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Abstract

We are interested in general equilibrium incomplete markets, where the number of
consumers is N, the number of goods is L, and the dimension of the space of admissible

Ž Ž ..trades is K the case of complete markets being then Ks Ly1 . We prove that, if
NGK , any non-vanishing analytic function satisfying the natural extension of the Walras
law is, locally at least, the excess demand function of such a market. To be precise,

Ž .consider a map u™F u associating with a T-dimensional parameter u a K-dimensional
Ž . Llinear subspace F u of R , representing the set of market transactions allowed by u .

Given parameter values u , . . . , u , and a non-vanishing analytic function Z defined on1 T
L Ž . Ž .some neighbourhood of u with values in R , with X u gF u ;u , then there exist

concave utility functions U , 1FnFN and individual endowments v , . . . , v , such thatn 1 N
Žthe corresponding aggregate excess demand function coincides with Z on a possibly

.smaller neighbourhood of u . If Z vanishes at u , the disaggregation is still possible, but
Ž .requires Kq1 agents. q 1999 Elsevier Science S.A. All rights reserved.
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1. Setting up the problem

1.1. Introduction

Hugo Sonnenschein was the first to ask whether a aggregate excess demand
function, arising from the aggregation of individual excess demands from utility-
maximizing agents, had some identifiable property. It is well-known by now that
the answer is negative if the number of agents is greater than or equal to the
number of goods in the economy. This result is essentially due to Sonnenschein,

ŽMantel and Debreu, and has spawned a lot of interest and further work see Shafer
.and Sonnenschein, 1982 for a review of the literature up to 1982 .

All these papers deal with excess demand functions for complete markets. A
negative result of the same kind has been recently proved for demand functions
Ž .see Chiappori and Ekeland, 1996 and Chiappori and Ekeland, forthcoming , still
within the framework of complete markets. By contrast, the case of incomplete
markets has been much less studied. For the convenience of the reader, we will
recall here enough of this theory to motivate the mathematical model and state the
disaggregation problem.

Consider first an exchange economy with N agents and L goods. Each agent n
Žis characterized by his utility function U assumed to be smooth and strictlyn

.concave and his initial endowment v . He then solves the optimization problem:n

Maximize U x 1Ž . Ž .n

p xyv F0 2Ž . Ž .n

xG0 3Ž .
Ž .the solution of which, x p , is his demand function. Summing all individualn

demands, we get the aggregate demand function:
N

X p s x p 4Ž . Ž . Ž .Ý n
ns1

Similarly, the excess demand function of agent n is given by:

z p sx p yv 5Ž . Ž . Ž .n n n

and the aggregate excess demand function by:

Z p s x p y v 6Ž . Ž . Ž .Ý Ýn n n
n n

Note that the excess demand functions z and Z are all positively homoge-n

neous of degree zero.
It is the famous theorem of Mantel and Debreu, 1974 that, provided nGL, any

continuous map Z from a compact subset with the interior of RL into RL,q
satisfying the natural homogeneity condition, and Walras Law is an aggregate

Žexcess demand function see Shafer and Sonnenschein, 1982 again for a precise
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. Ž .statement and a review of the literature . Geanakoplos and Polemarchakis 1980
proved that, if NsLy1, while the preceding result may fail globally, it will still

Lhold locally, at least outside an equilibrium given any p in the interior of R andq
La positively homogeneous map Z defined from some neighbourhood of p into R ,

Ž .there is a possibly smaller neighbourhood of p on which Z decomposes as a sum
Ž . Ž .6 , where each of the x p is an individual demand, and the v are suitablyn n

chosen individual endowments.
Ž .In later developments, Chiappori and Ekeland 1996 and Chiappori and

Ž .Ekeland forthcoming showed that such a local result extends to demand func-
Ž .tions while the global result does not : if NGL, then every analytic map X

Ldefined from some neighbourhood of p into R decomposes, possibly on a
Ž . Ž .smaller neighbourhood, as a sum 4 , where each of the x p is an individualn

demand. To do so, they introduced techniques from differential geometry, which
Ž .are basically due to Elie Cartan see Cartan, 1945 , and for which a modern

Ž .reference is Bryant et al. 1991 . These techniques will be extensively used in the
present paper.

1.2. Incomplete markets

All previous papers deal with complete markets. The market is incomplete if
certain trades are not possible. Such situations arise naturally in the framework of
risk-trading. Consider for instance a two-period model. In period 0, agent n
receives an endowment v 0. He then trades in the LX goods present in then

economy, and in M risky assets; the price of good l is p0, and the price of assetl

m is q0 . In period 1 one of S possible states of nature will be realized. If state sm

occurs, the prevailing price system then becomes p s, agent n receives an
endowment v s, and each unit of asset m yields to its owner a dividend d s .n m

In the first period, agent n buys a bundle x 0 of goods for immediate
consumption and invests in a portfolio y of assets; in the second period, he finds
which state of nature s obtains, and then buys a new bundle of goods x s. His

Ž 0 1 S.overall utility ex ante is U x , x , . . . , x . With perfect foresight, he is led ton

solve the following optimization problem:

Maximize U x 0 , x1 , . . . , x S 7Ž . Ž .n

p0 x 0 yv 0 Fyq0 y 8Ž .Ž .n

p s x s yv s Fd s y , 1FsFS 9Ž .Ž .n

x sX

G0 sX s0, . . . S 10Ž .
Ž . Ž .Let us assume that, in relations 8 and 9 , the constraints are effective, which

Ž . Ž .means that the inequalities are in fact equalities. The constraints 8 , 9 can then
be rewritten as follows:

LL z gE 11Ž . Ž .p q
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Ž 0 0 1 S S.where zs x yv , x yv . . . , x yv is the excess demand, the linearn n n

space E is defined byq

0 1 S < ME s yq y ,d y , . . . ,d y ygR 12Ž .� 4Ž .d ,q

and the linear map LL from RLXŽSq1. to RŽSq1. is given byp

LL z s p0 z 0 , p1z1 , . . . , pSz S 13Ž . Ž .Ž .p

Ž . Ž .Denote by x d, q, p the demand function of consumer n, and by z d, q, pn n
Ž .the corresponding excess demand. The latter satisfies the linear constraints 11 ,

Ž .and by Walras’ law, so must the aggregate excess demand Z d, q, p :

Z d ,q , p s z d ,q , p 14Ž . Ž . Ž .Ý n
n

LL Z d ,q , p gE 15Ž Ž . Ž .p d ,q

Ž . Ž .From now on, we will assume that the positivity constraints 3 or 10 are
slack for all consumers. The optimization problem of agent n can then be
rewritten as follows:

Maximize U z 0 qv 0 , . . . , z s qv s 16Ž .Ž .n n n

zgF d ,q , p 17Ž . Ž .
where

y1
F d ,q , p s LL E 18Ž . Ž .Ž . Ž .p d ,q

Ž .It follows from Eq. 12 that the space E has dimension M at most. If it hasd,q
LXŽSq1. Ž .exactly dimension M, then its codimension in R is Sq1yM , and if in

Ž .addition LL has full rank, then F d, q, p is a linear subspace of codimensionp
Ž . LXŽSq1. Ž . Ž .Sq1yM in R , so that the relation 17 boils down to Sq1yM
linearly independent equations in z. This is the generic case; on the other hand,

Ž .great technical difficulty is caused by the fact that the codimension of F d, q, p
Ž . Ž .may jump above Sq1yM for certain values of d, q, p , either because the

dimension of E falls below M or because LL degenerates. We shall assumed,q p

that we are in the generic case.
If MsS, that is, there are enough contingent claims to cover all possible states

Ž .of the world in the second period, the market is complete, and F q, p has
codimension 1, so it is a hyperplane. Formally, this is exactly the same situation as

Ž Ž ..the first one we described see Eq. 2 . On the other hand, if M-S, the market is
Ž .incomplete, and F q, p is a linear subspace of smaller dimension.

s s Ž .One generally chooses d to be some function of p, say d sD p , the twom m

polar cases being, the following.
Ž .Ø The constant case nominal assets : the matrix D is independent of q. For

instance, d s s1 if mss and 0 otherwise. Each unit of security m pays one unitm

of account if state m occurs. If MsS, perfect coverage is provided, and the
market is complete.
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Ž .Ø The linear case real assets : the matrix D depends linearly on p. For
instance, d s sÝ p s, las if mss and 0 otherwise. Each unit of security m yieldsm l m , l

the commodity bundle as if state s occurs, and 0 otherwise.m
Ž . Ž . Ž .Substituting dsD p , we get a linear subspace F q, p , depending on q, p .

In this particular framework, the disaggregation problem for excess demand in
Žincomplete markets can now be stated as follows: given a smooth map Z: q,

. Ž . Ž . Ž . Ž .p ™Z q, p such that Z q, p gF q, p for every q, p , find smooth maps
Ž . Ž . Ž . N Ž . Ž .z q, p and U z such that Z q, p sÝ z q, p and z q, p maximizesn n ns1 n n

Ž Ž . Ž .U z qv over F q, p for every p.n n n
Ž . Ž .We refer to Duffie 1992 and MacGill and Quinzii 1997 for other examples

and a review of the literature.

1.3. The disaggregation problem

We shall now state the disaggregation problem for incomplete markets in full
Ž .generality, as it is given for instance in Mas-Colell. Consider a map u™F u

associating with a T-dimensional parameter u a K-dimensional linear subspace
Ž . L Ž . X XŽ .F u of R . In the preceding example, us q, p , TsL qM, LsL Sq1 ,

X LŽ .KsL Sq1 ySqMy1. Let Z be a map of some neighbourhood of u into R
such that

Z u gF u ;u 19Ž . Ž . Ž .
Given N, the disaggregation problem consists in finding N concave utility

L Ž . T Lfunctions U , defined on R , and N maps z u , defined on R into R such that:n n

Z u s z u ;u 20Ž . Ž . Ž .Ý n
n

<z u sArgMax U z zgF u 21� 4Ž . Ž . Ž . Ž .n n

Ž . Ž .Eq. 20 means that Z u decomposes into a sum of individual demands, each
Ž .of which, by Eq. 21 , stems from utility maximization.

