SOME LEMMAS ABOUT DYNAMICAL SYSTEMS

I. EKELAND

0. Introduction.

The following is an attempt to show how the following theorem (Ekeland [2]) can be used in the theory of dynamical systems.

THEOREM 0. Let X be a complete metric space, $F: X \to \mathbb{R} \cup \{+\infty\}$ a lower semicontinuous function, bounded from below. Let there be given some $\varepsilon > 0$ and some point $x_0 \in X$ with $F(x_0) \leq \inf F + \varepsilon$. Then, for every $\alpha > 0$, some point $\bar{x} \in X$ can be found such that

$$\begin{split} F(\bar{x}) & \leq F(x_0) \\ d(\bar{x}, x) & \leq \alpha \\ \forall \, x \in x, \quad F(x) & \geq F(\bar{x}) - \frac{\varepsilon}{\alpha} \|x - \bar{x}\| \; . \end{split}$$

One would take $\alpha = \sqrt{\varepsilon}$ for instance.

We refer to [2] and [3] for details.

Brezis and Browder ([1]; see also [3]) have used a related result to study the existence of a flow on a closed subset and prove global estimates. Here we use theorem 0 directly, and we prove two classical results on the existence of closed orbits.

Section 1 provides a relatively new proof of the shadowing lemma.

Section 2 proves that if some neighbourhood of $\Omega(f)$ is hyperbolic, then periodic solutions are dense in $\Omega(f)$. The argument does not rely on compactness, and the result may be new in that generality.

The author wishes to thank Professors Moser and Moeckel for initiating this research.

I. Shadowing lemma.

We begin by providing a new proof of Theorem 3.5 p. 29 in Newhouse's lectures. Notations and definitions as in Newhouse [4].

Received January 13, 1982.

Recall that a hyperbolic set Λ has a local product structure if there is an $\varepsilon > 0$ such that $W^s_{\varepsilon}(x) \cap W^u_{\varepsilon}(y) \subset \Lambda$ for all x and y both in Λ . Here

$$W_{\varepsilon}^{s}(x) = \{ x \in M \mid d(f^{n}(x), f^{n}(x')) \leq \varepsilon, \quad \text{all } n \geq 0 \}$$

$$W_{\varepsilon}^{u}(y) = \{ y' \in M \mid d(f^{n}(y), f^{n}(y')) \leq \varepsilon, \quad \text{all } n \leq 0 \}.$$

A sequence $\{x_n\}$, $n \in \mathbb{Z}$, is a δ -pseudo-orbit if $d(x_n, f(x_{n-1})) \le \delta$ for all n; it is ε -shadowed by an orbit $\{\bar{x}_n\}$, $n \in \mathbb{Z}$, if $f(\bar{x}_n, x_n) \le \varepsilon$ for all n.

Theorem 1. Suppose M is a manifold, and Λ is a compact hyperbolic set for $f: M \to M$ with a local product structure. For every $\varepsilon > 0$ there is a $\delta > 0$ such that every δ -pseudo-orbit in Λ can be ε -shadowed by an orbit in Λ .

PROOF. As pointed out in Newhouse, it is enough to shadow f^N pseudo-orbits, for some N > 1. The hyperbolicity constant for f^N will be λ^N .

Let $S = \Lambda^{Z}$ be the space of all sequences in Λ , with the l^{∞} metric

$$d(\{x_n\}, \{y_n\}) = \text{Sup}\{d(x_n, y_n) \mid n \in \mathbb{Z}\}.$$

It is a complete metric space. We define a function $F: S \to \mathbb{R}$ as follows

$$F\{x_n\} = \sup \{d(x_n, f(x_{n-1})) \mid n \in \mathbb{Z}\}.$$

Let $\{y_n\}$ be a δ -pseudo-orbit. We have

$$F(\{y_n\}) \leq \delta$$
.

Let $\varepsilon > 0$ be given. By Theorem 0, there will be some point $\{\bar{x}_n\} \in S$ such that

$$(\alpha) F(\{\bar{x}_n\}) \leq \delta,$$

$$(\beta) d(\{\bar{x}_n\}, \{y_n\}) \leq \varepsilon,$$

$$(\gamma) F(\lbrace x_n \rbrace) \ge F(\bar{x}_n) - \delta \varepsilon^{-1} d(\lbrace x_n \rbrace, \lbrace \bar{x}_n \rbrace), \text{all } \lbrace x_n \rbrace \in S.$$

Since $\{\bar{x}_n\}$ belongs to S, \bar{x}_n belongs to Λ for every n. By condition (β) , we have $d(\bar{x}_n, y_n) \leq \varepsilon$ for every n. All that remains to show is that \bar{x}_n is an orbit, i.e. $F\{\bar{x}_n\} = 0$.

