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1 Introduction : aggregation and gradient struc-

tures

In many situations, economists are interested in the behavior of aggregate
variables that stem from the addition of several elementary demand or supply
functions. In turn, each of these elementary components results from some
maximizing decision process at the ’individual’ level. A standard illustra-
tion is the characterization of aggregate market or excess demand in an ex-
change economy, a problem initially raised by Sonnenschein (1973a,b) and to
which a number of author contributed, including Debreu (1974), McFadden
et al. (1974), Mantel (1974, 1976, 1977), Diewert (1977) and Geanakoplos
and Polemarchakis (1980). Here, agents maximize utility under budget con-
straint, and individual demands add up to an aggregate demand or excess
demand function. This research has recently been extended to incomplete
markets by Bottazzi and Hens (1996) and Gottardi and Hens (1995). A dif-
ferent but related example is provided by Browning and Chiappori (1994),
who consider the demand function of a two-person household, where each
member is characterized by a specific utility function and decisions are only
assumed to be Pareto-efficient.

These models share a common feature : they lead to the same type of
mathematical problem. Specifically, in all cases, the economic context has the
following translation : some given function X(p), mapping Rn

+ to Rn, can be
decomposed as a linear combination of k gradients. Here, k is the number of
individuals; X(p) is the original (aggregate) function; and gradients are the
natural mathematical translation of the underlying optimization problem.
Formally, X(p) writes down as :

X(p) = λ1(p)DpV
1(p) + ...+ λk(p)DpV

k(p) (1)

where the λi(p) and the V i(p) are scalar functions (V i being in general
interpreted as an indirect utility function), and whereDpV

i(p) is the gradient
of V i(p) at p:

DpV
i(p) =

(
∂V i

∂p1

, ...,
∂V i

∂pn

)′
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Note that, depending on the context, these functions may have to fulfill
specific, additional conditions, such as positiveness, monotonicity, (quasi-
)convexity, budget constraints and others.

A natural question is then the following : what does (1) imply upon the
form of the function X ?

From a mathematical point of view, the structure (1) is highly specific.
In the first half of this century, Elie Cartan developed a set of concepts,
usually referred to as exterior differential calculus (from now on EDC), that
proved especially convenient to deal with problems of this type. Surprisingly
enough, however, these tools have hardly ever been used in the field of eco-
nomic theory. As an obvious exception, one must mention a paper by Russell
and Farris (1993), showing that Gorman’s rank theorem is a consequence of
well-known results on Lie groups. More recently, Russell (1994) proposes a
measure of ’quasi-rationality’ directly based upon EDC. These works, how-
ever, only consider individual behavior.

The goal of this paper is twofold. For one thing, we propose a brief but
(hopefully) useful summary of some of the main results in EDC. In particular,
we describe in some details a very powerful theorem, due to Cartan and
Kähler, that (to our knowledge) has never been used so far in economics,
though it reveals extremely helpful to solve a large number of problems. The
second goal of the paper is to illustrate and substantiate the latter claim by
showing how the tools presented can help addressing issues at stake in this
literature. In particular, we solve a two of problems that were still open. One
is the complete characterization of household demand behaviour, a problem
raised by Browning and Chiappori (1994); the other is the decomposi

The structure of our paper is based upon the distinction between ’mathe-
matical’ and ’economic’ integration of a demand function. The mathematical
integration problem can be stated as follows : when can a given function X(p)
be written as a linear combination of gradients, as in (1)? In particular, this
approach simply disregards all additional conditions stemming from the spe-
cific economic context. Economic integration, on the other hand, takes these
restrictions into account; the question, now, is : when can a given function
X(p) be considered as an aggregate demand (or excess demand, or household
demand) ? Clearly, the second problem is more difficult, hence presumably
more demanding in terms of mathematical sophistication. In some cases, it
is however solvable with the help of adequate tools. We show, for instance,
that the characterization of market aggregate demand - an issue that has
remained open since its formulation by Sonnenschein more than 20 years
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ago - can indeed be (locally) solved with the help of a strong result in EDC
theory, the Cartan-Kähler theorem. In other situations, including Browning-
Chiappori’s model of efficient household demand, economic integration seems
out of reach. But then the ’mathematical integration’ approach turns out to
provide, at a lower cost, some very useful insights on the nature of the diffi-
culties at stake.

In the next section, we quickly recall some elementary notions of exterior
differential calculus. We end the section with a basic result, Pfaff theorem,
that provides a simple answer to the mathematical integration problem. We
provide two applications of this theorem in section 3. One, quite standard,
is a (quick) proof of Slutsky and Antonelli symmetry in the case of a single
decision maker. The second is much less trivial. We consider the characteriza-
tion of ’collective’ household demand, as studied by Browning and Chiappori
(1995), and show that, leaving aside convexity issues, their main result ad-
mits a reciprocal. Section 4 is devoted to the exposition of the Cartan-Kähler
theorem. This tool is finally applied, in the last section, to solve the aggregate
market demand problem.

2 Exterior differential calculus : an economist’s

toolkit

In this section, we introduce the basic notions of exterior differential calcu-
lus. Our purpose is exclusively pedagogical. At many places, in particular,
our presentation is somewhat intuitive, and skips most technicalities, while
many precautions are deliberately left aside. For a much more exhaustive
and rigorous presentation, the interested reader is referred to Cartan’s book
(1945), or to the recent treatise by Bryant et al. (1991).

2.1 Linear and differential forms

The basic notion is that of forms. A linear form (or a 1-form) is a linear
mapping from some subspace E ⊂ Rn to R :

ω : ξ ∈ Rn 7→ ω[ξ] = 〈ω, ξ〉 =
n∑
i=1

ωiξi

The set of linear forms on E is the dual E∗ of E. A basic example of
linear form is the projection dpi : ξ 7→ ξi, which, to any vector, associates

4



its ith coordinate. These form a basis of E∗; any form ω can be decomposed
as :

ω =
∑

ωi dpi

In what follows, we are especially interested in differential forms. Con-
sider a smooth manifold U , and let TpU denote its tangent space at some
point p. A differential (1-)form is, for every p ∈ U , a 1-form ω(p) on TpU
(with, say, 〈ω(p), ξ〉 =

∑
ωi(p)ξi), such that the coefficients ωi(p) depend

smoothly on p. Note that to any coordinate system, one can associate a
canonical bijection between the space of differential forms and the space of
vector fields; i.e., to the differential form ω(p), one can associate the vector
field ω̄(p) whose coordinates at each p are the ωi(p).

