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Abstract We study a special class of non-convex functions which appear in non-
linear elasticity, and we prove that they have a well-defined Legendre transform.
Several examples are given, and an application to a nonlinear eigenvalue problem.
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1 Introduction

We want to define a Legendre transform FL (y) for functions F (x), where x is an
N×K matrix, and F involves the various cofactors of x. Note that F then has to
be strongly nonlinear, and nonconvex. The simplest case is when N = K and F is
a function of the determinant only: F (x) =Φ (detx). We show that the Legendre
transform of

F (x) =
N
p
|detx|p/N

is

FL (y) =
N
q
|dety|q/N

with 1/p+1/q = 1, thereby generalizing the classical duality between Lp spaces.
The next simplest is when F is a function of the (N−1)-cofactors of x: in the case
when N = K = 3, we give conditions under which F has a well-defined Legendre
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2 I. Ekeland

transform. This covers for instance the area functional, defined over 2×3 matrices
x=
(

xi
j

)
by:

F (x) =
[(

x1
1x2

2− x2
1x1

2

)2
+
(
x1

1x2
3− x2

1x1
3

)2
+
(
x1

2x2
3− x2

2x1
3

)2]1/2

which turns out to be its own Legendre transform (in other words, it is self-dual).
Note that with our definition, the Legendre transform FL of F satisfies the

usual duality relations: (
FL)L = F

(
F ′
)−1
=
(
FL)′ .

The paper is organized as follows. First we define precisely what we mean
by a Legendre transform. Then we study two polar cases. In the first one F is a
function of the determinant only, and in the second F depends only on the 2× 2
cofactors of a 3×3 matrix. We give several examples, and we conclude by giving
an application to a nonlinear eigenvalue problem.

2 The Legendre transform

Let X be a finite-dimensional vector space, and Y its dual, the duality pairing being
denoted by< x,y>. Let F : X→R be a C1 function and F ′ (x) ∈Y its derivative at
x. The classical formula of Legendre associates with every y ∈ Y a set ΓL (y)⊂ R
defined as follows:

ΓL (y) =
{
< x,y>−F (x) | y = F ′ (x)

}
. (1)

Usually, the right-hand contains several points, so that ΓL is a multi-valued
map from Y to R. We refer to [1] for a study of this map. For certain classes of
functions F , however, the right-hand side is a singleton, so that formula (1) defines
a function on Y , which is then called the Legendre transform of F .

Definition 1 Consider a map F : Ω → R, where Ω is a submanifold of X , and set
Σ = F ′ (Ω ). We shall say that a C1 function G : Σ → R is the Legendre transform
of F if Σ is a submanifold of Y and:

[
x ∈Ω , y= F ′ (x)

]
=⇒< x,y> −F (x) =G (y) .

Of course, if F ′ is one-to-one, this formula becomes:

G (y) =<
(
F ′
)−1
(y),y>−F

((
F ′
)−1
(y)
)
∀y∈ (F ′)−1

(Ω ) .

We shall denote the Legendre transform of F by FL, so that FL =G in the above.
It follows from the general theory of the Legendre transform (see [1]) that F ′ and
G′ are inverse of each other and that F (x) is the Legendre transform of FL (y). In
other words, we have the classic formulas:

(
FL)L = F
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(
F ′
)−1
=
(
FL)′ .

There is a well-defined theory of Legendre transform for convex functions. In
that case, Ω = X and the Legendre formula is replaced by the Fenchel formula:

F∗ (y) = sup
x
{yx−F (x)}

so that differentiability is no longer required. The Fenchel transform F∗ will co-
incide with the Legendre transform FL provided F is C1 and strictly convex. We
now proceed to give other classes of functions which have a well-defined Legen-
dre transform. Roughly speaking, these will be functions F (x), where x is a matrix
and F depends only on the cofactors of x.

Given a number K and some k ≤ K, we shall denote by PK the set of strictly
increasing maps of {1, ...,k} into {1, ...,K}:

PK = {π : {1, ...,k}→ {1, ...,K} | π (1)< ... < π (k)}
and by c (K,k) = Ck

K its cardinal. We can also think of PK as being the set of
ordered subsets of {1, ...,K} with k elements. Similar notations will hold for PN
and c (k,N), provided k ≤ N.

