

with equality iff z ∈ ∂p� (y). Note finally that p�� ≥ p, with equality if p is v-concave.

Appendix B: Some notations and definitions

B.1 Radon measures and probabilities

With a locally compact set � (such as an open subset of the compact set Z ) we will
associate the following sets of functions and measures on �:

• K (�), the space of continous functions on � with compact support
• Cb (�) , the space of bounded continous functions on �
• C+ (�), the cone of non-negative functions
• M (�), the space of measures on �
• M+ (�) ⊂ M (�), the cone of positive measures
• Mb (�) ⊂ M (�), the cone of finite measures
• Mb+ (�) = Mb (�) ∩ M+ (�), the cone of positive finite measures
• P (�) ⊂ Mb+ (�) the set of probabilities on �

The space K (�) will be endowed with the topology of uniform convergence on
compact subsets of �, and the space Cb (�) with the uniform norm. Then Cb (�) is
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a Banach space, but K (�) is not, unless � is compact, in which case all continuous
functions on� are bounded, and we have C (�) = K (�) = Cb (�). When� is finite
and has d elements, all these spaces coincide with Rd .

We take measures in the sense of Radon, that is, M (�) is defined to be the dual of
K (�) and Mb (�) is defined to be the dual of Cb (�). So Mb (�) is a Banach space,
but M (�) is not, unless � is compact, in which case M (�) = Mb (�), that is, all
Radon measures on� are finite. For γ ∈ M (�) and ϕ ∈ K (�),we write indifferently
〈γ, ϕ〉 or

∫
Z ϕdγ .

A probability γ ∈ P (Z) is defined as a non-negative bounded measure such that
〈γ, 1〉 = 1. The set P (Z) is convex, and is compact in the weak* topology: γn → γ

if 〈γn, ϕ〉 → 〈γ, ϕ〉 for every ϕ ∈ Cb (�).
We say that a measure γ is carried by K if 〈γ, ϕ〉 = 0 for all ϕ ∈ K (�) which

vanish on K . If γ is carried by a subset K , it is also carried by its closure. The support
of a measure γ , denoted by Supp (γ ), is the smallest closed set K such that γ is carried
by K .

B.2 Conditional probabilities and marginals

Given a positive measure αX×Z ∈ M+ (X × Z) (which has to be finite, since X × Z
is compact) we define its marginals αX ∈ M+ (X) and αZ ∈ M+ (Z)as follows:

∫
X

ϕ (x) dαX =
∫

X×Z

ϕ (x) dαX×Z ∀ϕ ∈ K (X)
∫
Z

ψ (z) dαZ =
∫

X×Z

ψ (z) dαX×Z ∀ψ ∈ K (Z)

and we denote the probability of the second coordinate being z conditional on the
first coordinate being x by Pαx (z). The mathematical expectation with respect to this
probability will be denoted by Eαx :

Eαx [ψ] =
∫
Z

ψ (z) d Pαx (z)

This conditional probability is related to the first marginal by the formula:

∫
X×Z

f (x, z) dαX×Y =
∫
X

Eαx [ f (x, z)] dαX ∀ f ∈ K (X × Z)

Similar considerations hold for positive measures βY×Z ∈ M+ (Y × Z), We have:

∫
Y

ϕ (y) dβY =
∫

Y×Z

ϕ (y) dβY×Z ∀ϕ ∈ K (Y )
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∫
Z

ψ (z) dβZ =
∫

X×Z

ψ (z) dβY×Z ∀ψ ∈ K (Z)
∫

Y×Z

g (y, z) dβY×Z =
∫
Y

Eβy [g (y, z)] dβY ∀g ∈ K (Y × Z)

Appendix C: Proof of the existence theorem

C.1 The dual problem: existence

Recall that Z = {∅d}∪ Z0 ∪{∅s} ,with Z1 = {z | a (z) ≤ b (z)} a compact non-empty
subset of Z0. Denote by A the set of all admissible price systems on Z , that is, the set
of all continuous maps p : Z → R which satisfy:

∀z ∈ Z1, a (z) ≤ p (z) ≤ b (z)

A is a non-empty, convex and closed subset of K (Z) , the space of all continuous
functions on Z . Now define a map I : K (Z) → R by:

I (p) =
∫
X

p� (x) dµ−
∫
Y

p� (y) dν (33)

Proposition 33 The map I is convex.