As a simple example of a differential form, we may, for any smooth map-
ping V from E to R, consider the tangent form dV defined at any point p
by :

dV (p) =
∑ ∂V

∂pi
(p)dpi

so that

dV (p) : ξ 7→ 〈dV (p), ξ〉 =
∑ ∂V

∂pi
. ξi

Of course, this form is extremely specific, for the following reason. Con-
sider the (n− 1)-dimensional manifold M defined by

M = {p ∈ E | V (p) = a}

where a is a constant. Then, for any p, the form dV (p) - and, as a matter
of fact, any form ω(p) = λ(p).dV (p) proportional to dV (p) - vanishes upon
the tangent space TpM :

∀p ∈M, ∀ξ ∈ TpM, 〈ω(p), ξ〉 = 0 (2)

The integration problem is exactly this. Starting from some given differ-
ential form ω(p), when is it possible to find a manifold M such that, for any
p, the restriction of ω(p) to TpM is zero ?

This problem, of course, sounds very familiar for any microeconomist.
Take any demand function x(p) (where income is normalized to 1 by ho-
mogeneity). Assume it is invertible, let p(x) denote the inverse demand
function, and consider the form π(x) =

∑
pi(x)dxi. Integrating π means

that we are looking for a manifold - or, more precisely, for a foliation of the
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space by manifolds - such that, for any x on the manifold, the vector p(x) is
orthogonal (at x) to the tangent subspace. In terms of consumer theory, each
manifold of the foliation will be called an indifference surface, the tangent
subspace a budget constraint, and we are imposing that the price vector be
orthogonal to the indifference curve at each point, which is the usual first or-
der condition for utility maximization. This is nothing else than the standard
integration problem for individual demand functions1. In the next section,
we investigate this aspect in more details2.

One point must however be emphasized. When ω(p) is proportional to
some tangent form dV , the manifold M can be found of (maximum) dimen-
sion (n − 1). But, of course, life is not always that easy. Starting from an
arbitrary form, it is in general impossible to find such a (n− 1)-dimensional
manifold. In general, the integration problem is thus to find a manifold M
of maximum dimension (or minimum codimension) such that ω(p) vanishes
upon TpM. When the minimum codimension is one, the form is completely
integrable. But, in general, the minimum codimension will be more than 1.

In fact, this has an interesting translation in terms of our initial problem.
Assume, indeed, that instead of being proportional to one tangent form dV ,
ω(p) is in fact a linear combination of k tangent forms :

ω(p) = λ1(p) dV 1(p) + ...+ λk(p) dV k(p)

Then we can solve the integration problem with a manifold of codimension
(at most) k. Indeed, consider the manifold M defined by :

M =
{
p ∈ E | V 1(p) = a1, ..., V

k(p) = ak
}

Clearly, M is of dimension (at least) n−k. Also, the tangent space at p is
the intersection of the tangent spaces to the k manifolds M i, ...,Mk defined
by

M i =
{
p ∈ E | V i(p) = ai

}
It follows that (2) is always fulfilled. A reciprocal property will be given

later.

1Note that additional restrictions must be imposed upon the manifolds, reflecting mono-
tonicity and quasi-concavity of preferences.

2Alternatively, one may consider the form ω(p) =
∑
pi(x)dxi. Integration will then

lead to recovering the indifference surfaces of the indirect utility function.
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2.2 Exterior k-forms and exterior product

Before addressing the integration problem in details, we must generalize our
basic concept.

An exterior k-form is a mapping ω : (E)k → R that is :

• (multi)-linear, i.e., linear w.r.t. each vector :

ω (p1, ...,ps−1, ay + bz,ps+1, ...,pk) = a. ω (p1, ...,ps−1,y,ps+1, ...,pk)

+ b. ω (p1, ...,ps−1, z,ps+1, ...,pk)

∀ (p1, ...,ps−1,y, z,ps+1, ...,pk) ∈ E k+1, ∀ (a, b) ∈ R

• antisymmetric, i.e., whose sign is changed when two vectors are per-
muted :

∀ (p1, ...,pk) ∈ E k, ω(p1, ...,pi, ...,pj, ...,pk) = −.ω (p1, ...,pj, ...,pi, ...,pk)

It follows that for any permutation σ of {1, ..., k} :

∀ (p1, ...,pk) ∈ E k, ω (pσ(1), ...,pσ(s), ...,pσ(k)) = (−1)sign(σ).ω (p1, ...,ps, ...,pk)

Note that, if k = 1, we are back to the definition of linear forms.
Consider, for instance, the case k = 2. A 2-form is defined by a matrix

Ω :

ω(p,q) =
∑
i,j

ωi,jpiqj = p′Ωq

Additional restrictions are usually imposed upon the matrix Ω. A stan-
dard one is symmetry; i.e., Ω = Ω′. In EDC, on the contrary, since one
considers exterior forms, antisymmetry is imposed. This gives Ω = −Ω′, i.e.
ωi,j = −ωj,i for all i, j; hence

ω(p,q) =
∑
i<j

ωi,j(piqj − pjqi)

Another case of interest is k = n , where n is the dimension of the space
E. Then the space of exterior n-form is of dimension one, and include the
determinant. That is, any n-form ω is colinear to the determinant:

ω (p1, ...,pn) = λ det (p1, ...,pn)
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Some well known properties of determinant are in fact due exclusively
to multilinearity together with antisymmetry, and can thus be generalized
to forms of any order. For instance, take any k-form ω, and take k vectors
(p1, ...,pk) that are not linearly independent. Then ω(p1, ...,pk) = 03. An
important consequence is that, for any k > n , any exterior k−form must
be zero.

2.2.1 Exterior product

The set of forms is an algebra, on which the multiplication, called the exterior
product, is formally defined by :

Let ω be a k-form, and γ be a `-form, then ω ∧ γ is a (k + `)-form such
that

ω ∧γ (p1, ...,pk+`) =
∑
σ

1

k!`!
(−1)sign(σ).ω

(
pσ(1), ...,pσ(k)

)
.γ
(
pσ(k+1), ...,pσ(k+`)

)
where the sum is over all permutations σ of {1, ..., k + `}

The formula may seem complex. Note, however, that it satisfies two basic
requirements : ω ∧γ is multilinear and antisymmetric. To grasp the intuition,
consider the case of two linear forms (k = ` = 1). Then

ω ∧ γ (p,q) = ω(p)γ(q)− ω(q)γ(p)

Obviously, this is the simplest 2-form related to ω and γ and satisfying the
two requirements above.

A few consequences of this definition must be kept in mind :

• Whenever ω is linear (or of odd order), ω ∧ ω = 0. More generally, let
ω1, ..., ωs be any 1-forms, and consider the product :

ω1 ∧ ... ∧ ωs

If the forms are linearly dependent, this product is always zero.

• But : whenever ω is a 2-form (or a form of even order), ω ∧ ω 6= 0

• Finally, for any k-form, (ω)s = ω∧ω∧...∧ω is a (k.s)-form. In particular,
(ω)s = 0 as soon as k.s > n.