Consider a fixed N-dimensional space E. An element x ∈ E∗ will have coordi-
nates xn, 1≤ n≤ N. Given a family of K linear forms,

(
x1, ...,xK

)
, and a number

k ≤ min{K,N}, there are c (K,k)× c (N,k) square k× k matrices which can be
extracted from the matrix xk

n. Each of them is specified by a certain choice of k
lines and k columns, that is by some π ∈PK and some σ ∈PK. We shall denote
it by:

xπ
σ =
[
xπ(i)

σ( j)

]1≤i≤k

1≤ j≤k

and we shall denote by Δ π ,σ
k (x1, ...,xK)its determinant:

Δ π ,σ
k (x1, ...,xK) = det [xπ

σ ] .

We then define a map Δk : (E∗)K → Rc(K,k)× Rc(N,k) by:

Δk =
(
Δ π ,σ

k

)π∈PK
σ∈PN

. (2)

So the map Δk just associates with a N×K matrix
(
xk

n

)
the determinants of all

the k× k matrices which can be extracted from it, that is, its k-cofactors.

Lemma 1 We have:

Δ π ,σ
k = k∑

n, j
x j

n
∂Δ π ,σ

k

∂x j
n
.

Proof This is just the Euler identity for k-homogeneous functions. 
�
Lemma 2 Set:

z(π,σ )nj =
∂

∂xn
j

det [xπ
σ ] .

We then have:
det
[
z(π,σ )πσ

]
= (det [xπ

σ ])
k−1
.
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Proof We know that (zπ
σ )

n
j is 0 if n does not belong to the image of π, or if j does

not belong to the image of σ , and that otherwise it is just the cofactor of xn
j in

the matrix (xπ
σ ). The last identity then follows from the well-known fact that the

determinant of a k× k matrix raised to the (k−1)-th power is the determinant of
the cofactor matrix. 
�

As we stated in the beginning, we are interested in functions of the
(
xk

n

)
which

involve the Δk. We now make this idea precise. Consider the map:

Δ = (Δ1, ...,ΔK) : RNK → H

H = RNK× ...×Rc(N,k)c(K,k)× ...×Rc(N,K).

A function Φ : H→R will be called trivial if it depends on the NK first coordi-
nates only that is, if it factors through (E∗)K . Note that every function F : RNK→R
can be written F =Φ ◦Δ , where Φ : H→ R is the identity on (E∗)K and sends all
the other coordinates to 0. This is called the trivial factorisation.

Definition 2 A function F : RNK→R will be called k-adapted if it factors through
Δk, that is, if we have F = Φ ◦ Δk for some function Φ : Rc(N,k)c(K,k)→ R. It is
adapted if it factors non-trivially through Δ , that is, if we have F = Φ ◦ Δ for
some non-trivial function Φ : H→ R such that Φ ◦Δk.

We now write the formula for the Legendre transform. Take an adapted func-
tion F : RNK → R:

F (x) = F
(
x1, ...,xK)= F

(
x j

n

)
=Φ
(
Δ π ,σ

k

)
=Φ (Δ )

and pair K×N matrices with N×K matrices by:

< x,y>=∑
n, j

x j
nyn

j.

Substitute in the definition (1):

ΓL (y1, ...,yK) =

{
∑
n, j

x j
nyn

j−F
(
x1, ...,xK) | yn

j =
∂F

∂x j
n

}

=

{
∑
n, j

x j
nyn

j−Φ (Δ ) | yn
j = ∑

k,π ,σ

∂Φ
∂Δ π ,σ

k

∂Δ π ,σ
k

∂x j
n

}

=

{
∑

n, j,k,π ,σ
x j

n
∂Φ

∂Δ π ,σ
k

∂Δ π ,σ
k

∂x j
n
− Φ (Δ ) | yn

j = ∑
k,π ,σ

∂Φ
∂Δ π ,σ

k

∂Δ π ,σ
k

∂x j
n

}

=

{
∑

k,π ,σ

∂Φ
∂Δ π ,σ

k
∑
n, j

x j
n

∂Δ π ,σ
k

∂x j
n
− Φ (Δ ) | yn

j = ∑
k,π ,σ

∂Φ
∂Δ π ,σ

k

∂Δ π ,σ
k

∂x j
n

}

=

{
∑

k,π ,σ
k

∂Φ
∂Δ π ,σ

k

Δ π ,σ
k −Φ (Δ ) | yn

j = ∑
k,π ,σ

∂Φ
∂Δ π ,σ

k

∂Δ π ,σ
k

∂x j
n

}

(3)



