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SOME LEMMAS ABOUT DYNAMICAL SYSTEMS

1. EKELAND

0. Introduction.

The following is an attempt to show how the following theorem (Ekeland
[2]) can be used in the theory of dynamical systems.

THEOREM 0. Let X be a complete metric space, F: X — RU{+ 00} a lower
semicontinuous function, bounded from below. Let there be given some >0 and
some point x, € X with F(x,)<Inf F +¢. Then, for every o.>0, some point X € X
can be found such that

F(® < F(x,)
d(x,x) £ o

Vxex, F(x)2 F(i)—gllx—fcll .

One would take oz=]/; for instance.

We refer to [2] and [3] for details.

Brezis and Browder ([1]; see also [3]) have used a related result to study the
existence of a flow on a closed subset and prove global estimates. Here we use
theorem O directly, and we prove two classical results on the existence of closed
orbits.

Section 1 provides a relatively new proof of the shadowing lemma.

Section 2 proves that if some neighbourhood of Q(f) is hyperbolic, then
periodic solutions are dense in Q(f). The argument does not rely on
compactness, and the result may be new in that generality.

The author wishes to thank Professors Moser and Moeckel for initiating this
research.

I. Shadowing lemma.

We begin by providing a new proof of Theorem 3.5 p. 29 in Newhouse’s
lectures. Notations and definitions as in Newhouse [4].
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Recall that a hyperbolic set A has a local product structure if there is an ¢>0
such that Wi(x)N W%(y)c= A for all x and y both in A. Here

Wix) = {xe M| d(f"(x), /"(x))<e,  all 120}
Wiy = {y e M| d(f"0). f"(")Se,  all n<0} .
A sequence {x,}, n € Z, is a d-pseudo-orbit if d(x,, f(x,_,)) S for all n; it is

¢-shadowed by an orbit {X,}, n € Z, if f(x,, x,)<¢ for all n.

THEOREM 1. Suppose M is a manifold, and A is a compact hyperbolic set for
f: M — M with a local product structure. For every ¢>0 there is a >0 such
that every é-pseudo-orbit in A can be e-shadowed by an orbit in A.

ProOF. As pointed out in Newhouse, it is enough to shadow /N pseudo-
orbits, for some N > 1. The hyperbolicity constant for f~ will be AV.
Let S= A% be the space of all sequences in A, with the [* metric

d({x,},{ya}) = Sup {d(xpy) | neZ}.
It is a complete metric space. We define a function F: S — R as follows
Fix,} = Sup{d(x,, f(x,-1)) | neZ}.
Let {y,} be a §-pseudo-orbit. We have
F({y}) = 6.
Let £>0 be given. By Theorem 0, there will be some point {x,} € S such that
(@) F({x.}) £ 6,
) d({x.}.{n}) £ €,
@) F({x,}) 2 F{x,)—de 'd({x,},{x,}), all {x)eS§.

Since {x,} belongs to S, X, belongs to A for every n. By condition (), we have
d(x,,y,) <¢ for every n. All that remains to show is that X, is an orbit, i.e. F{X,}
=0.

Because of the compactness of M and the hyperbolic structure of A4, for any
constants ¢>1 and 7 >0, some §,>0 can be found such that, whenever d(x, y)
<46, with x and y in A, we have the situation in the next picture.

There is a single point z such that

zZE W}‘,(x) n W,()
d(x,z) < cd(x,y)
d(y,z) £ cd(x,y) .
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z _ A y‘
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For any y' € W*(y) with d(y,y')<d,/5, there is a single point 2z’ such that
Z e W,(y) N Wi(x)
d(z,2) £ cd(y,y)
d(Z,y) £ cd(z,y) .

Assume 8 £ 6,. For each n € Z, set x=f"(x,_,) and y=Xx,; then define z,=z.
Set y'=f"N(z,+,); since z,,, € Wi(f"(%,), we have y’ € W;()) and

d(y9y,) = d(xmfN(zn-fl)) § A—N" .
Assume N is so large that ANy < §,/5, so that we can define z,=2" as above.
We know x, belongs to A for every n. Then so does f N(x,_,), since A4 is fN-
invariant, so does z, by the local product structure, so does f ~¥(z, . ;) since A is

fN-invariant, and finally so does z, by the local product structure.
For each n € Z, we have:

d(zp, %) < d(z V(20 s )+ (20s 1) %)
< cd(z,, %)+ A My
< co+4 Ny
d(zyr 1 SNZ) < ANp  since z, € Wi(f Nz ) -

The sequence {z,} belongs to S, and we can test condition (y), which is
supposed to hold for all {x,} in S, at {z,}. We get
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ANy 2 F({x,})—de71(cd+ANp)
F({x,}) < 6(e 'cd+A Ve )+ A Ny = D(§).
Once the constants €>0, ¢>1, and >0 have been chosen, we can associate
with them 8,>0 and N such that whenever 6 <4d,, we can find a D(d)-pseudo-

orbit x,, n € Z, in A ¢-shadowing {y,}. Letting & — 0, we have D(5) — 0, and
taking cluster points of the x,, we get an actual orbit in A ¢-shadowing {y,}.

II. Periodic orbits are dense in Q(f).

Now M is a complete Riemannian manifold, possibly infinite-dimensional,
and f: M — M a C' map. We do not require it to be invertible. We endow M
with the geodesic distance d.