3Indeed, one vector (say, pk) can be decomposed as a linear combination of the others.
Multilinearity implies that ω(p1, ...pk) writes down as a linear combination of terms like
ω(p1, ...pk−1,ps) with s < k. But antisymmetry imposes all these terms be zero.
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2.3 Exterior differentiation

The final step is the definition of exterior differentiation. Let ω(p) be a linear
form:

ω(p) =
∑

ω j(p) dpj

To define the exterior differential of ω(p), we may first remark that the
ω j(p) are standard functions from E to R. As such, they admit tangent
forms :

dω j(p) =
∑
i

∂ ω j

∂pi
dpi

Then the exterior differential dω(p) of ω(p) is a 2-form defined by :

dω(p) =
∑
j

dω j(p)∧ dpj =
∑
i,j

∂ ω j

∂pi
dpi ∧ dpj =

∑
i< j

(
∂ ω j

∂pi
− ∂ ωi

∂pj
) dpi ∧ dpj

(3)
Note, again, that this formula guarantees that dω(p) is bilinear and an-

tisymmetric.
Now, a formal definition would emphasize the fact that this definition

does not depend on the particular basis; in particular, one should introduce
the notion of ’pullbacks’ and provide a general definition. However, before
this more formal presentation, we present a very simple geometric intuition
of what exterior differentiation may mean.

The key idea is the emphasis put upon the antisymmetric side of the
operation. This can be understood in a 2-dimensional setting. In E = R2,
consider a 1-form ω(p) = ω1(p)dp1 + ω2(p)dp2, where p = (p1, p2). Consider
the four points depicted in Figure 1, namely : A = (p1, p2), B = (p1+δp1, p2),
C = (p1, p2+δp2) andD = (p1+δp1, p2+δp2), where the δpi are ’infinitesimal’.
Assume that we want to compute the following expressions :

I =

∫
Γ

ω(p)dpandI ′ =

∫
Γ′
ω(p)dp

where Γ (resp. Γ′) is the infinitesimal curve ABD (resp. ACD).

INSERT HERE FIGURE 1

9



Using the infinitesimal nature of the δpi, we can compute

I =

∫ B

A

ω(p)dp +

∫ D

B

ω(p)dp

= ω1(p1, p2)δp1 + ω2(p1 + δp1, p2)δp2

and

I ′ =

∫ C

A

ω(p)dp +

∫ D

C

ω(p)dp

= ω2(p1, p2)δp2 + ω1(p1, p2 + δp2)δp1

What we are interested in is the difference I−I ′. As it is well known, if ω
was equal to the tangent form dV for some smooth function V , this difference
would be zero; in fact, the Jacobian matrix Dpω would then be symmetric.
In general, using first order approximation, we have that :

I − I ′ =
(
∂ω2

∂p1

− ∂ω1

∂p2

)
δp1δp2

This is exactly the coefficient of the 2-form dω(p), as defined in (3).

Exterior differentiation is a linear operation, and there is a product for-
mula4. If α is a differential p-form and ω a differential q-form, we have :

d [α + ω] = dα + dω
d [α ∧ ω] = dα ∧ ω + (−1)p α ∧ dω

A last property that will turn out to be crucial in the sequel is naturalness
with respect to pullbacks. To understand this property, take open subsets
V ⊂ Rq and U ⊂ Rp, and ϕ : V → U a smooth (non-linear) mapping. To
any smooth f : U → R, we can associate f ◦ ϕ, which is a smooth function
on V . Similarly, to df , which is a 1-form on U , we associate d(f ◦ϕ), which is
a 1-form on V , called the pullback of f . As a particular case, take for f the
ith coordinate map x→ xi on U ; then the pullback of dxi will be a 1-form
on V that we denote by ϕ∗(dxi).

4Exterior differentiation also has integration properties (Stokes’ formula). Since we do
not need this part of the theory, we shall nor enter into it in the paper.
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The pullback ϕ∗, being defined for the dxi, is defined for all 1-forms on U
by linearity, and for p-forms in the same way. Also, it is natural with respect
to exterior products and exterior differentiation, in the following sens :

With the preceding definitions :

ϕ∗(α ∧ ω) = (ϕ∗α) ∧ (ϕ∗ω)
ϕ∗(dω) = dϕ∗(ω)

These results, and the notion of pullback itself, will be important in
studying integral manifolds of exterior differential systems in section 4.

2.4 Poincaré’s theorem

The construction detailed above has strong implications for the resolution of
the type of equations we are interested in. Let us start with a simple problem
: what are the conditions for a given exterior form ω to be the tangent form
of some given, twice continuously differentiable function V ? An immediate,
necessary condition is given by the following result :

Assume ω(p) = dV (p) for some V , then :

d[ω(p)] = 0

Just note that,

d[ω(p)] =
∑
i< j

(
∂2V

∂pj∂pi
− ∂ 2V

∂pi∂pj
) dpi ∧ dpj = 0

This Proposition admits a converse, due to Poincaré, that requires some
topological condition upon U (there should be no ’hole’ in U). For the sake
of simplicity, let us just assume convexity (a sufficient property), and state
the following :

Let ω be a differential 2-form on U such that dω = 0. Assume U is convex.
Then there exists a differential 1-form on U , say Ω, such that :

ω = dΩ
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: see Bryant et al. (1991), ch.
In fact, Poincaré’s result is more general, since it applies to k-forms as

well. An immediate consequence is the following. Let ω1(p), ..., ωn(p) be
given functions. Can we find V such that ωi = ∂V /∂pi ? The answer
is simple. Define the exterior form ω(p) =

∑
ωi(p). dpi. Then, from the

previous results, a necessary and sufficient condition is that :

dω =
∑
i,j

∂ ωi

∂pj
dpi ∧ dpj =

∑
i< j

(
∂ ωi

∂pj
− ∂ ωj

∂pi
) dpi ∧ dpj = 0

or
∂ ωi

∂pj
=
∂ ωj

∂pi
∀i, j

This result is usually referred to as Frobenius theorem.

2.5 Pfaff theorem

Poincaré’s theorem provides necessary and sufficient conditions for a form to
be a tangent form (or, equivalently, for vector field to be a gradient field).
In this case, the integration problem is straightforward, as illustrated above.
But, at the same time, these conditions are very strong. We now generalize
this result, by giving necessary and sufficient conditions for a form to be a
linear combination of k tangent forms. As discussed above, this means that
the integration problem can be solved, but only with an integral manifold of
dimension (at least) (n− k).

Assume that ω(p) can be written under the form :

ω(p) =
k∑
s=1

λs(p).dV s(p) ∀p ∈ U (4)

A first remark is that this structure has an immediate consequence. In-
deed (forgetting the p for simplicity) :

dω =
k∑
s=1

dλs ∧ dV s

Let us compute the exterior product ω ∧ (dω)k = ω ∧ dω ∧ ... ∧ dω ∧ dω.
We get first:

(dω)k = dλ1 ∧ dV 1 ∧ ... ∧ dλk ∧ dV k
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hence

ω ∧ (dω)k =

(
k∑
s=1

dλs ∧ dV s

)
∧ dλ1 ∧ dV 1 ∧ ... ∧ dλk ∧ dV k

= 0

since we get the sum of k terms, each of whom includes twice the same
1-form.

