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Abstract

We are interested in general equilibrium incomplete markets, where the number of
consumers is N, the number of goods is L, and the dimension of the space of admissible
trades is K (the case of complete markets being then K= (L — 1)). We prove that, if
N > K, any non-vanishing analytic function satisfying the natural extension of the Walras
law is, locally at least, the excess demand function of such a market. To be precise,
consider a map 6 — ®(0) associating with a T-dimensional parameter § a K-dimensional
linear subspace @(#) of R‘, representing the set of market transactions allowed by 6.
Given parameter values 6,, ..., 6;, and a non-vanishing analytic function Z defined on
some neighbourhood of 6 with values in RY, with X(9) € ®#(6)V6, then there exist
concave utility functions U,, 1 < n < N and individual endowments w;, ..., wy, such that
the corresponding aggregate excess demand function coincides with Z on a (possibly
smaller) neighbourhood of 8. If Z vanishes at 6, the disaggregation is still possible, but
requires (K + 1) agents. © 1999 Elsevier Science S.A. All rights reserved.
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1. Setting up the problem
1.1. Introduction

Hugo Sonnenschein was the first to ask whether a aggregate excess demand
function, arising from the aggregation of individual excess demands from utility-
maximizing agents, had some identifiable property. It is well-known by now that
the answer is negative if the number of agents is greater than or equa to the
number of goods in the economy. This result is essentially due to Sonnenschein,
Mantel and Debreu, and has spawned alot of interest and further work (see Shafer
and Sonnenschein, 1982 for a review of the literature up to 1982).

All these papers deal with excess demand functions for complete markets. A
negative result of the same kind has been recently proved for demand functions
(see Chiappori and Ekeland, 1996 and Chiappori and Ekeland, forthcoming), till
within the framework of complete markets. By contrast, the case of incomplete
markets has been much less studied. For the convenience of the reader, we will
recall here enough of this theory to motivate the mathematical model and state the
disaggregation problem.

Consider first an exchange economy with N agents and L goods. Each agent n
is characterized by his utility function U, (assumed to be smooth and strictly
concave) and his initial endowment w,. He then solves the optimization problem:

Maximize U,( x) (1)
P(X— @) <0 (2
x=0 (3)

the solution of which, x(p), is his demand function. Summing all individual
demands, we get the aggregate demand function:

N

X(p) = L X(p) (4)

n=1
Similarly, the excess demand function of agent n is given by:
zn( p) = Xn( p) — Wy (5)
and the aggregate excess demand function by:

Zn( p) = an( p) - an (6)

n n

Note that the excess demand functions z, and Z are al positively homoge-
neous of degree zero.

It is the famous theorem of Mantel and Debreu, 1974 that, provided n > L, any
continuous map Z from a compact subset with the interior of R. into R",
satisfying the natural homogeneity condition, and Walras Law is an aggregate
excess demand function (see Shafer and Sonnenschein, 1982 again for a precise
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statement and a review of the literature). Geanakoplos and Polemarchakis (1980)
proved that, if N =L — 1, while the preceding result may fail globally, it will still
hold locally, at least outside an equilibrium given any p in the interior of R and
a positively homogeneous map Z defined from some neighbourhood of p into R*,
there is a (possibly smaller) neighbourhood of P on which Z decomposes as a sum
(6), where each of the x,(p) is an individual demand, and the w, are suitably
chosen individual endowments.

In later developments, Chiappori and Ekeland (1996) and Chiappori and
Ekeland (forthcoming) showed that such a local result extends to demand func-
tions (while the global result does not): if N> L, then every analytic map X
defined from some neighbourhood of P into R decomposes, possibly on a
smaller neighbourhood, as a sum (4), where each of the x(p) is an individual
demand. To do so, they introduced techniques from differential geometry, which
are basically due to Elie Cartan (see Cartan, 1945), and for which a modern
reference is Bryant et al. (1991). These techniques will be extensively used in the
present paper.

1.2. Incomplete markets

All previous papers dea with complete markets. The market is incomplete if
certain trades are not possible. Such situations arise naturally in the framework of
risk-trading. Consider for instance a two-period model. In period O, agent n
receives an endowment ?. He then trades in the L' goods present in the
economy, and in M risky assets; the price of good | is p?, and the price of asset
mis g2. In period 1 one of S possible states of nature will be realized. If state s
occurs, the prevailing price system then becomes pS agent n receives an
endowment wg, and each unit of asset m yields to its owner a dividend d.

