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I. INTRODUCTION 

This paper deals with the following problem. Let H,(x,p) be a family of 
functions on R” x R”, depending on the parameter E E Pd. For small E, we 
seek periodic solutions to Hamilton’s equations, 

and we wish to relate them to the periodic solutions of the unperturbed 
system: 

For this problem to have any practical interest, the unperturbed 
Hamiltonian system (X0) must be completely integrable. We then find 
ourselves dealing with the fundamental problem of perturbation theory, 
which has given rise to a considerable amount of mathematical developments 
for more than two centuries, the most recent being the Kolmogorov-Ar- 
nold-Moser theorem on invariant tori (see [9] for a survey). In applying this 

*Part of this paper was written while the author was visiting the University of Chicago 
(April 1981). 

407 
0022.0396/83 $3.00 

Copyright C 1953 by Academic Press. kc. 
All rights of reproducrion in any form reserved. 



408 1. EKELAND 

result to linear systems, it must be borne in mind that the n closed trajec- 
tories corresponding to the normal modes are degenerate rational tori. For 
this reason, it is often best to treat separately the case when (Zoo> is linear. 

Roughly speaking, the two salient facts which emerge are the following: 

(a) Closed trajectories for (&) which are isolated on their energy 
level give rise to closed trajectories for the perturbed problems (Ze). 
Asymptotic expansions for these can be found by some variant of the 
Lindstedt-Poincare method, i.e., by killing off secular terms in the Mh-order 
terms by ad hoc conditions on the (k - l)th-order terms. 

(b) Closed trajectories for (4) which belong to a continuous family 
within the same energy level (a rational invariant torus, for instance) will in 
general be destroyed by small perturbations. Only a few will give rise to 
closed trajectories for (&), with E + 0, and it is part of the problem to find 
those that do. 

This paper gives a unified approach to all these problems, based on a 
single mathematical result (Theorem 8). It is a purely functional-analytic 
approach, by repeated use of the implicit function theorem, and makes no 
reference to such classical tools as the Poincare map. It provides us with a 
complete and detailed justification of the above (a), (b) picture. Moreover, 
we get some by-products: 

(i) In the case of isolated closed trajectories, the asymptotic 
expansions for closed trajectories of (a have different form when (4) is 
linear and when (Zoo> is nonlinear (see Section III, A and B). 

(ii) The (usually divergent) asymptotic expansions are understood as 
Taylor series. The reason why there should be no secular terms is given. 
Moreover the procedure described does not need computation of the 
(k + 1)th terms to completely determine the kth terms (Section III, A and B). 

(iii) A simple necessary condition for bifurcation from a continuous 
family of closed trajectories at u,, is given (Section IV), namely, that the d 
functionals 

be linearly dependent on the space of all functions y such that 

Y(t) = OKXO, U,(t)) .Je> 
Y(O) = 2Vo) 

! -To (ai,( y(t)) dt = 0. 
0 
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(iv) A new proof is given of the classical theorem by Weinstein on the 
existence of n distinct closed trajectories near an equi.librium (Section V). 

We rely on a global method developed by Clarke [X4] and Ekeland 
[S, 6, S] to find periodic solutions of Hamiltonian systems. It requires the 
unperturbed Hamiltonian Ho to be convex in both variables (x?p), at least in 
a neighbourhood of the unperturbed orbit under study. 

Section II of this paper benefited from the collaboration of J. Blot [2{, 
whom we thank for his help. 

II. THE ABSTRACT RESULT 

Denote by u = (.x,p) the points in IR’” = R” X R”, and by cr the 
symplectic 2n X 2n matrix 

Note that O* = - (T = 0-l. Equation (.ZJ can be written as follows: 

zi = CJH;,(E, u). (JQ 

Here we denote by H(E, u), instead of H,(u), the Hamiltonian, by HI, and 
Hi the vectors with components c~H/&, and iYH/kkj, by Hia and HL the 
matrices with coefficients a’H/(aUiaUj) and a’H/(aE,aUj), and SO OIL 

Throughout this paper, we shall assume that: 

H:Rd~R’“-+IF is C” (HI) 

3 c > 0: (u, H&(0, u) ZI) > c(z.1, L’) ail ~1 and U. (H2f 

In other words, the unperturbed Hamiltonian H(.O, .) is strictly convex. 
We are interested in local results only, i.e., m what happens near a 

compact trajectory uO, or a compact manifold of trajectories, for small E. 
For any bounded set K, it will follow from (H2) that the perturbed 
Hamiltonian H(E, .) will also be strictly convex over K, for small enough E. 
So there is no loss of generality in strengthening (HZ) to: 

3c > 0: (u, H&(E, u) u) > c(u, u) all E, ZI, and U. (H2)’ 

This second condition obviously implies that for any E E Rd, the map 
u -+ H(E, u) is strictly convex, and has quadratic growth at infinity. It follows 
that, for any o tZ IR’“, there is a single point U(F, V) such that 

(u, u(e, u)) - H(E, U(E, u)) = M,‘” {(u, u) - H(E, u)]. 
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We readily identify ~(6, v) as the solution to the equation H:(E, u) = v. By 
the implicit function theorem, it is a C” function of (6, v), and 
u: = H~,(E, u))‘. Plugging it back into the preceding equation, we get a C” 
function G(c, v) defined by 

WE, v) = “J’” {(v, u) - H(E, u)}. iI> 

Differentiating once, we get 

WE, v> = U(E, v) + [v - H;(E, u)] u;(c, v) 
= U(&, v). 

Differentiating twice, we get 

GL’L,(~, v) = u:(E, v) 

= H[JE, U(&, v)) - ‘. 

We have proved: 

PROPOSITION 1. Formula (1) defines a C” function G(E, v), the 
Legendre transform of H(E, v). It is convex with respect to v. The following 
three conditions are equivalent: 

(a) G(E, v) + H(E, u) = (v, u), 

(b) v = H:(E, ~1, 
(c) u = G;(E, v). 

If they hold at (u, v), we have 

(d) G&(E) v) f-f,:&, u) = I. @ 

Assumption (H2), combined with condition (d), gives 

0 < (G;"(E, v) w, MY) < c-l (I wI(~ (2) 

so that v + G(E, v) also is a convex function. Using the fact that the problem 
of minimizing (~1, u) - G(E, u) in v always has precisely one solution, 
namely, v = H;(E, u), it can be shown that G actually is strictly convex. 

We now use G to construct a problem in the calculus of variations, the 
solutions of which will give us periodic projections of (5). This method is 
due to Clarke and Ekeland (see [5]), following an idea of Clarke (see [3]). It 
can be understood as a dual version of the least action principle. 
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We first define the ad hoc function space E: 

E= ~~EC’(S~;R’“) 1 j-)(s)ds=ol. 

Here S’ = R/Z. Equivalently, E is the space of all C” functions on [0, 11 
such that d%/dtk(0) = d%/dtk( 1) for 0 ,< k < I’ and l: n!(s) ds = 0. 