Duality theory for functions of matrices 5

where Δ stands for Δ
(
x1, ...,xK

)
. We rewrite the result in more compact notation:

ΓL (y1, ...,yK) =

{
∑
k

k
∂Φ
∂Δk

Δk−Φ (Δ ) | yn
j =∑

k

∂Φ
∂Δk

∂Δk

∂x j
n

}
. (4)

We would like to give general conditions on Φ which would ensure that the
right-hand side is a singleton, so that F has a well-defined Legendre transform.
In addition, we would like to show that if F is k-adapted, then FL is k-adapted as
well. Unfortunately, we have not been able to fulfil this program (the calculations
very quickly become horrendous) so we will be content with two examples.

3 Functions of the determinant

We take N = K. So let x be the square matrix with coefficients xk
n. Denote by Xk

n
the cofactor of xk

n in X . We consider functions F : RN → R of the following type:

F (x) =Φ (detx)

where Φ : R→ R is a C1 function.
Let us apply the preceding theory. We have:

yn
k =

∂F
∂xk

n
=Φ ′ (detx)

∂ detx
∂xk

n
=Φ ′ (detx)detXk

n . (5)

Hence:

∑
n,k

yn
kxk

n =Φ ′ (detx)∑
n,k

xk
n detXk

n = NΦ ′ (detX)detX . (6)

On the other hand, denoting by Y the matrix with coefficients yn
k , and by z the

matrix with coefficients zn
k = detXk

n , we have:

detY =
(
Φ ′ (detx)

)N
detz= Φ ′ (detx)N (detx)N−1 . (7)

Proposition 1 Assume that Φ is such that the function t→ tN−1Φ ′ (t)N is invert-
ible on (a,b), and let ψ : (a′,b′)→ R be its inverse. Set Ω = {x | a< detx < b}
and Σ = {y | a′ < dety< b′}. Then the function F : Ω → R given by:

F (x) =Φ (detx)

has a Legendre transform FL : Σ → R given by:

FL(y) = N Φ ′ (ψ (dety))ψ (dety) −Φ (ψ (dety)) . (8)

Proof Equation (7) gives detx = ψ (dety). Writing (6) and (7) back into formula
(3), we get:

ΓL (y) =
{

N Φ ′ (detx)detx−Φ (detx) | yn
j =Φ ′ (detx)detXk

n

}

=
{

N Φ ′ (ψ (dety))ψ (dety)−Φ (ψ (dety))
}

yielding a unique value. 
�
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3.1 Example 1

Take Φ (t) = N
p |t|p/N, with p ∈ R, so that

F (x) =
N
p
|detx|p/N . (9)

Note that F is homogeneous of degree p. If p 
= 0, then tN−1Φ ′ (t)N = t p−1,
which is invertible provided p 
= 1, yielding ψ (s) = s1/(p−1). Substituting in the
above, and taking advantage of the fact that Φ is homogeneous of degree p/N, we
get:

FL(y) = (p−1)Φ (ψ (dety)) = (p−1)
N
p
|dety| p

p−1
1
N .

Proposition 2 If p 
= 0 and p 
= 1, the function F : RN2 → R defined by (9) has a
Legendre transform FL : RN2 → R defined by:

FL(y) =
N
q
|dety|q/N ,

with 1
p +

1
q = 1.

Note that this duality holds for any value of p different from 0 and 1/N, in-
cluding negative ones. Note also that if N > 1 (the only interesting case), this
duality between Φ (detX) and Ψ (detY ) has nothing to do with convexity. On the
one hand, if p/N > 1, so that Φ (t) is convex, then 0 < q/N < 1, so that Ψ (t)
is not convex. On the other hand, it is easy to check that if y 
= 0, we can find a
matrix x̄ such that ∑xk

nyn
k = 1 and det x̄= 0; it follows that the function

x→∑xk
nyn

k−
1
p
(detX)p

is unbounded from above and from below (consider the sequences xn =±nx̄), and
the critical point in the definition of the Legendre transform cannot be a global
minimum or maximum.

