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The variational principle states that if a differentiable functional F attains 
its minimum at some point zi, then F’(C) = 0; it has proved a valuable tool for 
studying partial differential equations. This paper shows that if a differentiable 
function F has a finite lower bound (although it need not attain it), then, for 
every E > 0, there exists some point u( where 11 F’(uJj* < l , i.e., its derivative 
can be made arbitrarily small. Applications are given to Plateau’s problem, to 
partial differential equations, to nonlinear eigenvalues, to geodesics on infi- 
nite-dimensional manifolds, and to control theory. 

1. A GENERAL RFNJLT 

Let V be a complete metric space, the distance of two points u, z, E V 
being denoted by d(u, v). Let F: I’ -+ 08 u {+ co} be a lower semicontinuous 
function, not identically + 00. In other words, + oo is allowed as a value for 
F, but at some point w,, , F(Q) is finite. 

Suppose now F is bounded from below: 

infF > --co. (l-1) 

As no compacity assumptions are made, there need be no point where this 
infimum is attained. But of course, for every E > 0, there is some point 
u E V such that: 

infF <F(u) < infF + E. U-2) 

THEOREM 1.1. Let V be a complete metric space, and F: V -+ IR U (+ CO} 

a 1.s.c. function, $ + CO, bounded from below. For every point u E V sattifying 
(1.2) and every h > 0, there exists some point v E V such that 

WJ) < F(u), (1.3) 

d(u, 4 < 4 (1.4) 

‘dw # v, F(w) > F(w) - (E/A) d(w, w). (1.5) 
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The proof of this theorem is based on a device due to Bishop and Phelps [4]. 
Bronsted and Rockafellar [6] h ave used it to obtain subdifferentiability 
properties for convex functions on Banach spaces, and Browder [7] has 
applied it to nonconvex subsets of Banach spaces. Let OL > 0 be given, and 
define an ordering on V x [w by 

(vl , al) < (74 ,4 ifi (a2 - 4 + 4ol ,4 < 0. (1.6) 

This relation is easily seen to be reflexive, antisymetric and transitive. 
It is also seen to be continuous, in the sense that, for every (wr , ar) E V x Iw, 
the set @J, 4 I (v, 4 > (vl , 1 a )} is closed in V x R. We proceed to show 
that every closed subset of V x [w has a maximal element, provided it is 
“bounded from below.” 

LEMMA 1.2. Let S be a closed subset of V x R such that: 

3m E Iw: (v, u) E S * a > m. (l-7) 

Then, for every (vI , a,) E S, there exists for the ordering < an element 
(ti, Z) E S which is maximal and greater than (q , aI). 

Proof. Let us define inductively a sequence (v, , a,) E S, n E N, starting 
with (or , ur). Suppose (wn , a,) is known. Denote 

s, = e4 4 E s I (f4 4 > (%A 3 %I>> U.8) 
m, = inf{a E Iw 1 (0, u) E S,}. (1.9) 

Clearly, m, > m. Define now (v,+~, a,+J to be any point of S,, such that 

a, - a,+1 I > Ha, - m,). (1.10) 

All the sets S,, are closed nonempty, and S,,, C S, for every n. Moreover, 
we get from (1.10) 

I a,+, - m,+l I d 4 I a, - m, I < (WY I al - m I . 

Hence, for every (w, u) E Snfl , we get, using (1.8): 

I an+, - a I < (WY I al - m I 
d(vn+, , 9 < UP) (l/4 I al - m I . 

(1.11) 

(1.12) 

(1.13) 

Which proves that the diameter of S, goes to zero as n + to. As V x R is 
metric complete, the sets S, have one point (@, a) in common: 

((v; a)} = ; s, . (1.14) 
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By definition, (v, a) > (v, , a,) for every n, in particular for n = 1. Sup- 
pose now there exists some (6, 2) E S greater than (v, a). By transitivity, one 
gets (fi, ii> > (vn , a,) for every n, i.e., (a, 2) E n,“=, S, , hence (a, 2) = (Q, g). 

- - This proves (v. a) is indeed maxima1.l I 

We now proceed easily to prove Theorem 1.1. Take S to be the epigraph 
ofF 

s = {(v, u) I v E v, a > F(v)). (1.15) 

It is a closed subset of V x [w, as F is 1.s.c. Take a: = C/A, and (vr , a,) to 
be (u, F(u)). Apply Lemma 1.2 to obtain a maximal element (a, a) in S 
satisfying: 

(v> 4 > (~9 F(4). (1.16) 

As (v, a) E S, we have also (v, F(v)) > (v, u). Since (v, a) is maximal, 
a = F(v). The maximality can be written 

(w, b) E S * (b - F(v)) + (44 d(w, 4 > 0, 

unless w = v and 6 = F(v). 

(1.17) 

Taking b = F(w) yields (1.5). Now, going back to (1.16), we get 

(F(v) - F(u)) + (44 d@,4 < 0. (1.18) 

Hence, of course, F(v) < F(u). Thanks to (1.2), we must have 
F(v) 2 F(u) - E. Writing it into (l.lS), we get (c/h) d(v, U) < 6, which is 
(1.4) and ends the proof. We shall now apply Theorem 1 .l in different 
settings. 

2. GATEAUX-DIFFERENTIABLE FUNCTIONS ON BANACH SPACES 

From now on V will be a Banach space, V* its topological dual. The 
canonical bilinear form on I/ x V* will be denoted by brackets (., .), 
the norm of Vby [j . /j , the dual norm of V* by // . //*. Recall that a function 
F: V--f Iw u { + CII} is called Ga”teuzlx-differentiable (respectively, Fr.&het- 
differentiable) if, at every point u0 with F(u,) < + 00, there exists a continuous 
linear functional F’(u,) E V* such that, for every v E V: 

(respectively, 
WW(u, + t4l,=, = Wh), v> (2.1) 

F(u, + 4 = FM + @‘+a), v> + 44 II ‘u II , 
where C(V) + 0 in V as 11 v II+ 0). 

