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LEGENDRE DUALITY IN NONCONVEX OPTIMIZATION
AND CALCULUS OF VARIATIONS*

IVAR EKELAND?

Abstract. A general duality theory is given for smooth nonconvex optimization problems,
coveringboth the finite-dimensional case and the calculus of variations. The results are quite similar to
the convex case; in particular, with every problem () is associated a dual problem (*) having
opposite value. This is done at the expense of broadening the framework from smooth functions

1 to Lagrangian submanifolds of R x R x .
Introduction. Duality methods are nowadays an important tool in the study

of convex optimization problems. A systematic treatment within the framework
of convex analysis can be found in the books of R. T. Rockafellar [14] and
I. Ekeland and R. Temam [8]. However, it is easily forgotten that duality methods
have been in use for quite a long time in classical mechanics, where people are
used to stating a problem either in terms of x-phase variables, or of p-momentum
variables, the mapping x - p being the Legendre transformation. A major diffi-
culty lies in the fact that the Legendre transformation need not be one-to-one,
except of course in the convex case.

This paper aims to provide people used to convex optimization problems with
a systematic and updated treatment of duality theory for the smooth nonconvex
case. The first two sections set up the general framework. It turns out that the
framework of functions is not broad enough to cover our needs, because the
Legendre transform of a smooth nonconvex function need not be a function. So
we define Lagrangian submanifolds of [x [x as a better concept to work
with, because the Legendre transform of a Lagrangian submanifold is still a
Lagrangian submanifold, and because a Lagrangian submanifold comes very close
to being a function from " to N. Section 1 investigates the local properties of
Lagrangian submanifolds, and 2 studies the Legendre transform in this
framework.

The duality theorems then follow quite easily, either in 3 for the finite-
dimensional case, or in 4 for the calculus of variations. They are exactly what one
would expect from the convex case. References to the bibliography are relegated
to5.

1. Lagrangian submanffolds. Let f be a C real-valued function on Rn. We
can associate with f the following n-dimensional submanifold of [n x " E:

(1.1) Vf {(x, f(x), f(x))]x e "}.
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906 IVAR EKELAND

This submanifold has the property of annihilating the differential form to

defined at any point (x, p, z) of R x Rn x N by the formula

(1.2) o) dz Y p dx.
i=1

Indeed, the restriction of w to Vf reduces to df-Y=l (Of/Oxi)dx which is
identically zero. This motivates the following definitions.

DEFINITION 1.1. A Lagrangian submanifold of Nnx NnxN is a closed
n-dimensional C-submanifold V such that

(1.3) i*vro =0
where iv" VN x R" x N is the canonical injection and i: T*(N" x N x N)
T*V the induced map of differential 1-forms. We shall say that N" is a critical
point of V and that z7 s N is a critical value whenever

(1.4) (;, 0, zT) V.

We shall associate with V a multivalued mapping Fv from Nn to R:

(1.5) Fv(x) {z [::! p " (x, p, z) V}

and call it the characteristic map of V.
In the following, we shall denote by r and r respectively the restriction to

V of the projections (x, p, z) - x and (x, p, z.) (x, z). The analogous notations %
and % will also be used. These maps send V into N and N"+a respectively; note
that:

(1.6) graph Fv r(V).

Particularly simple situations arise when these projections are proper. Recall
that a continuous map r" VN is proper at s R iff every sequence w, in V
such that r(w,) : is bounded. It is proper itt it is proper at every point se e N this
amounts to saying that r-(K) is compact in V whenever K is compact in N.

As a fundamental example of a Lagrangian submanifold, take the set V
associated with a C function f: N" - N by formula (1.1). Note that in this case r
is a diffeomorphism from V on ", and hence proper.

As a variant, consider a C function f defined on an open subset f of N, and
assume that [fix)[ oo whenever x converges to some point in the boundary of f.
Then the set V defined by

(1.7) Vf {(x, f’(x), f(x))lx f}

is a Lagrangian submanifold. Note tb.at in this case r is a ditteor o’.v,ism from V
on f, but no longer on N". Hence rx is no longer proper, but r is.

In both cases, the critical points/values of V are the critical points/values of
f, and the characteristic map Fv of V coincides with f:
(1.8) Vx Rn, Fv(x) {f(x)}.

We now seek a partial converse: describe, at least locally, a given Lagrangian
submanifold V, in terms of a smooth function f: N N. For that purpose, we
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introduce the set of points Nn such that the 1-forms i/dxl," ", i*v dxn are
linearly independent at every point (.f,/7, zT) of V projecting on

PROPOSITION 1.2. The subset \ has Lebesgue measure zero in Nn. For
every point there exist a (possibly empty) countable set of indices A, a family
ll, ce A, of neighborhoods of Y. in , a family fa: alia Of smooth functions,
such that

(1.9) r2a() c U 7/ V
aA

where

(1.10) 7/’,, {(x, f’(x), f(x))lx ql}.

Note that (1.9) implies that Fv(Y.)= {f (Y)la A }. Intuitively, the part of Fv
lying above is decomposed into smooth branches f,,, a e A, with z f (Y) and
Pa =f’(-g). TWO branches may intersect, but they must do so transversally" if
f (.g) f (?) with a fl, then f’() f().

Proo] of Proposition 1.2. To say that the 1-forms i*vdXl,"’, i*vdx, are
linearly independent at (,/7, z) V means that (, p, ) is a regular point for the
projection zr" V- N". The set 1"\ is just the set of critical values for zr, and it

follows from Sard’s theorem that it has measure zero.
Take a7 , and let {(f,/a, ZZa)]a A } be the (possibly empty) set of points of

V projecting on f. By the definition of , each (, Pa, Z-a), Ce A, is a regular point
for 7rx. By the implicit function theorem, there are neighborhoods a of and a
of (,/Ta, zTa) such that 7rx a a//a is a diffeomorphism. In other words, there are
real-valued C functions ]’a and gai, 1 =< i-< n, defined over q/a, such that

(1.11) (x, p, Z)e //’a z{X e //a, Z =]Ca(X), Pi gai(X)}.

The vanishing of i*vw means that

(1.12) dfa gai(X) dxi 0 over
i=1

which yields

L(x) Vxe%.(1.13) gai (X -X
Writing (1.13) in (1.11), we get formula (1.10), with formula (1.9) being satisfied
by construction. It only remains to prove that the set A is at most countable. For
this, notice that

(1.14) 7r-a(.g)

and hence that a (Y,p,). This shows that all points in r-a(Y)are
isolated; hence any compact subset of V can contain only a finite number of them.
As V is a closed subset of N2,+, it can be written as a countable union of compact
subsets, and the result follows.

In the special case where the map x is proper at Y, it is easily seen that the set
A has to be finite. Setting aA a, we get the following corollary.
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COROLLARY 1.3. Assume moreover the map rx is proper. Then is open in
", andfor every point2 there & a neighborhood R of2 and a (possibly empty)
finite family of smooth functions f: oR , a A, such that

(1.15) 7’/’;1(0/) [3 {(x, f’(x), f(x))[x all, a ca}.

We now have a description of r-1(2) which is valid whenever 2 5, i.e. for
almost every point 2 ". Points in "\ form a negligible subset, but they may
nevertheless turn out to be important, so we will attempt a partial description in
that case also.