If 1%’ E E, its primitives are l-periodic. We denote by I-V the one which has 
mean value zero: 

(IIw)(t) = j’ w(t) dt - j’ 
0 0 

( f’ w(t) dt ) ds, 
.- 0 

We will consider n as a compact linear operator of E into itself. Note that 
cT17 is self-adjoint; indeed, integrating by parts, with n)+(l) = nw(0) for all it’ 
in E, yields 

1.l (w, , dh~,) ds - Jo’ (w2 , uZZw,) ds = (IFS,, CJI~WJ; = 0. 
'0 

We then define a function @ on (0, co) X Rd X E by 

(( w, 017w)T/2 - G(E, --cm)) ds, 

PROPOSITION 2. The function @ is C”; we have: 

The proof is left to the reader. We note for future use that if an L” 
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function a, is such that s: @v ds = 0 for all w E E, then s: @,&s = 0 for all 
w E Lz such that J’A tyds = 0, so that 4 must be constant in R’“. It follows 
that @k, and @‘,, can be identified with elements of,??, 

@;,,(T, E, w) = TaIlw - oPG$, -aw) 

@&,,(T, E, w) = aA%, 

@LV with an element of Ed, 

@&(T, E, w) = - aPG,;(e, -a~), 

and @& with a linear operator of E into itself, 

@;‘,(T, E, rv) w, = TaIlw, + PaG’I,,,(&, -UN’) ow,. 

Here P is defined as the projection of C” onto E associated with the 
natural splitting C’ = E @ R*“. In other words, 

(Pw)(s) = w(s) - j,’ w(s) ds. 

PROPOSITION 3. The following statements are equivalent: 

(a) @l,(T, E, MI) = 0, i.e., w is a critical point of @(T, E, .); 
(b) there is some 5 E R2” such that u(t) = Tflw(t/T) + r is a T- 

periodic solution of (&). 

Moreover, we have the relation 

u(t) = G;(E, --ow(tT- ‘), all t 

w(t) = uH;(&, u(sT)), all s. I 

ProoJ The equation @k,(T, E, W) = 0 means that, for some constant 
r’ E R*“, we have 

TolT,v(s) - aG;(e, - w(s)) = c’, all S. 

Using the equivalence (b) o (c) in Proposition 1 transforms this into 

H;(E, TZbv(s) - al’) = -aw(s) 

ml(T) = LTw(0). 

The result follows by setting u(t) = TITw(t/T) - uC’T. 1 

From now on it shall be assumed that some To-periodic solution u,,(t) of 
(4) has been found, corresponding to some solution w,, of @L,(T,,, 0, w) = 0. 
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We wish to investigate the situation around (TO, 0, M!~) by applying the 
inverse function theorem. For this, we need to know more about the 
derivative of @k,: 

PROPOSITION 4. L(T, E, w) is a Fredholm map of index d + 1. 1 

Proof. L has been computed in Proposition 2, and can be written as the 
sum of the map 

L, : (T,, F,, wl) + olTwT, - oPG;;,(e, --ow) E, + Tu17w1 

which is compact, and the map 

We claim that the map L;: MJ, + oPG,‘:.(&, --OJV) (71~~ is an isomorphism of 
E onto itself. Indeed, the equation Li w, = w2 can be written as 

aG;,(e, -w(s)) w,(s) = wz(s) i s’ 

and inverted pointwise: 

with 5 E R Zn 

w,(s) = -UH&(&, u(s))(-uw2(s) - ug, with U(S) = G{.(E, -cJw(s)). 

It follows that ~2’~ is just as smooth as IVY. For IV, to belong to E, all we 
need to do is to adjust 5 in Rd so that 

f’ w&) = i1 OH::(&, u) u1t’2 ds + o 
.o ‘0 

By assumption, H&(e, U(S)) is positive definite for all s, and so is the 
integral i; H:M(~, U(S)) ds. The equation thus determines 5 uniquely, and Li 
turns out to be invertible. 

It follows that L2 has range E and kernel Rd+ I. It thus is Fredholm of 
index d $ I, and so is L. I 

The following proposition implies that L(T,, 0. izjO) cannot be onto. The 
ultimate reason for this lies in the fact that the function Q, is invariant by the 
S’-action which sends k~(t) into ,v(t + O), and this induces degeneracies in 
the derivatives. 

PROPOSITION 5. Assume @&(T, E, w) = 0 with w f 0. Then 14 belmgs to 
E but lies outside the range of L(T, E, w). More precisely, 
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ProoJ: By Proposition 3, if @h,(T, E, w) = 0, then Tflw(t/T) + < is a 
solution of @%a and hence Cm. So w really is C”, with 
w( 1) - W(O) = J”; tidt = 0, and ati belongs to E. 

Computing each term separately, we get 

I ’ 0 

(@&,, ,iJ) ds = ju’ (dhv, 6) ds = - j; (w, aw) ds = 0 

! -I 0 

(@$, G) ds = -jl @G$(F, --(Jw), 4 ds 
0 

= - 1’ d/dt[G;(c, -ow(s))] ds = 0 
-0 

= I ’ (wl, TOW + aG;;@, -a~) 06) ds. 
0 

Now, since @L,(T, E, W) = 0, we have 

TaZi%(s) - aG[,(a, -aw(s)) = constant. 

Differentiating with respect to time, we get 

Tds) + uG,'I,(e, -cm(s)) CC(S) = o, all s. 

Substituting in the above, we get the desired result. m 

More generally, we have the following result: 

PROPOSITION 6. Assume @;,(T,, 0, ~7~) = 0, and denote by u, the 
corresponding solution of (ZO). Let F be a Jirst integral of equation (8). 
Define a function u by 

To u(s) = oF’(u,(sT,)). 

Then v belongs to E, so does ti, and 

1 I (rP& T, + CJ;,,, w , , ti) ds = 0 all (T,, kc’,) E R x E. 
0 

ProoJ: Denote by #B the flow associated with the differential equation 
u = o’:(u). It is certainly well defined in some neighbourhood of the 
compact curve u,(t), provided 0 E R is small enough. Since it is 
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Hamiltonian, it will preserve the integral of the I-form (au, du) along closed 
curves: 

ir” + (o$,u,(t), i dB u&t)) dt = constant. 
-0 

(7 

Moreover, since F is a first integral of (X0), the Hamiltonian flows 
associated with H, and F commute, which implies $,u,(t) is still a To- 
periodic solution of (Ro). Proposition 3 associates with Qello a function 
IV, E E, 

which satisfies the equation 

Differentiating with respect to 0 at 8 = 0, we get 

Computing this derivative from Eq. (**), we get 

So we get 

To get the remaining equation, we differentiate Eq. (*) with respect to 8 at 
e = 0. We get 

0 = L .=I3 j 2 0 [ (--F:(~o)~ WLO, 4) + (m,(f), g w, (i) ) ] dt. 