1 The author is indebted to J. M. Lasry for a helpful comment enabling him to get 
rid of Zorn’s Lemma in this proof. 
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Clearly, the FrCchet-differentiability of F implies that F is Gateaux-dif- 
ferentiable; moreover, the domain of F, i.e., the subset of V where it is 
finite, must be open. Here is an important case, where the converse is true. 

DEFINITION 2.1. Let F be a Gateaux-differentiable function with open 
domain, such that u -F’(u) is a continuous mapping from the domain of F 
into I’*. Then F is also continuously Frechet-differentiable, and is called a 
Cl function. 

Proof. Under our hypothesis, we have to prove that the Gateaux- 
derivative F’(u) is in fact a Frechet-derivative. Take any point u,, in the 
domain of F and some 7 > 0 such that the ball of radius 7 around us is 
contained in the domain of F. For every v E V with 11~1 11 < 7, there exists 
some 0 E [0, I] such that 

F&I + 4 - %) = (W) F(u, + tv)ltzo . 

Using the Gateaux-differentiability 

F(u, + v) - FM = W(u, + W, v> 
= @“(u,), v> + <F’(u, + W - F’h,), v>. C2.2) 

For every E > 0, we can take 7 > 0 small enough so that // u - u0 II < 77 
implies /I F’(u,) - F’(u)ll* < E. Taking u,, + 19v as u in formula (2.2), we get 

I FOG + v) - 0,) - @‘M, v>l G E II ZJ II 

which indeed proves Frechet-differentiability. 

In this setting, Theorem 1.1 becomes 

I 

THEOREM 2.2. Let V be a Banach space, and F: V + [w u {+a} a 1.s.c. 
function, G&teaux-dajjerentiable and such that 

- co < infF < + co. 

Then, for every E > 0, every u E V such that F(u) < infF + E, every h > 0, 
there exists v E V such that: 

F(v) G F(u)> (2.3) 

II v - u II < A (2.4) 

II wv)ll* < 4. (2.5) 
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Proof. It is a straightforward application of Theorem 1.1. Inequality (1.5) 
gives us, for every w E V and every t 3 0 

F@ + tw) > FW - (44 t II w II , (2.6) 

(F@ + w - m4)lt 3 -(a II w II * (2.7) 

Letting t -+ 0, we obtain 

(44 F(v + WI t-o 2 444 II w II - 

Hence, through (2.1) 

(23) 

W(4, w> > 44) II w II * (2.9) 

The inequality (2.9), holding for every w E V, means that 

II w~)ll* < 4. I 

COROLLARY 2.3. For every E > 0, there exists some point v, such that 

F(q) - infF < c2 (2.10) 

IIF’wll* < 6 (2.11) 

Proof. Just take c2 instead of E and E instead of h in the preceding theo- 
rem. a 

We can view the preceding corollary as telling us that the equation 
F’(v) = 0, although it need have no solution, alway has “approximate 
solutions,” i.e., there exists a sequence u, such that /I F’(u,)Ij* ---f 0 as n---f co. 
The cluster points of such sequences have been studied elsewhere [ 131, [ 141. 
Let us just draw some easy consequences of Corollary 2.3. 

COROLLARY 2.4. Suppose further that there exist constants k > 0 and c 
such that: 

VVE v, F(w) 2 k II ~1 II + c. (2.12) 

Then, the rangeF’(V) is dense in kB*, where B* is the closed unit ball of V*. 

Proof. Take u* E V* with /I u* II < k. It suffices to prove that, for every 
E > 0, there exists u, E V such that /I F’(q) - u* II* < E. 

Consider the function G on V defined by 

G(o) = F(o) - (ZJ, u*). (2.13) 
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Clearly, G is Glteaux-differentiable, with G’(w) =F’(v) - u*, and I.s.c. 
Moreover 

inf G = i${F(w) - (v, u*)} 

(2.14) 

Hence G satisfies all assumptions of Corollary 2.3, and there must exist 
some point u, E I’ such that I/ G’(uJj* < E. This means 

IIF’ - II* /I* < E. I (2.15) 

COROLLARY 2.5. Suppose further that there exists Some continuous function 

@: R++Ru{+ a3} 

such that @(t)/t -+ co as t -+ 00, and 

VVE v, 0) 3 @(II fI II). 

Then, the rangeF’( V) is dense in V*. 

(2.16) 

Proof. Indeed, for every K > 0 there exists some c E Iw such that F 
satisfies (2.12). Hence F’( V) is dense in every closed ball of I’*. I 

3. OPTIMIZATION PROBLEMS WITH REGULAR CONSTRAINTS 

We now take V to be a Banach space, F: V--f R a FrCchet-differentiable 
function, G,: V -+ R, 1 < i < m, m continuously FrCchet-differentiable 
functions, i.e., P-functions. We single out the first p of the Gis, and we 
consider the constrained optimization problem 

inf F(v) 

G&J) = 0 1 \<i<p (3-l) 
GW 3 0 p+l<i<m. 

We will denote by %? the feasible set 

~={0~V~G~(o)=OVi~(l,p},G~(er)>OVi~{p+1,m}}, (3.2) 
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and by I(v) the set of saturated constraints at a feasible point v E V 

i EI(v) o Gi(v) = 0. (3.3) 

We can now state our regularity assumption, which is of quite a standard 
type: 

Vv E %?, the {Gi’(v) 1 i E I(v)} are linearly independent. (3.4) 

It is clear that problem (3.1) is highly nonlinear, and as such can dream 
of no solution in a Banach space. Nevertheless, we can find points which are 
“almost” optimal and which “almost” satisfy the necessary conditions for 
optimality. 

THEOREM 3.1. Suppose F is Frkhet-dz#erentiable, and the G,‘s are Cl- 
functions satisfying regularity assumption (3.4). Suppose moreover F is bounded 
below on the feasible set 

in&F(v) > --co. 

Then, for every E > 0, there exists some point v, such that 

v< E v and F(vJ d $F(v) + c2, 

there exists real numbers A1 ,..., A, such that: 

hi > 0 Vi E{P + 1, 4, 
A,=0 if G(v) # 0, I 

Define a function if: V -+ R u { + y} by 

F(v)=+co if V$U 

P(v) =F(v) if VE%?. 