PROPOSITION 1.4. Let t--(x(t), p(t), z(t)) be a C map from ]0, T] into V
such that x(t) 5 Vt>0. Assume that, when t-O,

dx
(1.16) x(t)-2 and -(t)(,
(1.17) z(t)-- e,
(1.18) lim inf []p(t)-fil[ O,

with (2, fi, ) an isolated point of zr-;z (2, ). Then

(1.19) p(t)-> fi,

dz
(t)p .(1.20) d-

Proof. As/ is an isolated point in zr-) (2, 2), there is a compact neighborhood
7///" of (2, , 2) in V such that

(1.21) (2, p, 2) Yg’(C)p =.
Assume p(t) does not converge to ft. Then there is an open neighborhood V

of (2, fi, 2), contained in 7/V, and a sequence t, - 0 such that

(1.22) (x(t,), p(t,), z(t,))e
Using (1.16) and (1.17), together with the fact that /4r\ is compact, we can

extract a subsequence converging to some point

(1.23) (2, p’, 2) II/’\

contradicting (1.21).
So p(t) has to converge to/5, yielding (1.19). Setting z(0)= 2, we define a

continuous real-valued functiontz(t) on [0, T]. It follows from Proposition 1.2
and the fact that x(t) 5 for >0 that this function is derivable on ]0, T] with
derivative:

dz(t)=p(t)dx(1.24) d- - (t).

When 0, the right-hand side converges to ft. , and so does the left-hand
side.
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Note that (dp/dt)(t) need not converge. Note also that (1.16) and (1.20) imply
that (d/x/dt)(O)=( and (d/z/dt)(O)= , with d//dt denoting the right-
derivative. Equation (1.20) can be written

d/z d/x
(.25) --7-(0) . (0)

which expresses the vanishing of dz-p dx above a point not in
Let us give a more accurate picture in a simple case"

PROPOSITION 1.5. Assume 7rx is proper and 7r-1(2,) is finite. Let a simply
connected subset f of be given in the following way:

(1.26) [I { + t]0 < < a, : S}

with S an open subset ofthe unit sphere +. +2 1. There is a (possibly empty)
finite family of C functions f" f t_J {,}--> , a A, such that

(1.27) 7r ( LI {Y}) {(x, f(x), f,, (x))lx 6 El LI {JT}, a 6 A }.

By a derivative of f at 2 we mean a linear functional f’(2) such that

(1.28)
ve >0, >0, IIx- ll n and x ef

By a C function on lqU{2} we mean a function f such that f’(x) is
well-defined and continuous on {?} U lq.

ProofofProposition 1.5. The set 7r-(x) has to be both compact (because 7rx is
proper) and discrete (because x t), so it is finite. By Proposition 1.2, the map

-1
7r" rx (lq)--> lq is a covering. As 12 is simply connected, the restriction of 7rx to
each connected component of 7r-(ll) is a diffeomorphism, hence the representa-
tion formula

(1.29) 7r-a(lq) {(x, f’(x ), f (x ))lx l-l, a A }.

Now fix a A and let x converge to J7 in f. As 7r is proper, (x, f’(x), f,, (x))
has cluster points (, p, z) 7r21(). As this set is finite, all its points are isolated.
As in the preceding proof, we conclude that f’(x)-> p, and f,,(x)--> z. Setting
f()= z and f’(JT)= p, we get a C function as desired. ]

Let us conclude this investigation of Lagrangian submanifolds by the follow-
ing remark, which throws some light on the case where 7r-l(JT) is not discrete. Let
t->(x(t),p(t),z(t)) be a C path drawn on V along which x(t) is constant:
x(t) JT, 0_-<t_-< T. Then z(t) has to be constant also: z(t)= zT, 0-<t=< T, so in fact
only p(t) varies. This follows easily from the vanishing of i*vw, which yields in this
case (dz/dt)(t)= i=a pi(dxi/dt)(t). In particular, if F is an open path-connected
subset of V projecting on aT, i.e. c 7r-(j), then 7/" is also contained in some
hyperplane H {(x, p, z)lx ?, z } as an open path-connected subset (open-
ness follows from the fact that dim V n dim H).
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2. The Legendre transformation. The mapping of "xx into itself
defined by

(x, p, z)= (x’, p’, z’),
(2.1)

x’ p, p’ x, z’ px z

is called the Legendre transformation. Note the following.
PROPOSITION 2.1. The Legendre transformation is a C involution"

(2.2) 2= Id.

Proof. Using notations (2.1), we set (x’, p’, z’) (x", p", z"), with

x"-p =x,

p" X’ p,

z" p’x’ z’ px (px z) z

hence we get the result.
The fundamental fact about the Legendre transformation is that it preserves

the 1-form to, up to a change of sign.
THEOREM 2.2. *tO --tO.

Proof. Using notations (2.1), we get

*to dz’-p’ dx’

=(xdp/pdx-dz)-xdp

=pdx-dz

COROLLARY 2.3. If V is a Lagrangian submanifold of "", then
so is V.

Proof. It follows from Proposition 2.1 that
E" onto itself. HenceV is a closed submanifold whenever V is. There only
remains to check that i.vW 0. To do that, we write the following diagram:

V---" x I" x I

(2.3) ’1

where 1 is the restriction of to V and j is the canonical injection. This diagram
commutes, and gives rise to another commutative diagram relating 1-forms"

(2.4)

T* V.--T*(n" x" x )

r*(v):-r*(n- x - x ).



LEGENDRE DUALITY IN NONCONVEX OPTIMIZATION 911

Taking o) in the lower right-hand corner, and using formula (1.3) and
Theorem 2.2, we get

(2.5) i* *(w) i*(-o)) -i*(o)) 0;

going the other way around the diagram, we get

(2.6) 0=1" f*(w).
As is a diffeomorphism, l* is an isomorphism, and (2.6) implies that/’*o9 0,

i.e. V is Lagrangian.
We now introduce a slight misuse of notations. Let V and W be Lagrangian

submanifolds of R" R" , with W V, and let Fv and Fw be the associated
characteristic maps. We shall write freely Fw Fv, and call Fw the Legendre
transform of Fv. For instance, if f: "+ is a C function, then f is the
multivalued map from " to R defined by

(2.7) f(x’) {z’l=! p’ ": (x’, p’, z’) V}.
Using (1.1) and (2.1), we get

(2.8) Lf(p {px f(x )l f’(x P}.

Several remarks are now in order. First of all, if f, in addition to being smooth,
is convex, then the function x--px-f(x) is concave, and the equation p =f’(x)
simply means that this function attains its maximum at x. Equation (2.8) then
becomes

(2.9) Sf(p) max {px -f(x)lx

Formula (2.9) shows that &of is single- or possibly empty-valued. In other
words, 5ff is a real-valued function defined on some subset of n. It is to be
compared with the classical Fenchel transform of convex analysis:

f*(p) sup {px -fix)Ix "}.

Formulas (2.9) and (2.10) coincide whenever the function x+px-f(x)
attains its maximum over N". Define the effective domain of f* as the set of points
where it is finite"

dom f* {Plf*(P) <

PROPOSITION 2.4. f(p) =f*(p) if and only iff* is subdifferentiable atp, i.e.
Of*(p) # 49. This is the case at every interior point p of dom f*:

(2.12) p e int dom f* f(p) f*(p).

Proof. Let us write down the definition of the subdifferential of f*"

(2.13) Of*(p) { "lp, f**(x) max}

where the notation maxx means that the left-hand side attains its maximum at
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But, as f is continuous and convex, it coincides with its biconjugate f**; hence

(2.14) Of*(p) { "[ pY-f(Y) max}

which proves the first part of the proposition.
It is a well-known fact from convex analysis that any convex function on R is

continuous, and hence subdifferentiable, on the interior of its effective domain.
Hence we have (2.12).

In the general (smooth, nonconvex) case, formula (2.8) sets .f(p) in one-to-
one correspondence with the sets of tangents to f having slope p.

PROPOSITION 2.5. z’ f(p) ifand only ifz px z’ is a tangent hyperplane
to graph f in " x .