3.2 Example 2

Take p= 1 in the above, so that Φ (t) = Nt1/N and:

F (x) = N |detx|1/N . (10)

The function F is defined on the whole of RN2
. On the other hand, we have

yn
k =

∂F
∂xk

n
(x) =Φ ′ (detx)detXk

n

by (5), and dety = 1 by (7). Consequently F ′ maps RN2
onto the set Σ = {y |

dety = 1}. On the other hand, formula (8) yields quite simply ΓL (y) = 0. Hence:

Proposition 3 The Legendre transform of the function F : RN2 → R given by (10)
is the function FL : Σ → R given by FL (y)≡ 0.
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3.3 Example 3

Take Φ (t) = ln |t|, so that:
F (x) = ln |detx| . (11)

Set Ω = {x | detx 
= 0}.
Proposition 4 The function F : Ω → R defined by (11) has a Legendre transform
FL : Ω → R defined by:

FL (y) = N+ ln |dety| .
The proof is left to the reader. It follows that the function G (x) = ln |detx|+

N/2 is self-dual, i.e. GL =G.

4 The case of (N−1)-cofactors

We shall work with N=K = 3. We presume that similar results hold in the general
case, but we have not been able to handle the notations.

Denote by xthe 3×3 matrix with coefficients xk
n, with 1≤ k≤K and 1≤ n≤N.

Denote by Xk
n the cofactor of xk

n in x, and by Δ k
n its determinant. Set

Δ =
(

Δ k
n

)1≤k≤K

1≤n≤N
∈ R9.

Let Φ : R9→ R be given. Consider the function:

F (x) =Φ(Δ ). (12)

The formula for the Legendre transform then becomes:

ΓL (y) =

{
2∑

n,k

∂Φ
∂Δ k

n
(Δ )Δ k

n −Φ (Δ ) | yn
j =∑

n,k

∂Φ
∂Δ k

n

∂Δ k
n

∂x j
n

}
. (13)

Let us simplify this formula a little bit by setting:

Φn
k =

∂Φ
∂Δ k

n
(Δ ) .

We then have:

yn
k =∑

i, j
Φ i

j
∂Δ j

i

∂xk
n
= ∑

i 
=n, j 
=k

Φ i
j
∂Δ j

i

∂xk
n
(x) (14)

because, if k = j or n = i, the variable xk
n does not appear in the cofactor Xk

n . If
k 
= j, we shall denote by p( j,k) the number in {1,2,3} which is different from
both k and j. Similarly, if n 
= i, we shall denote by q(i,n) the number in {1,2,3}
which is different from both n and i. If k 
= j and n 
= i, we have:

Δ j
i = (−1)m(i, j,k,n)

(
xk

nxp( j,k)
q(i,n) − xk

q(i,n)x
p( j,k)
n

)
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where: the exponent m (i, j,k,n) is 0 if k> p( j,k) and n> q(i,n), or if k< p( j,k)
and n< q(i,n), and m (i, j,k,n) = 0 otherwise. It follows that:

∂Δ j
i

∂xk
n
= (−1)m(i, j,k,n)xp( j,k)

q(i,n)

and hence:
yn

k = ∑
i 
=n j 
=k

(−1)(k−p( j,k))(n−q(i,n))Φ i
jx

p( j,k)
q(i,n) .

Let us now consider the 3× 3 matrix y with coefficients yn
k , denote by Yn

k
the cofactor of yn

k and by Dn
k its determinants. Without loss of generality, we can

assume that n= k = 1, and we get:

D1
1 = y2

2y3
3− y2

3y3
2

=
(
Φ1

1 x3
3−Φ1

3 x1
3−Φ3

1 x3
1+Φ3

3 x1
1

)(
Φ1

1 x2
2+Φ1

2 x1
2+Φ2

1 x2
1+Φ2

2 x1
1

)−
−(−Φ1

1 x2
3−Φ1

2 x1
3+Φ3

1 x2
1+Φ3

2 x1
1

)(−Φ1
1 x3

2+Φ1
3 x1

2−Φ2
1 x3

1+Φ2
3 x1

1

)