In summary, we have a simple characterization : if ω can be written as
in (4), then the product ω ∧ (dω)k must be zero.

This simple necessary condition admits an important converse.
(Pfaff) Let ω be a linear form, U an open, convex set. Let k be such that

:

ω ∧ (dω)k−1 = ω ∧ dω ∧ ... ∧ dω 6= 0, ∀p ∈ U
ω ∧ (dω)k = ω ∧ dω ∧ ... ∧ dω ∧ dω = 0, ∀p ∈ U

Then there exists 2k smooth functions V s and λs such that :

• the V s are linearly independent

• none of the λs vanishes on U

• and

ω(p) =
k∑
s=1

λs(p).dV s(p) ∀p ∈ U

See Bryant et al. (1991), ch. II, §3
In words, Pfaff theorem provides a necessary and sufficient condition for

the mathematical integration problem.

3 Mathematical integration : theory and two

applications

In this section, we show, on two specific examples, how the tools previously
described have very natural applications in consumer theory.
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3.1 Maximization under linear constraint

The basic remark is the following. Consider the program that characterizes
the behavior of an individual consumer facing a linear budget constraint :

V (p) = max
x

U(x)

p.x = 1
(5)

where the utility function U is continuously differentiable and strongly quasi-
concave; note that, from now on, income is normalized to 1. Let x(p) denote
the solution to (5). If α denotes the Lagrange multiplier, we have, from the
envelope theorem, that :

DV (p) = −α(p).x(p) (6)

and x(p) is proportional to the gradient of the indirect utility V. Incidentally,
(5) is equivalent to :

−U(x) = max
p

(−V (p))

p.x = 1
(7)

which implies, as above, that

DU(x) = β(x).p(x) (8)

where p(x) is the inverse demand function and β(x) is the associated La-
grange multiplier; so p(x) is proportional to the gradient of U5.

So both p(x) and x(p) are proportional to a (single) gradient; we have a
problem of the type (1) for m = 1. Actually, the programs (8) and (5) are
exactly similar, so these two functions share exactly the same properties - a
fact that has been known at least since Antonelli (1886).

Now, how does EDC enter the picture6 ? The idea is to define the linear
form ω by :

ω(p) =
∑

xi(p).dpi (9)

From Pfaff’s theorem, we know that x(p) is proportional to a gradient if
and only if ω(p) satisfies :

ω ∧ dω = 0

5In fact, (8) can also be seen as the first order conditions of (5); this implies that
β [x(p)] = α(p).

6For a development on the links between EDC and Slutsky relations and the conse-
quences upon Gorman forms, see Russell and Farris (1993).
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which writes down :

∀ i, j, k, xi(
∂ xj
∂pk
− ∂ xk
∂pj

) + xk(
∂ xi
∂pj
− ∂ xj
∂pi

) + xj(
∂ xk
∂pi
− ∂ xi
∂pk

) = 0 (10)

We now show that (10) is nothing else than traditional Slutsky relation-
ships. To see why, note, first, that given our normalization (income is equal
to 1), the Slutsky matrix writes down :

S = Dpx. (I − p.x′) (11)

where Dpx is the Jacobian matrix of x(p). Take some fixed p̄. Slutsky
symmetry is equivalent to the following : the restriction of Dpx(p̄) to the
hyperplane orthogonal to x(p̄) = x̄ must be symmetric. Formally :

∀y, z⊥x̄, y′ (Dpx) z = z′ (Dpx) y⇔ y′ (Dpx− (Dpx)′) z = 0 (12)

Now, it can readily be seen that the vectors

yk =


0

xk(p̄)
0

−xi(p̄)
0


, where xk(p̄) (resp. -xi(p̄)) occupies the ith (resp. kth) row, form a basis of
{x(p̄)}⊥. It is thus sufficient to check (12) for any two yj and yk. But this
is exactly equivalent to (10).

Incidentally, given the similarity between (8) and (5), the same conclusion
applies to the inverse demand function p(x); i.e., the matrix A defined by

A = Dxp. (I − x.p′)

is symmetric. The reader can check that this is equivalent to the symmetry
of the Antonelli matrix.

3.2 Collective household demand

As a second (and less trivial) example, we may take Browning-Chiappori’s
model of household behavior. Consider a two-member household with re-
spective preferences of the form ui(x1,x2,X) for i = 1, 2; here, xi denotes
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the vector of member i’s private consumption, while X is a vector of col-
lective consumption for the household. Assume, as in Browning-Chiappori
(1994), that the household is characterized by some decision process, which
is only assumed to generate Pareto efficient outcomes. Formally, we suppose
there exists some C1 function µ(p) such that (x1,x2,X) is a solution of :

V (p, µ) = max
x1,x2,X

µ(p).u1(x1,x2,X) + [1− µ(p)] .u2(x1,x2,X) (13)

p.(x1 + x2 + X) =1

If x(p) = x1(p) + x2(p) + X(p) denotes the household (aggregate) de-
mand function, what conditions does (13) imply upon the form of x(p) ? A
necessary condition is the following :

(”SR1” property, Browning-Chiappori 1994) : If x(p) is derived from a
program like (13), then the Slutsky matrix S(p) = Dpx. (I − p.x′) is the
sum of a symmetric matrix Σ and a matrix R of rank at most 1

A detailed proof can be found in the original paper. However, it is
important for our present purpose to see the core of the argument. This can
be summarized as follows. Define, first, the household utility function by :

uH(x, µ) = max
x1,x2,X

µ.u1(x1,x2,X) + (1− µ) .u2(x1,x2,X) (14)

x1 + x2 + X = x

Note that uH , as a function of x, is indexed by µ. Then (13) can be written
as :

V (p, µ) = max
x

uH [x, µ(p)] (15)

p.x =1

For any fixed µ, we may define the Marshallian demand ξ(p, µ) associated
to uH . This is a standard demand function; in particular, it satisfies Slutsky
symmetry. Also, it is related to x by :

x(p) = ξ [p, µ(p)]

It follows that :
S(p) =Σ(p) + u.v′ (16)

where Σ(p) is the (symmetric) Slutsky matrix associated to ξ, and where u
and v are n -vectors such that

u = Dµξ and v′ = Dpµ
′. (I − p.x′) (17)
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In particular, R = u.v′ is of rank at most 1.

Now, let us consider the reciprocal property. Assume that some demand
function x(p) satisfies SR1; is it possible to find three functions x1(p),x2(p),X(mathbfp),
two utility functions, u1(x1,x2,X) and u2(x1,x2,X), and a function µ(p)
such that x(p) = x1(p)+x2(p)+X(mathbfp), where [x1(p),x2(p),X(mathbfp)]
is a solution of (13) ? In other words, is it possible to find, in the collective
setting, a result equivalent to the ’integrability’ theorem in the unitary case
?