THEOREM 2. Assume z € M is non-wandering. Then, for all ¢> 0, there is some
x € M and n21 such that:

(1) d(x,z) < 2
() d(f"(x),2) < 2
(©) II=D fH*n -0l = eln—<Il ,
where n and ¢ in T.M, and D, € £ (T M), are defined by:
expé = x
expn = f"(x)

D f" = (T,exp)” (T f")(T¢exp)
and exp: T,M — M is the exponential map at z.

Proor. Let £> 0 be given. Since z is non-wandering, there is some y € M and
nz=1 such that

d(y,z) £ ¢ and d(f"(y),z) < &*.
Define a function F: M — R, by
F(x) = d(x, f"(x)) .
By Theorem 0, there will be some point x such that
F(x) £ F() s &
d(x,y) < ¢
F(x) 2 F(x)—ed(x',x), all xXeM.
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The two first conditions obviously imply (1) and (2)
d(x,2) £ d(x,y)+d(y,2) < e+¢°
d(f"(x),z) £ F(x)+d(x,2) £ e+2¢*.

We now use the exponential map at z as a local chart around z. We replace x
by exp 'x=¢&, f*(x) by exp !f"(x)=n, and f" by exp lof"oexp=gp. The
Taylor expansion for ¢ near £ now is

e(€+0) = n+D f"(+0(D),

where o({) denotes second-order terms.
Rewrite the third condition with x’'=exp (£ +(). We get

d(exp (¢ +0),expe(l+{)) = d(exp{,expe(&))—ed(expé, exp (E+0)) .

Writing in first-order expansions, this becomes

I€+C=n—=Df"Cll Z IE—nll—&llll+0() .

If £=n, condition (3) holds trivially. If & %#, the right-hand side is positive for
small enough {, and we can square both sides. We get

20=D.f"C,¢—n) =2 —2&|lllIE—nl+0(0)
(I=DgfM*(n—8),0) < ellllin—=&l+0(0) .
Letting { — 0, we get the desired result.

If £=n, x is a periodic point for f. If £+#, condition (3) means that the
geodesics from x to f"(x) is almost an eigenray of (I — D, f")* associated with
the eigenvalue one.

We shall now assume that f is hyperbolic in a neighbourhood of z. This
means that, for all x near z, there is a splitting of T, M into E5® E%, depending
continuously on y, and f-invariant, such that

VEe E, T M < A7"Ell,  all n21,
V{eE, Tl 2z A7"[Lll, allnz1,
for some constant A>1. No generality is lost in assuming E5 and E* to be

orthogonal (change the Riemannian structure accordingly).

COROLLARY. Assume f is hyperbolic in a neighbourhood of z. Then there is a
sequence of periodic points x, converging to z.

PRrOOF. Setting e=p~!, we get sequences x, — z and n,21 such that
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d(x,, f™(x,) — 0

(*) I =Dy, f")*(n,— M < ln,—E,lp~"

with x,=exp ¢, and f"(x,)=expy,.
If the sequence n, is bounded, the first condition will imply that z itself is a

periodic point. If n,=¢, for an infinite number of p, the corresponding x, are
periodic, and the result is proved.

Assume then n, — oo and n,% ¢, for all p. Define w,= (np——é,,)llnp—f,,ll”,
so that w, is unitary. Set y,=f"(x,), and define

E, = (Texp) 'E5, and Ej = (Texp;")E%
F, = (Texp,) 'E;, and Fj = (Texp, ")E) .
Since the splitting E@E%Y of T .M arising from the hyperbolic structure
depends continuously on x, the subspaces E; and F; converge to the subspace
(Texpo) ™ 'E§ when p — ooc. Similarly E% and F}, have a common limit.
Analysing the hyperbolic structure in the local chart provided by exp, we see

that Dxp " sends Ej onto Fj, and E}, onto Fj,. Moreover, for some constant c,
with ¢=1, we have

{eE, = D f"eF, and |D,f"(| z ¢ 'A"|{|
ek, = D, f"eF, and |D,f"|| £ cA™™|{] .

Now (D, f™)* is going to have the same properties as (D, "), with E}, E}, F},
and F;, replaced by isomorphic subspaces (Ep)*, (E})*, (F)*, and (F3)*. If now
we split w, into wj+w}, with w} e (E})* and w, € (E})*, we have

vh = (Df")*whe (F9* and  [ob| 2 ¢ 'A%|wi

(Df™)*wp € (F)*  and 3]l £ cA™™|wyll £ cA™".

we ww

il

v
But remember condition (*), we have

loP—wP| < p~t.
Hence

vpll = lopll + v, —wyll + [Iw,ll
cTIam|wyll = cAypT iy,

It follows that ||w}| — 0 when p — o0o. On the other hand, since ||v} | <ctum,
we will also have |v}|| — 0. This will enable us to study wj,

We have w,=v,+{ with ||{]| <p L So w3, is the component in (E3)* of the
vector v, +{. Since the (F)* component of this vector is known, namely v} +},
with {5 — 0, and the subspaces (E})* and (F7)*, as well as the subspaces (E})*
and (E})*, have a common limit, we get
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Iwpll £ 201051l + 151 — 0 when p — o0

so both components of w, converge to zero, while ||w,|| =1 for all p. This is a
contradiction, and our assumption that n, — 0o and n,+¢, for all p must be
false. Hence the result.
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