In the first period, agent n buys a bundle x° of goods for immediate
consumption and invests in a portfolio y of assets; in the second period, he finds
which state of nature s obtains, and then buys a new bundle of goods x> His

overal utility ex ante is U (x°%, x*, ..., x5). With perfect foresight, he is led to
solve the following optimization problem:
Maximize U, ( x°,x*, ..., x5) @)
P(X° - wg) < —q°y (8)
PY(X°— wy) <d°%,1<s<S (9
x>08=0,...S (10)

Let us assume that, in relations (8) and (9), the constraints are effective, which
means that the inequalities are in fact equalities. The constraints (8), (9) can then
be rewritten as follows:

Z(2) €E, (11)
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where z=(x°— w?, x*'—w,..., x°— ©>) is the excess demand, the linear
space E, is defined by
={(—q%.dy,...,d%)lye R™} (12)
and the linear map %, from R“*Y to RES* Y is given by
Z(z) =(p°2° p'z,...,p%2%) (13)

Denote by x,(d, g, p) the demand function of consumer n, and by z(d, g, p)
the corresponding excess demand. The latter satisfies the linear constraints (11),
and by Walras' law, so must the aggregate excess demand Z(d, g, p):

Z(d,q,p) = >.z,(d,q,p) (14)

Z,(2(d,q,p) €Ey (15)

From now on, we will assume that the positivity constraints (3) or (10) are
dack for all consumers. The optimization problem of agent n can then be
rewritten as follows:

Maximize U,(2° + wy, ..., 2° + @) (16)

ze ¢(d,q,p) (17)
where

®(d,a,p) = (%) (Eq) (18)

It follows from Eq. (12) that the space E; , has dimension M at most. If it has
exactly dimension M, then its codimension in R¥™Y js(S+ 1 — M), and if in
addition -, has full rank, then &(d, g, p) is alinear subspace of codimension
(S+1-— M) in RYS*D sp that the relation (17) boils down to (S+1— M)
linearly independent equations in z. This is the generic case; on the other hand,
great technical difficulty is caused by the fact that the codimension of &(d, g, p)
may jump above (S+ 1 — M) for certain values of (d, g, p), €ither because the
dimension of E,, falls below M or because %, degenerates. We shall assume
that we are in the generic case.

If M =S thatis, there are enough contingent claims to cover all possible states
of the world in the second period, the market is complete, and @(q, p) has
codimension 1, so it is a hyperplane. Formally, this is exactly the same situation as
the first one we described (see Eq. (2)). On the other hand, if M < S the market is
incomplete, and &(q, p) is alinear subspace of smaller dimension.

One generaly chooses d to be some function of p, say d:, = D3( p), the two
polar cases being, the following.

- The constant case (nominal assets): the matrix D is independent of g. For
instance, d;, = 1 if m= s and O otherwise. Each unit of security m pays one unit
of account if state m occurs. If M =S perfect coverage is provided, and the
market is complete.
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+ The linear case (real assets): the matrix D depends linearly on p. For
instance, d$, = X, p*'as,, if m=sand 0 otherwise. Each unit of security m yields
the commodity bundle a;, if state s occurs, and O otherwise.

Substituting d = D( p), we get alinear subspace @(q, p), depending on (g, p).
In this particular framework, the disaggregation problem for excess demand in
incomplete markets can now be stated as follows: given a smooth map Z:(q,
p) — Z(q, p) such that Z(g, p) € ®(q, p) for every (g, p), find smooth maps
z(q, p) and U(2) such that Z(q, p) =X} ,z(q, p) and z(q, p) maximizes
Uz, + w,) over (q, p) for every p.

We refer to Duffie (1992) and MacGill and Quinzii (1997) for other examples
and a review of the literature.

1.3. The disaggregation problem

We shall now state the disaggregation problem for incomplete markets in full
generality, as it is given for instance in Mas-Colell. Consider a map 0 — ®(0)
associating with a T-dimensional parameter 6 a K-dimensional linear subspace
®(6) of R". In the preceding example, =(q, p), T=L+M, L=L(S+ 1),
K=L(S+1) —S+M— 1. Let Z be amap of some neighbourhood of 6 into R*
such that

Z(9) € (0) V0o (19)

Given N, the disaggregation problem consists in finding N concave utility

functions U,, defined on R*, and N maps z,(6), defined on RT into R" such that:

Z(0) = 2z,(0)V0 (20)

z,(0) = ArgMax{U,(z)|ze ®(6)} (21)

Eqg. (20) means that Z(6) decomposes into a sum of individual demands, each
of which, by Eq. (21), stems from utility maximization.