As stated, this is a global problem, insofar as the unknown functions U andn

maps z are to be defined on all of RL and RL. In the following, we shall dealn

with a local version of this problem. The map Z will be given only on some
neighbourhood of u , while the z and U will be found on some neighbourhood ofn n

Ž .u and z u , respectively. Our main result states that, under a natural non-degen-n

eracy assumption of the map Z at u , the local disaggregation problem can always
be solved with N agents provided NGK.

Before stating this result, let us spend some time explaining the non-degeneracy
L Ž .assumption. Each K-plane in R is entirely defined by K LyK real parameters.

We are given a map F associating with every value of the T-dimensional
Ž . Ž .parameter u a K-plane F u . If T)K LyK , some of the parameters u aret

Ž .redundant: TyK LyK of them can be expressed in terms of the others. If
Ž . Ž .T-K LyK , some of the parameters are missing: K LyK yT new parame-

Ž .ters s , . . . , s can be defined, and the map F u extended to a mapTq1 K Ž LyK .
Ž .F u , s in a non-trivial way.
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To express these ideas formally, let us consider the set of all K-planes in RL,
which we denote henceforth by G K , L. It is a compact manifold of dimension
Ž . LK LyK , meaning, as we just stated, that positioning a K-plane in R requires
Ž .K LyK parameters. But there is something more to the manifold structure: we

can differentiate, so that we can define non-degeneracy by the non-vanishing of
the appropriate Jacobians. This yields the following.

1 K , LDefinition 1. Assume F is a C map from a neighbourhood of u into G . We
Ž .shall say that it is non-degenerate if the tangent map T F is injective one-to-one .u

It follows from the definition that if F is called non-degenerate at u , then it is
Ž .non-degenerate on a neighbourhood of u , and we must have T-K LyK . If

Ž . Ž .TsK LyK , then F is a local diffeomorphism. If T)K LyK , then new
parameters can be added and F can be extended to a local diffeomorphism, as we
shall see in Section 1.4.

1.4. The main result

We can now state our main result.

TTheorem 1. Let U be some neighbourhood of u in R , and let F be a
non-degenerate analytic map of UU into G K ,L. Assume that Z:UU™G K , L is real
analytic and that:

Z u gF u ;u 22Ž . Ž . Ž .
LŽ .Let z , . . . , z be a family of N Õectors in R with rank at least K and such1 N

that:
N

z sZ u 23Ž . Ž .Ý n
ns1

z gu ;n 24Ž .n

( )Then, there exists N real analytic maps z u , defined in some neighbourhoodn

of u , and for each n a real analytic function U , defined in some neighbourhoodn

of z and concaÕe in that neighbourhood, such that:n

z u sz 25Ž . Ž .n n

N

z u sZ u ;u 26Ž . Ž . Ž .Ý n
ns1

<;n ,u z u sArgMax U z zgF u 27� 4Ž . Ž . Ž . Ž .n n

Some comments are in order.
First, since a family of N vectors is required to have rank K , we must have

NGK : the number of agents must at least as large as the dimension of the space
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of feasible trades. In the case of complete markets, for instance, KsLy1, and
Ž .Ly1 agents are needed.

Ž . Ž .However, in the particular case where markets clear, that is Z u s0, Eq. 23
translates into a non-trivial linear relation between the z . For the family to havek

Ž . Ž .rank K , there must now be at least Kq1 of them. So, if Z u s0, the theorem
requires in fact that NGKq1.

Finally, there is an assumption of real analyticity, which means that the
corresponding functions can be represented by convergent power series in some
neighbourhood of every point. Although we have no counter-example, and would
rather conjecture the theorem that holds in the C` case, its proof relies on an

Ž .existence result for partial differential equations the Cartan–Kahler theorem¨
which is known to be false in the C` case.

Ž . XŽ .In the example we have given risk-trading , we must take LsL Sq1 and
XŽ .KsL Sq1 ySqMy1. Theorem 1 will then hold, provided the map F is

Ž .analytic and non-degenerate. If this is the case, the local disaggregation of the
XŽ .demand function will require at least L Sq1 ySqMy1 agents, one more if

the market is required to clear.
ŽLet us point to related work. The recent papers of Bottazi and Hens for the

. Ž . Žcase when assets yield real returns and Gottardi and Hens 1995 for the case
.when assets yield nominal returns, as in the example given here , for instance,

analyse the linearized situation: they show, for any given matrix A of suitable
dimension satisfying the natural restrictions arising from homogeneity and the
Walras law, how to build an incomplete market such that A is the Jacobian of its
excess demand function at a prescribed point. This, of course, is a weaker result
than the one we state here.

Note that the individual utility functions we find do not have the standard von
Neumann–Morgenstern form. The question whether it is possible to solve disag-
gregation problems with expected utility models will be studied in a forthcoming
paper.