Proof. The hyperplane z =px z’ in (x, z)-space is tangent to graph f if and
only if there exists e " such that f’(Y)=p and flY)= pY-z’. This reduces to
z’ f(p) by (2.8). V1

From Proposition 2.5 one sees instantly that ff can be multivalued. Indeed
5ff is a function, i.e. f(p) is empty or a singleton for every p, if and only if f has
only zero or one tangent of prescribed slope. In dimension n 1, this means
exactly that f is convex. In higher dimensions, this also happens in the non-
convex case: take for instance f(xa, x2) x21-x2, then (Xl, Xz)+(2xl, -2x2)
is one-to-one. But thefact remains that, in contrast with the convex case, in the
general case we have to deal with multivalued Legendre transforms. So. let us
attempt a description of f. We denote by V the Lagrangian submanifold (1.1) of
"x "x associated with f, and by A (x) the matrix of second derivatives of
fatx:

(2.15) A(x)=
\Ox Oxi

PROPOSITION 2.6. Assume A(Y) has full rank n. Then there exists a
neighborhood of (f’(Y), , Yf’()-f()) in Vprojecting onto a neighborhood all
off’() in ", and a local inverse q for f’ such that

(2.16) o//.= {(p, [wfj,(p), [f](p))[p O-ll }

with [wf](p)= pq(p)-f o(p). In particular, we have

(2.17) [wvf],(/) .
Proof. It follows from the implicit function theorem that the map x ,f’(x)

has a local inverse q defined on some neighborhood of ft. Setting

(2.18) T’= {(f’(x), x, xf’(x)-f(x))Ix

and using the definition of q, we get

(2.19) = {(p, 0 (p), po(p)-[o q(P))IP
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Computing the derivative of ’f, we get

[f]’(p) (,o (p)+ ’q’(p)p -tq’(p)f (.p(p)

(2.20) (p) + ’o’(p)p -’o’(p)p

and formula (2.19) reduces to (2.16). F1
,f is a smooth branch off lying above ft. Note that ff is a regular value for

f,: Nn + Nn if and only if it is a regular value for 7r,"V+ [". This is almost always
the case, by Sard’s theorem, and the part of f lying above ff then is a countable
union of smooth branches such as vf (this is a particular case of Proposition 1.2).
If moreover f’ is proper at/, then so is 7r,, and there are only a finite number of
branches off lying above ff (this is a particular case of Corollary 1.3).

We can of course apply Propositions 1.4 and 1.5 to get a description of ’f
above critical values of f’. But, in this particular case, we prefer another approach,
which has the advantage of directly relating the shape of the Legendre transform
above f(27) to the degeneracy of the matrix of second derivatives at 2?. We write the
Taylor expansion of f at :
(2.21) f(.f+)=f(.f)+ffc+1/2(A(.f)e,c)+P3(.f;l,..., :)/ o(l:l4)
where P3(.f; is a homogeneous polynomial of degree 3 in n variables. Using the
Euler formula, we may write

OP3P3(.; 1,"’", n)= 1/2 i’-"’-’. (3 1,""", n)"-"
i=10i i=1

where Bi($) is the matrix with elements 1/2 O3f/Oxi Ox Oxk, 1 <=], k <-n. Denote by
(B(g)& :) the n-vector with components (Bi(g):,

PROPOSITION 2.7. Assume that A () has rank (n- 1) and that

(2.22) : # 0,
1,’"’, :n) g: O,

eKerA(2?)=),
(B($):, )ImA(.f).

Then (possibly after reordering the linear coordinates (Pl,’ ", P,) in and
changing p, to -p,) there is a neighborhood of (f’($), , f’($)Y-f(Y)) in V, a
neighborhood ql ll’ all, of (1, , p--l, p-) in , Cfunctions kl, k2" all’
and h" ll - , such that 7r, is completely described by the set of conditions

(2.23)

(2.24)
with

(Pl, P,-I, P,,) //’ X ag,, and

z {z+(p), z_(p)},

z+(p) kz(pl,""’, pn-1)+(pn-kl)h(pl, Pn--1, /pn-kl),

z_(p) kz(pl, ", Pn-1) + (Pn kl)h(pl, ", en-1, --4Pn kl).

Moreover Oz/Opi xi, 1 <- <- n, along the hypersurface

(2.25) p,, kl(pl,’", p,,-1).
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Proof. The (Xl, Xn) are a system of coordinates in Vwith formula (2.8)
yielding (Pl, , Pn, z) in terms of (Xl, , xn). In particular,

(2.26) Of(x) Pi for 1 _-< _-< n.
Oxi

The rank assumption on the matrix A (g) implies that one of its (n- 1)x
(n 1) minors is invertible, for instance the one defined by the (n- 1) first rows
and the (n 1) first columns. Moreover, the nth row then is a linear combination of
the (n- 1) first rows.

It follows from the implicit function theorem that the (n 1) first equations of
system (2.26) can be solved locally for (Xl,’" ",xn-1). In other words,
(pl,’" ,p,-1, xn) can be used as coordinates in some neighborhood //’1 of
(/7, 2, 2) in V. Now consider the path w(t)= (p(t), x(t), z(t)) in 1 such that
pa(t)=fi,..., p,_l(t)=/7_1, x,(t)=2, + t. There is some T>0 such that w(t)is
well-defined for -T<=t <- T. Obviously w(0)= (p, x, px-f(Y)); we shall write :’
for (dx/dt)(O) and :" for (dZx/dt2)(O). Equations (2.26) are satisfied along w(t):

O[(Xl(t),... x,(t)) for 1-T<t < T.(2.27) pi(t) -x
Writing Taylor expansions into (2.27), we get

2

(2.28) p(t)-p tA(Y)(’+-[(B(Y)(’, (’)+A(Y)lj"]+O(t3).

But pi(t)-Pi =0 for l_-<i_-<n-1, so that both sides of the (n-1) first
equations of system (2.28) are identically zero on (-T, T). It follows that the
(n 1) first components of A ()( are zero, and, by the rank assumption, so is the
last one

(2.29) A (.g)sc’ 0.

Assumption (2.22) then yields

(2.30) (B (?)s’, s’) +A (?)(" # O.

But again, both sides of the (n 1) first equations (2.28) being identically zero
on (-T, T), the (n- 1) first components of vector (2.30) must be zero. It follows
that the nth component must be nonzero. We summarize our results so far by
stating that the nth equation of system (2.28) can be written as

(2.31) pn(t)-p =1/2antZ+o(t3), an #0.

Similarly, we compute the Taylor expansion of z(t) at 0. By definition, we
have

(2.32) z (t) f’[x (t)]x (t) -f[x (t)].

From now on we set/7 f’(g) and z7 =/5-f(2).
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Successive derivations yield

dz
(2.33) d-- (0) (A (.)’, sc’)

(2.34)
d2z
dt2 (0) 2(a ()s’, s’’) + P3(.; (, , (’,,).

But we have seen that A ff?):’ 0, so that (dz/dt)(O)= 0 and (dZz/dt2)(O)=
bn 0 by assumption (2.22). Finally we get

(2.35) z(t)-=1/2b,tz+o(t3), b, 0.

Now w’(0) is just the tangent vector (O/Ox,)(pl,. ", P--a, x,) associated with
the new coordinate systems. In other words, p, and z, considered as functions of
(Pl, ",p-l, x,) in 7/’a, satisfy

(2.36) x, (Pl, ",/5,_1, ?,) 0,

OZpn
(2.37) x (/Sa,...,/-1, Yn) 0,

(2.38)
Ox,

(Pa, P,-1, x,) O,

022
(2.39) xx(/l,...