As stated, this is a global problem, insofar as the unknown functions U, and
maps z, are to be defined on al of R- and R". In the following, we shall dedl
with a local version of this problem. The map Z will be given only on some
neighbourhood of 6, while the z, and U, will be found on some neighbourhood of
6 and z,(6), respectively. Our main result states that, under a natural non-degen-
eracy assumption of the map Z at 6, the local disaggregation problem can aways
be solved with N agents provided N > K.

Before stating this result, let us spend some time explaining the non-degeneracy
assumption. Each K-planein R" is entirely defined by K(L — K) real parameters.
We are given a map & associating with every value of the T-dimensional
parameter 0 a K-plane @(6). If T> K(L —K), some of the parameters 6, are
redundant: T— K(L — K) of them can be expressed in terms of the others. If
T < K(L — K), some of the parameters are missing: K(L — K) — T new parame-
ters o, q, ..., Og(L_k, Can be defined, and the map @(6) extended to a map
@(6, o) in anon-trivial way.
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To express these ideas formally, let us consider the set of all K-planesin R",
which we denote henceforth by GK'L. It is a compact manifold of dimension
K(L — K), meaning, as we just stated, that positioning a K-plane in R" requires
K(L — K) parameters. But there is something more to the manifold structure: we
can differentiate, so that we can define non-degeneracy by the non-vanishing of
the appropriate Jacobians. This yields the following.

Definition 1. Assume @ is a C* map from a neighbourhood of 6 into GX'-. We
shall say that it is non-degenerate if the tangent map T; @ is injective (one-to-one).

It follows from the definition that if @ is called non-degenerate at 6, then it is
non-degenerate on a neighbourhood of 6, and we must have T < K(L — K). If
T=K(L—K), then @ is alocal diffeomorphism. If T> K(L —K), then new
parameters can be added and & can be extended to a local diffeomorphism, as we
shall see in Section 1.4.

1.4. The main result
We can now state our main result.
Theorem 1. Let U be some neighbourhood of 6 in R', and let @ be a

non-degenerate analytic map of % into GX'“. Assume that Z:% — GX'" is real
analytic and that:

Z(6) € d(9) Vo (22)
Let (z,, ..., Zy) be a family of N vectors in R with rank at least K and such
that:

N —_—

Y 2,=2Z(9) (23)

n=1

z,€6Vn (24)

Then, there exists N real analytic maps z,(9), defined in some neighbourhood
of #, and for each n a real analytic function U,, defined in some neighbourhood
of z, and concave in that neighbourhood, such that:

z,(0) =2, (25)
XN‘,zn(e) —Z7(0) Ve (26)
Vn,0z,(60) =ArgMax{U,(z)lz€ ®(0)} (27)

Some comments are in order.
First, since a family of N vectors is required to have rank K, we must have
N > K: the number of agents must at least as large as the dimension of the space
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of feasible trades. In the case of complete markets, for instance, K=L — 1, and
(L — 1) agents are needed.

However, in the particular case where markets clear, that is Z(6) = 0, Eq. (23)
translates into a non-trivial linear relation between the z,. For the family to have
rank K, there must now be at least (K + 1) of them. So, if Z(6) = 0, the theorem
requires in fact that N > K + 1.

Finally, there is an assumption of real analyticity, which means that the
corresponding functions can be represented by convergent power series in some
neighbourhood of every point. Although we have no counter-example, and would
rather conjecture the theorem that holds in the C” case, its proof relies on an
existence result for partial differential equations (the Cartan—K3ahler theorem)
which is known to be false in the C* case.

In the example we have given (risk-trading), we must take L = L'(S+ 1) and
K=L(S+ 1 —S+M—1 Theorem 1 will then hold, provided the map @ is
anaytic and non-degenerate. If this is the case, the (local) disaggregation of the
demand function will require at least L'(S+ 1) — S+ M — 1 agents, one more if
the market is required to clear.