We shall now proceed to the proof of Theorem 1. This proof draws heavily on
the exterior differential calculus of Elie Cartan. An exposition can be found in

Ž .Cartan himself see Cartan, 1945 for instance , or in the excellent work of Bryant
Ž .et al. 1991 , which is much more appropriate for a modern reader. Other

applications, and a description on the Cartan–Kahler theorem, can be found in¨
Ž .Chiappori and Ekeland 1996 .

2. Proof of Theorem 1

2.1. Recasting the problem

The proof splits in two unequal parts. We first reduce the given problem to a
geometrical one, by introducing a new set of parameters instead of the given ones
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Ž .u , . . . , u . We then solve the geometric problem by using the heavy machinery1 T

of exterior differential calculus.
We begin by casting the given problem into a standard, geometrical form. Since

Ž . ŽF is non-degenerate, if TsK LyK , it is a local diffeomorphism. If T-K L
. Ž .yK , it follows from the implicit function theorem that TyK LyK new

Ž . Ž .parameters s , . . . , s can be found so that u , s is a local coordinateK Ž LyK .q1 T
K , L Ž .system on G around F u . In other words, there is a local diffeomorphism C

K Ž LyK .ŽŽ . Ž .of some neighbourhood of u , 0 in R onto some neighbourhood of F u
K , L Ž . Ž .in G such that C u ,0 sF u for all u .

Ž .We then extend Z to an analytic map Y defined on a neighbourhood of F u

in G K , L by setting:

Y u ,0 sZ u 28Ž . Ž . Ž .
and we then define:

X u ,s sP Y u ,s 29Ž . Ž . Ž .C Žu ,s .

Ž . L Ž .where P is the orthogonal projection on C u ,s in R If TsK LyK ,C Žu ,s .
XsZ.

We can make the notation a little bit easier, by writing:

C u ,s sP 30Ž . Ž .
and by using directly P in G K , L as our new variable, instead of the local

Ž . Ž . Ž .coordinates u ,s recall that C is a local diffeomorphism . Eq. 29 then
becomes:

X P sP Y P 31Ž . Ž . Ž .P

We have thus defined an analytic map X of some neighbourhood VV;G K , L of
LPsC u ,s into R with the properties that:Ž .

X P gP ;PgVV 32Ž . Ž .
Z u sX F u ;ugUU 33Ž . Ž . Ž .Ž .

Ž .If one can decompose X into a sum Ý x , with x P gP for all PgVV ,n n n
Ž . Ž Ž .. Ž .then, setting z u sx F u , we get a decomposition of Z such that z u gn n n

Ž .F u for all u . We are thus led to a purely geometric problem: given a smooth
Ž . Ž .map X :P™X P such that X P gP for every P , find smooth maps

Ž . Lx :P™x P and smooth concave functions U on R such that:n n n

N

X P s x P 34Ž . Ž . Ž .Ý n
ns1

< Lx P sArgMax U x xgR ;PgVV 35Ž . Ž . Ž .� 4n n

In other words, in every K-dimensional linear subspace P in the RL, we are
Ž .given a point X P . We want to find N concave functions U such that, for everyn
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Ž .K-plane P , the vector X P is just the sum of the N points obtained by
maximizing each U on P .n

2.2. Recasting the result

We solve the preceding problem locally. The result, given in Theorem 2 below,
implies Theorem 1 by the preceding discussion

Theorem 2. Assume that we are giÕen an analytic map X from some neighbour-
K ,L Lhood of P in G into R such that:

X P gP ;P 36Ž . Ž .
K , L L( )Take PgG , and let x , . . . , x be a family of N Õectors in R with rank at1 N

least K and such that:
N

x sX P 37Ž . Ž .Ý n
ns1

x gP ;n 38Ž .n

( )Then, there exists N real analytic maps x P , defined in some neighbourhoodn

of P , and for each n a real analytic function U , defined in some neighbourhoodn

of x and concaÕe in that neighbourhood, such that:n

x P sx 39Ž . Ž .n n

N

x P sX P ;P 40Ž . Ž . Ž .Ý n
ns1

<;n ,P x P sArgMax U x xgP 41� 4Ž . Ž . Ž .n n

We now proceed to prove Theorem 2. Let us first choose a coordinate system
K , LŽ .p , 1FkFK LyK for G near P . In other words, we are given a set of realk

K Ž LyK . Lanalytic maps f from a neighbourhood UU of p in R into R , with thei

property that the map F :U™G K , L defined by:

L
l<F p s x f p x s0 ; i 42Ž . Ž . Ž .Ý i , l½ 5

ls1

Ž .is a diffeomorphism, with F p sP .
Ž .There is no loss of generality in assuming that the set of p sf p defining Pi i

is orthogonal, and we can even choose them as the first LyK vectors in a basis
for RL. That is, we may assume that:

f p s 1 if ls iFLyKŽ .i , l 43Ž .
s 0 otherwise
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Ž . Ž Ž ..For the sake of simplicity, let us write X p instead of X F p . The problem
Ž . Ž .then is to find maps x p and concave functions U x , such that:n n

lx p sx ;n 44Ž . Ž .n n

N
l lx p sX p ;l ,pgUU 45Ž . Ž . Ž .Ý n

ns1

L
l<;n ,pgUU , x P sArgMax U x f p x s0, ; i 46Ž . Ž . Ž . Ž .Ýn n i , l½ 5

ls1

2.3. An exterior differential system

Ž .Taking into account the fact that U is required to be concave, Eq. 46 isn
i Ž .equivalent to the existence of positive functions l p , defined in UU, such that:n