But other points (p, x, z) in V1 enjoy the property that A(x) is of rank
(n 1) and satisfies (2.22). Indeed, consider the Jacobian determinant

D(pl,’", p,-l, p,,) 2

A(p, ,p,_,x,)=
D(pl,

(2.40)
Op____--Oxn(Pl, ,pn-l,Xn)

by a simple computation. Clearly rank A(xl,’",x,)<n if and only if
A(Pa,’ ",P,-a, x,) 0. But A= 0 and (OA/Ox,) (OZp,/Ox2) 0 at point
(Pl, ",/5,_1, ?,). By the implicit function theorem, there are neighborhoods
of 1," , ,6,-a) and /g’l of ,, and C map g: //1 7g’1 such that

(2.41) A(pl, ., Pn-a, xn) 0:x, g(Pl," ", p-l)V(pl, ’, x,,) /1X c1.

Conversely, x, g(Pl,’", Pn-1) implies rank A(xl,"’, x,,)<n. By a con-
tinuity argument, we can shrink 0 and c to 0g2 and 7//22 so that rank
A (Xl,""’, x,) is exactly n- 1 and assumption (2.22) is satisfied whenever x,
g(px, , P,-I) in //2 x 7/#2. We may even include in the bargain the fact that the
first minor ofA (x) is invertible, so that (pl, ",P,,-I, Xn) enjoys all the properties
Of (ffl, fin-i, -n). By (2.36) and (2.39), it follows that Op,/Ox, 0, 02pn/DX2 7

Recall that D(fl,’", fn)/D(Xl,"’, Xn) denotes the determinant
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O, OZ/OX O, 02Z/OX2, 0 at every point (Pl,""", P,-1, x,) 02 X c2 such that
x,=g(pl, ,p,-).

It follows that

(2.42) p, kl(pl,’’", p,-1)+[x,-g(pl, p,-1)]2hl(pl, p,-1, x,),

(2.43) z k2(pl,""", p,_a) +[x, -g(p,’", p,_)]Zh2(pl,’.’, p,_a, x,)

with

(2.44) x,=g(p,... ,p,-)zh(pl,’" ,p,-x,x,)hz(pl,"", p,-1, x,) - 0.

The point of V defined by (pa,...,p,_,x, =g(pl,...,p,)) yields p,
k(pa,. , pn-1) and z k.(pl," ", p,-1), so that ka and k2 are Coo functions. It
follows from the C division theorem of Malgrange that h and h2 can be chosen
to be C functions also.

Assume that h(pa,... ,p-,_l, x-,)>0. Then we can define
and use (px,..., p,_a, y,) as a new system of local coordinates in some smaller
neighborhood 2 of (/7, J, ) corresponding to (Pl, , p,-1, y,)e 0//3 x 7g’3.
Equations (2.42) and (2.43) become

2(2.45) p,-kl(p,’", p,,-1) yn,

(2.46) z kz(p, Pn-1) yZn h3(pl, P,-1,

with (p,’.., p,_l)e 3 and y, e /423. This implies that p,-k is nonnegative.
Conversely, whenever p, _-> kl, we can solve (2.45) by y, :t:x/p, kl, getting two
distinct values whenever the inequality is strict; possibly shrinking a//3 to ag4, we
can arrange that both those values are in /4#3, so that (2.46) becomes

(2.47) z k2 (p, kl)h(p, ", p,-a, +/p, k)

which, together with (pl, ’, Pn-) 4, completely describes r2.
If ha(p, ’, P-n-l, )n) should be negative, then we simply reverse p, to -p,,

and we are back to the preceding case. So formulae (2.23) and (2.24) are proved.
For the sake of convenience, denote by f the set of points (pa, , p,) such

that p, > k l, and by its boundary, the equation of which is p,- kl. Formula
(2.24) yields along Z

OZ+ OZ_ Ok2 1<i<=n-1
Opi Opi Opi

(2.48)
Oz+ Oz_

Op

It follows also from formula (2.24) that with any p Y-- and any vector
n--1

r’= (r, , r’) pointing to the interior of f (i.e. r,- Y=l (Ok/Op)r >0) we
can associate two continuous paths (p(t), x(t), z+(t)) and - (p(t), x(t), z_(t))
inVstarting at (p, x, z) and satisfying (dp/dt)(t) r’ as -0. From Proposition
1.4 (taking care that x- and p-coordinates are interchanged) it follows that, when

dz+ r’
dz_

(2.49)
dt

(t) --> x and -d--(t) --> x r’.
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But from formula (2.48) we get directly

dz+(t)(2.50)
dt

Oz
and

Oz_
(t)

Ot Op

where Oz/Op denotes the common value of the n-vectors (2.48). This yields
(Oz/Op) r’ x 7r’ for every vector 7r’ in some half-space, and hence the desired
formula x Oz/Op.

In other words, f is not defined locally for Pn < kl(pa,’", Pn-1). In the
region p, >= k(pl," , P,-a), there are two well-defined branches for ’f. Along
the boundary they coincide and have the same tangent hyperplane, and their
shape away from the boundary is given by the following result.

COaOLLAa 2.8. We keep the assumptions and notations ofProposition 2.7,
and we setq, p, kl(pl, ", Pn-1). Thenfcan be expanded near the boundary
qn 0 as

(2.51)
z kz(pl,’’’, P,-a)+ q,[ao(pl,’’’, P,-1)

+aa(Pa, p,-a)4q] + O(q3,/)
where the functions k2, ao, a are C. Moreover

(2.52) ---0k2 (Pl, p,-1) x for 1 <- <- n 1,
pi

(2.53) ao(pa,’", p,-1) =x,.

The proof consists simply of replacing h by its Taylor expansion in formula
(2.24). We see that the two branches only intersect at the boundary p, k of the
admissible domain p >-k (this is true even in the special case where a 0,
because then the third order term +a3q3,,/2 takes precedence). This is the classical
"cusp" situation, so that Proposition 2.7 can be loosely stated as follows" a simple
inflection point of f gives rise to a simple cusp of f.

Of course, more degenerate inflection points of f give rise to more compli-
cated situations in f. A classification can be attempted along the lines of
Proposition 2.7, but we are not going to conduct it any further. Let us only point
out that, for all functions f , where is a dense G subset of C(") in the
Whitney topology, the space [n can be partitioned as Eo U ;1 t0 E2 where:

E0 consists of all points x where A (x) is nondegenerate; it is an open subset
of

E1 consists of all points x where A (x) has rank (n 1) and satisfies (2.22); it is
a codimension one submanifold.

E2 consists of all other points; it is a stratified subset of codimension -->2.
Without going into details, this follows from Thom’s transversality theorems.

So, for most functions, the analysis performed thus far describes everything up to
codimension two. In the one-dimensional case, n- 1, that means precisely
everything. Let us conclude by a simple example.

Define a function f on the real line by

(2.54) f(x) (x + x2)2.
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We want to know what f looks like. We need some data on f which are
summarized in the following"

f’(x)=4x(x + 1)(x +1/2)=4x3+6x2+2x,
f"(x) 12x2+ 12x + 2,

x f(x) p=f’(x) f"(x) z=f’(x)x-f(x)
-oo +oo -oo

-1 0 0 * 0

-0.7887 3 0.19245 0 -0.1796

-0.2113 3G -0.19245 0 0.0129

0 0 0 * 0

We now can draw the graphs of f andf (Figs. 1 and 2.) Note that the z-axis
p 0 intersects f at the simple point z --6 and the double point z -0. This
means that there are two distinct tangents to f with slope p- 0: the first one is
tangent to f at x -1/2 only, the second one is tangent to f both at x -1 and x 0.
From formula (2.17), the tangent to f at (p 0, z --6) has slope -1/2, and the
two branches of 6ff which intersect at (p- 0, z- 0) have distinct tangents of
slopes 1 and 0 respectively.