(3.6) 

(3.7) 

(3.8) 

It is I.s.c. and bounded from below. Applying Theorem 1.1 we get a 
point v, such that 

P(v,) < infF + 2 (3.9) 

VW # vi, P(w)>P(v)-•f~v-w~~. (3.10) 
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Hence, using (3.8), 

v, E %? and F(vJ < in&F(v) + G. 

VWEV, F(w)>F(v)-ClIjU-VII. 

The rest of the proof proceeds by two steps. 

(3.12) 

LEMMA 3.2. Let h be a vector in V such that 

Then 

<G’(v,), h) = 0, ViE{l,...,p} 

(G’W h) 3 0, ViE{p + l,..., m} nI(v,). 

W(v), h) b --E II h II. 

(3.13) 

(3.14) 

(3.15) 

Proof. Let h be a vector in V satisfying (3.13) and (3.14). By a standard 
argument using assumption (3.4) and the implicit function theorem, there 
exists some Cl-curve u: [0, r] -+ V such that 

u(0) = vc and (du/dt) (0) = h. (3.16) 

From (3.12) we get 

tJt E LO, 4 m(t)) - WON 3 - E II w - @)lI * (3.17) 

Dividing by t and letting t go to zero, we obtain, using (3.16) again 

W(vJ, h) 3 --E II h II . 1 (3.18) 

LEMMA 3.3. Let ui*, 1 < i <p, vj*, 1 <j < q, and w* be linear func- 
tionals V such that: 

imply 

(ui*, h) = 0 for 1 <i <p, 

<vui*, h) > 0 for 1 <j < q, 

(w*, h) 3 --E II h II. (3.19) 

Then there exist p real numbers Xi , 1 < i < p, and q nonnegative numbers, 
p9, 1 <j<q,suchthat 

/I w* - i A$,” - i /.qq” ii* < E. 
i=l j=l 

(3.20) 
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Proof. It is a variant of the celebrated Farkas-Minkowski lemma. Consider 
in V* the convex cone I’ 

(3.21) 

and the convex set Sz: 

i2 = r + cB*. (3.22) 

Where B* denote the unit ball of V*. It is well-known that r is closed and 
B* compact in the weak-* topology u( V*, V). Hence Q is closed in that 
topology. 

Suppose now (3.20) is not true. This means that the set 52 does not contain 
w*. As it is convex closed in the weak -* topology, we may use the Hahn- 
Banach separation theorem to get some vector h E V and some number 
E E [w such that 

(wO*, h) < a (3.23) 

(x*, h) 3 a, vx* E Q. (3.24) 

Write (3.24) in another way 

(Y*, h) + 4x*, h) 3 a, vy* E r, Vz* E B”, (3.25) 

<y*, h) 3 a + E sup G*, --h), 
z*eB* 

vy* E r. (3.26) 

This supremum is known to be I/ h 11 . Hence, 

<Y*, h> 2 a + E II h II , vy* E r. (3.27) 

We now use the fact that r is made of lines or half-lines. Take y* = tui*, 
where 1 < i < p and t is any real number; we get 

t(u,*, h) 3 a + E II h II, VtelR. (3.28) 

Hence, 

(Ui*, h) = 0, 1 <i<p. (3.29) 

Now take y * = tvj*, where 1 < j < q and t is any nonnegative number; 
we get 

Hence, 
t<vj*, h> > 0~ + E II h II 9 Vt 3 0. (3.30) 

(vj , h) 3 0, 1 <jdq. (3.31) 
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At last, take y* = 0. We get from (3.27) 

a < -•EIlhll- 

Formula (3.23) then yields 

cw*, h) -=c --z II h II * 

(3.32) 

(3.33) 

Put now together formulas (3.29), (3.31), and (3.33). They show the 
vector h to be a counter-example to the assumptions of the lemma. In other 
words, if the conclusion (3.20) is false, then so is the hypothesis. This proves 
the lemma. I 

Theorem 3.1 now follows by putting together Lemmata 3.2 and 3.3. As a 
simple corollary (case of one constraint) we get a nonlinear eigenvalue 
theorem. 

COROLLARY 3.4. Let F be a Frkhet-d@rentiable function and G a Cl- 
function such that 

G(v) = 0 + G’(v) # 0. (3.34) 

Suppose moreover that 

3mER:G(v)=O=F(v)>m. (3.35) 

Then, for every E > 0, there exist some point v, and some A, E R such that: 

G(q) = 0 (3.36) 

IF’(%) - wwl* < 6. (3.37) 

If V is a Hilbert space, we can identify V and V* in the usual way, and 
(3.37) then means that the distance of the gradient of F at v, to the one- 
dimensional subspace generated by the gradient of G at v, is not greater 
than E. 

4. EXAMPLES 

A. Minimal Hypersurfaces (Plateau’s Problem) 

Let Q be an open bounded subset of Iw”, with regular boundary. As usual 
we denote by w1J(s2) the Sobolev space ofL’-functions whose first derivatives 
are also L1, and by lJ$*‘(Q) the closure of g(Q) in this space. We inter- 
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pret W,‘*‘(Q) as the set of W lJ-functions vanishing on the boundary, and 
we state a weak form of Plateau’s problem 

inf 
I 
R (1 + / grad v(x)~” &)1/Z 

TJ - no E W,*‘(Q). 
(4.1) 

It is well known that this problem has no solution in general, except if Q 
is convex, which we do not assume. An explanation is to be found in the fact 
that W1J(L2) is not reflexive, and hence its unit ball is not weakly compact. 
We now proceed to prove that we can perturb the problem as little as we 
want to get an optimal solution. 

Problem (4.1) can be stated differently: 

inf 
s 
sa (1 + 1 grad U(X) + grad v,,(x)~~ &)1/Z 

(4.2) 
24 E w,s2(Q). 

Denote by F the function to be minimized on W~*l(Q): 

F(u) = ja (1 + I grad ~(4 
It is well known that this function 

differentiable with derivative 

+ grad v&l2 &)ri2. (4-3) 

is convex, continuous, Gateaux- 

all derivatives on the right-hand side to be taken in the sense of distributions. 
Of courseF’(u) E W-l*m(sZ), which is both the dual of We*’ and the Sobolev 
space of distributions which can be obtained from L”-functions by first order 
differentiation. 