This question is in fact quite difficult. A first remark is that, when a
decomposition like (16) exists, it is not unique. In fact, what is determined
by the demand function is simply the subspace M(p) spanned by u and
v; whatever the decomposition, the columns of the R matrix will always
belong to M(p). But consider the following question : given a 2-dimensional
subspace M(p), is it possible to find two vectors u(p) and v(p), always
belonging to M(p), and some function µ(p), such that (17) is always fulfilled
? The answer is not easy, given that, in particular, we impose that v is
related to a gradient (which introduces strong conditions). Also, even if we
solve this, we still have to construct the function ξ, taking into account not
only the Σ matrix but also the form of u. The problem may thus seem quite
intricate.

We now show that the EDC point of view provides a spectacular sim-
plification of the problem. In fact, it allows to solve an even more difficult
question, since we may impose, in addition, that all goods are publicly con-
sumed :

x1(p) = 0, x2(p) = 0, x(p) = X(mathbfp)

Under this further restriction, the program becomes :

max
x

µ(p).u1(x) + (1− µ(p)) .u2(x) (18)

p.x =1

Let V (p) denote the corresponding value of the maximand. The envelope
theorem states that :

DpV (p) = −α(p).x(p) +
(
u1(x(p))− u2(x(p))

)
Dpµ(p)

which can be written as :

x(p) = λ1(p).DpV (p) + λ2(p)Dpµ(p) (19)
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The mathematical integration approach leads to considering the following
question : when can a given function x(p) be written under the form (19) ?
The answer is strikingly simple, as expressed by the following theorem :

A given, continuously differentiable function x(p) satisfying p.x(p) = 1
can be written under the form (19) if and only if it satisfies SR1.

A complete proof in Appendix. But the important and previously difficult
part - the ’if’ - is now immediate. Define, as above, the linear form ω by :

ω(p) =
∑

xi(p).dpi

From Pfaff’s theorem, a necessary and sufficient condition for (19) is that
:

ω ∧ dω ∧ dω = 0 (20)

Now, note that SR1 implies the following :

dω − ω ∧ a = b ∧ c

where a, b and c are 1-forms whose definition is clear. Then

dω ∧ dω = ω ∧ a ∧ b ∧ c

and (20) is fulfilled.

Two remarks can be made at this point. First, SR1 turns out to be nec-
essary and sufficient for mathematical integration. But economic integration
requires additional restrictions. Namely, λ1(p) must be negative; and V (p)
must be decreasing and quasi-convex. In fact, only the last restriction turns
out to be really binding. Browning and Chiappori (1994) find additional re-
strictions linked to quasi-convexity7. But we do not know yet whether these
are sufficient for economic integration.

Secondly, we can characterize inverse demand in exactly the same way.
Indeed, first order conditions of (18) imply that :

µ (p(mathbfx)) .Dxu
1(x) + [1− µ (p(mathbfx))] .Dxu

2(x) = α(p).p(x)
(21)

and we conclude that :

7The restriction of S(p) to the orthogonal of M(p) must be negative.
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A given, continuously differentiable function p(x) satisfying p(x).x = 1
can be written under the form (21) if and only if it satisfies SR1, i.e., if the
matrix

A = Dxp. (I − x.p′)

can be written as the sum of a symmetric matrix and a matrix of rank at
most one.

This alternative version leads to a very nice geometric interpretation.
Start from a demand function such that SR1 is satisfied, while Slutsky sym-
metry is not. At some given point x, consider the two indifference surfaces
corresponding respectively to u1 and u2, and call N their intersection (see
Fig. 2).

INSERT HERE FIGURE 2

Take any vector y that is orthogonal to both gradients Dxu
1 and Dxu

2;
then y is tangent to N . The relation (21) expresses that y is orthogonal to the
price vector p(x). From the integration viewpoint, since Slutsky symmetry
does not hold, complete integration does not obtain. The integral manifold
of maximum dimension is N , which is of dimension (n − 2). This has an
immediate economic translation : instead of recovering one indifference sur-
face, as in the Slutsky case, we recover the intersection of two indifference
surfaces, who respectively correspond to the two agents in the household.

4 Exterior differential systems on manifolds

: the Cartan-Kähler theorem

We now present the key result upon which our appraoch relies. This theorem,
due to Cartan and Kähler, solves the following, general problem. Given
a certain family of differential forms (not necessarily 1-forms, nor even of
the same degree), a point x̄ and an integer m ≥ 1, can one find some m-
dimensional submanifold M containing x̄ and on which all the given forms
vanish ?
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4.1 An introductory example

As an introduction, let us start from a simple version of our problem, namely
the Cauchy-Lipschitz theorem for ordinary differential equations. It states
that, given a point x̄ ∈ Rn−1 and a C1 function f , defined from some neigh-
borhood U of x̄ into Rn−1, there exists some ε > 0 and a C1 function ϕ :
]− ε, ε [−→ U such that

dϕ

dt
= f (ϕ(t)) ∀t ∈ ]− ε, ε [ (22)

ϕ(0) = x̄

It follows that dϕ
dt

(0) = f(x̄). If f(x̄) = 0, the solution is trivial, ϕ(t) = x̄
for all t so we assume that f(x̄) does not vanish.

This theorem can be rephrased in a geometric way. Consider the graph
M of ϕ :

M = { (t, ϕ(t) ) | − ε < t < ε }

It is a 1-dimensional submanifold of ]− ε, ε [×U we introduce the 1-forms
ωi defined by :

ωi = f i(x)dt − dxi , 1 ≤ i ≤ n− 1

Clearly ϕ solves the differential equation (22) if and only if the ωi all
vanish on M . More precisely, substituting xi = ϕi(t) into formula (4) yields
the pullbacks :

ϕ∗ωi =

[
f i (ϕ(t)) − dϕi

dt
(t)

]
dt

which vanish if and only if ϕ solves equation (22).
So the Cauchy-Lipschitz theorem tells us how to find a 1-dimensional

submanifold of R× Rn on which certain 1-forms vanish.

4.2 The general problem

The Cauchy-Lipschitz theorem deals with 1-forms of a specific nature. By
extension, the fully general problem can formally be stated as follows.
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Definition Let ωk , 1 ≤ k ≤ K, be differential forms on an
open subset of Rn, and M ⊂ Rn a submanifold. We call M an
integral manifold of the system :

ω1 = 0 , ...., ωK = 0 (23)

if the pullbacks of the ωi to M all vanish :

ωkx
(
ξ1, ...ξdk

)
= 0 1 ≤ k ≤ K (24)

whenever x ∈ M , ω M , ωk has degree dk, and ξi ∈ TxM for
1 ≤ i ≤ dk.

Given a point x̄ ∈ Rn, the Cartan-Kähler theorem will give necessary and
sufficient conditions for the existence of an integral manifold containing x̄.