Proof Take p1 and p2 in A. Take s and t in [0, 1] with s + t = 1. Then:

(sp1 + tp2)
� (x) = sup

z
{u (x, z)− sp1 (z)− tp2 (z)}

= sup
z

{s [u (x, z)− p1 (z)] + t [u (x, z)− p2 (z)]}
≤ s sup

z
{u (x, z)− p1 (z)} + t sup

z
{u (x, z)− p2 (z)}

= sp�1 (x)+ tp�2 (x)

Similarly, we find that:

(sp1 + tp2)
� (y) ≥ sp�1 (x)+ tp�2 (x)

Integrating, we find that I is convex, as announced. �	
Now consider the convex optimization problem:

inf
p∈A

I (p) (34)

Proposition 34 The set of solutions of problem (P) is convex.

This follows from the fact that we are minimizing a convex function on a convex set.
We have to show that this set is non-empty. The following lemma will be useful.
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Lemma 35 Assume p is admissible. Set:

p��a (z) = max
{

p�� (z) , a (z)
}

Then
(

p��a
)� = p�.

Proof We have p�� ≤ p��a ≤ p. Taking conjugates, we get p� ≤
(

p��a
)� ≤ (p��

)� =
p�. �	

Similarly, we find that
(

p��b

)� = p�, with p��b = min
{

p��, b
}
.

Proposition 36 Problem (P) has a solution.

Proof Take a minimizing sequence pn . Since the functions p�n (resp. p�n), n ∈ N ,
are u-convex (resp. v-concave), they are uniformly Lipschitzian (see Appendix A),
and hence equicontinuous. By Ascoli’s theorem we can extract uniformly convergent
subsequences (still denoted by p�n and p�n) :

p�n → f

p�n → g

so that:

∫
X

f (x) dµ−
∫
Y

g (y) dν = inf
a≤p≤b

⎡
⎣∫

X

p� (x) dµ−
∫
Y

p� (y) dν

⎤
⎦ (35)

It is easy to see that f is u-convex and g is v-concave. In addition, p��n → f � and
p��n → g� everywhere (and uniformly as well, since the functions are equicontinuous).
Since p��n ≤ p��n , we get f � ≤ g� in the limit. Since pn ≤ b, we have p��n ≤ b�� = b,
and letting n → ∞, we find that f � ≤ b. Since f � is u-convex, it is continuous (and
even Lipschitzian, see Appendix A). Similarly, g� is v-concave, hence continuous, and
satisfies g� ≥ a.

Now take any continuous price schedule p̄ such that

(
f �
)��

a = max
{

f �, a
} ≤ p̄ ≤ min

{
g�, b

} = (g�)��b (36)

for instance p̄ = 1
2

(
max

{
f �, a

}+ min
{
g�, b

})
. By Lemma 35, we have

((
f �
)��

a

)� = f �� = f
((

g�
)��

b

)� = g�� = g
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the last equalities occuring because f is u-convex and g is v-concave. Taking con-
jugates in formula (36), we get g ≤ p̄� and f ≥ p̄�.Substituting in the integral, we
get:

∫
X

p̄� (x) dµ−
∫
Y

p̄� (y) dν ≤
∫
X

f (x) dµ−
∫
Y

g (y) dν

and hence, by formula (35):

∫
X

p̄� (x) dµ−
∫
Y

p̄� (y) dν ≤ inf
a≤p≤b

⎡
⎣∫

X

p� (x) dµ−
∫
Y

p� (y) dν

⎤
⎦

Since p̄ is admissible, p̄ must be a minimizer, and the result follows. �	
The proof indicates that uniqueness is not to be expected. The following result is

the Non-Uniqueness Theorem for prices:

Proposition 37 Let p be a solution of problem (P). Then p��a and p��b are also solu-
tions. More generally, if q is an admissible price schedule such that:

p��a (z) ≤ q (z) ≤ p��b (z) ∀z ∈ Z1

then q is a solution of problem (P).