Moreover, for every u E We*‘, we have 

s (1 + 1 grad u(x) + grad Vet” dx)lj2 
52 

> j. I grad +>I dx - jD I grad ~o(x)I dx. 

The PoincarC inequality yields some k > 0 such that 

(4.5) 

vu E wy(Q), s I grad u(x)1 dx 3 k II u ll,,,I,l. (4.6) n 
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Hence, (4.5) becomes 

F(u) > k I/ 24 I/-const. (4.7) 

We may now apply Corollary 2.3. There exists in I&I*, where B* is the unit 
ball of W-l+(Q), d a ense subset S such that, for every T E S, the equation 
F’(u) = T has some solution u in lVJ(52). For every T E wlJ(sZ), define the 
perturbed function FT: 

F=(u) = F(u) - (T, u). (4-V 

Then, for every T E S, there is some point z+ where 

FT’(uT) = 0. (4.9) 

But FT is convex and even strictly convex. Hence (4.9) is a necessary and 
sufficient condition for optimality: the point uT is the unique minimum of FT 
on W,‘,‘. Let us state our results together. 

PROPOSITION 4.1. There exists in W;l*l(Q) a neighbourhood of the origin, 
and a dense subset 9 in this neighbourhood, such that, for every T E Y, the 
perturbed minimal hypersurface equation 

(4.10) 

v - 00 E w,‘qq 

and the perturbed Plateau’s problem 

inf 
I 
R (1 + j grad v Ia dx)li2 - (T, v} 

(4.11) 

v E vg + W(y(J?) 

both have a unique solution. 

B. Partial Differential Equations 

Let Sz be a bounded open subset of [w”, and p E ] 1, + co[ a given constant. 
Denote by W,‘*p(Q) the corresponding Sobolev space (i.e., the Banach space 
of LP-functions with LP-first derivatives and zero trace on the boundary). 
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Consider a borelian function f: 52 x lLP -+ R such that, for almost every 
XEQ 

f(X, 5) 3 0, V[ E UP, (4.12) 

.$ Htf(x, 5) is a P-function, (4.13) 

IfE’(% 01 d a + b I 5 v-l, v!$ E UP, (4.14) 

where a and b are given constants. 
Make one more easy assumption 

SW, E We*“: 1 f(x, grad w,,(x)) dx < + co. 

We now define a nontrivial function F on Wisp(Q) by 

(4.15) 

VW E wpyq, F(o) = /of(x, grad v(x)) dx. (4.16) 

LEMMA 4.2. F is a Cl-function on Weep, finite evmywhere. 

Proof. We first prove that F is Gateaux-differentiable. Take any point us 
where F(u,) is finite. For every v E Wi*p(Q), consider the function 

t t+ F(u, + tv) = Jo f (x, grad us(x) + t grad w(x)) dx. 

For 0 < t < 1, formula (4.14) yields 

(4.17) 

@/at)f (x, grad u,,(x) + t grad $x))l 

= (grad v(x),fi(x, grad u,,(x) + t grad v(x))> (4.18) 

< 1 grad V(X)/ (a + 6 1 grad us(x) + t grad 0(x)1”-‘). 

Suppose first 1 <p < 2. Then (p + 0)8-l < pp-l+ a*l for every non- 
negative real numbers p and u, and (4.18) yields 

@Vat) f (x, grad u,,(x) + t grad v(x))1 

< 1 grad w(x)] (a + b j grad u,,(x)l*r + b / grad w(x)\*-I). 
(4.19) 

Suppose now p > 2. Then (p + u)r-l < 2rm2 (pp-l + up-l) for every 
non-negative real numbers p and u, and (4.18) yields 

I(Vt) f (x, grad uO(x) + t grad v(x))1 

< I grad V(X)/ (a + 2p-2b I grad ~,(x)lp-~ + 2pp2b I grad w(x)l*-I). 
(4.20) 
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In both cases, we get an estimate 

I P/at) f(x, grad 44 + t grad +>)I < g(x) (4.21) 

where g ELI(Q). 
It is well known that condition (4.21) enables us to differentiate (4.17), to 

get 

F(u, + to) < + @J, Vt E P, 11, (4.22) 

fwcl + ts) Itco = s, <grad 49, f'(x, grad q,(x))> dx. (4.23) 

For any u E Wi*p(Q), taking u,, = o,, and tv = u - uO in (4.22) yields 
F(u) < + y; hence F is finite everywhere. The right-hand side of (4.23) 
shows the distribution: 

(4.24) 

(UP + l/q = 1) P o era m t’ g on v E IIJ’~*~(Q). Hence F is Gateaux-differentiable, 
with derivative 

(4.25) 

It remains to prove the continuity of the mapping u -+F’(u). A theorem 
of Krasnoselski [17, Chapt. I, Theorem 2.11 states that, under hypothesis 
(4.14), the mapping 

11 I-+ (W%> (*, grad 4.)) (4.26) 

is continuous fromLP(SZ) intoL*(Q) (l/p + l/q = 1). Moreover, the mapping 

h I-+ ahpxi (4.27) 

is continuous from D(Q) into IVES. Hence (4.25), which arises through 
combining (4.26) and (4.27) and summing over i, must be continuous from 
IVY*” into IV.*(Q). I 

We now have a straightforward application of Corollary 2.3. We can also 
apply Corollary 3.4, defining G by 

vv E w;*p(12), G(w) = ; j-n gl 1% 1’ dx - 01, (4.28) 

409/47/2-8 
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where 01 is a positive constant. Indeed, it follows from Lemma 4.2. that G 
is a Cl-function with derivative 

Taking w = 21 in (4.30), we see that G’(v) = 0 implies all first derivatives 
&/ax, are zero in D(Q), and since v E W,‘*P(Q) (is null on the boundary), v 
must be zero in IF’~*p(Q), hence G(v) = --a: # 0. This proves Assumption 
(3.34) and shows Corollary 3.4 is applicable. We get 