LyK EUnil f s 47Ž .Ý n i , l lE xis1

with of course, for every n:
L

lf x s0, ; i ,n 48Ž .Ý i , l n
ls1

Ž .By the Poincare lemma, Eq. 47 can be rewritten as follows´
N

il f sy 49Ž .Ý n i , l n , l
is1

with:

d y n d x l s0 50Ž .Ý n , l n
l

Ž .This is the first time we have written an exterior or wedge product in this
Ž .paper. In the language of exterior differential calculus, Eq. 50 expresses the fact

Ž . Ž . Ž . Ž .that the cross-derivatives E y r Ex and E y r Ex are equal. From now on,n m m n

we shall use extensively the machinery of exterior differential calculus, as
Ž . Ž Ž .described in Bryant et al. 1991 see Chiappori and Ekeland 1995 for a short

.review .
l i ŽSummarizing, we are looking for functions x , l )0, y of p , . . . ,n n n, l 1

Ž .. Ž . Ž . Ž . Ž .p LyK satisfying Eqs. 44 , 45 , 48 – 50 . Let us reformulate the problemK

as an exterior differential system.
Consider the space EEsRK Ž Ly K .qNLqNLqNŽ Ly K . with the following coordi-

nates:
l i <EEs p , x , y ,l 1FkFK LyK ,Ž .� Ž .k n n , l n

1FnFN , 1F lFL, 1F iFLyK 51Ž .4
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In the space EE, we define a subset MM by the set of equations:
N

l lx sX p ;l 52Ž . Ž .Ý n
ns1

L
lf p x s0, ; i ,n 53Ž . Ž .Ý i , l n

ls1

LyK
il f p sy , ;n ,l 54Ž . Ž .Ý n i , l n , l

is1

Ž .Since X P gP ;P , we must also have
L

lf p X p s0, ; i 55Ž . Ž . Ž .Ý i , l
ls1

Ž . Ž .Ž .so that the last LyK equations in Eq. 53 follow from the Ny1 LyK
preceding ones. The remaining equations are clearly independent, so that MM is an

Ž .Ž .analytic submanifold of codimension Lq Ny1 LyK qNL in EE.
Ž .In MM and not in EE , we consider the exterior differential system:

d y n d x l s0 ;n 56Ž .Ý n , l n
l

dp n . . . ndp /0 57Ž .1 K Ž LyK .

From the definitions, the following lemma is evident.

( ) ( )Lemma 1. Any integral manifold of the exterior differential system 56 , 57 on
l ( ) ( ) i ( ) ( ( ))MM is the graph of functions x p , y p , l p )0, of p , . . . , p LyKn n ,l n 1 K

( ) ( ) ( ) ( ) ( )satisfying Eqs. 44 , 45 , 48 – 50 . One can then find functions U x satisfyingn
( )Eq. 46 and such that:

EUn
y p s x p 58Ž . Ž . Ž .Ž .n , l nlE x

We shall now apply the Cartan–Kahler theorem, as in Chiappori and Ekeland,¨
l iŽ .and show that through any point p , x , y , l in MM there is an integralk n n, l n

l Ž . Ž . Ž . Ž .manifold. This will give us functions x p and U x satisfying Eqs. 44 – 46 .n n

In addition, we shall prove that the matrix of second derivatives

E 2Un

l kE x E xn n

is negative definite at x , which will prove that the function U is concave inn n

some neighbourhood of x . Theorem 2 then follows.n

Finding integral manifolds by the Cartan–Kahler theorem is a two-step proce-¨
dure. One first shows that the linearized equations at the given point have a



( )P.-A. Chiappori, I. EkelandrJournal of Mathematical Economics 31 1999 111–129122

solution. One then has to compute the codimension of the space of solutions in
two different ways to check that it gives the same result.

2.4. SolÕing the system: finding integral elements

Ž . Ž .The systems 56 , 57 are clearly closed. To apply Cartan–Kahler, we have to¨
l iŽ .find all the integral elements through p , x , y , l satisfying dp n . . . nk n n, l n 1

Ž . Ž .dp /0. For this purpose, we differentiate Eqs. 52 – 54 :K Ž Ly K .

d X l s d x l 59Ž .Ý n
n

0s df x l qf d x l 60Ž .Ž .Ý i , l n i , l n
l

dy s f dli qli df 61Ž .Ž .Ýn , l i , l n n i , l
i

and we substitute the equations:

d x l s Al ,kdp 62Ž .Ýn n k
k

dli s B i ,kdp 63Ž .Ýn n k
k

Ž .As for d y , by a celebrated lemma of Cartan, Eq. 56 holds if and only ifn, l

there exists L=L matrices C , 1FnFN, which are symmetric:n

C X sC X 64Ž .n , l , l n , l , l

and satisfy:

d y s C X d x lX

65Ž .Ýn , l n , l , l n
Xl

Ž . Ž . Ž . Ž . Ž .Substituting relations 62 , 63 and 65 into Eqs. 59 – 61 , we get the
equations:

E X l
l ,kA s ;l ,k 66Ž .Ý n Ep kn

Efi , ll ,k lf p A sy x , ; i ,n ,k 67Ž . Ž .Ý Ýi , l n n Ep kl l

EfX i , ll ,k i ,k i
XC A y f B s l ;n ,l ,k 68Ž .Ý Ý Ýn , l , l n i , l n n

X Ep kl i i

The intuitive significance of this set of linear equations is clear: they give the
l Ž . Ž .derivatives of the solutions we are looking for. More precisely, if x p , y p ,n n, l
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i Ž . Ž . Ž . Ž .l p )0 and solves the non-linear system 52 , 53 , 54 , and if there is an
Ž . Ž . l,k Ž l . Ž .function U such that y s EU r Ex , then the derivatives A s Ex r Ep ,n n, l n l n n k

i,k Ž i . Ž .B s El r Ep andn n k

E 2Un
XC s Xn , l , l l lE x E xn n

Ž . Ž .must satisfy Eqs. 66 – 68 .
The solutions of this set of linear equations are the so-called integral elements

Ž . Ž .of the exterior differential system 56 , 57 . Our first task is to show that they
exist, that is, that the linearized system can be solved. This is the content of the
next Lemma, the proof of which will occupy the rest of this subsection.

( ) ( ) l,k i,k
XLemma 2. The system of linear Eqs. 66 – 68 in A , B and C has an n n, l, l

solution such that eÕery matrix C is symmetric and negatiÕe definite.n
Ž . Ž .Let us rewrite Eqs. 66 – 68 in matrix form. With obvious notations, we have

Ž .we do not write the right-hand sides: they just obscure the argument

A s 69Ž .Ý n
n

f A s 70Ž .i n

C A y f B i
)s 71Ž .Ž .Ýn n i n

i

Ž i . Ž i .k Ž .By B ), we denote the transpose of the vector B , 1FkFK LyK ,n n
K Ž LyK . Ž .which is a linear functional on R . The second term on the left of Eq. 71 is

a sum of rank-one operators, each of which has a range generated by one of the
Ž .f . Thus, Eq. 71 means simply that, up to a translation by a known vector, thei

range of C A is contained in the linear span of the f , 1F iFLyK. We losen n i

no information by projecting on a complementary subspace.
Ž . Ž .As we noted in the beginning, the f p sp are the first LyK basisi i

L Ž .vectors in R . We can complete the basis with vectors p , LyKq1 F jFL.j
Ž .Projecting Eq. 71 on the subspace generated by the p , and writing the resultj

Ž .together with Eq. 70 , we get:

I ,0 A s 72Ž .Ž .Ž .LyK n

0, I C A s 73Ž . Ž .K n n

Ž . Ž .where I and I denote the LyK = LyK and K=K identity matrices.Ž Ly K . K
Ž .Eq. 73 can be rewritten as follows:

ˆM ,C A s 74Ž .Ž .n n n
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where C , is the K=K matrix in the lower right corner of C :n nˆ

C M )n n
C s 75Ž .n ˆž /M Cn n

Ž . Ž .It is now possible to write Eqs. 72 and 73 together:

I 0Ž .LyK
A s 76Ž .nˆž /M Cn n

ˆIf C , and hence C , is negative definite, the matrix on the left is invertible,n n

and its inverse is easily computed to be:
y1

I 0 I 0Ž . Ž .LyK LyK
s 77Ž .y1 y1ˆ ˆ ˆž / ž /M C yC M Cn n n n n

Ž .Now is the time to write the right-hand side of Eq. 76 . It is:

Efi , llyÝ x 0 0 , 1F iFLyKŽ . Ž .l n Ep k
D s 78Ž .n Efi , liÝ l 0 0 , lGLyKq1Ž . Ž .� 0i n Ep k

Ž . Ž .We now solve Eq. 76 and write the result in Eq. 69 . We are left with a
ˆ y1single equation in C :n

I 0 lE XŽ .LyK
D s , 1F lFL,1FkFK LyK 79Ž . Ž .Ý ny1 y1 ž /ˆ ˆž / EpyC M C kn n n n

We have to check that the first LyK equations are automatically satisfied.
Ž .This is done by differentiating Eq. 55 at ps0. We get:

Ef E X l
i , llX q f s0 80Ž .Ý Ý i , lEp Epk kl l

Ž . Ž . Ž .Recall from Eq. 43 that f 0 sd Kronecker symbol , so that the lasti, l i, l
Ž l. Ž .Ž .term in the preceding equation reduces to EX r Ep 0 . Substituting in the firstk

Ž .LyK equations of Eq. 79 yields:

Ef Efi , l i , ll lyÝ x 0 0 s yÝ X 0 0Ž . Ž . Ž . Ž .n , l n lEp Epk k
81Ž .iE X

s 0Ž .
Ep k

as desired.
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Ž .We are left with the last K equations in Eq. 79 . Splitting D horizontally:n