Because of the compactness of M and the hyperbolic structure of Λ , for any constants c > 1 and $\eta > 0$, some $\delta_0 > 0$ can be found such that, whenever $d(x, y) \le \delta_0$ with x and y in Λ , we have the situation in the next picture.

There is a single point z such that

$$z \in W_{\eta}^{u}(x) \cap W_{\eta}^{s}(y)$$
$$d(x, z) \leq cd(x, y)$$
$$d(y, z) \leq cd(x, y).$$

264 I. EKELAND

For any $y' \in W^{u}(y)$ with $d(y, y') \le \delta_0/5$, there is a single point z' such that

$$z' \in W_{\eta}^{s}(y') \cap W_{\eta}^{u}(x)$$
$$d(z', z) \leq cd(y', y)$$
$$d(z', y') \leq cd(z, y).$$

Assume $\delta \le \delta_0$. For each $n \in \mathbb{Z}$, set $x = f^N(\bar{x}_{n-1})$ and $y = \bar{x}_n$; then define $z_n = z$. Set $y' = f^{-N}(z_{n+1})$; since $z_{n+1} \in W^u_n(f^N(\bar{x}_n))$, we have $y' \in W^u_n(y)$ and

$$d(y,y') = d(\bar{x}_n, f^N(z_{n+1})) \leq \lambda^{-N} \eta.$$

Assume N is so large that $\lambda^{-N} \eta \leq \delta_0/5$, so that we can define $z'_n = z'$ as above.

We know \bar{x}_n belongs to Λ for every n. Then so does $f^N(\bar{x}_{n-1})$, since Λ is f^N -invariant, so does z_n by the local product structure, so does $f^{-N}(z_{n+1})$ since Λ is f^N -invariant, and finally so does z'_n by the local product structure.

For each $n \in \mathbb{Z}$, we have:

$$\begin{split} d(z'_{n}, \bar{x}_{n}) & \leq d(z'_{n}, f^{-N}(z_{n+1})) + d(f^{-N}(z_{n+1}), \bar{x}_{n}) \\ & \leq cd(z_{n}, \bar{x}_{n}) + \lambda^{-N} \eta \\ & \leq c\delta + \lambda^{-N} \eta \\ d(z'_{n+1}, f^{N}(z'_{n})) & \leq \lambda^{-N} \eta \quad \text{since } z'_{n} \in W^{s}_{\eta}(f^{-N}(z'_{n+1})) \; . \end{split}$$

The sequence $\{z'_n\}$ belongs to S, and we can test condition (γ) , which is supposed to hold for all $\{x_n\}$ in S, at $\{z'_n\}$. We get

$$\lambda^{-N} \eta \geq F(\{\bar{x}_n\}) - \delta \varepsilon^{-1} (c\delta + \lambda^{-N} \eta)$$

$$F(\{\bar{x}_n\}) \leq \delta(\varepsilon^{-1} c\delta + \lambda^{-N} \eta \varepsilon^{-1}) + \lambda^{-N} \eta = D(\delta).$$

Once the constants $\varepsilon > 0$, c > 1, and $\eta > 0$ have been chosen, we can associate with them $\delta_0 > 0$ and N such that whenever $\delta \le \delta_0$, we can find a $D(\delta)$ -pseudoorbit \bar{x}_n , $n \in \mathbb{Z}$, in Λ ε -shadowing $\{y_n\}$. Letting $\delta \to 0$, we have $D(\delta) \to 0$, and taking cluster points of the \bar{x}_n , we get an actual orbit in Λ ε -shadowing $\{y_n\}$.

II. Periodic orbits are dense in $\Omega(f)$.

Now M is a complete Riemannian manifold, possibly infinite-dimensional, and $f: M \to M$ a C^1 map. We do not require it to be invertible. We endow M with the geodesic distance d.

THEOREM 2. Assume $z \in M$ is non-wandering. Then, for all $\varepsilon > 0$, there is some $x \in M$ and $n \ge 1$ such that:

$$(1) d(x,z) \leq 2\varepsilon$$

$$d(f^n(x), z) \le 2\varepsilon$$

$$||(I-D_{\varepsilon}f^{n})^{*}(\eta-\xi)|| \leq \varepsilon||\eta-\xi||,$$

where η and ξ in T_xM , and $D_{\xi} \in \mathcal{L}(T_xM)$, are defined by:

$$\exp \xi = x$$

$$\exp \eta = f^{n}(x)$$

$$D_{\xi} f^{n} = (T_{n} \exp)^{-1} (T f^{n}) (T_{\xi} \exp)$$

and exp: $T_zM \to M$ is the exponential map at z.