=
(
Φ1

1

)2 (
x3

3x2
2− x2

3x3
2

)
+
(
Φ1

1 Φ1
2

)(
x3

3x1
2− x1

3x3
2

)
+

+
(
Φ1

1 Φ2
1

)(
x3

3x2
1− x2

3x3
1

)
+
(
Φ1

1 Φ2
2 x3

3x1
1−Φ1

2 Φ2
1 x1

3x3
1

)
+

+
(
Φ1

3 Φ1
1

)(−x1
3x2

2+ x2
3x1

2

)
+
(−Φ1

3 Φ2
1 x1

3x2
1+Φ1

1 Φ2
3 x2

3x1
1

)
+

+
(−Φ1

3 Φ2
2 x1

3x1
1+Φ1

2 Φ2
3 x1

3x1
1

)
+
(
Φ3

1 Φ1
1

)(−x3
1x2

2+ x2
1x3

2

)
+

+
(−Φ3

1 Φ1
2 x3

1x1
2+Φ3

2 x1
1Φ1

1 x3
2

)
+
(−Φ3

1 Φ2
2 x3

1x1
1+Φ3

2 x1
1Φ2

1 x3
1

)
+

+
(
Φ3

3 x1
1Φ1

1 x2
2−Φ3

1 x2
1Φ1

3 x1
2

)
+
(
Φ3

3 x1
1Φ1

2 x1
2−Φ3

2 x1
1Φ1

3 x1
2

)
+

+
(
Φ3

3 x1
1Φ2

1 x2
1−Φ3

1 x2
1Φ2

3 x1
1

)
+
(
Φ3

3 x1
1Φ2

2 x1
1−Φ3

2 x1
1Φ2

3 x1
1

)
.

Lemma 3 If the matrix Φn
k has rank 1, then the Dn

k can be expressed in terms of
the Δ k

n as follows:

Dn
k =Φn

k

(
Φ2

3 Δ 3
2 +Φ3

1 Δ 1
3 +Φ3

2 Δ 2
3+

+Φ3
3 Δ 3

3 +Φ2
3 Δ 3

2 +Φ3
1 Δ 1

3 +Φ3
2 Δ 2

3 +Φ3
3 Δ 3

3

)
.

(15)

Proof If the matrix Φn
k has rank 1, all its 2-cofactors vanish, so that Φn

k Φ i
j =

Φn
j Φ i

k. The previous expression then simplifies:

D1
1 =
(
Φ1

1

)2 Δ 1
1 +
(
Φ1

1 Φ1
2

)
Δ 2

1 +
(
Φ1

1 Φ2
1

)
Δ 1

2+

+
(
Φ1

1 Φ2
2

)
Δ 2

2 +
(
Φ1

3 Φ1
1

)
Δ 3

1 +
(
Φ1

1 Φ2
3

)
Δ 3

2+

+
(
Φ3

1 Φ1
1

)
Δ 1

3 +
(
Φ3

2 Φ1
1

)
Δ 2

3 +
(
Φ3

3 Φ1
1

)
Δ 3

3

and Φ1
1 factors out. 
�

If Φ is homogeneous of degree α , the expression (15) simplifies by the Euler
identity:

Dn
k = αΦn

k Φ = αΦ (Δ )
∂Φ
∂Δ k

n
(Δ ) (16)

and the formula (13)for the Legendre transform ΓL of F becomes:

ΓL (y) =
{
(2α−1)Φ (Δ ) | D= αΦ (Δ )Φ ′ (Δ )

}
.
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Proposition 5 Assume that the function F : R9 → R is given by F (x) = Φ (Δ ),
where Φ is homogeneous of degree α , and the matrix ∂Φ/∂Δ k

n has rank 1 every-
where. Assume that Σ = F ′

(
R9
)

is a submanifold, and that:

[
D1 = αΦ (Δ1)Φ ′ (Δ1) and D2 = αΦ (Δ2)Φ ′ (Δ2)

]
=⇒Φ (Δ1) = Φ (Δ2) .

Then F has a Legendre transform FL : Σ → R given by

FL (y) =Ψ (D) (17)

where the Dn
k are the determinants of the 2-cofactors of y, and Ψ (D) = (2α−1)

Φ (Δ ) for any D such that D= αΦ (Δ )Φ ′ (Δ ).

4.1 Example 4

We consider functions F : R9→ R of the following type:

F (x) =

(
(∑

n
Δ 1

n )
α +(∑

n
Δ 2

n )
α +(∑

n
Δ 3

n )
α
)β
= Φ (Δ ) .