Moreover f features two cusps at (0.1945, -0.1796) and (-0.1945,
0.0129). By Proposition 2.7, the tangents at those cusps are well-defined, and
have slopes-0.7887 and-0.2113 respectively.

f(x)

-0.7887 1/2 -0.2113 0 x

0.01

FIG. 1. x -f(x). Scale" -0.1
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L[(p)

0.0129

-0.1945

-0.1796

0.02

FIG2. p---f(p). Scale" "’ O.02

Note the parameteric equations for f"
p=2x(x+l)(2x+l),

(2.55)
z=x(x+l)(3x2+x).

Thus the graph of 5ff is the semi-algebraic set obtained by writing that the two

algebraic equations (2.55) have a common solution in x, i.e. by eliminating x
between the two equations.

3. Extremization problems and duality. Whenever Vis a subset of " x n x
N, we shall denote by

(P) ext V

the problem of determining all couples (x, z) N" x N such that

(3.1) (x, 0, z) e V.

() will be termed an extremization problem, and any couple (x, z) satisfying
(3.1) will be called a solution of (). The value of (), denoted by (ext }, will be
the set of all z N such that there is an x Nn with (3.1) satisfied.

An important special case occurs when V is the Lagrangian submanifold
associated with some C function f: N -R(3.2) V= {(x, f’(x), f(x))lx "}.

In that case formula (3.1) becomes

(3.3) f’(x) O, z =f(x)
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so that () is simply the problem of determining the critical points and values of f.
We shall write it

() ext f(x)

and call it an unconstrained smooth extremization problem.
Another important special case occurs when

(3.4) V= x,f’(x)-2 Aig(x),f(x) Igi(x)=O, Ai6R, l<-j<-k
/=1

where f and the gj, 1 _<-/" <- k, are C functions on R". We set

(3.5) S=zrxV={xlgi(x)=O, l<-j<-k}.

LEMMA 3.1. If the gj(x), 1 <-_ j <= k, are linearly independent at every x S,
x S, then S is a closed submanifold of " and V is a Lagrangian submanifold of

Pro@ Sh fact that S and I/are closed (n- k)- and n-dimensional sub-
manifolds follows easil from the implicit function theorem. W chck condition
(1.3)/or V:

i*voo df(x)-(f’(x) Z A.g(x)) dx
(3.6)

(d[(x) f(x) dx) +X ag(x) dx.

The first term vanishes identically, and along V we have g.(x) dx 0 since

gi(x) is a constant. ?l
The solutions of () are all couples (x, f(x)) such that

k

(3.7) x e S and ,1, ", ,k" f’(x)-- Y. ,ig(x) O.
j=l

If the g’.(x), 1 <j < k, are linearly independent at every point x e S, condition
(3.7) means that x is a critical point of fls, the restriction of f to S. For that reason,
we shall write () as

ext f(x),

g.(x) 0, l_-<]_-<k,

and call it a constrained smooth extremization problem.
Any critical point of a smooth convex (or concave) function is a minimum (or

a maximum). For that reason, the various extremization problems we stated
reduce to optimization problems when f is convex (or concave) and the gi linear.
So extremization is a natural generalization of optimization to the nonconvex
case. Now it is a well-known fact that there is a duality theory of convex
optimization problems, and we want to extend it to nonconvex extremization
problems.

From now on we are given a linear map A" N" N". We shall denote by
x, p, y, q the vectors of N, (N")*, R’, (N")* respectively. With any subset V of
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Rn+, x n+’ E we associate the subset VA of " " defined by

(3.8) VA={(x,p+A*q,z)[(x, Ax;p,q;z) V}.

Applying this definition to the transpose A*: (E")*(E")*,3 and to any
subset V* of "+’ n+m E, we get

(3.9) V’A, {(q, y+Ax, z)l(A*q,q;x, y;z)6 V*}c ’ ’ .
We now state the main result of this section.
TI-IEOrEM 3.2. LetA " - m, be a linear map and Vany subset of +" x

+" . Consider the extremization problems

ext VA,

ext (,V)_A

()

(*)
The formulae

(3.10)

(3.11)

(x, Ax;-A*q,q;z) V, z’=-z,

(-A *q, q; x, Ax z’) V, z -z’

are equivalent. Whenever (x, z) is a solution of (), the set of (q, z’) satisfying
(3.11) or (3.10) is nonempty, and all ofthem are solutions of (*). Whenever (q, z’)
is a solution of (*), the setof (x, z) satisfying (3.11) or (3.10) is nonempty, and all
of them are solutions of ().

Proof. To say that (x, z) is a solution of () means that there exists (p, q) such
that

(3.12) (x, Ax; p, q; z) V, p+A*q =0

which we may write in a more symmetric form:

(3.13) (x, y;p,q;z) V, y-Ax=O, p+A*q=O.

Applying the Legendre transformation, we obtain

(3.14) (p,q;x,y;px+qy-z)V, y-Ax=O, p+A*q=O.

The last two equations imply that

(3.15) z’=px +qy-z =-A*q x +q Ax-z =-z

and formula (3.14) becomes

(3.16) (p,q;x, y;-z)V, y-Ax=O, p+A*q=O.

Breaking the symmetry, we get

(3.17) (-A*q,q;x, y; -z) ,V, y-Ax =0

which means precisely that (q,-z) is a solution of (*). Since the Legendre
transformation is an involution, formulae (3.12) and (3.17) are equivalent, and set
up a one-to-one pairing between solutions (x, z)of () and (q,-z) of (*). But
(3.12) is just (3.10), and (3.17) is (3.11). lq

From now on we shall omit the star.
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The following is an easy consequence of the fact that the Legendre transfor-
mation &o and the operation A -A* are involutions.

COROLLARY 3.3. (**) ().
Problems () and (*) will be said to be dual to each other. Another easy

consequence of Theorem 3.2 is the following.
COROLLARY 3.4. {ext } -{ext *}.
Theorem 3.2 is more readily understandable in the case of unconstrained

smooth extremization problems. It reads as follows.
PROPOSITION 3.5. Let A: -’ be a linear map and f: +" a C

function. Consider the extremization problems:

() ext f(x, Ax),

(*) ext f(-A *q, q).
q

(3.18)

The formulae

-A *q f’(x, Ax), q f’y(x, Ax), z’ -f(x, Ax)

set up a one-to-one pairing between solutions (x, f(x, Ax)) of () and (q, z’) of
(*). Whenever the matrix of second derivatives f" has rank (n + m) at (x, Ax),
there is a neighborhood ql of (-A *q, q) and a C selectionfoffover ll such
that

(3.19) f(x, Ax) -(f)(-A *q, q),

(3.20) x (f)’p(-A *q, q), Ax (uf)’o(-A *q, q).

This follows easily from taking V= Vr, the Lagrangian submanifold
associated with f, in Theorem 3.2. The last part is a consequence of Proposition
2.6. Note that relations analogous to (3.20) hold whenever (f)’ can be defined in
a consistent way at (p, q; z’); this would be the case for tle cusp points described in
Proposition 2.7.

Let us give an important special case.
COROLLARY 3.6. Let q: - and O: " be C functions, and consider

the extremization problems

() ext q(x)+ O(Ax),

(*) extq(-A *q +O(q ).
q

Then {ext } -{ext l’*}, and there is a one-to-one pairing between solutions
(x, q(x)+ O(Ax)) of () and (q*, z’) of (*), described by the relation

(3.21) -A *q p’(x), q O’(Ax), -z’= q(x)+ O(Ax).