PROOF. Let $\varepsilon > 0$ be given. Since z is non-wandering, there is some $y \in M$ and $n \ge 1$ such that

$$d(y, z) \le \varepsilon^2$$
 and $d(f^n(y), z) \le \varepsilon^2$.

Define a function $F: M \to \mathbb{R}_+$ by

$$F(x) = d(x, f^n(x)).$$

By Theorem 0, there will be some point x such that

$$F(x) \le F(y) \le \varepsilon^{2}$$

$$d(x,y) \le \varepsilon$$

$$F(x') \ge F(x) - \varepsilon d(x',x), \quad \text{all } x' \in M.$$

266 I. EKELAND

The two first conditions obviously imply (1) and (2)

$$d(x,z) \le d(x,y) + d(y,z) \le \varepsilon + \varepsilon^2$$

$$d(f^n(x),z) \le F(x) + d(x,z) \le \varepsilon + 2\varepsilon^2.$$

We now use the exponential map at z as a local chart around z. We replace x by $\exp^{-1} x = \xi$, $f^n(x)$ by $\exp^{-1} f^n(x) = \eta$, and f^n by $\exp^{-1} \circ f^n \circ \exp = \varrho$. The Taylor expansion for ϱ near ξ now is

$$\varrho(\xi+\zeta) = \eta + D_{\xi} f^n \zeta + o(\zeta) ,$$

where $o(\zeta)$ denotes second-order terms.

Rewrite the third condition with $x' = \exp(\xi + \zeta)$. We get

$$d(\exp(\xi+\zeta), \exp\varrho(\xi+\zeta)) \ge d(\exp\xi, \exp\varrho(\xi)) - \varepsilon d(\exp\xi, \exp(\xi+\zeta))$$
.

Writing in first-order expansions, this becomes

$$\|\xi + \zeta - \eta - D_{\varepsilon} f^{n} \zeta\| \geq \|\xi - \eta\| - \varepsilon \|\zeta\| + o(\zeta).$$

If $\xi = \eta$, condition (3) holds trivially. If $\xi \neq \eta$, the right-hand side is positive for small enough ζ , and we can square both sides. We get

$$2(\zeta - D_{\xi} f^{n} \zeta, \xi - \eta) \ge -2\varepsilon \|\zeta\| \|\xi - \eta\| + o(\zeta)$$

$$\left((I-D_{\xi}f^n)^*(\eta-\xi),\zeta\right) \leq \varepsilon \|\zeta\| \|\eta-\xi\| + o(\zeta) \ .$$

Letting $\zeta \to 0$, we get the desired result.

If $\xi = \eta$, x is a periodic point for f. If $\xi \neq \eta$, condition (3) means that the geodesics from x to $f^n(x)$ is almost an eigenray of $(I - D_x f^n)^*$ associated with the eigenvalue one.

We shall now assume that f is hyperbolic in a neighbourhood of z. This means that, for all x near z, there is a splitting of T_xM into $E_x^s \oplus E_x^u$, depending continuously on y, and f-invariant, such that

$$\forall \, \xi \in E_x^s, \quad \|(T_x f^n) \xi\| \leq \lambda^{-n} \|\xi\|, \quad \text{all } n \geq 1,$$

$$\forall \zeta \in E_x^u$$
, $\|(T_x f^n)\zeta\| \ge \lambda^{-n} \|\zeta\|$, all $n \ge 1$,

for some constant $\lambda > 1$. No generality is lost in assuming E_x^s and E_x^u to be orthogonal (change the Riemannian structure accordingly).

COROLLARY. Assume f is hyperbolic in a neighbourhood of z. Then there is a sequence of periodic points x_p converging to z.

PROOF. Setting $\varepsilon = p^{-1}$, we get sequences $x_p \to z$ and $n_p \ge 1$ such that

$$d(x_p, f^{n_p}(x_p)) \to 0$$

$$(*) \qquad \|(I - D_{x_p} f^{n_p})^* (\eta_p - \xi_p)\| \le \|\eta_p - \xi_p\| p^{-1}$$

with $x_p = \exp \xi_p$ and $f^{n_p}(x_p) = \exp \eta_p$.

If the sequence n_p is bounded, the first condition will imply that z itself is a periodic point. If $\eta_p = \xi_p$ for an infinite number of p, the corresponding x_p are periodic, and the result is proved.