Necessary conditions are easy to find. Assume an integral manifoldM 3 x̄
exists, and let m be its dimension. Then its tangent space at x̄ , Tx̄M , is
m-dimensional, and all the ωjx̄ must vanish on Tx̄M , because of formula (7).
Any subspace E ⊂ Tx̄M with this property will be called an integral element
of system (6) at x̄. The set of all m-dimensional integral elements at x̄ will
be

Gm
x̄ =

{
E

E ⊂ Tx̄M and dim E = m
ω1
x̄, ..., ω

K
x̄ vanish on E

}
Our first necessary condition is clear :

Gm
x̄ 6= � (25)

4.3 Differential ideals

To get the second one, let us ask a strange question : have we written all the
equations ? In other words, does the system :

ω1 = 0, ..., ωK = 0 (26)

exhibit all the relevant information ?
The answer is negative. To see why, recall that M is a submanifold of

Rn, and denote by ϕM : M → Rn the standard embedding ϕM(x) = x for
all x ∈M . M is an integral manifold of system (26) if :

ϕ∗M ω1 = 0, ..., ϕ∗M ωK = 0 (27)
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But we know that exterior differentiation is natural with respect to pull-
backs, that is, d commutes with ϕ∗M . So (27) implies :

ϕ∗M(dω1) = 0, ..., ϕ∗M(dωK) = 0

In other words, M is also an integral manifold of the larger system :{
ω1 = 0, ..., ωK = 0
dω1 = 0, ..., dωK = 0

(28)

which is different from (26). So integral elements of (28) will be different
from integral elements of (26), and it is not clear which ones we should be
working with.

To resolve this quandary, we shall assume that systems (26) and (28)
have the same integral elements. In other words, the second equations in
(28) must be algebraic consequences of the first ones. The precise statement
for this is as follows :

Definition. The family {ωk|1 ≤ k ≤ K} is said to generate a
differential ideal if there are forms {αkj | 1 ≤ j, k ≤ K } such that
:

∀k, dωk = Σ αkj ∧ ωj (29)

Our second necessary condition is that the ωk, 1 ≤ k ≤ K, must generate
a differential ideal.

Note that if the given family
{
ωk |1 ≤ k ≤ K

}
does not satisfy this con-

dition, the enlarged family
{
ωk , dωk|1 ≤ k ≤ K

}
certainly will (because

ddωk = 0). So the condition that the ωk must generate a differential ideal
can be understood as saying that the enlargement procedure has already
taken place.

4.4 A counter example

It turns out that conditions (25) and (29) are almost sufficient. All we have
to do is to replace (25) by a slightly stronger condition.

To see that (25) is not sufficient, let us give a simple example. Consider
two functions f and g from Rn−1 into itself, with f(0) = g(0) = v 6= 0. Define
αi and βi , 1 ≤ i ≤ n− 1 , by

αi = f i(x)dt− dxi
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βi = gi(x)dt− dxi

and consider the exterior differential system in Rn :

αi = 0 , βi = 0 , 1 ≤ i ≤ n− 1

The αi and the βi generate a differential ideal, and there is an integral
element at 0, namely the line carried by (1, N), so G1

0 6= �. However, finding
an integral manifold of the initial system containing 0 amounts to finding a
common solution of the two Cauchy problems :

dx

dt
= f(x) , x(0) = 0

dx

dt
= g(x) , x(0) = 0

which does not exist in general. The problem clearly is that the equality
f(x) = g(x) holds at x = 0 only. So we need a regularity condition which
will exclude such pathological situations - technically, that guarantees that
the required equality hold true at ordinary points, a concept we now formally
define.

4.5 Regularity conditions

If all the ωk(x) are 1-forms, the regularity condition is clear enough : the
dimension of the space spanned by the ωk(x), 1 ≤ k ≤ K, in T ∗xRn, should
be constant on a neighborhood of x̄ (which is obviously not the case in the
counterexample above). Note that, locally, this dimension can only increase,
that is, the codimension can only decrease.

If some of the ωk have higher degree, the regularity condition is more
complicated, because several codimensions are involved. However, the idea
is the same : all these codimensions should be constant in a neighborhood of
x̄, which amounts to saying that they should have the lowest possible value
at x̄. This is expressed in the following.

Pick a point x̄ ∈ Rn ; from now on, we work in the tangent space V =
TxRn. Let E ⊂ V be an m-dimensional integral element at x̄. Pick a basis
ᾱ1, ..., ᾱn of V ∗ such that :

E = {ξ ∈ V | < ξ, ᾱi >= 0 ∀i ≥ m+ 1 }
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For n′ ≤ n, denote by I(n′, d) the set of all ordered subsets of {1, ..., n′}
with d elements. Denote by dk the degree of ωk. For every k, writing ωk(x̄)
in the ᾱi basis, we get

ωk(x̄) =
∑

I∈I(n,dk)

ckI ᾱi1 ∧ ... ∧ ᾱidk .

In this summation, it is understood that I = {i1, ..., idk}. Since ωk(x̄)
vanishes on E, each monomial must contain some ᾱi with i ≥ m + 1. Let
us single out the monomials containing one such term only. Regrouping and
rewriting, we get the expression :

ωk(x̄) =
∑

J∈I(m,dk−1)

β̄kJ ∧ ᾱj1 ∧ ... ∧ ᾱjdk−1 + remainder

where β̄kJ is a linear combination of the αi for i ≥ m + 1 ; and all the
monomials in the remainder contain ᾱi ∧ ᾱi′ for some i > i′ ≥ m+ 1.

Define an increasing sequence of linear subspace H∗0 ⊂ H∗1 ⊂ ... ⊂ H∗M ⊂
V ∗ as follows :

H∗m = Span[ β̄kJ |1 ≤ k ≤ K, J ∈ I(m, dk − 1)}
H∗m−1 = Span[ β̄kJ |1 ≤ k ≤ K, J ∈ I(m− 1, dk − 1)}
H∗0 = Span[ β̄kJ |1 ≤ k ≤ K, J ∈ I(0, dk − 1)}

The latter is just the linear subspace generated by those of the ωk(x̄)
which happen to be 1-forms. We define an increasing sequence of integers
0 ≤ c0(x̄, E) ≤ ... ≤ cm(x̄, E) ≤ n by :

ci(x̄, E) = dim H∗i

We are finally able to express Cartan’s regularity condition. Denote
by Pm(Rn) the set of all m-dimensional subspaces of Rn with the stan-
dard (Grassmannian) topology : it is known to be a manifold of dimension
m(n−m). Denote by Gm the set of all (x,E) such that E is an m-dimensional
integral element at x. Note that Gm is a subset of Rn × Pm(Rn).