505.:50!3-8 
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The first term is the Poisson bracket of F and H,, which is zero since F is 
a first integral of (4). The second term, with 3/L@ 1~~ = ti, gives 

0 = + (l” (cm,(t), ti(t/T,)) dt 
-0 

= To/2 1’ (ou,(sT,), i(s)) ds 
0 

=7j ! o1 (uL!wo(s), C(s)) ds 
1 

= + *’ (CD&,(S), C(s)) ds. 
J 

I 
0 

Note that ti may still be in the range of L(T,, 0, w,) because we are 
missing the last d equations @l:+,ti = 0. 

For the sake of completeness, let us give a few more relations, valid when 
F is still a first integral of (6) for small a. 

PROPOSITION 6 bis. Assume that F is aJirst integral of (4) for small E. 
We then have 

(aF’ o G;,(E, v), v) = 0 all vER2” 

(OF’ 0 G,‘I,(O, a), v) = 0 all v E IFi’“. 

ProoJ: The Poisson bracket of F with H has to vanish: 

(OF’(U), H;(E, u)) = 0 all uER’“. 

Setting t.1 = H~,(E, u), we get u = G~(E, v), and the first equation. The 
second follows by differentiation in a. 1 

We can try another way to estimate the codimension of L(T,, 0, IV,), by 
relating @i,,, to the linearized equation of (4) around uo. This is done in the 
following: 

PROPOSITION 7. The following statements are equivalent: 

(a) Q&,(7’,, 0, wo) w = T,alIw + PuG&(O, -awe) uw = 0, 

(b) there is some e E I?*” such that y(t) = TolTw(t/To) + < is a To- 
periodic solution of the linearized equations 

i, = oH::(O, u,(t)) y. 
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Proof. Follows immediately from Proposition 3? which we apply to the 
quadratic, time-dependent Hamiltonian 

H(t, 24) = gH:‘,(o. u,(t)) u, u) 

with Legendre transform 

G(t, tl) = f(G,",(O, -mv(rT; ')) ~1, L.). 

The linearized equations can be written as the (non-autonomous) 
Hamiltonian system ti = afll(t, u), and To-periodic solutions correspond to 
critical points of the quadratic functional: 

qw) = 1’ (To/2 ( w, dh) - &To 3 -cm!)) ds. 
‘0 

The proof of Proposition 3 carries over to the non-autonomous case. and 
shows the equation &‘I, = 0 to be equivalent to conditions (a) or (b). 1 

As we have seen when proving Proposition 4, the map 
12’ + oPG,‘:(e, -0~)) IV, denoted by L;, is an isomorphism of E onto itself. The 
map @i,,.(T,, 0, wo) = L; + aron is a compact perturbation of L;, and so is 
Fredholm of index zero. We have 

I= codim ub,:‘,,,( To, 0, wo) E = dim Ker @:,‘,,,(To. 0, wo). 

By Proposition 7,l is the number of linearly independent To-periodic 
solutions of the linearized equations 

.i, = aH&(O, u,(t)) ?‘. 

We know that 4’ = ti, is such a solution, so I> 1. 

Floquet theory tells us that 1< m, where m is the multiplicity of zero 
(mod 27ci) as a characteristic exponent along the closed trajectory uO. This 
multiplicity is at least two, one because the system (&J is autonomous and 
one because it has Ho as a first integral. It must be an even number, because 
the system is Hamiltonian: 

l<l<m with m even 22. 

Any further integral of the motion raises m by one, provided it is 
independent from the preceding ones along uo. For instance, if 
H,(u) = $(x: +pi) + w/2(?c~ + pi), with n = 2 and w irrational, there are 
two integrals of the motion: (xi +p:) and (x: +p$ and one expects m > 3, 
so m = 4. A closer look, however, shows that all closed trajectories lie in the 



418 LEKELAND 

plane xf +p: = 0, or in the plane xf +p: = 0, so one of the integrals always 
degenerates along uO, and m = 2. 

Let y, = ti,, yI ,..., y be independent solutions of the linearized problem 

$ = ufqu(O, u,(t)) “v, Y(O) = YP-0). 

Set zi(s) = T,,jl@‘,,) for 1 < i < 1. By Proposition 7, the zi are a basis of 
Ker @;,,,(,(T,, 0, IV,,). Denote by V the linear subspace of E given by 

By Proposition 5, we have z1 = bG, E V, so that 

1 <dim V<Z. 

By standard Sturm-Liouville theory, L’ belongs to the range of 
@$,,,(T,, 0, ~1~) in E if and only if ji (MT, HJ) ds = 0 for all MJ E Ker @&. By 
Proposition 2, the range of L(T,, 0, wo) is generated by 

u17wo ) oPG,‘I,@, -uw,,), @,L:IT,, 30, wo) E. 

The range of LfT,, 0, wo) is related to V by 

We now state our main result: 

THEOREM 8. There is some neighbourhood 2Y of (To, 0, wo) in 
(0, a~) x IRd x E such that the set S (7 2%’ defined by 

S = {(T, E, w) j @:,,(T, E, w) E V} 

is a (dim V+ d + I)-dimensional C” submanifold of (0, 03) x IRd x E. 

ProoJ: Denote by R(L) and Ker(L) the range and the kernel of 
L(To,O,wo). Write (O,co)~F?~xE=Ker(L)@E,,and E=R(L)@V. 
Denote by pr,: (0, oo) X IRd x E--t Ker (L) and pr,: E + R(L) the 
corresponding projection. Consider the map 

ly:(O,co)~IR~xE-tR(L)xKer(L) 

Y(T, E, w) = (pr, %(T, E, w>, pr,(T, E, w)). 
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By construction, u/‘(T,, 0, wO) is invertible, so that the inverse function 
theorem applies around this point. The set S is just Y-‘({O} X Ker(L)); by 
the inverse function theorem, S f~ SP must be a submanifold modelled on 
Ker(L), which has dimension Index(L) + Codim R(L) = 1 + d + dim V. 1 

There are now two cases to consider: dim I/ = 1 and dim V > 1. 

III. ASYMPTOTIC EXPANSIONS 

1 dim V= 11 This will always be the case when I= 1. It will also be the 

case when I= 2, provided 

or 

oPG&(O, -aw,) & CD&,( T,, , 0, wo) E. 

More generally, we will have dim I’= 1 when I< d f 2 and the 
oPG~~,,#~, --cJ~v& 1 < i < d, uIIJv~, ti,, and @i,,.(T,, 0, w,,) E span the space 
E. 

We then have a considerable simplification: 

PROPOSITION 9. If dim V = 1, there is some neighbourhood S’ CJJ‘ 
(7’,, 0. NJ,,) in (0, 00) x Rd x E inside which 

@&(T, E, w) E Va @;,(T, E. 11’) := 0. 

Proof. V is spanned by z, = IL,. The equation @:,, E V means that, for 
some (A, 5) E iFi”+‘, 

TuIIw(t) - uG;,(e, -aw(t)) = /lag, + 5’, 

Multiply both sides by li, and integrate. We get 

all t. 