Whenever q" has rank n atx and 0" has rank m atAx, there are neighborhoods
and q12 of -A *q and q, selectionsuq anduOofq andOover qll and 2,



LEGENDRE DUALITY IN NONCONVEX OPTIMIZATION 923

such that

(3.22) u((-A *q +ug/(q q (x + (Ax ),

(3.23) x (()’(-A*q), Ax (O)’(q).

We now give two examples of applications of Theorem 3.2. They are both
related to the problem of finding the eigenvectors and eigenvalues of a self-adjoint
operator: we write it as an extremization problem in two different ways, and
dualize both of them.

Let us start with the constrained smooth extremization problem

ext [[axll2
()

Ilxl12 1.

A solution to () is a couple (x, z) such that

(3.24) Ilxll2= 1, =! , : A *ax -ax O,

(3.25) z Ilaxll= a,
i.e. x is an eigenvector of A*A and z is the corresponding eigenvalue.

Consider the subset Vc n+, n+,, defined by

(3.26) V= {(x, y.; -2Ax, 2y ;[lyl12)l [Ixll2 1, A }.

By Lemma 3.1 it is a Lagrangian submanifold. It is clear that problem () is
simply ext VA. For the sake of convenience we will cut out part of V; indeed, it is
apparent from formula (3.25) that , _->0 for any solution (x, z) of . So we
introduce the "Lagrangian submanifold with boundary"

(3.27) V’= {(x, y; -2,x, 2y; Ilyl12)l Ilxl[2 1, A ->_ 0}

and we state problem () as

() ext V..
The Legendre transform of V’ is again a Lagrangian submanifold with

boundary. Going through the computations, we write it as a disjoint union
5FV f U F, where F is the boundary

(3:.28) f {(P, q;-p/llpll, q/Z;-Ilpll / Ilql12/4)lp # 0},

(3.29) F= {(0, q;(, q/2; 1]q]12/4)111ll== 1}.

V is clearly associated with the function (p, q)--llpll+llqll/4. The func-
tion p -Ilpl[ is not differentiable at the origin, but let us agree that

d
(3.30) (-Ilpll)l--o { "111ll2 1).

This being agreed upon, we can now state the dual problem (*) in the
following way"

(*) ext-IlA*qll + Ilqll/4.
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Theorem 3.2 implies that whenever (q, -I]a *qll+llq[12/4)is a solution to (*),
all couples (x, IIAxll2) given by

(3.31) x=a*q/lla*q][ ifa*q#0, ax=q/2, IIx[I2=l,
(3.32) ][Axl[= IIm*qll-llqll2/4
are solutions to (); in other words x is an eigenvector of A*A with norm one,
and [IA*qll-]]qllZ/4 is the corresponding eigenvalue. For instance, formula (3.30)
shows us that (0, 0) is a solution to (*) provided there exist 6 " with I1112 1
and Ase 0. Formulae (3.31) and (3.32) then yield the trivial fact that every such (
is an eigenvector of A*A with eigenvalue 0. Note as a conclusion that -{ext *} is
just the spectrum of A*A.

We now treat the same problem in another way. We define a subset W of

It can be checked that W is a Lagrangian submanifold. We asociate with it the
extremization problem

() ext Wa

which we state somewhat loosely as

() ext I[Axll2/llxll2.
Of course, solving () is just looking for the eigenspaces of A*A. We now

construct the dual problem (*). A simple computation yields

(3.34) 5W= {(p, q; -2p/[lqll2, 2qllpll/llq][4 -Ilpl]2/l[q[12)lq o}

t_J {0, 0; r, 0; 0)[r "}.
The dual problem (*), which is ext W-a., will be stated somewhat loosely as

(3.35) ext -IIA *qll2/llqll2.

We leave it to the reader to see what becomes of formulae (3.10)-(3.11).
They tell us essentially that the eigenvalues of A*A and AA* coincide--a trivial
fact.

We conclude this section by pointing out a technicality: even if V is a
Lagrangian submanifold of n+m X n+m X , the set VA need not be a Lagrangian
submanifold of E"x mx . Indeed, it need neither be closed nor be a sub-
manifold. As a simple example, take

(3.36) V= {(x, y; -y/x 2, /x; y/x)l 0}

a Lagrangian submanifold of x x . Setting A" x mx, we get

(3.37) VA {(X, 0, m)lx 0}

which is not closed in x x .
However, we have the following.
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LEMMA 3.7. If V is a Lagrangian submanifold and if VA is a closed
submanifold, then Va is Lagrangian.

Proof. We check condition (1.3) for Va"

(3.38)
i*vo) dz (p +A *q) dx

dz -p dx -qd(Ax)

which is zero since (x, Ax; p, q; z) V, and the restriction of w to Vvanishes. V]

Note also that if V is the Lagrangian submanifold associated with a Coo
function F’R R" + E, then VA is the Lagrangian submanifold associated with
the C functionx f(x, Ax) from n to ma fact we have used repeatedly in this
section.

4. Applications to the calculus of variations. From now on, I) c " will be an
n-dimensional Coo-submanifold with boundary F. We set f= -F, an open
subset of "; we endow 12 with the Lebesgue measure do) and F with the induced
(n- 1)-dimensional measure dy.

We consider a continuous linear map A" V--> E, where E L2(.,; m) and V
is some Hilbertian subspace of H L2(’]; Rk) (i.e. V is a linear subspace of H
endowed with some Hilbertian structure such that the inclusion mapping V-->H is
continuous). We assume that there is some Hilbert space T and some continuous
liner map r" V-> T such that r is surjective and Vo r-l(0) is dense in H. In
practical examples, A will be some differential operator, Vo will be @(fl), the
closure in V of the set of Coo functions with compact support in lq, and T will
associate with every function in V its "trace" on the boundary F. We shall state an
abstract Green’s formula for later use.

THEORFM 4.1. There exist a Hilbertian subspace V* of E, and continuous
linear maps A *" V* Hand r*: V* - T’, the topological dual o[ T, such that, ]’or
every x Vand q V*, we have

(4.1) (q, Ax)-(A*q,x)=(r*q, rx)

where (., denotes scalar product in L2 and (., denotes the duality pairing
between T’ and T.

We now turn to extremization problems in the calculus of variations. From
now on, we are given a family Wo,, o)sfl, of Lagrangian submanifolds of
k+,, k+,, , and we denote by Fo, (x, y) the associated characteristic maps.
Moreover, we are given a convex lower semi-continuous function " T-->
U { + }; as usual in convex analysis, its subdifferential will be denoted by 0.

We now state.
DEFINITION 4.2. The calculus of variations problem4

() ext f F(x(o)) ax(o))) do) +(rx)
V ,lf

consists in looking for all mappings o)+(x(o)), q(o)), z(o))) from f to

Henceforth denoted by C.V. problem.
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Rk+" x Nk+" N such that

(4.2) x V, q V*, zL,
(4.3) (x(o), Ax(o)); -A*q(oo), q(o); z(w)) Wo for a.e. o) f,

(4.4) -*q -O(’x).

Any pair (x, z)e Vx L such that there exists q e V* satisfying (4.2)-(4.4)
will be called an extremal of (). The number sr defined by

In z (w) do) + (’x(4.5)

will be the associated value of (). The set of values of problem () will be
denoted by {ext }.

The motivation for this definition is clear. In the case where F,o(:, *7)=
f(w; , rt), a function which is C in (:, ) for almost every o) D, and measurable
in o for every ((, rt) x [’, then (4.2)-(4.6) become

(4.6) f(w x(w), Ax(w)) + A*f’(oo ;, x(oo), Ax(w)) 0 a.e.,

(4.7) ’*[f(x, Ax)] -Orb(x).