Definition. Let (x̄, Ē) ∈ Gm - that is, Ē is an m-dimensional
integral element at x̄. We say that (x̄, Ē) is ordinary if there is
some neighborhood U of (x̄, Ē) in Rn×Pm(Rn) such that Gm∩U
is a submanifold of codimension

c0(x̄, Ē) + ...+ cm−1(x̄, Ē)
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If all the ωk are 1-forms, denote by d(x) the dimension of the space
spanned by the ωk(x). Then ci(x,E) = d(x) for every i, and (x̄, Ē) is ordinary
if Gm ∩ U is a submanifold of codimension md(x̄) in Rn × Pm(Rn). This
implies that, for every x in a neighborhood of x̄, the set of E ∈ Gm

x (integral
elements at x) has codimension md(x̄) in Pm(Rn). It can be seen directly to
have codimension md(x). So d(x) = d(x̄) in a neighborhood of x̄ : this is
exactly the regularity condition we wanted for 1-forms.

In the general case, if (x̄, Ē) is ordinary, the numbers ci will also be locally
constant :

ci(x,E) = ci(x̄, Ē) = ci ∀(x,E) ∈ U .

The (non-negative) numbers

s0 = c0

si = ci − ci−1 for 1 ≤ i < m

sm = n−m− cn−1

are called the Cartan characters. We shall use them later on.

4.6 The main result

We are now in a position to state the Cartan-Kähler theorem :
(Cartan-Kähler) Consider the exterior differential system :

ωk = 0 , 1 ≤ k ≤ K (30)

Assume that the ωk are real analytic and that they generate a differential
ideal. Let x̄ be a point and let Ē be a regular integral element at x̄. Then
there is a real analytic integral manifold M , containing x̄ and such that :

Tx̄M = E . (31)

Nothing should come as a surprise in this statement, except the real
analyticity. It comes from the very generality of the Cartan-Kähler theorem.
Indeed, every system of partial differential equations can be written as an
exterior differential system.
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To conclude, let us mention the question of uniqueness. There is no
uniqueness in the Cartan-Kähler theorem : there may be infinitely many
analytic integral manifolds going through x̄ and having Ē as a tangent space
at x̄. However, the theorem describes in a precise way (not given here) the
set

MU =

M
M is an integral manifold
and there exists (x,E) ∈ U
such that x ∈M and TxM = E

 ,

where U is a suitably chosen neighborhood of (x̄, Ē). Loosely speaking, each
M in MU is completely determined by the (arbitrary) choice of sm analytic
functions of m variables, the sm being the Cartan character.

5 Application : the characterization of aggre-

gate market demand

5.1 The problem

The main application we draw in this paper from the Cartan-Kähler theorem
is the characterization of aggregate market demands. The problem, initially
raised by Sonnenschein (1993b), can be stated as follows. Take some contin-
uous mapping X(p) : Rn → Rn, such that p.X(p) = n (Walras Law). Can
we find n individual demand functions x1(p), ...,xn(p) such that

X(p) = x1(p) + ...+ xn(p) (32)

where xi(p) is the solution of

V i(p) = maxU i(xi)
p.xi = 1

xi ≥ 0
(33)

for some well-behaved utility function U i ?
Sonnenschein’s original paper raised both the issue of aggregate demand

and that of aggregate excess demand. In the second case, the problem is
similar, the difference being that each agent is characterized by some initial
endowment (instead of income). This, in turn, implies some modifications in
the form of the basic equations.
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The techniques we now describe actually apply to both problems in ex-
actly the same way. But, as it is well known, the second question - the
characterization of excess demand - has been solved by Debreu (1974). In
fact, Debreu’s contribution solves a more difficult problem than the mere
characterization issue. When looking at Debreu’s proof, one is stuck by the
fact that it does not only prove the existence of a solution - i.e., of a set
of preferences and initial endowments that generate, as aggregate excess de-
mand, the initial function. It also provides a way of explicitly constructing
such a solution - i.e., each of the n individual demands8. This result is quite
striking. In many existence theorems of the (mathematical) literature, the
result is established ”indirectly” (say, by showing that non existence would
lead to a contradiction), and the construction of a solution is left aside. Even
when an explicit construction obtains, it generally leads to (at best) a numer-
ical algorithm. In Debreu’s proof, however, an explicit, analytical solution is
provided.

This appears as a very strong result. But, at the same time, one can hardly
hope that life will always be so easy. In the case of aggregate market demand
- a problem that is still open - looking for an explicit, analytical solution is
probably too demanding; it might be the case that such a solution simply
does not exist in general. In what follows, we only show existence. While
our approach does provide basic insights for the numerical construction of a
solution, nothing indicates that the latter will exhibit a simple form. But, of
course, that is not needed anyway.

We now tackle the problem. A first remark, due to Sonnenschein, is that,
in contrast with the excess demand problem, the characterization of mar-
ket demand will face complex non-negativity restrictions. In particular, he
exhibits a counter-example of a function X that cannot be globally decom-
posed as above because of these constraints. However, the local version of
the problem remains : is it possible, for any given p >>0, to find individual
demand functions x1(p), ...,xn(p), defined on some neighborhood of p, such
that (32) and (33) are fulfilled on this neighborhood ?

A result initially demonstrated by Sonnenschein (1973b) and then gen-
eralized by Diewert (1977) and Mantel (1977), states that for n ≥ ` any
continuous function satisfying Walras Law does, when considered at some
given point p̄, ’look like’ aggregate market demand, in the following sense :

8The explicit construction of utility functions has been consequently derived by
Geanakoplos (1978).
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it is possible to find individual demand functions x1(p), ...,xn(p) such that :

X(p̄) =
∑
i

xi(p̄), DpX(p̄) =
∑
i

Dpxi(p̄)

In their 1982 survey, Shafer and Sonnenschein ask whether it is possible
to go beyond this result, and find the xi(p) such that X(p) coincides with∑

i x
i(p) on an open neighborhood of p̄. While Andreu (1983) has demon-

strated this property for finite sets of price-income bundles, the continuous
version has not yet been established. In what follows, we show that the an-
swer to the question is positive, at least if we assume that the function X
is analytic on such a neighborhood (which implies, in particular, that it is
infinitely differentiable).

5.2 The EDC approach

Let us first rephrase the problem in terms of EDC. First, if V i denote con-
sumer i’s indirect utility, we know that utility maximization impliesDpV

i(p) =
−αi.xi(p), where αi is the Lagrange multiplier. It follows that :

X(mathbfp) = − 1

α1(p)
DpV

1(p)− ...− 1

αn(p)
DpV

n(p) (34)

= λ1(p)DpV
1(p) + ...+ λn(p) DpV

n(p)

and X(p) must be a linear combination of n gradients. In addition :

• the V i are (quasi) convex and decreasing

• the λi are negative

• furthermore, the budget constraint implies :

p.DpV
i(p) = 1/λi ∀i (35)

The problem is thus to find, on a neighborhood of some given p̄, functions
λ1, ..., λn and V 1, ..., V n satisfying (34) and the set of conditions (35).