PROPOSITION 4.3. Let there be given p E 11, + co[ and f: $2 x W -+ R 
a borelian function satisfying Assumption (4.12), (4.13), (4.14). Then 

(a) for every E > 0, there exists some function u, E W,‘*P(J2) such that 

(b) for every E > 0 and 01 > 0, there exist some real number X and some 
function v, E W,‘*“(Q) such that: 

5. Cl FUNCTIONS ON COMPLETE RIEMANIANN MANIFOLDS 

Let M be a complete riemannian manifold. The finite-dimensional case 
is common knowledge, and we refer the reader to Lang [18], Eells [12], 
Ebin [9] for treatment of the infinite-dimensional case. Let us just review 
the essential features. M is a smooth (Cm) manifold modelled on some Hilbert 
space H, and for every p E M, we are given on the tangent space TM, F H 
a positive definite symmetric bilinear form (., .), , depending smoothly 
on p, and such that [ 1 . &, is equivalent to the norm of H. We shall denote by V 
the Levi-Civita connection on M, i.e., the unique bilinear mapping 

V: Cm( TM) x C==( TM) -+ Cm( TM), 

w, y> -+ vxy, 
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such that 

v,xgy = f[(X . $9 y + gvxy1, 
2. <x9 y> = PZX, y> + (X, v,n 

VXY - vyx = [X, Y], 

for any vector fields X, Y, Z in Cm(TM) and any real functions on M, f, g 
in CW(M, R). 

Recall that the riemannian structure defines on M a metric d which is 
compatible with its manifold topology; namely, given any two points p, 4 
in the same component of M, define their distance as 

d(p, q) = inf 11’ II WI dt I 
0 

c E Cm([O, 11; M), c(0) = p, c(l) = ql . 

The manifold M is assumed to be complete for this metric. This implies in 
particular that any geodesic, i.e., any Cm path c such that V,C = 0, can be 
extended indefinitely, and is in fact a Cm mapping from [0, +co[ into M. 
Hence, for every point p E M, we can define the exponential mapping exp, : 
TIM, + M by exp, x = c(l), where c is the unique geodesic such that c(O) = p 
and k(O) = x. The Hopf-Rinow theorem states that, if A4 is finite-dimen- 
sional, any two points p and q of M can be joined by a geodesic of minimum 
length. This still holds in certain cases where M is a Sobolev manifold of 
fibre bundle sections (see [8] and [26]). But it is easily seen not to hold any 
more when M is an infinite-dimensional ellipsoid in Hilbert space and p 
and q are axis points (see [16] and [19]). The related question, whether the 
exponential mapping is surjective in general, is still unanswered. 

We now state the main result of this section, an easy consequence of 
Theorem 1.1, before applying it in the next section to manifolds of fiber 
bundle sections. 

PROPOSITION 5.1. Let F be a Cl function on a complete riemannian manifold 
8?. If F is bounded from below, then, for every E 3 0 there exists some point 
p, E M such that 

F(p,) < inf F + c2 (5.1) 

II gradWd/,~ < E. (5.2) 

Proof. Using Theorem 1.1, we see there exists a point p, E M satisfying 
(5.1) and 

VP’PMM, F(PJ Z I;(P) - 4P, PC). (5.3) 
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Recall the exponential mapping exppE induces a Cm-diffeomorphism from 
some open subset 4? 3 0 of TM,- onto some open subset V 3p, of M. 
Furthermore: 

c 

T exp,(O) = Identity in TM, , 

VXES’, 4P, , ew, 4 = II x IIDs - 

Now (5 3) implies 

VXEE, FoexppEx >Foexp,hO --~IIxll~,, 

vx E e, Vt > 0, (F 0 exp, tx -F 0 exp,, 0)/t Z --E I/ x IID, 

Letting t + 0, we obtain 

VXEf&, W 0 ew,J (0) x > --E II x b. . 

As % is an open subset around 0, we get 

II TP 0 exp9J (0)llic d e- 

But 

T(F 0 exp,) (0) = Wexp, 0) = T’(A), 

due to (5 4), so that (5 9) becomes 

II TF(p,)Il;~ G E- 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

WY 

(5.10) 

Hence, identifying as usual the Hilbert space TMDE with its dual through 

(.> %I, > 

II grad F(P.>II~~ G E. I (5.11) 

This proposition sheds a new light on the celebrated condition (C) that 
R. Palais and S. Smale introduced in their work on generalized Morse theory 
(see [23], [27], [22]). Recall this condition 

(C) if S is a subset of M on which I F 1 is bounded but 012 which ]I grad F [I 
is not bounded away from zero, then there is a criticalpoint ofF in the closure of S 

We now get, as a corollary of Proposition 5.1, the 

PALAIS-SMALE EXISTENCE THEOREM. Assume M is a complete riemannian 
manifold, and F is a Cl function on M satisfying condition (C) If F is bounded 
from below on M, then F assumes its greatest lower bound on M 
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Proof. Proposition 5.1 tells us there is a sequence (pJnGN in M such that 

F(p,) + inf F (5.12) 

II vWpA,,, + 0. (5.13) 

Applying condition (C) to the subset S = (JneN {p,} we see there is a 
critical point 5 of F in the closure of S. This just means that the sequence 
(P,),,~ has a cluster point p such that F’(p) = 0 As F is Cl, we get 

F(p) = F-5 F(p,J = inf F. I (5.14) 

6. GEODESICS~ 

As before, we shall denote by M a connected complete riemannian mani- 
fold, byp and q two points of M. Several equivalent definitions of the Sobolev 
manifold Lr2( [0, l] ; M) h ave been given; see [20,21] and [9]. Let us proceed 
in the following way. If c: [0, l] -+ M is a continuous path, find in [0, l] a 
finite number of partition points a, = 0, al ,..., a,-, , a, = 1, such that for 
1 < i < n, the image of the ith subinterval c([ui-r , U~]) is contained in the 
domain K of some chart vr: < + H. Then c belongs to Lr2( [0, 11, M) if and 
only if (dldt) qi 0 c E L2([ai, , ai]; H) for 1 < i < n. Moreover, we may define 
a neighbourhood of c in Lr2([0, 11, M) as th e set of continuons paths c’ such 
that ~‘([a~-~ , ui]) C K for 1 < i < n and 

< c. (6.1) 

We endow Lr2([0, l] ; M) with the topology defined by all such neighbour- 
hoods, for E > 0, and we state a preliminary lemma: 

LEMMA 6.1. Cm paths are dense among L12 paths starting at p and ending 
at q. 