The first term on the left we integrate by parts, and get zero. In the second 
term we recognize the time derivative of G(E, -on(t)), which integrates away 
to zero. Finally, we get 
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If w is close to w,, in C’, r > 0, the integral is strictly positive, and hence II 
must be zero. I 

Let us apply Proposition 9 to the study of simple closed trajectories. We 
say that the chosen periodic orbit U, is simple if m = 2, i.e., the characteristic 
exponent 0 has the lowest possible multiplicity along u,. Since 1 ,< I < m, 
either I = 1 or I = 2. The latter occurs when the unperturbed system is linear 
and non-resonant; by this we mean that H,(U) = CF=‘=, o,/~(..Y~ +pf), with 
oi 6G Zo, for i # J, and u,,(t) is 2nm;‘-periodic, and so lies in the plane 
xi =pi = 0 all if 1. The case I= 1 occurs when the unperturbed system 
(&) is nonlinear. We treat both cases separately. 

A. CaseI= 

PROPOSITION 10. Assume that I = 2 and that: 

(a) Jp u,(t) exp(2intT;‘) dt # 0 in c2n, 

(b) j-2 (Go, acio) dt # 0, 
(c) 3y2 : jz = aHfu(O, uo) y, and .I",'0 (H:(O, u,,), yz) dt # 0. 

Then there are positive numbers a and /3, a neighbourhood F.P of 0 in lRd, a 
tubular neighbourhood F of the path u0 in I?‘*, and C” maps 
LT: S’ X F? X (h, - a, h, + a) -+ Rzn and 8: P x (h, - a, h, + a) + R such 
that 

O(O,..., 0, h,) = T,, 

U(tT,-‘, 0 ,..., 0, h,) = u,,(c) 

and for any E E P and h with (h - h, 1 < u, the curve 

U(tT- I, E 1 t..., &d, h) = u(t) 

with T = B(el ,..., E.~, h) is a T-periodic trajectory of the Hamiltonian system 
(Rc) with energy level h: 

zi(t) = aH;(c, u(t)) 

u(O) = u(T) 

H(&, u(t)) = h, all t. 

Conversely, whenever u is a T-periodic solution of (5) with energy level h, 
provided E E 9, ) T - ‘T, 1 < /I, ) h - h, 1 < a, &h p(t) E 7” for all t, then some 
4 E R can be found such that 

T = B(E, ,..., cd, h) 

u(t) = U(tT-’ + #, E, ,..., cd, h). 
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Proclf. It is known that @ ,,,,” \ 0, , ” (T 0 VJ~) is a Fredholm map of index zero. 
Split E into Ker(@&) @ Q&,.(E); then @p,:‘,,. is an isomorphism of @z,,,(E) 
onto itself. 

@i,v(E) has codimension I= 2. Condition (b) means that there is some 
w E Ker @G,,,, namely, M’ = \v,, , such that 

(.’ (a17wo, IV) ds = [’ I /To (c~u,(sT,). &(sT,)) ds i 0. 
.’ 0 ‘0 

It follows that V is one-dimensional and spanned by z, = G,. 
On the other hand, by the Fredholm theory, we have aL!w, & Q:,‘,,,(E). It 

follows that the map 

of IF? x Q&,(E) into a supplementary subspace of V must be an isomorphism. 
By the implicit function theorem, the equation 

determines T and the components of u’ in @i,.(E) in terms of the remaining 
variables. These are (E, ,..., cd) and the components (5, t]) of IV in 
IVY + Ker(@;!,,,). By this we mean 

where z, = ri, and z2 are independent solutions of fEj;,,,z = 0. 
By Proposition 9, this means that the equation @iv(T> E, w) = 0 can be 

solved as follows in a neighbourhood of (To, 0. wo): 

T = T(E, ,..., cd. 5, ye) E R 

w = W(E, ,..., cd, 5, rl) E E. 

We now replace 5 and q by more convenient variables h and $I. We first 
define 

h(~, w) = i“ H(E, G;.(E, -m(s))) ds. 
-0 

When @L,(T, E, 1%~) = 0, h(w) is the energy level of the solution of (.<) 
associated with rr. We have 

[’ (f&(0, wo), IV) dt = [’ (aG,i’JO, -owe) H;(O, u,), MI) dt. 
-0 0 
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For any s E S’, set wS(t) = W(S + t). If @i,,(T, E, w) = 0, we have 
@:(T, E, NJ’) = 0 also. We thus have an S’-action which leaves our equations 
invariant, and we wish to find a coordinate system adapted to this group- 
invariance. 

To do so, we use assumption (a). Say the first component of 
.,‘h wO(s) exp(2ins) ds is non-zero. For w near IVY in E, the complex number 

1 (i 

.I 

wO(s) exp(2ins) ds w(s) exp(-2izs) ds 
1 -0 1 

has a well-defined argument 4(w), called the phase of IV with respect to 1~~. It 
will be checked that $(w”) = 4(w) + 271s. 

I now claim that we can use (F , ,...) cd, h, 4) as a local coordinate system 
for Rd X {I.v~ -t Ker(@,“,J} near (0, wo). Computing the jacobian at this point 
gives 

But zi = ti’, , so that 

(h’(O, YJ, zI> = 0 

(#‘(wo), 2,) = d/ds #(IV’) = d/ds($(w) + 271s) = 27r. 

So the jacobian is -2n(h’(O, wo), zJ, which does not vanish by 
assumption (c). 

The equations now become 

T= B(E , v..., Ed, h, 4) 

w = w(el ,..., cd, h, 4). 

Using Proposition 3 to translate in terms of u and u. the results and the 
assumptions we have just stated in terms of u’ and #lo, we get the desired 
result. I 

We can also consider U as a Cio map from Rd x R into the space 
C’(S’; R’“). It will then have a (possibly divergent) Taylor expansion, the 
coefficients of which are periodic functions of time. We thus have a 
theoretical basis for the Lindstedt-Poincarl expansions: 
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T=x $1 . . . EPdd v - hoJQ b:,...&.Q 

U(t)=~&~~-.* &Pdd ch - hO)Q uP ,,.... Pd.Q(rT-') 

u P ,,..., P,,Q@) = ‘P,..... P,.& + I) all s. 

The last condition (periodicity in s) means that there are no “secuiar,” i.e., 
non-periodic, terms in the expansion for u(t). Set U(s) = u(sT). The coef- 

ficients @P ,,.“, P&Q and the functions UP,,,,..Pd,g can be computed by 
substitution into the defining equations 

. o(s)= TH:(e, U(s)) 

I 

.I 
Hjs, U(s)) ds = h 

-0 

and formal identification. Indeed, we have just seen that they define U as a 
smooth function of (E, h, 4) with values in C” (S’: R2”) (recall that u(t) IS 
really C” by bootstrapping), so that they must determine its Taylor 
expansion. The parameter 4 is the phase, and its determination is a matter of 
convention; one more condition, added to the defining equations, will fix the 
phase and completely determine the asymptotic expansion. 