Equation (4.6) is the Euler-Lagrange equation on iq associated with the
integral

(4.8) In
and formula (4.7) yields the so-called transversality conditions on the boundary F.
In the case where f is convex in ((, r/) for every to, those are necessary and
sufficient conditions for optimality. If f is not convex, but satisfies some growth
condition at infinity, we get the first-order conditions for stationarity.

We now state the duality theorem.
THEOREM 4.3. Consider the C. V. problems

() ext f Fo,(x(oo),Ax(w))doo+cb(-x),
xV

(*) ext f Foo(-A*q(w), q(w)) do)-*(--*q).S
q V*

Let (x, z) be an extremal of (3) with value (; then, for any q satisfying
(4.2)-(4.4), (q, -xA*q +qAx-z) is an extremal of (3*) with value -(. Con-
versely, let (q, z’) e V* x L be an extremal of (*) with value (’; then, for any x V
satisfying

(4.9) (-A*q(w),q(to);x(to),Ax(oo);z’(to))eWoo fora.e.oea,

(4.10) ’x e 0*(-’*q),

, is the Fenchel conjugate of in the sense of convex analysis:

*(6’) sup {<6, 6’)-(6)16 T} V6’ T’.
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(X, qAx-xA*q- z’) is an extremal of () with value -(’. Hence

(4.11) {ext } -{ext *}.

Proof. The pointwise equation

(4.12) (x (to), Ax (to); -A*q(w), q(o); z(w))

can be written

(4.13)
(-A *q(w ), q(to); x (to), Ax(w -x (w)A *q (w +Ax (w )q (w z (w LPW.

Moreover, formula (4.4) an also be written

(4.14) ’x O*(-’*q).

But equations (4.13) and (4.14), together with x V, q V*, z L 1, simply
mean that (q,-xA*q +Axq- z) is an extremal of (*). The associated value is

(4.15) (’= Ia (-x(eo)A*q(o)+Ax(eo)q(eo)-z(o)) doo-*(-’*q).

Using Green’s formula we have

(4.16) (’= -Ia z(o)) d +(7"*q, ’x)-*(-’*q).

Making use of (4.14), this becomes

(4.17) (’=-fa z(oo) do)-(,rx)=

Hence the first part of the theorem is proved. The converse is proved along
the same lines.

Typical instances of such a mapping A"VE are

(4.18) grad" Ha(I))- L2(-; n),

(4.19) A: H2(I))L2(I); N).

In the first case, T is Ha/z(F), and Green’s formula reads

Ia (grad x. + x. div )do) Iv r/. qx(4.20)

In the second case, T is H3/z(F), and Green’s formula reads

In both cases, we could define as

j" 0 if 6 6o,
(4.22) (6)

+oo otherwise
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which gives a Dirichlet condition (fixed boundary values). We could also define

(4.23) q(6) { 0 iflr 8=0,
+c otherwise

which is a kind of periodicity condition.
Let us give an example:

ext In f(w; x(o)), grad x(w)) dw,

X E HI(), IF X(T) dy 0

has the following dual:

ext Ja f(o); -div q(o)), q(o))) do),

q E H(f; div), q const, on F

where H(f, div)= {u s L2(f, ")[div u s L2(f, Nn)}. The task of rewriting (4.2)-
(4.4) and (4.9)-(4.11) is left to the reader.

We are now going to show that we can get simultaneously the extremals (x, z)
of () and the extremals (q, z’) of (*) from the extremals of a single C.V.
problem.

PROPOSITION 4.4. Consider the C. V. problems

ext In [-A*q(o)). x(o))+q(o))y(o))-F,o(x(o)) y(o)))]do)-,I,*(--*q),
(x,y,q)
VEx V*

(*) ext
(x,p,q)
VxEx V*

Ia [p(o))x(oo)+q(oo) Ax(o))-F,o(p(o)), q(o)))] do) +(rx).

The following are equivalent statements:
(a) (x, y, q, z’) is an extremal of ( ),
(b) (x, p, q, z) is an extremal of (*),
(c) (x, q, z) satisfy (4.2)-(4.4),
(d) (q,, x, z’) satisfy (4.9)-(4.10) and z’ L ,

with z +z =-A*q.x +q. Ax. In particular (x, z) is an extremal of () and
(q, z’) an extremal of (*).

Proof. We have already shown that (c) and (d) are equivalent. We shall be
content with proving that (a) and (c) are equivalent; the proof that (b) and (d) are
equivalent goes along the same lines.

Problem (2) can be written as

(R) ext
(x,y,q)
VxEx V*

o%o, (x(o)), y (o)), -A *q(o)), q (o9)) do)
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where o is the characteristic map associated wth the Lagrangian submanifold
o/g., of [2k+2m X [2k+2m X [ defined by

(4.24) 7///’,,., {(, ’r/, ’rr,.p; ,rr-o’, p-r, , r/; ,rrz+p’O-()l,rr e R,
We now apply Definition 4.2 to the Hilbert space 7/" V E x V* and the

map sO: 7#->E defined by sO(x, y, q)=-A*q;itsadjointwill be the map sO*" V
H E Hdefined by *(x’) (0, 0, -Ax’). Conditions (4.2)-(4.4) then become

(4.25) xeV, yeE, qeV*, x’eV, z’eL 1,
(4.26) (x(w), y(oo),-A*q(w),q(w); O, O,x’(w),Ax’(w);z’(w))e 7/ a.e.,

(4.27) rx’ e O*(-rq).

So (x’y, q, z’)e VE V*L is an extremal of () if and only if there
exists x’ e V such that (4.26) and (4.27) are satisfied. Now, comparing (4.26) with
(4.24), we get

(4.28) -a*q(w) r,

(4.29) q(o)) ,
(4.30) x’(o)) x (o9),

(4.31) Ax’(w) y(w),

(4.32) z’(w)=-A*q(oo) x(w)+q(w)y(w)-(,

(4.33) x(w), y(w); r, ’; ()e W,,.

All this boils down to

(4.34) (x(w), Ax(w); -A*q(w), q(w); z(w)) e W a.e.

with z(o))+z’(oo)=-A*q(w).x(w)+q(oo).Ax(w). With (4.30) taken into
account, (4.27) becomes

(4.35) rx Orb*(-*q)

which can be inverted to

(4.36) -’*q e OdP(7"x).

But (4.34) and (4.36) are just (c), and we have proved our claim.
Proposition 4.4 can be considered a smooth version of the saddle-point

property for Lagrange multipliers in convex optimization. Note that in the case
where F,o (:, r/)= f(w; , r/), measurable in w, C in (, rt), problem (*) involves
f(w; , rt) which typically is multivalued and cusped; working with problem (2)
is a way of circumventing this inconvenience at the cost of increasing the
dimension.

We now apply this idea of "smoothing out" Legendre transforms to another
example.
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PROPOSITION 4.5. We are given a C function q: [0, T] x n _> , a measura-
blefunctionf: [0, T] --> ", and a pointo ". We consider the differential equation

d-- + q ’( t, x) f a.e. on [0, T], x (0)= :o,

and the C. V. problems

ext Ion" [q (t,

()
x Hi(0, T;R"), x(0) Xo;

eXt loT"[q(t, x)-q(t, y)+(t-)(x y)] dt,

x s Hi(o, T; "), y s Hi(O, T; "), x(O)= y(O)= (o.

ff () has no solution, then problems () and () have no extremals. If () has
a solution Y,, then problem () has a unique extremal (Y,, 0), and problem () has a
unique extremal (, , 0).

Proof. Problem () arises from problem () by replacing q(f-(dx/dt)) by
y(f-(dx/dt))-q(y), i.e. by smoothing out that part of the integrand which is a
Legendre transform. Proposition 4.4 does not readily apply to this case, so we give
a direct proof.