Proof. Let c E L12([0, 11; 1M) such that c(0) = p and c( 1) = q. The lemma 
states that, for every E > 0, there exists a Cc0 path c’ such that c’(0) := p 
and c’(l) = q which verifies (6.1). 

1 The author wishes to thank J. P. Penot for a stimulating conversation and for 
communication of his unpublished work. 
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For every subinterval [a+r , ui] and every k E N, define: 

We have 

Nk = [u,-~ , a,, + l/k] u [ai - I/k, ai]. 

dt --+ 0 as k-t co, 
H (64 

s II Nk g vi 0 c(t) 
Ii 
’ dt + 0 as k-+ co. (6.3) H 

Define a function 8,: [u~-~, UJ + H by B,(u~-J = pi 0 C(Ui-1)) and 

& Ok(t) = 0 if t6N, 

It is clear from (6.2) and (6.3) that (d/dt) 8, -+ (d/dt) vi o c inL2([uim1 , ai]; H) 
as k-+ co. Moreover, 

e,(u,) = b(4 + jaTl f e,(t) 4 

&(aJ = vpi 0 c(ui-1) + (~~~~k f vi 0 c(t) dt + I,, f vi 0 44 4 

ek(ui) = pi o +,). 

(6.5) 

It follows from the usual Sobolev inequalities, or even from the Ascoli 
theorem, that 0, is continuous and converges uniformly to v’i o c as k + co 
We choose k large enough so that, 

We now smooth down Ok by convolution. Extend 8, by Oa(ui-l) to the left 
and B,(q) to the right. Using distribution theory, we can find a nonnegative 
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Cm function p: Ii2 + Iw, which is zero outside [- 1/2K, 1/2/z], and satisfies: 

s pdt= 1, 
R 

Thanks to (6.7), we have 

p * e,(t) = q-3 o 4%) 

p * e,(t) = 9Ji o 4%) 

for 

for a, - - 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

Adding (6.6), (6.8), and (6.9), we obtain 

(6.12) 

We now set c’ = pi1 0 (p * 6,). The path c’: [0, I] -+ M is well defined, 
and is C” on every subinterval [ai-r , a,], 1 < i ,< n. The pieces fit together 
because c’ is locally constant at the partition points ai ((6.10) and (6.11)). It 
only remains to add the n inequalities (6.12) for 1 < i < n to obtain (6.1). a 

Convergence inLr2( [0, l] ; M) implies uniform convergence in C”( [0, I] ; M). 
Recall that there is a Cm-manifold structure, and even a riemannian structure, 
on Li2([0, 11; M) compatible with its topology [28, 15, 25, 261. For every 
c E&~([O, 11; n/r), the tangent space TL12([0, 11; M), is canonically isomorphic 
to Li2(7’MJ, so that a tangent vector to Lr2([0, I]; M) at c is an Li2 path c in 
TM over c: 

E: t ++ s(t) where 0) E TM,(t) . (6.13) 

The riemannian inner product of two tangent vectors 6 and E’ in Lr2( TIM,) 
is given by: 

(53 5% = Jo1 <E(t), 5“(t)>c(n dt + s’ <Vm&), Vd’Wc(t) dt. (6.14) 
0 

The associated riemannian metric will be denoted by 6, and L12([0, 11; M) 
can be shown to be complete as a metric space. From now on, we shall 
always consider Lr2([0, 11; M) as a complete riemannian manifold. 
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LEMMA 6.2. Set 

v = {c EL12([0, 11; M) 1 c(0) = p, c(1) =q} 

Then V is a closed Cm submanifold ofL12([0, 11; M). 

Proof. Consider the evaluation mapping: 

ev: c t+ (c(O), c(1)) 

ev: L12([0, 11; M) 4 M X M. 

It is clearly Cm, the tangent map at c being 6 H (f(O), f(1)) from L12(TM,) 
into TA&,) x TM,b) . It is easily seen to be surjective, and its kernel 
splits, This proves that the evaluation mapping is transversal to (p, q), and 
hence that I’ = ew-l(p, q) is a closed 1’2” submanifold ofL12([0, 11; M) [5, I]). 
We can even express the tangent space TV,: 

TVc = (5 EL?(TM,) 1 5(O) = 0, S(l) = O}. I W6) 

We define the riemannian inner product of two vectors 5 and 4’ in TV, by: 

G, SlX’ = j-l O’c(t,&)> Vcct)WDcct, dt, (6.17) 

and we denote by So the associated riemannian metric. 
We easily check that, for .$ E TVc, 

Integrating over [0, 11, we get 

Comparing (6.14) and (6.17), we get, for every f E TVc: 

(6.19) 
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Hence, of course, for every paths c and c’ in V, 

syc, c’) < S(c, c’) < 3SO(c, 8). (6.20) 

As V is closed in L,s([O, 11; M), it is S-complete, and from (6.20), we see 
that it also is SO-complete. Hence V, endowed with the riemannian structure 
defined by (6.17), is a complete riemannian manifold. 

Consider now the energy function. F: V + 08 defined by 

F(c) = I’ II Wllh dt. 
0 

(6.16) 

This function has been extensively studied by several authors [20, 22, 
151. It is Cm, and its minima, whenever they exist, are the geodesics of minimal 
length joining p and q. We state the main result of this section: 

THEOREM 6.3. For every c > 0, there exists a Cm path c, joining p and q 
and a vector x, E TIM, such that 

Jo1 II 4(t)ltEct, dt < &$j II WI&t, dt + l 8 (6.17) 

1’ II 4,(t) - 4wll:&, dt d % 
JO 

(6.18) 

where Z<(t) is obtained from x, by parallel translation along c, . 