Assume then $n_p \to \infty$ and $\eta_p \neq \xi_p$ for all p. Define $w_p = (\eta_p - \xi_p) \|\eta_p - \xi_p\|^{-1}$, so that w_p is unitary. Set $y_p = f^{n_p}(x_p)$, and define

$$E_p^s = (T \exp_{\xi})^{-1} E_{x_p}^s$$
 and $E_p^u = (T \exp_{\xi}^{-1}) E_{x_p}^u$
 $F_p^s = (T \exp_{\eta})^{-1} E_{y_p}^s$ and $F_p^u = (T \exp_{\eta}^{-1}) E_{y_p}^u$

Since the splitting $E_x^s \oplus E_x^u$ of $T_x M$ arising from the hyperbolic structure depends continuously on x, the subspaces E_p^s and F_p^s converge to the subspace $(T \exp_0)^{-1} E_z^s$ when $p \to \infty$. Similarly E_p^u and F_p^u have a common limit.

Analysing the hyperbolic structure in the local chart provided by exp, we see that $D_{x_p}f^{n_p}$ sends E_p^s onto F_p^s and E_p^u onto F_p^u . Moreover, for some constant c, with $c \ge 1$, we have

$$\zeta \in E_p^u \Rightarrow D_{x_p} f^{n_p} \zeta \in F_p^u \quad \text{and} \quad \|D_{x_p} f^{n_p} \zeta\| \ge c^{-1} \lambda^{n_p} \|\zeta\|$$

$$\zeta \in E_p^s \Rightarrow D_{x_p} f^{n_p} \zeta \in F_p^s \quad \text{and} \quad \|D_{x_p} f^{n_p} \zeta\| \le c \lambda^{-n_p} \|\zeta\|.$$

Now $(D_x f^{n_p})^*$ is going to have the same properties as $(D_x f^{n_p})$, with E_p^u , E_p^s , F_p^u , and F_p^s replaced by isomorphic subspaces $(E_p^u)^*$, $(E_p^s)^*$, $(F_p^u)^*$, and $(F_p^s)^*$. If now we split w_p into $w_p^u + w_p^s$, with $w_p^u \in (E_p^u)^*$ and $w_p^s \in (E_p^s)^*$, we have

$$\begin{split} v_p^u &= (D_x f^{n_p})^* w_p^u \in (F_p^u)^* \quad \text{ and } \quad \|v_p^u\| \ge c^{-1} \lambda^{n_p} \|w_p^u\| \\ v_p^s &= (D_x f^{n_p})^* w_p^s \in (F_p^s)^* \quad \text{ and } \quad \|v_p^s\| \le c \lambda^{-n_p} \|w_p^s\| \le c \lambda^{-n_p}. \end{split}$$

But remember condition (*), we have

$$||v^p - w^p|| \le p^{-1}$$
.

Hence

$$\begin{split} \|v_p^u\| & \leq \|v_p^s\| + \|v_p - w_p\| + \|w_p\| \\ c^{-1} \lambda^{n_p} \|w_p^u\| & \leq c \lambda^{-n_p} + p^{-1} + 1 \ . \end{split}$$

It follows that $\|w_p^u\| \to 0$ when $p \to \infty$. On the other hand, since $\|v_p^s\| \le c^2 \mu^{-n_p}$, we will also have $\|v_p^s\| \to 0$. This will enable us to study w_p^s .

We have $w_p = v_p + \zeta$ with $\|\zeta\| \le p^{-1}$. So w_p^s is the component in $(E_p^s)^*$ of the vector $v_p + \zeta$. Since the $(F_p^u)^*$ component of this vector is known, namely $v_p^s + \zeta_p^s$ with $\zeta_p^s \to 0$, and the subspaces $(E_p^u)^*$ and $(F_p^u)^*$, as well as the subspaces $(E_p^s)^*$ and $(E_p^u)^*$, have a common limit, we get

268 I. EKELAND

$$\|w_{p}^{s}\| \le 2(\|v_{p}^{s}\| + \|\zeta_{p}^{s}\|) \to 0 \quad \text{when } p \to \infty$$

so both components of w_p converge to zero, while $||w_p|| = 1$ for all p. This is a contradiction, and our assumption that $n_p \to \infty$ and $n_p \neq \xi_p$ for all p must be false. Hence the result.

BIBLIOGRAPHY

- H. Brezis and F. Browder, A general principle on ordered sets in nonlinear functional analysis, Advances in Math. 21 (1976), 355-364.
- 2. I. Ekeland, On the variational principle. J. Math. Anal. Appl. 47 (1974), 324-353.
- 3. I. Ekeland, Non-convex minimization problems, Bull. Amer. Math. Soc. (N.S.) 1 (1979), 443-474.
- S. Newhouse, Lectures on dynamical systems, in Dynamical systems (Lectures at the C.I.M.E. Summer School in Bressanone, 1978), pp. 1-114, Progress in Mathematics 8, Birkhäuser, Boston, Mass., 1980.

CEREMADE
UNIVERSITE PARIS-DAUPHINE
75775 PARIS CEDEX 16
FRANCE