Proof From p��a ≤ q ≤ p��b , we deduce that p� =
(

p��b

)� ≤ q� and that q� ≤(
p��a
)� = p�. Substituting into the integral, we get:

∫
X

q� (x) dµ−
∫
Y

q� (y) dν ≤
∫
X

p� (x) dµ−
∫
Y

p� (y) dν = inf (P)

and since q is admissible, it must be a minimizer. �	

Corollary 38 Let p be a solution of problem (P). Then p� =
(

p��b

)�
,µ-almost every-

where, and p� =
(

p��a
)�

, ν-almost everywhere.

Proof By the preceding Proposition, p��b is a solution of problem (P), so that I
(

p��b

)
=

I (p) .Substituting in the integrals, we get:

∫
X

(
p��b

)�
dµ−

∫
Y

(
p��b

)�
dν =

∫
X

p� (x) dµ−
∫
Y

p� (y) dν
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and since
(

p��b

)� = p�, this reduces to:

∫
X

(
p��b

)�
dµ =

∫
X

p� (x) dµ

Since p��b ≤ p, we have
(

p��b

)� ≥ p�, and since the integrals are equal, it follows

that p� =
(

p��b

)�
, µ-a.e. The same argument shows that p� =

(
p��a
)�

, ν-a.e. �	

Corollary 39 Let p be a solution of problem (P). Then, for µ-almost every x in X,
there is a point z ∈ D (x) such that p (z) = p��b (z) , and for ν-almost every y in Y ,

there is a point z ∈ S (y) such that p (z) = p��a (z).

Proof Fix an x such that p� (x) =
(

p��b

)�
(x) and consider the functions ϕ and ψ

defined by ϕ (z) = u (x, z) − p (z) and ψ (z) = u (x, z) − p��b (z). We have ϕ ≥ ψ ,
and max ϕ = maxψ . So there must be a point z̄ such that max ϕ = maxψ = ϕ (z̄) =
ψ (z̄) .The result follows. �	

Note that we already have p (z) = p�� (z) for every z ∈ D (x), and p (z) = p�� (z)
for every z ∈ S (y).

C.2 The dual problem: optimality conditions

Recall that we have defined a map I : K (Z) → R by:

I (p) =
∫
X

p� (x) dµ−
∫
Y

p� (y) dν

We have checked that the function I is convex. It is easily seen to be continuous:
if pn → p uniformly on Z , then p�n → p� uniformly on X and p�n → p� uniformly
on Y . On the other hand, the set A is non-empty, convex and closed in K (Z). This
means that the constraint qualification conditions hold in problem (P): a necessary and
sufficient condition for p̄ to be optimal is that:

0 ∈ ∂ I ( p̄)+ NA ( p̄) (37)

where ∂ I ( p̄) is the subgradient of I at p̄ in the sense of convex analysis, and NA ( p̄)
is the normal cone to A at p̄. All we have to do now is to compute both of them.
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C.2.1 Computing ∂ I (p)

Lemma 40 Let p ∈ K (Z) and ϕ ∈ K (Z). Then, for every x ∈ X and every y ∈ Y ,
we have:

lim
h→0
h>0

1

h

[
(p + hϕ)� (x)− p� (x)

] = − min {ϕ (z) | z ∈ D (x)}

lim
h→0
h>0

1

h

[
(p + hϕ)� (y)− p� (y)

] = − max {ϕ (z) | z ∈ S (y)}

Proof Let us prove the second equality; the first one is derived in a similar way. Take
z ∈ Sp (y) and zh ∈ Sp+hϕ (y). From the definition of Sp (y) and Sp+hϕ (y), we have:

v (y, zh)− p (zh) ≥ p� (y) = v (y, z)− p (z)

v (y, z)− p (z)− hϕ (z) ≥ (p + hϕ)� (y) = v (y, zh)− p (zh)− hϕ (zh)