Proof. Let r) > 0 be given. From Proposition 5.1, we can find a path 
c’ E~~([O, 11; M) J ‘oining p and q such that 

F(c’) < &$‘F(c> + q2, (6.19) 

V[ E TV,* , I(gradF(c’), 01 < rl II 6 Ilt - (6.20) 

Using Lemma 6.1, we can find a Cm path c joining p and q, near enough c’ 
for 

I F(c) - W)l < T’ and I II grad W’) Ilo, - II grad F(c) IL I < 7) 

to hold. Hence we get 

F(c) < i;fF + 2q2, (6.21) 

V~ETV,, I(gradF(c), E>I < 271 II 4 II:. (6.22) 
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Let us first take care of condition (6.22). For any e E TVc , define eyp, 4 E V 

bY 

vt E [O, 11, (G, 63 (t) = expdt) t(t)- (6.23) 

This is clearly a Cm map, the derivative of which at zero is the identity 
in TV, , so that 

VIE TV,, l(wW 0 e%J (Oh 0 I < 277 II 5 II: . (6.24) 

For every 5 E TVc , i.e., every 5 eL12( TM,) such that ((0) = 0 and 
t(l) = 0, the left-hand side can be expressed in another way: 

(grad(F 0 &) (Oh 0 

(6.25) 

a1 a =- j (it wm dt), $ exp,w 4t))c(t) dt 1 aff 0 
. ==0 

The derivative a/& 11 a/at exp,(,) a((t)& is a continuous function of 
both 01 and t, which vary in compact sets. Hence, 

Using the Levi-Civita connection, for every t E [0, 11: 

= 5(t) . G(t), ~(tht) 
= xvt(tw~ 4t)ht) 
= XW), WI + V&,&), 4th 
= WdW, 4th * 

Let us now state (6.24) again 

Vt~Tf’c/,, 2 j-l Pcct,W, W,(t) dt 0 

< 271 [j-’ <Vm&), VmW>c(t) dt]“‘s 0 

(6.26) 

(6.27) 

(6.28) 

Consider the mapping Der: f ++ V,&, which sends L12( TM,) into L2( TM,). 
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We seek a characterization of Der(TV,). It is easy to check that, whenever 
w eLs(TMJ, the solution <w of the linear differential equation V,,,,{(t) = w(t) 
such that f,(O) = 0 belongs to L,2(TM,). It remains to get &,,(l) = 0. 

For any x E TMp , denote by x”(t) E TMc(,) the vector obtained from x by 
parallel translation along c, i.e., the solution of the differential equation 
Vi&(t) = 0 such that Z(0) = X. It follows from the definition that, for any 
w EP(TMJ, 

I ’ <w(t), f(t)),(t) dt = (L(l), a(l)>. 
0 

(4.29) 

The mapping x ++ x”( 1) from TM, to TM, is easily seen to be surjective, so 
that &,(l) = 0 if and only if (6.29) vanishes for all x E TM,. In other words, 
w E Der(Tvc) if and only if 

VXE TMD, s ’ (4th W,(t) dt = 0. 
0 

Denote by E the vector space of paths 2: t -+ 2(t) for all x E TM= . It is a 
closed subspace of L2( TM,), so we can state (6.28) in the following way: 

Q.JEE~* <a,+ bvllull inL2(TM,J. (6.31) 

Now C can be written as x” + 5, where 3i; E E and 5 E E’-, so that (6.31) 
becomes 115 11 < 7. In other words, there exists some vector x E TM, such 
that the associated path f E C”(TM,) satisfies 

I--411 <v in L2( TM,), (6.32) 

s o1 II i.(t) - Wlh dt < $. (6.33) 

Taking q small enough for 2~~ to be less than E, we obtain (6.17) and (6.18) 
from (6.32) and (6.33). I 

Theorem 6.3 states that any two points p and q of M can be joined by a Cm 
path whose length is “almost” minimum and which is “almost” a geodesic. 
Indeed, condition (6.18) states that the velocity along this path is “almost” 
constant, i.e., that it can “almost” be obtained by parallel translation of a fixed 
vector of TMp . When M is finite dimensional, it is well-known that F 
satisfies condition (C) of Palais-Smale, which yields the Hopf-Rinow theorem 
again. In the general case, it seems (although this author has not been able to 
prove it) that the endpoint qE of the geodesic starting at p, with velocity x, 
should converge towards the endpoint q of c, as E --f 0. 
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7. THE PONTRYAGIN MAXIMUM PRINCIPLE 

Let us now switch over to control theory to give one last application of 
Theorem 1.1. We refer the reader back to the treatise of Pallu de la Barrier-e 
[24] for classical results and notations. 

Consider a system governed by the equation 

a.e. 
(7.1) 

where x(t) E [Wn describes the state of the system, u(t) is the control at time t, 
and belongs to some compact metrizable set K. We prescribe a time T > 0 
and assume that: 

(a) f and f,’ = (af/% ,..., af/b> are continuous functions over 
R” x K x [0, T] 

(b) (x, f (t, x, u)) < c(1 + 11 x 11”) for some constant c. 

Let a measurable control I(: [O, T] -+ K be given. Condition (a) ensures 
that there exists a unique solution X of the differential Equation (7.1) on a 
time interval [0, ~-1 small enough. Through use of Gronwall’s inequality, 
condition (b) becomes 

II x(t)l12 < (II xc, II2 + 2cT) eZcT, (7.2) 

and hence ensures existence of the solution on the whole time interval 
[0, T]. Moreover, (7.2) yields 

II dx(t)ldt II < maxW& x, 4 I (6 x, 4 E 10, Tl x 13 x K}, (7.3) 

where B denotes the ball of radius (11 x0 II2 + 2cT)li2 ecT. Applying Ascoli’s 
theorem, we see that the family of all trajectories X of the control system 
(7.1) is equicontinuous and bounded, and hence relatively compact in the 
uniform topology. 

We are given a Cl function g: R n ---f R, and we seek some measurable 
control u such that the corresponding trajectory x minimizes g@(T)) among 
all solutions of (7.1). 