Let us point to related work. The recent papers of Bottazi and Hens (for the
case when assets yield rea returns) and Gottardi and Hens (1995) (for the case
when assets yield nominal returns, as in the example given here), for instance,
analyse the linearized situation: they show, for any given matrix A of suitable
dimension satisfying the natural restrictions arising from homogeneity and the
Walras law, how to build an incomplete market such that A is the Jacaobian of its
excess demand function at a prescribed point. This, of course, is a weaker result
than the one we state here.

Note that the individual utility functions we find do not have the standard von
Neumann—Morgenstern form. The question whether it is possible to solve disag-
gregation problems with expected utility models will be studied in a forthcoming
paper.

We shall now proceed to the proof of Theorem 1. This proof draws heavily on
the exterior differential calculus of Elie Cartan. An exposition can be found in
Cartan himsealf (see Cartan, 1945 for instance), or in the excellent work of Bryant
et a. (1991), which is much more appropriate for a modern reader. Other
applications, and a description on the Cartan—Kahler theorem, can be found in
Chiappori and Ekeland (1996).

2. Proof of Theorem 1

2.1. Recasting the problem

The proof splits in two unequal parts. We first reduce the given problem to a
geometrical one, by introducing a new set of parameters instead of the given ones
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(64, ..., 67). We then solve the geometric problem by using the heavy machinery
of exterior differential calculus.

We begin by casting the given problem into a standard, geometrical form. Since
@ is non-degenerate, if T=K(L —K), it is alocal diffeomorphism. If T < K(L
—K), it follows from the implicit function theorem that T— K(L — K) new
parameters (o | 11, ---, o) can be found so that (6, o) isalocal coordinate
system on Gt around @(6). In other words, there is a local diffeomorphism ¥
of some neighbourhood of ((8, 0) in R¥(“~*) onto some neighbourhood of ®(8)
in GX'- such that ¥(6,0) = @(9) for al .

We then extend Z to an analytic map Y defined on a neighbourhood of ®(6)
in Gt by setting:

Y(60,0) =2Z(0) (28)
and we then define:
X(0,0) =Py, Y(0,0) (29)

where Py, ,, is the orthogonal projection on ¥(6,0) in R" If T=K(L —K),
X=27
We can make the notation a little bit easier, by writing:

v(0,0) =11 (30)

and by using directly IT in GX* as our new variable, instead of the local
coordinates (6,0) (recall that ¥ is a loca diffeomorphism). Eg. (29) then
becomes:

X(I)=P,Y(II) (31)

__ We have thus defined an analytic map X of some neighbourhood 7" GKL of
II=¥(6,0) into R- with the properties that:

X(II)ellVlle 7 (32)

Z(0)=X(@(0))Yoeu (33)

If one can decompose X into a sum X x,, with x,(I1) € II for dl I[Ie 7,

then, setting z,(0) = x,(P(6)), we get a decomposition of Z such that z(0)

&(0) for dl 6. We are thus led to a purely geometric problem: given a smooth

map X:IT— X(II) such that X(IT)e Il for every II, find smooth maps
X,: IT— x(IT) and smooth concave functions U, on R" such that:

N
X(H)=¥xn(1'[) (34)
X,(IT1) = ArgMax{U,( x)|x€ R }VII € 7 (35)

In other words, in every K-dimensional linear subspace IT in the R‘, we are
given apoint X(IT). We want to find N concave functions U, such that, for every
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K-plane II, the vector X(IT) is just the sum of the N points obtained by
maximizing each U, on II.

2.2. Recasting the result

We solve the preceding problem locally. The result, given in Theorem 2 below,
implies Theorem 1 by the preceding discussion

Theorem 2. Assume that we are given an analytic map X from some neighbour-
hood of IT in Gt into Rt such that:

X(II) € VI (36)
Take IT€ G*', and let (X,, ..., X,) be a family of N vectorsin R with rank at
least K and such that:

N

Y X, =X(II) (37)

n=1

X, €11Vn (38)

Then, there exists N real analytic maps x,(II), defined in some neighbourhood
of II, and for each n a real analytic function U,,, defined in some neighbourhood
of X,, and concave in that neighbourhood, such that:

x(TT) =%, (39)
XN:Xn(H)=X(U)VH (40)
vn,II x,(II') = ArgMax{U,( x)|x € IT} (41)

We now proceed to prove Theorem 2. Let us first choose a coordinate system
m 1 <k < K(L—K)for G near II. In other words, we are given a set of real
analytic maps ¢, from a neighbourhood % of 7 in R*(*=%) into R", with the
property that the map @:U — GX* defined by:

() = [ X by, () X' = OV (42)
=1

is a diffeomorphism, with @(7) = I1.