D1
n

D s 82Ž .n 2ž /Dn

we end up with:

ˆ y1 1 2C yM D qD sR 83Ž .Ž .Ý n n n n
n

2 Ž . 1 Ž . Ž .where R and D are K=K LyK matrices and D is LyK =K LyK . Alln n
Ž .these matrices are given, and we have to solve for the K= LyK matrix M n

and the symmetric, negative definite K=K matrix Cy1.n̂

To prove that this procedure is possible, we need a lemma. Let us first
introduce some notation. Set

Ms M , . . . ,M gRNK Ž LyK . 84Ž . Ž .1 N

and define a map C from RNK Ž LyK . into RŽ LyK .K K by:

C M s Q M D1 85Ž . Ž .Ý n n n
n

( ) ( )Lemma 3. Assume NGK and the N LyK =K LyK matrix D defined by

1 < 1 < < 1Ds D D PPP D 86Ž .Ž .1 2 N

( )has rank K LyK . Assume also that all the Q are inÕertible. Then C is onto.n

Proof. Without loss of generality, we may assume that Q s I for every n. Indeed,n
y1 Ž . Ž .setting M sQ M and C M sC M , we haven n n

1C M s M D 87Ž . Ž .Ý n n
n

˜Since M™M is an isomorphism, C is onto if and only if C is onto.
The map D sends RK Ž LyK . into RNŽ LyK .. By assumption, it is one-to-one. Set
Ž K Ž LyK .. K Ž LyK .D R sAA, so that R can be identified with its image AA.
Any map from RNŽ LyK . into RN K can be put in the form

X , . . . ,X ™ M X , . . . ,M X 88Ž . Ž . Ž .1 N 1 1 N N

Ž .with suitable K= LyK matrices M , 1FnFN. It follows that any map fromn

AA into RK can be put in that form, and hence that any map from RK Ž LyK . into RK

Ž .can be written as C M , for a suitable choice of M. This means that C is onto, as
desired.

Ž . Ž .We now solve Eq. 83 . Choose any family Qs Q , . . . , Q with the Q1 N n
ˆ y1symmetric, negative definite, and set C sQ . So the Q are invertible. Goingn n n
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1 Ž Ž ..back to the definition of the D Eq. 78 , and remembering that the family x ,n n
Ž .1FnFN has rank K , we find that D has rank K LyK . We then apply lemma
ˆ3 to find the corresponding M . This gives us the C and the M . Going back ton n n

Ž .Eq. 75 , we leave it to the reader to show that the C can be found to completen

C into a symmetric, negative definite matrix.n

This concludes the proof of Lemma 2.

2.5. Computing the Cartan characters

The next step in applying the Cartan–Kahler theorem, in accordance with the¨
procedure described in Sec. 4.5 of Chiappori and Ekeland, is to compute the
Cartan characters and compare them with the codimension of the manifold of

Ž .integral elements in the Grassmannian manifold of tangent K LyK -planes to
MM.

Ž .Ž .As noted above, the manifold MM has codimension Lq Ny1 LyK qNL
in EE. Its dimension then is:

Ž . Ž . Ž .dim MM s dim EE ycodim MM

Ž . Ž . Ž .Ž .s K Ly K q NLq NLq N Ly K y Ly Ny1 Ly K y NL 89Ž .
Ž .s K Ly K q NLy K

Ž .At every point ms p , x, y, l in MM, the dimension of the Grassmannian
Ž .manifold of K LyK yplanes in T MM then is:m

K LyK K LyK qNLyKyK LyK sK LyK NLyKŽ . Ž . Ž . Ž . Ž .Ž .
90Ž .

On the other hand, at every point m of MM, the integral elements in T MM arem
Ž . Ž . Ž .defined by the matrices A , B and C written in Eqs. 62 , 63 and 65 .n n n

The C have to be symmetric. Their lower right and upper left parts C and Cn n nˆ
Žhave to satisfy open conditions i.e., to be negative definite, with sufficiently large

. Ž .eigenvalues in the case of C . The lower left or upper right parts M have ton n
Ž . Ž .satisfy Eq. 83 , which boils down to KK LyK linearly independent equations

Ž .in NK LyK variables. So the number of degrees of freedom allowed in the
choice of the C ends up being:n

NL Lq1Ž .
yKK LyK 91Ž . Ž .

2

Ž . ŽOnce the C are chosen, the A are determined by Eq. 76 no degree ofn n
. Ž .freedom allowed . The B , on the other hand, have to satisfy Eq. 71 , which isn
Ž . Ž . Ž .really a set of K LyK NL linear equations for K LyK N LyK unknowns.

Ž .A compatibility condition is required, so that the right-hand side of Eq. 71
Ž .belongs to the range of the left-hand side, and this is precisely Eq. 73 . Once this
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Ž . Ž .condition is satisfied, K LyK NK of the Eq. 71 become redundant, and we are
Ž . Ž . Ž . Ž .left with a system of K LyK N LyK equations for K LyK N LyK

unknowns, which are thus fully determined. So there is no degree of freedom
allowed in the choice of the B either.n

Finally, the number of degrees of freedom allowed in the choice of an integral
Ž .element in T MM is given by Eq. 91 . So the codimension of the manifold ofm

Ž .integral elements in the Grassmannian is found by subtracting Eq. 91 from Eq.
Ž .90 . We get:

NL Lq1Ž .
K LyK NLyK y qKK LyKŽ . Ž . Ž .