Substracting, we find that:

− hϕ (z) ≥ (p + hϕ)� (y)− p� (y) ≥ −hϕ (zh) (38)

Since z is an arbitrary point in Sp (y), we can take it to be the minimizer on the
left-hand side, and this inequality becomes:

−h max
{
ϕ (z) | z ∈ Sp (y)

} ≥ (p + hϕ)� (y)− p� (y) ≥ −hϕ (zh)

Now let h → 0. The family zh ∈ Sp+hϕ (y) must have cluster points, because Z
is compact, and any cluster point z̄ must belong to Sp (y). Taking limits in inequality
(38), we find that, for some z̄ ∈ Sp (y):

− max
{
ϕ (z) | z ∈ Sp (y)

} ≥ lim
h→0
h>0

1

h

[
(p + hϕ)� (y)− p� (y)

] ≥ −ϕ (z̄) (39)

and the result follows. �	

Because of inequality (39), we can apply the Lebesgue convergence theorem, and
we get:

lim
h→0
h>0

1

h
[I (p + hϕ)− I (p)] =

∫
Y

max {ϕ (z) | z ∈ S (y)} dν

−
∫
X

min {ϕ (z) | z ∈ D (x)} dµ (40)
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We now work on the right-hand side of formula (40). Define B (X, D) to be the set
of all Borel maps d : X → Z such that d (x) ∈ D (x) for every x . Similarly, B (Y, S)
is the set of all Borel maps s : Y → Z such that s (y) ∈ S (y) for every y.

Lemma 41 For every ϕ ∈ C (Z), we have:

∫
X

min {ϕ (z) | z ∈ D (x)} dµ = min

⎧⎨
⎩
∫
X

ϕ (d (x)) dµ | d ∈ B (X, D)

⎫⎬
⎭ (41)

∫
Y

max {ϕ (z) | z ∈ S (y)} dν = max

⎧⎨
⎩
∫
Y

ϕ (s (y)) dµ | s ∈ B (Y, S)

⎫⎬
⎭ (42)

Proof Given ϕ ∈ C (Z), the multivalued maps �1 and �2 defined by:

�1 (x) = arg min {ϕ (z) | z ∈ D (x)}
�2 (y) = arg max {ϕ (z) | z ∈ S (y)}

have compact graph. Formulas (41) and (42) then follow from a standard measurable
selection theorem. �	

Define M+(X, D) to be the set of all demand distributions, that is, the set of all
positive measures αX×Z on X × Z which are carried by the graph of D and which
have µ as marginal:

αX = µ

Recall that αZ ∈ M+(Z) denotes the second marginal of αX×Z .

Lemma 42 For every ϕ ∈ K (Z), we have:

∫
X

min {ϕ (z) | z ∈ D (x)} dµ = min

⎧⎨
⎩
∫
Z

ϕdαZ | αX×Z ∈ M+(X, D)

⎫⎬
⎭ (43)

Proof Let us investigate the right-hand side of formula (41). Let f ∈ B (X, D) be such
that ϕ ( f (x)) = min {ϕ (z) | z ∈ D (x)} for µ-almost every x , and define γX×Z ∈
M+(X, D) by:

∀ψ ∈ K (X × Z) ,
∫

X×Z

ψ (x, z) dγX×Z =
∫
X

ψ (x, f (x)) dµ
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Clearly:

min

⎧⎨
⎩
∫
X

ϕ (d (x)) dµ | d ∈ B (X, D)

⎫⎬
⎭ =

∫
X

ϕ ( f (x)) dµ

=
∫

X×Z

ϕdγX×Z =
∫
Z

ϕdγZ

≥ min

⎧⎨
⎩
∫
Z

ϕdαZ | αX×Z ∈ M+(X, D)

⎫⎬
⎭

For the reverse inequality, we take any αX×Z ∈ M+(X, D). Taking conditional
expectations, we have:

Eαx [ϕ] ≥ min {ϕ (z) | z ∈ D (x)}

and by integrating with respect to µ, we get the desired result:

∫
Z

ϕdαZ ≥
∫
X

min {ϕ (z) | z ∈ D (x)} dµ

= min

⎧⎨
⎩
∫
X

ϕ (z) dµ | z ∈ D (x)

⎫⎬
⎭

= min

⎧⎨
⎩
∫
X

ϕ (d (x)) dµ | d ∈ B (X, D)

⎫⎬
⎭

�	
Considering the set M+(Y, S) of supply distributions, we get similar results:

∫
Y

max {ϕ (z) | z ∈ S (y)} dν = max

⎧⎨
⎩
∫
Z

ϕdβZ | βY×Z ∈ M+(Y, S)

⎫⎬
⎭ (44)

Writing formulas (43) and (44) in formula (40), we get:

lim
h→0
h>0

1

h
[I (p + hϕ)− I (p)]

= max

⎧⎨
⎩
∫
Z

ϕdβZ | βY×Z ∈M+(Y, S)

⎫⎬
⎭−min

⎧⎨
⎩
∫
Z

ϕdαZ | αX×Z ∈M+(X, D)

⎫⎬
⎭
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= max

⎧⎨
⎩
∫
Z

ϕdβZ −
∫
Z

ϕdαZ | βY×Z ∈ M+(Y, S), αX×Z ∈ M+(X, D)

⎫⎬
⎭

Proposition 43 The subdifferential of I at p is given by:

∂ I (p) = {βZ − αZ | βY×Z ∈ M+(Y, S), αX×Z ∈ M+(X, D)}

Proof Take λ ∈ M (Z) = Mb (Z). By definition of the subgradient, λ ∈ ∂ I (p) if
and only if, for every ϕ ∈ K (Z) and h > 0, we have:

I (p + hϕ) ≥ I (p)+ h
∫
Z

ϕdλ

Since I is convex, this is equivalent to:

lim
h→0
h>0

1

h
[I (p + hϕ)− I (p)] ≥

∫
Z

ϕdλ

Because of formula (40), this is equivalent to:

max

⎧⎨
⎩
∫
Z

ϕdβZ −
∫
Z

ϕdαZ | βY×Z ∈ M+(Y, S), αX×Z ∈ M+(X, D)

⎫⎬
⎭ ≥

∫
Z

ϕdλ

This means that λ belongs to the closed convex set:

{βZ − αZ | βY×Z ∈ M+(Y, S), αX×Z ∈ M+(X, D)}

�	

C.2.2 Computing NA (p)

Take λ ∈ M (Z) = Mb (Z). By definition, λ ∈ NA (p) if and only if, for every
q ∈ A , we have:

∫
Z

(q − p) dλ ≤ 0

Since q (∅d) = p (∅d) = 0 and q (∅s) = p (∅s) = 0 for every q ∈ A, this
condition is equivalent to:

∫
Z0

(q − p) dλ ≤ 0 (45)
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To interpret this condition, we need some notation. Set:

Zb = {z ∈ Z0 | a (z) < p (z) = b (z)}
Zb

a = {z ∈ Z0 | a (z) < p (z) < b (z)}
Za = {z ∈ Z0 | a (z) = p (z) < b (z)}
M = {z ∈ Z0 | a (z) = p (z) = b (z)}
N = {z ∈ Z0 | a (z) > b (z)}

so that we have a partition of Z0 into subsets Z0 = Za ∪ Zb
a ∪ Zb ∪ M ∪ N , where

Za ∪ Zb
a ∪ Zb ∪ M = Z1, the set of marketable qualities.