There is no loss of generality in assuming that the set of p, = ¢,(7) defining I1
is orthogonal, and we can even choose them as the first L — K vectors in a basis
for Rt That is, we may assume that:

¢ (F) =1lifl=i<L-K

) (43)
= 0 otherwise
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For the sake of simplicity, let us write X () instead of X(®(7r)). The problem
then is to find maps x,(7) and concave functions U,(x), such that:

Xn(7) =X, V1 (44)

%XL(’TT) =X|(7T)V|,7T€?/ (45)

Vnre#, x,(I1) = ArgMax ] U, ( x)IZL:qsi’,(w)x' =0,Vi (46)
-1

2.3. An exterior differential system

Taking into account the fact that U, is required to be concave, Eq. (46) is
equivalent to the existence of positive functions A, (), defined in %, such that:

L-K au,
Aoy = — 47
igl n¢|,l aXI ( )
with of course, for every n:
L
Y ¢ X, =0,Vi,n (48)
I=1
By the Poincaré lemma, Eq. (47) can be rewritten as follows
N
Y Andi i = Y (49)
i=1
with:
2 dY, A dx=0 (50)
|

This is the first time we have written an exterior (or wedge) product in this
paper. In the language of exterior differential calculus, Eq. (50) expresses the fact
that the cross-derivatives (dy,)/(9x,,) and (dy,,)/(3x,,) are equal. From now on,
we shal use extensively the machinery of exterior differential calculus, as
described in Bryant et a. (1991) (see Chiappori and Ekeland (1995) for a short
review).

Summarizing, we are looking for functions x\, A, >0, y,, of (&, ...,
(L — K)) satisfying Eqgs. (44), (45), (48)—(50). Let us reformulate the problem
as an exterior differential system.

Consider the space & = RK(L~ KO+ NLENLEN(L=K) \with the following coordi-
nates:

é0={(7Tkvxlw3/n,|,)x‘n)llskg K(L—K),
1<n<N<1<l<l,1<i<L-K} (51)
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In the space &, we define a subset .# by the set of equations:

%x:]:X'(rr)Vl (52)
Igl-:qbi’l(qr)x'n=0,Vi,n (53)
‘Zl)‘in(ﬁi,l(ﬂ-) =Y, VNl (54)

Since X(IT) € [IVII, we must aso have
L
Y (m)X!(7) =0,Vi (55)
=1

so that the last L — K equations in Eq. (53) follow from the (N — 1)(L — K)
preceding ones. The remaining equations are clearly independent, so that .Z is an
analytic submanifold of codimension L + (N —1)(L —K)+ NL in &.

In .# (and not in &), we consider the exterior differential system:

Y.dy,, A dx,=0Vn (56)
|

dmy Ao Adm g, #0 (57)

From the definitions, the following lemma is evident.

Lemma 1. Any integral manifold of the exterior differential system (56), (57) on
A is the graph of functions x (), y, (), Al(7) >0, of (my, ..., (L —K))
satisfying Egs. (44), (45), (48)—(50). One can then find functions U, (x) satisfying
Eq. (46) and such that:

au,
Yoi(7) = = (Xo(m)) (8)

We shall now apply the Cartan—K@&hler theorem, as in Chiappori and Ekeland,
and show that through any point (7, X\, ¥, Ah) in .Z there is an integral
manifold. This will give us functions x/(7) and U,(x) satisfying Egs. (44)—(46).
In addition, we shall prove that the matrix of second derivatives

a%U,
IX} IXK
is negative definite at X, which will prove that the function U, is concave in
some neighbourhood of X,. Theorem 2 then follows.

Finding integral manifolds by the Cartan—Kahler theorem is a two-step proce-
dure. One first shows that the linearized equations at the given point have a



122 P.-A. Chiappori, |. Ekeland / Journal of Mathematical Economics 31 (1999) 111-129

solution. One then has to compute the codimension of the space of solutions in
two different ways to check that it gives the same result.