We have

Φ i
k =

∂Φ
∂Δ k

i

= αβ
(
(∑

n
Δ 1

n )
α +(∑

n
Δ 2

n )
α +(∑

n
Δ 3

n )
α
)β−1

(∑
n

Δ k
n )

α−1

so clearly the matrix Φn
k has rank 1. The equations (16) become:

Di
k = αβΦ i

kΦ = (αβ)2
(
(∑

n
Δ 1

n )
α +(∑

n
Δ 2

n )
α +(∑

n
Δ 3

n )
α
)2β−1

(∑
n

Δ k
n)

α−1

from which we get
D1

k =D2
k =D3

k for k = 1,2,3. (18)

In other words, the Legendre transform will live on the 3-dimensional sub-
space Σ of R9 defined by the equations (18). Setting Di

k = Dk for every i, we
continue the computations:

(Dk)
α

α−1 = (αβ)
2α

α−1

(
(∑

n
Δ 1

n )
α +(∑

n
Δ 2

n )
α +(∑

n
Δ 3

n )
α
)(2β−1) α

α−1

(∑
n

Δ k
n)

α ,

∑
k

(Dk)
α

α−1 = (αβ)
2α

α−1

(
(∑

n
Δ 1

n )
α +(∑

n
Δ 2

n )
α +(∑

n
Δ 3

n )
α
) 2αβ−1

α−1

,

(
∑
k

(Dk)
α

α−1

) β (α−1)
2αβ−1

= (αβ)
2αβ

2αβ−1

(
(∑

n
Δ 1

n )
α +(∑

n
Δ 2

n )
α +(∑

n
Δ 3

n )
α
)β
.
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Finally, the Legendre transform of F turns out to be the function:

FL (y) = (2αβ −1)(αβ)−
2αβ

2αβ−1

(
∑
k

(Dk)
α

α−1

) β (α−1)
2αβ−1

restricted to the 3-dimensional subspace Σ ⊂ R9 defined by the relations Dn
k =Dk.

Here, Dn
k denotes the cofactor of yn

k in the matrix Y .
Note that F is homogeneous of degree 2αβ and FL is homogeneous of degree

2αβ/(2αβ −1). Setting p= 2αβ and q= 2αβ/(2αβ −1) , we find that;

1
p
+

1
q
= 1.

4.2 Example 5

Let
(
x1,x2

)
be a pair of vectors in R3. We consider functions F : R6 → R of the

following type:

F
(
x1,x2)=Φ

(
det

∣∣∣∣
x1

1 x2
1

x1
2 x2

2

∣∣∣∣ ,det

∣∣∣∣
x1

1 x2
1

x1
3 x2

3

∣∣∣∣ ,det

∣∣∣∣
x1

2 x2
2

x1
3 x2

3

∣∣∣∣
)

where Ψ : R3→ R is a C1 function. In the previous framework, this can be under-
stood as a function F (X), where X is a 3×3 matrix, which depends only on the
first three cofactors. Clearly the rank condition will hold, and the previous results
apply. It will be more convenient, however, to run through the computations again
in that particular case, with simplified notations.

Set Δ = (Δ3,Δ2,Δ1) , with:

Δ3 = x1
1x2

2− x2
1x1

2,

Δ2 = x1
1x2

3− x2
1x1

3,

Δ1 = x1
2x2

3− x2
2x1

3.

We have F
(
x1,x2

)
=Φ (Δ ). Set yn

k = ∂F/∂xk
n and compute the cofactors. We

get:

D3 = y1
1y2

2− y1
2y2

1 =

(
∂Φ
∂Δ3

)2

Δ3+

(
∂Φ
∂Δ3

∂Φ
∂Δ1

)
Δ1+

(
∂Φ
∂Δ2

∂Φ
∂Δ3

)
Δ2,

D2 = y1
1y3

2− y1
2y3

1 =

(
∂Φ
∂Δ2

)2

Δ2+

(
∂Φ
∂Δ3

∂Φ
∂Δ2

)
Δ3+

(
∂Φ
∂Δ2

∂Φ
∂Δ1

)
Δ1,

D1 = y2
1y3

2− y2
2y3

1 =

(
∂Φ
∂Δ1

)2

Δ1+

(
∂Φ
∂Δ1

∂Φ
∂Δ2

)
Δ2+

(
∂Φ
∂Δ1

∂Φ
∂Δ3

)
Δ3.