We now describe the basic strategy used throughout the proof. Consider
the space E = {p, λ1, ..., λn,∆

1, ...,∆n} = R2n+n2
(the vector ∆i will later

be interpreted as the DpV
i). Clearly, if a solution exists, then the equations
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λi = λi(p) and ∆i = ∆i(p) define a (n-dimensional) manifold S in E; and
S is included in the n2-dimensional manifold M defined by :

X(p) =
∑
i

λi∆
i (36)

p.∆i = 1/λi ∀i

Conversely, assume that we have found functions λi = λi(p) and ∆i =
∆i(p) such that :

• for every p, {p,λ1(p), ..., λn(p),∆1(p), ...,∆n(p)} belong to M

• for every i = 1, ..., n, ∆i(p) satisfies the equation :

d

(∑
j

∆ijdpj

)
=
∑
j

d∆ij∧dpj =
∑
k< j

(
∂∆ij

∂pk
− ∂∆ik

∂pj

)
dpk∧dpj = 0

Then ∆i(p) is the gradient of some function V i, and the (V 1, ..., V n) solve
the problem. In the language of the previous section, we are looking for an
n-dimensional integral manifold of the exterior differential system :∑

j

d∆ij ∧ dpj = 0 ∀i (37)

Finally, the solution must be parametrized by (p1, ..., pn). The formal
translation of this is :

dp1 ∧ ... ∧ pn 6= 0 (38)

An important remark, here, is that this system is closed, in the sense of
the previous section (since all 1-forms involved are already tangent forms).
So the condition that the forms constitute a differential ideal is automatically
fulfilled.

The idea, now, is to consider (37) and (38) as an exterior differential
system to be solved on the manifold M. Following the approach described
in the previous section, the proof is in two steps.

• As a first step, one must look for a solution of the linearized problem
(at some given point p̄). Specifically, choose (arbitrarily) the values
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(at p̄) of λi and ∆i = DpV
i. In particular, one may choose λi < 0 ,

∆i << 0 and ∆ = (∆1, ...,∆n) invertible; if these properties hold at p̄,
they will hold by continuity on a neighborhood as well. Now, linearize
λi and ∆i (as functions of p) around p̄ :

∂λi
∂pj

= N i
j

∂∆i
k

∂pj
= M i

k j

Solving the linearized problem is equivalent to finding vectors N i and
matrices M i that satisfy the integration equations, i.e., (37) and (38),
plus the equations expressing that λi and ∆i remain on the manifold
M (the latter obtain by differentiating (36)); in addition, we want the
V i to be convex. Formally, we write that :

– ∆i is the gradient of a convex function; this implies that

M isymmetricpositive,i = 1, ..., n

– ’the point remains on the manifold’, which leads to :

DpX(p̄) =
∑
i

(
∆iDpλ

′
i + λiDp∆i

)
=
∑
i

(
∆iN ′i + λiM

i
)

M ip + ∆i = − 1

λ2
i

Ni ⇔ N ′i = −λ2
i (p
′M i + ∆i′)

• the second, and more tricky step is to show that the previous condi-
tions hold true at ordinary points. This is crucial in order to go from a
solution to the linearized version at each point to a solution to the gen-
eral, non-linear problem; a move that may not be possible otherwise, as
illustrated by the counter-examples in the previous section. Formally,
this requirement translates into the fact that the subspaces involved
have the ’right’ codimension.

Is it possible to find vectors N i and matrices M i that satisfy the previous
conditions ? The answer is positive; a general proof is in Appendix. Two
remarks can be made at this point :

30



• the technique used in this proof applies not only to the aggregate de-
mand problem, but also to excess demand, and presumably to other
problems of the same type. In particular, it is fairly easy to redemon-
strate the excess demand theorem, even in the local version due to
Geanakoplos and Polemarchakis (1980), which requires only n− 1 con-
sumers. However, we do not develop this result here; instead, we con-
centrate upon the (original) proof of the market demand case.

• in the present case, the existence of a solution to the linearized problem
(step one above) is in fact a consequence of known results of the litera-
ture, due to Sonnenschein (1973b), Diewert (1977) and Mantel (1977).
These results, however, are not sufficient for the present purpose, be-
cause they do not allow to check the codimension properties of step
two. The proof we provide in Appendix does indeed allow to compute
the required dimensions.

Once these conditions have been checked, Cartan-Kähler theorem applies.
Finally, one gets the following statement :

Consider some open set U in Rn−{0} and some analytic mapping X : U
→ Rn such that p.X(p) = 1. For all p̄ ∈ U and for all (x̄1, ..., x̄n) ∈ Rn2

and
(λ̄1, ..., λ̄n) ∈ Rn that satisfy :

x̄1+...+ x̄n = X(p̄)

∀i, λi > 0

, there exist n functions U1, ..., Un, where each Ui is defined in some con-
vex neighborhood Ui of x̄i and is analytic and strictly quasi-concave in U i
, n mappings (x1, ...,xn) and n functions (λ1, ..., λn) , all defined in some
neighborhood V of p̄ and analytic in V , such that, for all p ∈ V :

p.xi(p) = 1/n

Ui (xi(p)) = max {Ui(x) | x ∈ U i, p.x ≤ 1/n} , i = 1, ..., n

∂Ui
∂xj

(xi(p)) = λi(p) pj, i = 1, ..., n, j = 1, ..., n

n∑
i=1

xi(p) = x(p)

xi(p̄) = x̄i , i = 1, ..., n

λi(p̄) = λ̄i, i = 1, ..., n
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Note that both the individual demands and the Lagrange multipliers
(i.e., each agent’s marginal utility of income) can be freely chosen at p̄. In
particular, nonnegativity constraints can be forgotten, since one can choose
individual demands to be strictly positive at p̄, and they will remain positive
in a neighbourhood.

5.3 Mathematical integration

Finally, we may wonder how the conclusion would be modified if we adopt
the ’mathematical integration’ viewpoint. Note, first, that this leads to dis-
regarding condition (35). This has a simple economic interpretation. Indeed,
this relation results from the budget constraint, and more precisely from the
fact that income is assumed independent from prices. Suppose, on the con-
trary, that each individual’s income is allowed to be some arbitrary function
of prices; i.e., we assume the existence of some functions ρ1(p), ...,ρn(p) such
that

∑
ρi(p) = n, and such that i’s program writes down :

MaxU i(xi)
p.xi = ρi(p)

Then condition (35) can be cancelled. Now, if we disregard convexity
requirements, how many individuals are necessary to generate an arbitrary
aggregate demand X(p) ?

The answer can readily be derived from Pfaff theorem. Let k denote the
number of consumers. A necessary and sufficient condition for (34) is that :

ω ∧ (dω)k = 0

Now, assume k ≥ n/2. Then ω ∧ (dω)k is a s-form with s ≥ n + 1
(remember that dω is a 2-form). It follows that it is identically zero, so that
the condition is always fulfilled. We conclude that only n/2 consumers are
necessary to solve the ’mathematical integration’ problem !
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