2.4. Solving the system: finding integral elements
The systems (56), (57) are clearly closed. To apply Cartan—Kahler, we have to

find al the integral elements through (7, X}, ¥, A}) satisfying dary A ... A
dmy (.- k) # 0. For this purpose, we differentiate Egs. (52)—(54):

dX'=Ydx} (59)
n

O=Z(d¢i,lxl1+ ¢i,IdX:1) (60)

|

ay,, =Z(¢i,ldAirl+Air1d¢i,l) (61)

I
and we substitute the equations:

dxh =Y Al*dm, (62)
k

dA = Y Bikdm, (63)
k

As for dy, , by a celebrated lemma of Cartan, Eq. (56) holds if and only if
there exists L X L matrices C,,, 1 < n < N, which are symmetric:

Cn,l,l’ = Cn,l’,l (64)
and satisfy:

dy,, =2Cn,l,l’dxln, (65)
v

Substituting relations (62), (63) and (65) into Egs. (59)—(61), we get the
equations:

aX!
YALK= — VI k (66)
n oy
ad:
Yy ()AL = _thﬂ,Vi,n,k (67)
T oy
adb:
YChni A =X ¢ B =N, il vn,l,k (68)
o i P Imy

The intuitive significance of this set of linear equations is clear: they give the
derivatives of the solutions we are looking for. More precisely, if x/ (), v, (),
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Ai(7) >0 and solves the non-linear system (52), (53), (54), and if there is a
function U, such that 'y, = (3U,)/(9x,), then the derivatives A} = (3x;) /()
Bik=(aA})/(am,) and

a?U,

Coiv="—"7—7
" XX

must satisfy Egs. (66)—(68).

The solutions of this set of linear equations are the so-called integral elements
of the exterior differential system (56), (57). Our first task is to show that they
exist, that is, that the linearized system can be solved. This is the content of the
next Lemma, the proof of which will occupy the rest of this subsection.

Lemma 2. The system of linear Egs. (66)—(68) in A'¥, Bi* and C,,, has a
solution such that every matrix C,, is symmetric and negative definite.

Let us rewrite Egs. (66)—(68) in matrix form. With obvious notations, we have
(we do not write the right-hand sides: they just obscure the argument)

YA, = (69)
qbiAn: (70)
CnAn_Zd’i(Bin)* = (71)

By (B!)*, we denote the transpose of the vector (B)*, 1 <k <K(L —K),
which is a linear functional on R*(-~¥)_ The second term on the left of Eq. (71) is
a sum of rank-one operators, each of which has a range generated by one of the
¢,. Thus, Eq. (71) means simply that, up to a translation by a known vector, the
range of C, A, is contained in the linear span of the ¢;, 1<i <L — K. We lose
no information by projecting on a complementary subspace.

As we noted in the beginning, the ¢,(w) =P, are the first (L —K) basis
vectors in R-. We can complete the basis with vectors [ (L-K+D<j<L.
Projecting Eq. (71) on the subspace generated by the P, and writing the result
together with Eqg. (70), we get:

(lL-k)0)A, = (72)
(0.1k)CrA L= (73)

where || _, and I, denote the (L — K) X (L — K) and K X K identity matrices.
Eqg. (73) can be rewritten as follows:

(Mn!én)An= (74)
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where C;, isthe K X K matrix in the lower right corner of C,;:

C Cn Mo 75
n— Mn én ( )
It is now possible to write Egs. (72) and (73) together:
o 0
A= (76)
Mn Cn

If C,, and hence én, is negative definite, the matrix on the left is invertible,
and its inverse is easily computed to be:

-1
- ? I(ALflK) Aol (77)
Mn Cn _C; Mn C;
Now is the time to write the right-hand side of Eqg. (76). It is:
Lo 9 :
—Z,xn(O)a—(O),1S|sL—K
T
D, = “ (78)

o 9
Zi)tln(O)ﬁ(O)JZL—K-I-l
k

We now solve Eq. (76) and write the result in Eq. (69). We are left with a
single equation in C,*:

)»

n

aX!
—,1<I<Ll1<k<K(L-K) (79)

87Tk

i, O
-C-'M, C;t

n

n

We have to check that the first L — K equations are automatically satisfied.
This is done by differentiating Eq. (55) at 7= 0. We get:

o, ax!
leﬂ"‘szn_zo (80)
| o . 0my
Recall from Eq. (43) that ¢,,(0) =8, (Kronecker symbol), so that the last
term in the preceding equation reduces to (9X") /(87r, )(0). Substituting in the first
L — K equations of Eq. (79) yields:

0 il g il
OO - I X 5O
= ﬁk(o)

as desired.
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We are left with the last K equations in Eq. (79). Splitting D,, horizontally:

D3
D=2 (82)
we end up with:
YC,(—M,Di+D2) =R (83)
n

where R and D3 are K X K(L — K) matrices and D} is(L — K) X K(L — K). All
these matrices are given, and we have to solve for the K X (L —K) matrix M |
and the symmetric, negative definite K X K matrix C;*.