We summarize:

Dn =
∂Φ
∂Δn

[
∂Φ
∂Δ1

Δ1+
∂Φ
∂Δ2

Δ2+
∂Φ
∂Δ3

Δ3

]
, n= 1,2,3. (19)
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As a particular case, consider the function:

F
(
x1,x2)=

[(
x1

1x2
2− x2

1x1
2

)α
+
(
x1

1x2
3− x2

1x1
3

)α
+
(
x1

2x2
3− x2

2x1
3

)α]1/β
. (20)

When α = 1/β = 2, this gives the area of the triangle spanned by the vectors
x1 and x2. We apply the preceding result, with:

Φ (Δ3,Δ2,Δ1) =
[
(Δ1)

α +(Δ2)
α +(Δ3)

α]β .
The system (19) becomes:

Dn = (αβ)2
[
(Δ1)

α +(Δ2)
α +(Δ3)

α]2β−1
(Δn)

α−1

and can easily be inverted (note that if α = 1/β = 2, we get the identity). We get:

Δn = (αβ)−
2α−1

2αβ−1
1

α−1
[(

D1) α
α−1 +

(
D2) α

α−1 +
(
D3) α

α−1
]− 2β−1

2αβ−1
(Dn)

1
α−1 .

Substituting into formula (17), and taking advantage of the fact that Φ is homoge-
neous of degree αβ , we get the Legendre transform:

FL (y1,y2) = (2αβ −1)
[
(Δ1)

α +(Δ2)
α +(Δ3)

α]β

= (2αβ −1)(αβ)−
2α−1

2αβ−1
αβ

α−1
[(

D1) α
α−1 +

(
D2) α

α−1 +
(
D3) α

α−1
] α−1

2αβ−1 β

= (2αβ −1)(αβ)−
2α−1

2αβ−1
αβ

α−1×

×
[(

y2
1y3

2− y2
2y3

1

) α
α−1 +

(
y1

1y3
2− y1

2y3
1

) α
α−1 +

(
y1

1y2
2− y1

2y2
1

) α
α−1
] α−1

2αβ−1 β
.

Note that if α = 1/β = 2, we find F = FL: the function F is its own Legendre
transform. Note also that F is homogeneous of degree 2αβ and FL homogeneous
of degree 2αβ/(2αβ −1). Setting p = 2αβ and q = 2αβ/(2αβ −1), we find
that

1
p
+

1
q
= 1

as before.

5 A variational problem

As a example of possible application of this kind of duality, let us consider the
following problem. Given a positive definite quadratic form (Ax,x) on RN2

, and a
N×N-matrix f , we want to solve Φ ′ (x) = 0, where::

Φ (x) =
1
2
(Ax,x)− N

p
|detx|p/N − ( f ,x).

Such points are called critical points of Φ . Any critical point of F solves the
system:

Ax = |detx|p/N−1 X + f

where X is the matrix of cofactors of x.
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Proposition 6 If p< 2, there is at least one critical point for Φ .

Proof Since p < 2, the function Φ is coercive: Φ (x)→ ∞ when ‖x‖ → ∞. So it
attains its minimum at some x, which has to be a critical point. 
�

We now use duality theory to treat the case p > 2. We shall use an extension
of the Clarke duality formula (see [2]):

Proposition 7 Suppose F (x) has a Legendre transform FL (y). Consider the func-
tions Φ and Ψ defined by:

Φ (x) =
1
2
(Ax− f ,x)−F (x)

Ψ (y) =
1
2
(Ay+ f ,y)−FL (Ay).

If y is a critical point of Ψ , then x = y+A−1 f is a critical point of Φ .

Proof If y is a critical point of Ψ , we have Ψ ′ (y) = 0, and hence Ay+ f =
A
(
FL
)′
(Ay). Since A is invertible, it follows that y+ A−1 f =

(
FL
)′
(Ay). Since[(

FL
)′]−1

= F ′, it follows that

F ′
(
y+A−1 f

)
= Ay= A

(
y+A−1 f

)− f

so that F ′ (x) = Ax− f , as desired. 
�
Proposition 8 If p> 2, there is at least one non-trivial critical point for Φ .

Proof Consider the function:

Ψ (y) =
1
2
(Ay+ f ,y)− N

q
|detAy|q/N .

By proposition 6, the function Ψ has a critical point ȳ 
= 0. By proposition 7 it is
also a critical point of Φ . 
�

Note that in this case infΦ = −∞, so that the critical point x cannot be a
minimizer.
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