Denote by λb, λb
a, λa, λM , λN the restrictions of λ to Zb, Zb

a , Za, Z M , Z N

respectively. Note that since λ was a bounded measure, so are λb, λb
a, λa , λM and

λN . Condition (45) is equivalent to the following:

λb ≥ 0, λb
a = 0, λa ≤ 0, λN = 0 (46)

C.2.3 Concluding the proof

Let p̄ be a solution of problem (P). By condition (37), we have 0 ∈ ∂ I ( p̄)+NA ( p̄). By
Proposition 43, this means that there exists βY×Z ∈ M+(Y, S), αX×Z ∈ M+(X, D)
and λ ∈ M (Z) satisfying (46) such that αZ − βZ = λ.

In other words, the restriction of αZ −βZ to Zb, Zb
a , Za respectively are positive,

zero and negative:

αZ ≥ βZ on Zb (47)

αZ = βZ on Zb
a (48)

αZ ≤ βZ on Za (49)

αZ = βZ on N (50)

There is no condition on the restriction of αZ or βZ to {∅d}, {∅s} or M . Since Pαx is
carried by D (x), we must have Pαx (z) = 0 whenever z /∈ D (x), which certainly is the

case when p (z) > b (z). Similarly, Pβy (z) = 0 when p (z) < a (z). If z ∈ N , either

p (z) > b (z) or p (z) < a (z), so either Pαx (z) = 0 or Pβy (z) = 0. The condition
αZ = βZ on N then implies that:

αZ = βZ = 0 on N

We will now show that there exists α′
X×Z ∈ M+(X, D) and β ′

Y×Z ∈ M+(Y, S)
such that α′

Z0
= β ′

Z0
. This will be done by suitably modifying αX×Z and βY×Z on

the subsets Zb and Za (note that they are both subsets of Z0). In the sequel, we will
denote by αX×A (resp. βY×B) the restriction of αX×Z (resp. βY×Z ) to X × A (resp.
Y × B), for A ⊂ X (resp. B ⊂ Y ), and by αA (resp. βB) the marginal on A (resp. B).
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On X × Zb, we have, by:

αX×Zb =
∫
Z

Pαz dαZb and βX×Zb =
∫
Z

Pβz dβZb

with αZb ≥ βZb by (47). Define α′
X×Z by:

α′
X×Zb =

∫
Z

Pαz dβZb

α′ (X × {∅d}) = α (X × {∅d})+ α
(

Zb
)

− β
(

Zb
)

α′
X×(Z−Zb∪{∅d }) = αX×(Z−Zb∪{∅d })

Clearly α′
X×Z is a positive measure. It follows from the first equation that α′

Zb =
βZb , and from the second that α′

x = αX = µ. It remains to check that α′
X×Z ∈

M+(X, D). We already know that αX×Z ∈ M+(X, D), meaning that for
Pαx [D (x)] = 1 for µ-a.e. x , and it differs from α′

X×Z only in the region where
z ∈ Zb or z = ∅d . If D (x)∩ Zb = ∅ then Pαx [D (x)] = 1 as well. If D (x) intersects
Zb, so that z ∈ Zb ∩ D (x), then consumer x is paying the highest bid price for z, and
so he must be indifferent between z and∅d ; this shows that∅d also belongs to D (x).
In the new allocation α′

X×Z , some of the demand may be transferred from Zb ∩ D (x)
to ∅d with positive probability, but this redistribution occurs within D (x) and does
not affect the total probability, so that Pα

′
x [D (x)] = 1.

In words, for every quality z where the highest bid price is paid, we clear the market
by letting some of the demand go unsatisfied: all producers y have sold, but there is
total quantity α

(
Zb
)−β (Zb

)
of potential buyers which are thrown out of the market.

However, they don’t care, because the price asked is the highest bid price, and they
are indifferent between buying or nor.

We then shift some of the supply to ∅s , as we did for the demand. We end up with
α′

X×Z ∈ M+(X, D) and β ′
Y×Z ∈ M+(Y, S) which satisfy the conclusions of the

Existence Theorem.