As an example, let us figure out 8,, , 0,, and U,, , Uo5, taking d = 1 for 
simplicity. Differentiating the defining equations at F = 0, h = ho, gives 

z o= -$-o&(0, U,) + T,oH:',(O, U,) + T,aH::,(O, Uo)g (1) 

0 = l, (H;(O. U,) + (H:(O, U,), g) ) ds 

We have 

a’ e f3T 
-= 
ae ‘O 

and 6 ah= 01 

3U 3U 
-=u 
ae I0 

and 
ah= uo,. 
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Hence two linear, non-homogeneous differential equations for U,,(s) and 
U,,(s): 

Here U,, and U,, have to be l-periodic functions. The operator 
[a d/ds + T,H&(O, U,,)] with these boundary conditions is self-adjoin& and 
its inverse is Fredholm of index zero. The assumption I = 2? together with 
Proposition 7, means that its kernel is two-dimensional. By assumption (c) of 
Proposition 10, the vector HL(O, U,) is not orthogonal to the kernel of this 
operator, and so cannot belong to its range. Equation (6) then yields 

e,, =o 
Uo,(s> = bJl(m + vru2W) 

where ~7~ = ti, and y2 are linearly independent solutions of the linearized 
equations Jj = aH&(O, uO) 4’. 

Similarly, Eq. (5) determines 8,, by the condition that the right-hand side 
should be orthogonal to the kernel of the operator, 

and U,, is thus determined up to two constants <’ and q’: 

U,,(s) = U,,(s) + <‘J’l(ST) + I?‘Y?(SO. 

Relations (3) and (4) now give 

- j’ 
0 

VW4 uo> t QUO, uo>, old> dS = II’ j1 (H;(O, Uo),y2(sT)) ds 
0 

1 = q 
I 

’ (H;(O, U,),J~~(S~‘)) ds. 
0 

This determines v and q’. As for r and r’, they can be chosen arbitrarily, 
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different choices leading to phase differences in the reference solution U(sj. 
We can for instance, take 

5=o and <‘=O 

and the first-order terms BO,, 6,,, U,,(s), U,,(S) are now fully determined. 
Note that higher-order approximations have not been used in computing 

the first-order terms; the calculations can be carried out fuliy within the firsr- 
order terms. 

B. Case i = 1 

PROPOSITION 11. Assume that I= 1 and that 

ir” u,(t) exp(2int/ir,) dt f 0 
.o 

in Kzn. 

Then there is a positive number /I, a neighbourhood %’ of 0 in ip”: a 
tubular neighbourhood 7’ of the path u. in IF?“‘, and a C” map 

U:S’x~x(T,-~.T,+/3)+~~” 

such that 

U(tT, ’ , O,..., 0: To) = uO(tj 

and for any (E, ,..., cd) E %’ and T such that j T - To ( < p, the curve 

U(tT-‘, E, ,..., cd, T) = u(t) 

is a T-periodic trajectory of the Hamiltonian system 

C(t) = aH;(&, u(t)). (3q.j 

Conversely, whenever u is a T-periodic solution of (Xc)) with 
E E %‘, ( T - To 1 < p, atzd u(t) remaining in 7” for all t, theu some p E R can 
be found such that 

u(t) = U(tT-’ + 4, E, ,~... cd, T), 

The proof is similar to that of Corollary 1, with obvious modifications. 
The range of @$JT,, 0, wo) now has codimension one, and is by itself a 
supplementary subspace to V. The remaining variables now are (cl ,.l., Ed), F 
and the one component of tt’ in Ker(@{,), namely, 5, which we interpret as 
before. 

Here again, we may regard lJ as a C” map from Rd x R into the space 
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C’(S’; R2n) and write its (possibly divergent) Taylor expansion at (0, T,,). 
We thus get the asymptotic expansion: 

u(t) = 2 &;I . . . @CT- w UP I,..., Pd.&T-‘) 

u P ,,..., Pd.&) = UP ,,“., P,,& + 113 all s. 

The last condition expresses the absence of secular terms. Setting 
U(s) = u(U), the functions UP ,,,.., Pd,Q can be computed by substitution into 
the defining equations 

O(s) = TcJfq(&, U(s)) 

and formal identification. 
As an example, let us figure out U,, and U,,, , taking d = 1 for simplicity. 

Differentiating the defining equations at E = 0, T = To gives 

P 
; U= T,,oH;'(O, U,)+ T,,oH;;,(O, Uo)g 

$ U= CJH;(E, U,) + T,aH&(O, U,,) -$ 

We rewrite this as 

[ 
CT $ + T,H,‘:(O, U,,) 

I 
U,, = -T,H:‘,(O, U,) 

~7% + T,H::(O, U,) 1 U,, = -H;(O, U,,). 

We know that the kernel of the self-adjoint 

(1) 

(2) 

(1) 

(2) 

operator 
[o d/ds + T,&f::(O, u,)] on l-periodic functions is one-dimensional and 
spanned by U,, which is orthogonal to the right-hand sides of Eqs. (1) and 
(2). So we can solve them up to a constant: 

The constants r and {’ can be chosen freely, different choices 
corresponding to phase differences in U. Taking c = <’ = 0, for instance, 
fully determines U,, and U,,. 
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C. General Case 

Let us first win some intuition about the two preceding cases by looking at 
the simple situation where d = 0: the system (Xi) is not perturbed at all. 

Propositions 10 (if I= 2) and 11 (if 2 = 1) both assert that the closed orbit 
U, will belong to a one-parameter family of closed orbits. But there are 
essential differences. 

When ! = 2, the period and the orbit are functions of the energy level h, 
and X/Z/z (A,) = 0. This is typical of linear systems, which feature vector 
spaces of closed trajectories with the same period. 

When I = 1, the orbit is given directly as a function of the period. This is 
typical of nonlinear systems, which can vibrate with any frequency, the 
frequency of the vibration then being related to its amplitude. 

In the case when I > 2, with d > 0 again, we may still have dim V= 1 if 
the @,& = --oPG,‘:i(O, -awj) make up for the increase in the codimension of 
@ i,.. So Propositions 8 and 9 will still apply, but Propositions 10 and 11 
will not. 

In order words, if the perturbations are significant enough, there will still 
be in iF” X iF X C’(S’; R’“) a (d + 2)dimensional family of periodic 
solutions, but it will not be possible to take (8) ,..., Ed) as independent 
variables. 

IV. BIFURCATION 

(dim V> 11 This is sure to happen when the multiplicity of zero as a 

characteristic exponent along z10 is I> 3 and the number of parameters is 
d<l-3. 