To prove that this procedure is possible, we need a lemma. Let us first
introduce some notation. Set

M=(M,,... M) € RNKL-K) (84)
and define amap ¥ from RNK(=K) jntg R(EKOKK py:
1II(M) =ZQnM nDr% (85)
n

Lemma 3. Assume N > K and the N(L — K) X K(L — K) matrix D defined by
D =(DiD3| - - - IDy) (86)
has rank K(L — K). Assume also that all the Q,, are invertible. Then ¥ is onto.

Proof. Without loss of generality, we may assume that Q, =1 for every n. Indeed,
setting M, = Q,*M , and (M) = ¥(M), we have

V(M) =XM,D; (87)

SinceM — M is an isomorphism, ¥ is onto if and only if ¥ is onto.

The map D sends RK(-=%) into RN(:~K)_ By assumption, it is one-to-one. Set
D(RX(=K)) = o7, so that RX(-~K) can be identified with its image .«.

Any map from RNE—K) into RN K can be put in the form

(Xpro X)) = (M, Xq, ... M Xy) (88)

with suitable K X (L — K) matrices M ,,, 1 < n < N. It follows that any map from
& into RX can be put in that form, and hence that any map from R =) jnto R¥
can be written as ¥(M), for a suitable choice of M. This meansthat ¥ is onto, as
desired.

We now solve Eq. (83). Choose any family Q=(Q,, ..., Q) with the Q,
symmetric, negative definite, and set C; ! = Q,. So the Q, are invertible. Going
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back to the definition of the D} (Eg. (78)), and remembering that the family X,
1<n<N hasrank K, wefind that D has rank K(L — K). We then apply lemma
3 to find the corresponding M .. This gives us the C,, and the M ,. Going back to
Eq. (75), we leave it to the reader to show that the C, can be found to complete
C,, into a symmetric, negative definite matrix.

This concludes the proof of Lemma 2.

2.5. Computing the Cartan characters

The next step in applying the Cartan—Kahler theorem, in accordance with the
procedure described in Sec. 4.5 of Chiappori and Ekeland, is to compute the
Cartan characters and compare them with the codimension of the manifold of
integral elements in the Grassmannian manifold of tangent K(L — K )-planes to
V4

As noted above, the manifold .# has codimension L + (N — 1)(L — K) + NL
in &. ltsdimension then is:
dim(.#2) dim(&)—codim(.#)
K(L—K)+NL+NL+N(L-—K)—L—(N-=1)(L-K)-NL (89)
K(L—K)+NL-K

At every point m=(m, X, y, A) in .#, the dimension of the Grassmannian
manifold of K(L —K) — planesin T,,.# thenis:

K(L—K)(K(L—=K)+NL-K—-K(L-K))=K(L-K)(NL-K)
(90)

On the other hand, at every point m of .#Z, the integral elementsin T.,.# are
defined by the matrices A ,, B,, and C,, written in Egs. (62), (63) and (65).

The C,, have to be symmetric. Their lower right and upper left parts C, and C
have to satisfy open conditions (i.e., to be negative definite, with sufficiently large
eigenvalues in the case of C,). The lower Ieft (or upper right) parts M, have to
satisfy Eq. (83), which boils down to KK(L — K) linearly independent equations
in NK(L — K) variables. So the number of degrees of freedom alowed in the
choice of the C,, ends up being:

NL(L + 1)

5 —KK(L-K) (91)

Once the C,, are chosen, the A, are determined by Eq. (76) (no degree of
freedom alowed). The B, on the other hand, have to satisfy Eq. (71), which is
realy aset of K(L — K)NL linear equations for K(L — K)N(L — K) unknowns.
A compatibility condition is required, so that the right-hand side of Eg. (71)
belongs to the range of the left-hand side, and this is precisely Eq. (73). Once this
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condition is satisfied, K(L — K)NK of the Eg. (71) become redundant, and we are
left with a system of K(L —K)N(L — K) equations for K(L — K)N(L —K)
unknowns, which are thus fully determined. So there is no degree of freedom
alowed in the choice of the B, either.