Appendix D: Remaining proofs

D.1 Pareto optimality of equilibrium allocations

With every pair of demand and supply distributions, α′
X×Z ∈ M+(X, D) and β ′

Y×Z ∈
M+(Y, S), we associate the number:

J
(
α′

X×Z , β
′
Y×Z

) =
∫

X×Z

u (x, z) dα′
X×Z −

∫
Y×Z

v (y, z) dβ ′
Y×Z

=
∫
X

Eα
′

x [u (x, z)] dµ (x)−
∫
Y

Eβ
′

y [v (y, z)] dν (y)
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Assume that α′
Z0

= β ′
Z0

.We claim that:

∫
X

Eα
′

x [p (z)] dµ (x)−
∫
Y

Eβ
′

y [p (z)] dν (y) = 0 (51)

Indeed, the left-hand side can be written as:

⎛
⎜⎝
∫
Z0

p (z) dα′
Z −

∫
Z0

p (z) dβ ′
Z

⎞
⎟⎠+ p (∅d)

(
α′

Z [∅d ] − β ′
Z [∅d ]

)

+p (∅s)
(
α′

Z [∅s] −β ′
Z [∅s]

)

The first term vanishes because α′
Z0

= β ′
Z0

, and the two next terms vanish because
p (∅d) = p (∅s) = 0.

Subtracting (51) from J , we get:

J
(
α′

X×Z , β
′
Y×Z

) =
∫
X

Eα
′

x [u (x, z)− p (z)] dµ (x)

−
∫
Y

Eβ
′

y [v (y, z)− p (z)] dν (y) (52)

By Fenchel’s inequality, (u (x, z)− p (z)) ≤ p� (x) for all z ∈ Z . Taking expecta-
tions with respect to the probability Pα

′
x , we get:

Eα
′

x [u (x, z)− p (z)] ≤ p� (x) (53)

with equality if and only if u (x, z) − p (z) = p� (x) (in other words, z ∈ D (x)) for
Pα

′
x -almost every z ∈ Z . Similarly, we have:

Eβ
′

y [v (y, z)− p (z)] ≥ p� (y) (54)

with equality if and only if v (y, z) − p (z) = p� (y) (in other words, z ∈ S (y)) for

Pβ
′

y -almost every z ∈ Z . Writing this in (52), and treating the second term in the same
way, we get:

J
(
α′

X×Z , β
′
Y×Z

) ≤
∫
X

p� (x) dµ−
∫
Y

p� (y) dν (55)

The right-hand side is equal to J (αX×Z , βY×Z ), for any equilibrium allocation
(α, β). This proves that equilibrium allocations solve the planner’s problem, and as
such they are Pareto optimal.
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D.2 Uniqueness of equilibrium allocations

Observe that equality holds in (55) if and only if equality holds in (53) for µ-almost
every x , and equality holds in (54) for ν-almost every y. This means that Pα

′
x [D (x)] =

1 for µ-almost every x and Pβ
′

y [S (y)] = 1 for ν-almost every y.

D.3 Proof of Theorem 19

Let (p, αX×Z , βY×Z ) be an equilibrium. By Rademacher’s theorem, since p� : X →
R is Lipschitz, and µ is absolutely continuous with respect to the Lebesgue measure,
p� is differentiable µ-almost everywhere.

Consider the set A = {x | p� (x) ≥ 0
}
. Let x ∈ A be a point where p� is differen-

tiable, with derivative Dx p� (x). Since x is active or indifferent, the set D (x)∩ Z0 is
non-empty, and we may take some z ∈ D (x) ∩ Z0. Consider the function ϕ

(
x ′) =

u
(
x ′, z

) − p (z). By Proposition 25, since D (x) ⊂ ∂p� (x), we have ϕ ≤ f and
ϕ (x) = f (x), so that ϕ and f must have the same derivative at x :

Dx f (x) = Dx u (x, z) (56)

By condition (9), this equation defines z uniquely. In other words, for µ-almost
every point x ∈ A, the set D (x) ∩ Z0 consists of one point only. Similarly, for
ν-almost every point y ∈ B = {

y | p� (y) ≤ 0
}
, the set S (y) ∩ Z0 consists of one

point only. This is the desired result.
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