2

NL Lq1Ž .
sK LyK NLy 92Ž . Ž .

2

We now proceed to computing the Cartan characters. Fix a point ms
Ž .p , x, y, l in MM. Let us first describe a coordinate system for the cotangent space

)T MM.m
) ) Ž . Ž .The cotangent space T MM is defined as a subspace of T EE by Eqs. 59 – 61 .m m

As we mentioned earlier, there is no loss of generality in assuming that the
LŽ . Ž . Ž Ž ..p sf p are the first LyK vectors of the chosen basis in R Eq. 43 .i i

Ž . Ž . Ž .Writing Eq. 43 into Eqs. 59 – 61 , we get

d X l s d x l
;l 93Ž .Ý n

n

Efi , ll i0s x dp qd x ;n , ; iF LyK 94Ž . Ž .Ý Ýn k nž /Ep kl k

Efi , ll id y sdl q l dp ;n , ;lF LyK 95Ž . Ž .Ýn , l n n kEp ki ,k

d y s li df ;n , ;lG LyKq1 96Ž . Ž .Ýn , l n i , l
i

Ž . lIt follows from Eq. 94 that the d x , for lFLyK , can be computed from then
Ž . l ldp . In addition, Eq. 93 tells us that the d x can be computed from the d x ,k N n

Ž . Ž .1FnFNy1 and the dp . Similarly, Eqs. 95 and 96 gives the d y in termsk n, l
l Ž . Ž . Žof the dl and the dp . Finally, we are left with K Ny1 qK LyK q Lyn k

.K N independent 1-forms

d x l , nFNy1, lGLyKq1 97Ž .n

dll , dp 98Ž .n k

)which provide us with a basis for T MM.m

As we mentioned earlier, at every point m of MM, the integral elements in T MMm
Ž . Ž . Žare defined by the Eqs. 59 – 61 we are not claiming that they are linearly
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.independent . Fix such an integral element E, that is, prescribe values for the
matrices A , B and C . Since the C are symmetric, we may rewrite the exteriorn n n n

Ž .differential system 56 as follows:

0 s Ý d y n d x l
l n , l n

Xl l
X Xs Ý d y yÝ C d x n d xŽ .l n , l l n , l , l n n

99Ž .Xl l l ,k
X Xs Ý d y yÝ C d x n d x yÝ A dpŽ . Ž .l n , l l n , l , l n n k n k

Xl l ,k
X XqÝ d y yÝ C d x n Ý A dpŽ . Ž .l n , l l n , l , l n k n k

Set v sd y yÝ ,C X d x lX

, so that this last equation can be rewritten as:n, l n, l l n, l, l n

0s v n d x l y Al ,kdp q v n Al ,kdp 100Ž .Ý Ý Ý Ýn , l n n k n , l n kž / ž /
l k l k

l ŽNote that, for lFLyK , v contains a term in dl and is the only one to don, l n
. lso , while for lGLyKq1, v contains terms in d x , nFNy1, lGLyKq1n, l n

Ž .and terms in dp , kFK LyK . It follows from the above, and from thek
Ž .properties of the matrix C , that the v , nFN, lFL and K LyK yK of then n, l

)dp are linearly independent, and can be completed into a basis of T MM.k m

The dimension of the space generated by the v is NL. In accordance with then, l
.procedure described in Sec. 4.5 of Chiappori and Ekeland , we compute the Cartan

characters:

c s0 101Ž .0

c smN ;mFL 102Ž .m

c sNL;mGL 103Ž .m

We have:

Ž .K LyK y1 L Lq1Ž .
c sN q K LyK y1yL NL 104Ž . Ž .Ž .Ý m 2ms0

Ž . Ž .Comparing Eqs. 92 and 104 , we see that they are equal. This means that all
Ž .points ms p , x, y, l in MM are ordinary, so that the Cartan–Kahler theorem¨

holds.

2.6. Conclusion

We have proved that, for every integral element at m, that is, every choice of
A , B and C , there is an integral manifold of the exterior differential systemN n n
Ž . Ž .56 . Eq. 57 , having E as tangent space at m. By lemma 1, any such integral

l Ž . Ž . i Ž . Žmanifold provides us with functions x p , y p , l p )0, of p , . . . ,n n, l n 1
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. Ž . Ž . Ž . Ž . Ž .p satisfying Eqs. 44 , 45 , 48 – 50 , and with functions U x satisfy-K ,Ž Ly K . n
Ž . Ž .ing Eqs. 46 and 58 . Differentiating the latter equation at x , we get:n

E 2Un
Xx sC 105X Ž .Ž .n n , l , ll lE x E x

Since the matrices C are negative definite, the functions U are strictlyn n

concave in a neighbourhood of x . This concludes the proof.n
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