Finally, the number of degrees of freedom allowed in the choice of an integral
element in T,.# is given by Eq. (91). So the codimension of the manifold of
integral elements in the Grassmannian is found by subtracting Eq. (91) from Eq.
(90). We get:

NL(L + 1)
K(L=K)(NL—K) = ———= +KK(L-K)
NL(L + 1)
=K(L=K)NL— ——— (92)

We now proceed to computing the Cartan characters. Fix a point m=
(7, X, ¥, \) in .#. Let usfirst describe a coordinate system for the cotangent space
Ta .

The cotangent space T,.# is defined as a subspace of T & by Egs. (59)—(61).
As we mentioned earlier, there is no loss of generality in assuming that the
p = ¢(7) are the first (L — K) vectors of the chosen basis in R" (Eq. (43)).
Writing Eq. (43) into Egs. (59)—(61), we get

dX'=Ydx! VI (93)
n
| I | i .
0=Y| x\Y—=dm +dx,|Vn,Vi<(L-K) (94)
| ;90
dy,,=dA, + Y Al—=dm, Vn,VI < (L—K) (95)
' ik 9m
dy, =2 Ade, Vn, V> (L-K+1) (96)
i

It follows from Eq. (94) that the d x!,, for | < L — K, can be computed from the
dm,. In addition, Eq. (93) tells us that the d x|, can be computed from the d x!,
1<n<N-1andthedm,. Similarly, Egs. (95) and (96) gives the dy, in terms
of the dA}, and the dmr,. Findly, we are left with K(N—1) + K(L — K) + (L —
K)N independent 1-forms

dx n<N-1,I>L-K+1 (97)
dAl,dm, (98)

which provide us with a basis for T.Z.
As we mentioned earlier, at every point m of .Z, the integral elementsin T.,.#Z
are defined by the Egs. (59)—(61) (we are not claiming that they are linearly
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independent). Fix such an integral element E, that is, prescribe values for the
matrices A ,, B, and C,,. Since the C,, are symmetric, we may rewrite the exterior
differential system (56) as follows:
O = Zldyn,l A dxll.]
= Xy(d¥py = ZyCp pdxXq) A dXy
= Zy(dyn, — ZyCpypdxy) A (dx, — Z Aldmry )
+Z|(dyn’| - Z|1Cny|'|rd Xll.],) AN (ZkAlr’-lkd'ﬂ'k)

(99)

Set w,,=dy,, —X,,C,, dx;, so that this last equation can be rewritten as:

0=Y o, A [dx - ZA';‘kdwk) Y A (ZA'ﬁkdwk) (100)
| k | k

Note that, for | <L — K, w,, containsatermin dAj, (and is the only one to do
s0), whilefor | > L — K+ 1, w,, containstermsin de, n<N—-1,I>L-K+1
and terms in dm,, k<K(L—K). It follows from the above, and from the
properties of the matrix C, that the w,,;, N<N, | <L and K(L —K) — K of the
dm, are linearly independent, and can be completed into a basis of T..Z.

The dimension of the space generated by the w,, is NL. In accordance with the
procedure described in Sec. 4.5 of Chiappori and Ekeland), we compute the Cartan
characters:

c,=0 (101)
Ch,h=mMNVm<L (102)
Cn=NLVYmM>L (103)
We have:
K(L-K)—-1 L(L+1)
mX_‘,O cm=NT+(K(L—K)—1—L)NL (104)

Comparing Egs. (92) and (104), we see that they are equal. This means that all
points M= (7, X, Y, A) in .# are ordinary, so that the Cartan—K3ahler theorem
holds.

2.6. Conclusion

We have proved that, for every integral element at m, that is, every choice of
Ay, B, and C,, there is an integral manifold of the exterior differential system
(56). Eq. (57), having E as tangent space at m. By lemma 1, any such integral
manifold provides us with functions x;(m), vy, (7), Ay(mw) >0, of (my, ...,
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T (L - k) Satisfying Egs. (44), (45), (48)—(50), and with functions U,(x) satisfy-
ing Egs. (46) and (58). Differentiating the latter equation at x,,, we get:

92U,

— (%) =C (105)

n,l,I"

Since the matrices C,, are negative definite, the functions U, are strictly
concave in a neighbourhood of X,. This concludes the proof.
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