An extremal (x, y, z) of () is defined by the Euler equations

(4.37)
dx d

p ’(t, x +- f - x y

(4.38) -o’dt, y)--+f 0

and the boundary conditions x (0) y (0) Xo. Together, they yield the system of
differential equations on [0, T]

dy
(4.39)

dt - q(t, x) f, y(0) Xo,

dx
(4.40)

dt - qdt, y) =f, x(O) Xo.

Now this is to be compared with equation

dx
()

dt - q(t, x) =f, x(O) Xo.

The assumptions on q imply that both system (4.39)-(4.40) and equation ()
have at most one solution. If ,f is the solution of (), obviously (,f, Y) is the solution
of (4.39)-(4.40). Conversely, if (,f, 7) is a solution of (4.39)-(4.40), ther so is
07, ,f); from the uniqueness, it follows that ,f 7, obviously the solution of (q).
Writing x Y 7 y in the integrand, we see that it is identically zero. We have
proved the equivalence of equation () and problem ().
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The equivalence of problems () and () goes along the lines set up
in Proposition 4.4. Indeed, (4.38) means simply that

(4.41) -o(t, y)- -- y=Zgq t;f--
and the integrands in () and (R) become equal. With x y, formula (4.41) yields,
with a slight misuse of notations,

(4.42) [o] t, f-- x

and the Euler equation for () turns out to be exactly equation ().
Note that we have defined directly the extremals of a problem in the calculus

of variations, without refelnce to any extremization problem. This is because the
natural extremization problem involved is infinite-dimensional, and the results of
the preceding sections do not extend readily to this case; indeed, smoothness
assumptions which are natural in finite dimensions become preposterous in this
new setting. In some particular cases, however, it can be made to work. Let us give
an example, which will be recognized as an infinite-dimensional version of the
example concluding 3.

We consider the space V Hol() and the function

(4.43) f: V{0} x L2(’) ---) ,
(4.44) f(x, y)--

with I" denoting the L2-norm. Obviously f is a C function, with

p -f’x(X, y)- -2xlyl2/]xl4

q =f’y(x, y)= 2y/Ix] 2 L(fl)".

(4.45)

(4.46)

We now set

(4.47) y grad x

to get the extremization problem

ext Igrad x]Z/[x] 2,
()

x 6 Ho(l)), x # 0.

Let us write out the equation for a critical point, taking into account the fact
that the transpose of grad: H()- L2(i))" is -div" L2() H-1(1):
(4.48) O=p-divq=-Z(x]gradx[2/]x[Z+div gradx)/[xl2.

Note that [grad x] cannot be zero unless x is, so (4.48) becomes

(4.49) x -]grad x]2 Ax, x 0.

In other words, the solutions of () are the pairs (x, l/A) where -A is a
nonzero eigenvalue of the Laplacian under homogeneous boundary conditions,
and x any nonzero eigenvector.
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To get the dual problem, we note that (4.45) and (4.46) are invertible
whey,ever y 0; this yields

(4.50) x =-2p/Iql2, y 2qlp]Z/[ql4,
so we are in the particularly simple case where the Legendre transformation is
one-to-one. Equations (4.48) and (4.47) become

(4.51) p div q e L2,
(4.52) 2(q]pl2/[q]2 + grad div q)/lql2 O.

But this means exactly that q # 0 is a critical point of the function q-->
-]div q]Z/]ql2 over the space

(4.53) H(f; div)- {q L2(l)n ]div q L 2,(f)}.
Finally, we get the dual problem

ext-ldivq[2/]ql,
(*)

q 6 H(E; div)

with the usual relationship (4.45)-(4.46) or (4.50). Note in particular that

(4.54) {ext } -{ext *}.

5. Comments. The notion of a Lagrangian submanifold is central to the
theory of Fourier integral operators. It is attributed to V. Arnold 1] or V. Maslov
[13], and has been painstakingly investigated [11, especially 3], [16], [9].
However, these authors define a Lagrangian submanifold of a symplectic man-
ifold (dimension 2n, fundamental 2-form 12) as an n-dimensional submanifold on
which 12 pulls back to zero. In our framework, this would mean an n-dimensional
submanifold of En E" on which 1 Y,g=a dpi/x dxi pulls back to zero. Noting
to=dz-,i=pidx as in (1.3), we see that fl=dw. It follows that if
V E E" E is a Lagrangian submanifold in the sense of Definition 1.1, if the
projection 7r," V-E" E" is proper and if its tangent map TTr," TV-
T(En E") has rank n everywhere, then 7r,V is a Lagrangian submanifold of
E" E" in the preceding sense. Our definition has the advantage of incorporating
z, which is very useful for practical purposes.

For basic information about proper maps, we refer to any book on general
topology, e.g. [4, Chaps. 1 and 2]. Sard’s theorem in the C case, as well as
basic information on submanifolds and the implicit function theorem, can be
found in [12].

The definition (2.1) of the Legendre transformation is given in [6] as a
particular case of a contact transformation. The contact transformation associated
with a given C function H(x, z; x’, z’) on " E x " is the mapping which
associates with any point (x, p, z) En x E" E the point (x’, p’, z’) defined by the
formulae

H(x’,z’;x,z)=O,

aH/Ox’ +p’ aH/Oz’= O,

oH/ox +p oH/oz--o.
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From the two last equations it follows (formally) that p =Oz/Ox and p’=
Oz’/Ox’. It follows (still formally) from the first one that dz’ +p’ dx’ 0 if and only
if dz +p dx 0. In other words, if we have no trouble with cusps or closedness, a
contact transformation will send a Lagrangian manifold onto a Lagrangian
manifold. It need not be involutive. In the special case where H(x’, z’; x, z)-
Z "bZ’ XX we get the Legendre transformation.

Also related to the Legendre transform is the notion of dual varieties in
algebraic geometry. Let a projective variety C be given by its equation
P(XI, Xn) 0, where P is a homogeneous polynomial of degree d. The dual
variety, ’ is the set of tangents to C; its equation P(ul, ., un) 0 has as zeros all
(Ul,’", un) such that the hyperplane ulXx+" .+u,,X,, is tangent to C. In
particular, C C. For instance, if f: " - is a polynomial, setting

Xn+ Xi
Z

an+2
X,

an+2
as is usual in projective geometry yields

graph f- (X1, , Xn+2) X2+2 f 2’ "’ X7+2
The dual variety is simply the graph of the Legendre transform

graph f graph f.
A particularly interesting case arises when n 1 and complex numbers are

used. It can be shown that if C (resp. O) is a complex algebraic curve of degree d
(resp. ), having r (resp. f) double points and s (resp. ) cusps, with no other
singularities, then we have the following symmetric relationship (Pliicker’s for-
mulae)

d=d(d-1)-2r-3s,
d (- 1)-2-3g,

g-s=3(d-d).

(I am indebted to P. Deligne for this elementary algebraic geometry.)
Now let us proceed to providing 2, 3, 4 with bibliographical references.
Fundamentals of convex analysis are given in [14] or [8]. Modern tools of

different topology, included the Malgrange division theorem, Thom’s transversal-
ity theorem and notions on stratifications, will be found in [15]; see [10] for a
textbook on the subject. Note that the proof of Proposition 2.7 for n 1 does not
require the C division theorem.

Condition (3.7) can be interpreted as a necessary condition for optimality in a
much broader context than indicated, i.e. the space need not be finite-
dimensional and the g’. need not be linearly independent" see [7] Duality theory
for finite-dimensional convex optimization problems will be found in [14].

Theorem 4.1 is due to J.-P. Aubin. Its proof will be found in [2-1 or [3]. Duality
theory for convex problems in the calculus of variations is treated in [8], but
here we follow rather the approach of [3]. Proposition 4.5 is a nonconvex
analogue of [5].
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