In contrast to the preceding situation, we cannot assert that the points of 
the (dim V + 1 + d)-dimensional manifold defined by the equations 
@;,,(r, E, w) E V all correspond to periodic solutions. What we have done is 
to reduce the problem to a finite-dimensional one: 

PROPOSITION 12. Assume JXo u,(t) exp(2i7rtr; ‘) dt # 0. Then 

zi = OHig(&, u), u(0) = u(T) (.i;“,i 

with (T, E, u(sT)) near (T,,, 0, u,,(sT,)) in R X Rd X C’(S’; R*“) reduces to a 
system of (dim V- 1) equations in (dim V + d) unknows near a singular 
point. 
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Proof: By Proposition 3, problem (4) is equivalent to the equation 
@L,(T, e, w) = 0. Let z1 = Go, z2 ,..., zk generate V, so that k = dim V. The 
equation @k, = 0 then can be split in two parts: 

@$(T, E, w)=A,zl + a.* +&z, 

/$ zz . . . =&=O. 

The first part has been studied in Proposition 8, and we have shown that it 
defines near (T,, 0, ,vO) a manifold of dimension (k + d + l), which means 
that T, E, and w can be expressed in terms of (k + d + 1) independent 
variables. One of these is the phase, and can be eliminated as we saw in 
Proposition 10, so that we are left with (k + d) significant variables. 

Finally, we multiply both sides of the equation by ti and we integrate, as 
in Proposition 9. We get 

O=A, 
! 
p’(CJ,z,)ds+ ... +L,li (G,z,)ds. 
0 

Note that zr = tiO, so that the first coefficient ji (Gil) Go) ds will not vanish 
for RJ close to ti, in C’, r > 1. It follows that the (k - 1) equations 

A* = . . . =A,=0 

will imply the last one 1, = 0. We have reduced the problem to (k - 1) 
equations in (d + k) unknowns (r , ,..., &+J. Since the range of L(T, , 0, wo) 
intersects V at 0 only, all the aAi/Xj must vanish at wo. m 

One must be careful in interpreting this result. Situations where dim I’ > 1 
will usually arise when there are many integrals of the motion (d + 1 or 
more when (Zo) is nonlinear, d or more when (X00> is linear). But this is 
precisely the situation when the periodic solutions to (X0) come in families 
depending on two or more parameters, so that the condition dim V> 1 will 
hold for every trajectory of this family, and it is hard to see how every such 
trajectory could be somehow “singular,” as Proposition 12 seems to suggest. 
So a closer look is required. 

PROPOSITION 13. Assume u, belongs to an l-dimensional family of 
periodic solutions for (4). In other words, there is a neighbourhood % of the 
origin in R’ and smooth maps U: % -+ C'(S', R*“) and 8: FY --f R such that 

U(O) = u, 3 e(0) = To 

U’(0) has rank 1 
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Denote by Y the space of solutions to the linearized equations 
y = oH[JO, u,,(t))y, y(0) =)j(T,,). Assume that 

(a) Y,, = (y E Y[jp (o&,y) dt = 0} has dimension I- 1, 
(b) the linear functionals y + J,‘o (c&&(0, -ou& y) dt are independent 

on Y,. 

Then there is a neighbourhood ,k^ of the origin in Rd. a tubular 
neighbourhood 7” of u, in R”‘, and some ,l3 > 0 such that, for E E ,.,I “. 
IT-T,1 <p and e#O, theproblem 

has no solution inside ye. 1 

Let us explain this result before we prove it. What it says is that if a 
trajectory belongs to an l-dimensional family of closed trajectories for the 
unperturbed system (RO), with Z> d + 2, it will in general not give rise to a 
periodic solution of the perturbed system (4. ’ This phenomenon we 
already mentioned in the introduction. 

Note that we count the phase as one parameter so that u,(t) belongs to the 
one-dimensional family u,(t + #), 4 E lR/T,Z. It is a well-known fact (found, 
for instance, in [Ill) that in a continuous family of closed trajectories, as 

described in Proposition 13, the period T= c9(<) depends only on the energy 
level h = H(0, U(& t)). In other words, two trajectories of this family with 
the same energy have the same period. 

We will now give two important cases when condition (a) of Proposition 
13 is met. 

LEMMA 14. Assume the equations (RO) are linear: 

H(0: u) = +(Au, u) with A = A * positive deJnite 

and let 1 be the number of linearly independent To-periodic solutions of (PO). 
Then u0 belongs to an l-dimensional family of periodic solutions of (SF& ad 
condition (a) holds. 

I Note that there are d linear functionals which are supposed to be independent on a space 
of dimension I - 1. 
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ProoJ: Since the equations are linear, (ZO) coincides with the linearized 
problem: 

2.i = OAU, u(0) = u(T,). 

So Y has dimension 1. Moreover U, E Y, so that 

1 
TO 

0 
(ozio,uo)dt= oTo(-Auo,uo)dtio. 

I 

It follows that oti, is not orthogonal to Y, and 

dimY,=dimY-l=f--1. 1 

The second case we will deal with is the case when the equations are 
genuinely non-linear, but completely integrable. Recall (from [I], for 
instance) that this means that the energy levels are compact, and that there 
are n first integrals F,(u) =H(O, u), P,(u),...,F,~(u). The phase space IFi’” 
then is partitioned into n-dimensional invariant tori, on which the motion is 
quasi-periodic. 

To be more precise, there are new variables (I, ,..., 1,) E IR” and 
(#,,..., $,) E (S’)” such that the equations for the motion become 

ii = 0, ii = wi(l, 3.**7 rp,)Y l,<i<n. 

For a To-periodic trajectory u. to exist on the torus defined by 
I, = I!,..., 1, = I:, in short I = I’, all the ~~(1’) must be multiples of T 0’ . 

LEMMA 15. Assume the system (Ro) is completely integrable, all the 
w,(IO) are multiples of T;‘, and the matrix ((&oi/Xj(Io))) has rank n. Then 
u, belongs to an (n + I)-dimensional family ofperiodic solutions to (4) and 
condition (a) holds with I = n + 1. 

Prooj Say wi(Io) = ki T; ’ for 1 < i < n, the ki being appropriate 
integers. Let L be the straight line in IR” spanned by the vector (k, ,..., k,l). 
By the inverse function theorem, the map o(l) = (ml(I),..., ~~(1)) is locally 
invertible near I,. Since ~(1~) E L, there is a neighbourhood w of I, in [R” 
such that Z/n o.-‘(L) is a one-dimensional submanifold. 

Let s be a local coordinate on CC’(L) near I,. We have 

o,(Z(s))/k, = constant for 1 < i < n. 

Call this constant T(s)-‘. The equation of motion on the torus defined by 
1=1(s) E R” are 

ii = 0, q$ = w,(l(s)) = ki T(s) - ’ 

so that all solutions are T(s)-periodic. 
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We have found a l-parameter family of tori, each of these being 
partitioned into an n-parameter family of periodic solutions. The result is 
indeed an (n + l)-dimensional family of closed trajectories. 