THEOREM 7.1. For every E > 0, there exists a measurable control u, , 
the corresponding trajectory being x, , such that 

&E(T)) < inf &(TN + E (7.4) 

< f (40, ~,@), t>, p.(t)> < y$ f (x&)9 % 49 i&D x % a.e., (7.5) 
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where p, is the solution of the linear d@rential equation 

4’dW = -tfz’(xXt), u,(t), 0 * p&J 

PXT) = g’(x,(T)). 
(74 

Whenever we can take E = 0 in (7.4), we can also take E = 0 in (7.5). 
In other words, whenever there exists an optimal control, it satisfies the 
Pontryagin maximum principle. However, our theorem holds even when 
there is no optimal solution. We prove it in several steps. 

First, we denote by 4 the set of measurable controls u: [0, T] + K, 
endowed with the following metric 

S(u, , u2) = meas{t E [O, T] I q(t) # z+(t)>. (7.7) 

LEMMA 7.2. 9’l is a complete metric space. 

Proof. Let us first check that S is a distance. Take any ur , ua , ua in G!!: 

it I Ul@) + w> c tt I w f 33(t)) ” it I us(t) f %2(t)>, (7.8) 

meas@ I q(t) f u&)) < meas@ I @> f u&)) + meas@ I us(t) f u&>), 
(7.9) 

%I , 4 < +I 7 us) + qu, , 4. (7.10) 

Let (u,),,~ be a Cauchy sequence in &. We can extract a subsequence 

hzJkEN such that B(u,~ , u,~+~) < 1/2k, and we will show that this subse- 
quence converges. Indeed, set 

Ak = u it I &z,(t) f %z,+,(t)>. 
P>k 

(7.11) 

We have 

1 
measA,= f &=--- 2k-l ’ 

and A, 1 A,+1 . 
p=k 

Define P E 4 by 

Vt$Ak, u(t) = z&,(t). (7.12) 

By definition, the subsequence (QkeN converges to U. As the sequence 

hJ?EN is Cauchy, it converges to s as a whole. I 

LEMMA 7.3. The mapping F: u t+g(x(T)), where u E a’, x is the corre- 
sponding solution of (7. l), is continuous over ‘SF. 
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Proof. Let (u,),~~ be a sequence converging towards ii in 4. The sequence 
of trajectories (X&N is relatively compact, hence there exists a subsequence 
xlc which converges uniformly to X. It remains to prove that f is the trajectory 
associated with U. 

For that, write Eq. (7.1) differently 

x&J = xo + j- t f Ws), u,+(s), d)) ds. 
0 

(7.13) 

Now, as k -+ co, xlc + z uniformly, uk -+ u a.e., and the integrand remains 
bounded by (7.3). We can apply the Lebesgue convergence theorem, which 
yields 

x(t) = x0 + s,‘f (x(s), u(s), s) ds. I (7.14) 

We now are in a position to apply Theorem 1.1. We get a measurable 
control u, E 92 such that 

F(UJ < infF + 2, 

VUE@, F(u) 2 F(%) - 4% 4 

the corresponding trajectory being X, given by 

(7.15) 

(7.16) 

$ (t> = f (%(a G), t) a.e., 

x,(O) = x0 . 
(7.17) 

Take to E IO, T[ where the equality holds, us E K, and define v, E 99 for 
every 7 > 0 in the following way: 

v,(t) = *o if t E [O, Tl n Ito - 79 to[, 
(7.18) 

v,(t) = u,(t) if t $ [O, q f-l Ito - 7, 4Jr. 

Clearly, S(v, , uI) = T, when 7 is small enough. Denoting by x, the cor- 
responding trajectory, we shall prove in Lemma 7.4, that 

~dxm IrzO = (f W”), *o Y to) - f (x.(&A ue(to), to), A(to)>. (7.19) 

But (7.16) yields 

for 7 > 0. (7.20) 
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Putting (7.19) and (7.20) together, we get 

( f Wo), u 0 > to) - f(x (t ) u (t ) t > P (t )> 6 0, E 0, 0) c 0 3 - E9 (7.21) 

which ends the proof, because u. is any point of K and to is any point of 
IO, T[ where equality holds in (7.17). 

LEMMA 7.4. 

&d%(T)) lTZO = ( f(x&o), uo 3 to) - fMtoh @o), to), P&o)>- 

Proof. This is a classical result, which can be found, for instance, in [24]. 
We sketch the proof here for the reader’s convenience. Write 

X&o) = 4to - 4 + s,“,f (W, uo 9 s) ds 
0 

= dto) - +Wdt) (to) + Tf b&o), uo 3 to) + O(T) 

= Go) - 4 f (Go), %(to), to) - f Mto), uo , to)) + W), 

(7.22) 

which yields 

(d/d4 GoLo = f (Go), uo , to) - f (@oh u&o), to). (7.23) 

Hence, 

(d/dT) %(T)l,=o = R(T) to) if (dto), *o , to) - f (@oh @oh to)], 

where R( T, T,,) is the resolvent of the linearized equation 

(dE/dt) (0 = f ‘(G), u,(t), t) * t(t). 

We now have: 

(7.24) 

(7.25) 

(d/dT) &A TN I T=o 

= (g’(x,(O, WW ~,(TLo> 

= <g’c%(T)), R(T) to) [f (Go), uo 9 to) - f Mto), a,), tom 
(7.26) 

= CW’, to) gWT)h [f (@oh uo 9 to) - f @Go), u&o), toll). 

But tR(T, To) g’(x,(T)) is just p<(t,), where p, is the solution of (7.6). 
Hence the result. I 
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8. CONCLUSION 

In some respects the results of Section 2 are to be compared with papers of 
Asplund [2] and Edelstein [lo, 111; see also Baranger [3]. These authors 
exhibit a class of nonconvex optimization problems which acquire solutions 
for a dense set of linear perturbations. The method applied here is quite 
different, and uses much weaker assumptions on V. 

In his book [17], Krasnoselski has proved a result similar to Corollary 3.4; 
namely, every completely continuous operator acting in an infinite-dimen- 
sional Banach space has approximate eigenvectors (Chap. 4, Sect. 1). 
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