Now for condition (a). We first write the linearized equations near uO: 

where 6di(t) belongs to the tangent space to S’ at pi(t), which is IF?, So we 
have here a system of ordinary differential equations in R”, which has the 
obvious periodic solutions &Jr) = 0, 2@,(t) = ci, and none other under our 
nondegeneracy assumption. Hence 

dim Y = 11. 

I now claim that 

so that Y = Y, and dim Y, = dim Y = n = I - 1, as announced. 
This is easily checked. It is clear from the above that y(t) belongs at any 

time t to the tangent space to the invariant torus at z+(t), which is spanned 
by the vectors crIi(~~(t)). We then have 

(~4(t)~ v(t)) = (otio(t), 5 ~julf(zlo(t))) 
i=l 

= 5 <i(Zio(t), Zf(U,(t))) 
i=l 

= + 5.5&t,(t)) 
Lc, ’ dt 

which vanishes because the Ii are first integrals. 1 

We now can proceed to the: 

Proof of Proposition 13. By Proposition 8, there is some neighbourhood 
?V- of (To, 0,)~~) in R X R d X E such that the set S n 5VC defined by 

s = ((T, E, w) 1 @;,.(r? E, w) E V} 

is a (dim Y + d + 1)-dimensional submanifold. 
By the definition of V and Proposition 7, we have: z E Y if and only if 
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z(s) = T,&T,), with y E Y, and j,‘I) (LTG$(O, -a&), 3) dt = 0 in Rd. Since 
there are no constant functions in V, we get from (a) and (b) 

dim V=dim Y,--d 

=I-l-d. 

So S f? ZV has dimension 1. 
On the other hand, S must contain the set of solutions of @:,,(T, E, W) = 0. 

But we have assumed that u0 belongs to an l-dimensional family of periodic 
solutions for (4). Going back to what we mean by this, we see that the 
maps U and B satisfy 

q,(e(o 0, e(r) - l&3) = 0, all 5 E 2c. 

Since U’(0) has rank Z, the image of 22 by the map 
r --f (w), 0, e(c) - 1 ricm is an Z-dimensional submanifold of R X IF?” X E 
which is contained in S fI %E Since the latter also is an I-dimensional 
submanifold, they must coincide in a neighbourhood of (T,, 0, w,). In other 
words, there is no solution to @:,,(T, 0, w) = 0 except those which belong to 
the /-parameter family we started with. 1 

Let us say that u, is a bificrcating trajectory if there are sequences E, --t 0 
(with E, # 0 for all n), T,, -+ T,, and U,, ---) U, in C’(S’; R”‘) such that 

i,, = T, aff:(q,, u,J, 

Proposition 13 may be put as follows: 

all n. 

COROLLARY 16. Assume u0 belongs to an l-dimensional family of 
periodic solutions for (&) satisfying condition (a). If u0 is a bl$urcating 
trajectorll, then the functionals 

“TO 
Y -+ j, (G-30, -oti,), 9) dt 

are linearly dependent on Y,. 1 

For the sake of simplicity, let us confine ourselves to the case when d = 1, 
so the necessary condition for a bifurcating trajectory becomes 

(cl fT (aGi;(O, -uti,), J;) dt = 0, all y E Y,. 
JO 

Now the bifurcating trajectory u. has to be sought in an I-dimensional 
family of periodic solutions. On the other hand, dim Y, = I - 1, so U, has to 
satisfy a system of I- 1 equations. The first of these equations, 
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corresponding to y = y1 = I&,, is identically zero, so we are left with I- 2 
equations only. Under appropriate transversality conditions, we see that the 
set of bifurcating trajectories will be a two-dimensional subfamily of the 
original I-dimensional family (phase accounts for one dimension). 

We will now show that, if a transversality condition is satisfied, condition 
(c) is also sufficient for u0 to be a bifurcating trajectory. 

We know u,, belongs to an I-dimensional family of periodic solutions to 
(&). As in Proposition 13, we use < = (<, ,.*., <,) E %’ as a local coordinate 
system for this family near (T,, u,), with T= 19(t) and u(t) = U(<, tT-‘j. 
From now on, we will assume the last coordinate & is the phase, so that 

T = Ott, :..., t,- r>, which we denote by TC 

U(f) = Lye, ,..., t,-,, it-t t-r) T-*1, denoted by u,(r). 

Assume condition (.a) is satisfied at z+,? together with condition (c)~ We 
then have 

so that dim V = I - 1. Let ~2, = ti,. J’~ ,..., I’!-, span YO. 
By Proposition 12, solving the equation 

i-1 

@;,,(T, E, w) = -L- Fjtj with Z,;(S) = T,,?)(sT,) (8, 
j=I 

will give the Fj, 1 <j < E-- 1, as smooth functions of (I + 1) unknowns 
which can be chosen to be (r,,..., 5,) and a new variable c. After the phase c;‘, 
has been eliminated as a meaningful variable, we are left with (i - 2) 
equations in the 1 independent variables (c, ,..., <,-, . if: 

(the equation F, = 0 being a consequence of the others), with the set of 
trivial solutions 

Fj(t, y...y 5,-1,0)=0, all <E %’ and j 

and the degeneracy conditions 

2FjlaQO ,..., 0,O) = 0, 2<j<I- 1. 

PROPOSITION 17. Assume u0 belongs to an l-dimensional family of 
periodic solutions to (&j, and satisfies conditions (a) and (c), with d = I. 
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Assume that 

the matrix 
(i ‘g (0, Of)) has rank (I - 2). 

I 

Then u0 belongs to a three-dimensional family of closed trajecfories which 
intersects the original l-dimensional family along a two-dimensional family of 
bifurcating trajectories (phase included in the dimension count). 

ProoJ We follow the pattern of Crandall and Rabinowitz (see [7], for 
instance). Set F = (F; ,..., F,-,) and define w(ci ,..., Tr- L, i) by 

=/X(L 0) if [=O 

5- ‘F(5,5) if 5 f 0. 

For [# 0, taking into account the fact that #/a[(O, 0) = 0, we can also 
write v/(tl ,..., tl- I, C) as 

The remainder R(<, <) satisfies R(0, 0) = R;(O, 0) = 0 and R/;(O, 0) = 0. It 
follows that 

Y:(o,o)=g(o,o): n?-‘-b R’-1. 

This is onto by assumption. But then one of the (I - 2) x (I - 2) matrices 
obtained from a’F/(L@[)(O, 0) by deleting one column must be invertible. 
Say, for instance, the following is: 

Then, by the implicit function theorem, the equation 
WCC i ,... , <I--2, &- i, 5) = 0 can be uniquely solved near (0 ,..., 0) with. tr-, and 
[ as independent variables, (ri ,..., rlm2) being smooth functions of <,-i and c. 
But w(& 5) = 0 means that c# 0 (unless r= 0 also) and F(& [) = 0. The 
result follows. I 

For practical purposes, it is best to choose E as the new variable. The 
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variables (5, ,..., {,) describe the I-dimensional family u,, belongs to. The 
functions Fj(<, )..., 5, E) are found by solving the equation 

1-I 
@p:,,(T, E, w) = r Fjzj. (F) 

j=l 

Arguing as in Proposition 3? we transform this successively into 

I-1 

H&(E, TZIw - (SC - CJ 1 Fjzj) = -cm’. 
j=l 

Calling U(S) the second argument of H;, and replacing zj(s) by T,ii(sT,), 
we finally get 

ri(s) = TaH;(c, U(s)) - o c T; Fjjj(sT,,) 
j=l 

U(0) = U( 1). 
(a) 

Here or = ti, and we do not need to compute F,. 
If we are in the non-degeneracy situation of Proposition 17, we will be 

able to compute the Taylor expansion for the non-trivial branch in terms of 
(~5,, a). We thus get an asymptotic expansion of the type 

u(t) = Z?(cf, - ~~)“U,~,(tT-‘) 

‘P, Qb) = b,Qb + ‘>* 

Setting E = 0 and 5 = c$, we get T = T,, and u(t) = u,(t). Any solution 
close to (T,,, u,,) will be written (T, u(t + $)), where T and u(t) are given 
above. 

Finally, note that the method will require the computation of 
G$(O: -oziO(r)). This can be done by differentiating with respect to E the 
identity 

G;:,(O, ff#, u)) + G,",(O, ff:(O, u)) H&(0, u) = 0. 

But, by differentiating the same equation with respect to U. we get 
H:JO, U) GJU(O, H:,(O, u)) = I, and hence 

G;;,(O, H;(O, u)) = -H;JO, u) H&(0, u). 
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So, using the equation ti, = a&(0, ~4~): 

G,‘:(O, -azi&)) = -H;u(O, u,,(t)) - ‘H,‘:(O, q,(t)). 

The necessary condition for bifurcation now reads (remembering that 
i, = H~u(O, u,(t)) y): the 

are linearly dependent on Y,. 
To illustrate the relevance of these results, we might mention 

synchronization theory. Let d = n + 1, and 

H(“, Ey U) = i f rxf + (l + Of) pf] + Eh(Xp p). 
i=l 

The perturbation parameters are (w, ,..., w,, E) and the unperturbed system 
is just n uncoupled linear oscillators with the same frequency: 

n 

H(0, 0, u) = c 4 [xf + Pf 1. i=l 
If u0 is a bifurcating trajectory, there will exist near u,, closed trajectories 

of the perturbed system with period close to 27t. The physical meaning of this 
is that the non-linear coupling &h(x,p) succeeds in synchronizing the n 
oscillators, which would by themselves by out of tune with each other, their 
natural pulsations (1 + wi), 1 ,< i < n, being distinct. 

To reduce this to the case d = 1, it is usually done by writing OJ~ = kiE, the 
coefftcients k, ,..., k, being fixed. The equations then become 

H(E,u)= 5 ;[x;+(l+kiE)p;]+ch(x,p) 
i=I 

and we are in the setting of Proposition 17. 
Unfortunately, it will happen in some cases that all closed trajectories in 

the given To-periodic family satisfy condition (c), which becomes useless to 
find bifurcating trajectories. This happens, for instance, when ki = 0 all i and 
h(x,p) is a homogeneous polynomial of degree 3. To treat these cases, more 
refined methods are required. They will be described in the next section. 

V. WEINSTEIN'S THEOREM 

We will now prove an existence theorem which is due to Weinstein [ 131. 
This we do by reducing the problem of finding periodic solutions to finding 
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critical points of a function on a finite-dimensional manifold. This is Moser’s 
approach (see [ 111 and [ 121). 

THEOREM 18. Assume d = 1 and the equations (,q!) are linear: 

H(0, u) = +(Au, u) with A = A” positive dejrnite. 

Let I be the number of linearly independent To-periodic solutions of (:q). 
Then, for all E small enough, and for all h > 0, the system (4) has at least 
l/2 closed trajectories, with periods close to T,, such that H(E, u(t)) = h. 

Note that two periodic solutions differing only by the phase give rise to 
the same closed trajectory. Note also that I is even, so that l/2 is an integer. 

We only sketch the proof, since the main ideas have been discussed at 
Iength in the preceding sections. 

Let Y be the l-dimensional vector space of solutions to (.F;). Let C, c I’ 
be the subset of solutions with energy h: 

Co = (u E Yl $(Au(t), u(t)) = h}. 

C, is an (I- I)-dimensional sphere, invariant by the S’-action. The map 

7: u --) (To, 0, ~i(sT,,)) 

imbeds Z, into IF x R x E. 
Let us consider a tubular neighbourhood %c of C, in W x P x E, and an 

adapted coordinate system ii -+ (n,(G), nr(6)) for 6 = (T, E, n.>) E &!9 

7ro(lq E c, 

n,(G) E F with F~R’~‘=lRxPx,5 

u E z;, =+- 7l’)y(u) = u and ii, y(u) = 0. 

We want to solve the equation Q{,,(G) = 0 with t? = (T, F, ~7) E &. This we 
cannot do directly because the tangent map is not onto. So instead we try to 
solve the equation 

q,(q E z(n,(lq). (1) 

If 4’ E ZO, we define 

Z(u) = J@‘,)( JJ E Y and iTo (Au, y> dt = 0 1. I 
1 -0 

The transversality conditions are now fulfilled, and Eq. (1) defines a 
submanifold S of Z! (not exactly the S of Theorem 8) which: 
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(a) has dimension I + 1, because Z has dimension I- 1 and @a. is 
Fredholm with index 2; 

(b) contains y(,ZO), the set of trivial solutions to G&,(G) = 0; 

(cl is S’-invariant. 

For r? = (T, E, ~7) set 

,o(fi) = j1 H(E, G;(E, -cm+))) ds 
0 

= j’ [(-Do+), G;,(E, -gw(s))) - G(e, -oii’(s))] ds. 
0 

If ubl,,($) = 0, then G:,(E, -aw(s)) = u(sT), where zd is a solution of (e), 
and p(d) = H(E, u(sT)) is the energy of this solution. 

Consider the map 

of S into R x R x Co. The tangent map is easily seen to be injective, and 
since both sides have dimension (Z+ l), it is invertible. It follows (by 
suitably restricting P) that !P is a diffeomorphism of S onto 
(-geta) x (h - ,& h + /3) x Z,, with GI and p suitably small. 

r, = !P- ‘(E, h, Co). 

Then r, is diffeomorphic to Co. Moreover, it is invariant by the S’-action. 
We have To = l/,(X,). 

We now go back to our original problem, which was to solve the equation 

Let us consider the restriction of @ to r,: we call it 4,. Let 1; E S be a 
critical point of 4, ; by definition, we have 

where N(U;; r,) is the space of all continuous linear functionals on 
ip x R x E which vanish on the tangent space to rE at 1;. 

This tangent space is easily identified when E = 0. Indeed, the tangent 
space to Co at u,, is the set of y E Y such that jlo (Au,, J’) dt = 0. It follows 
that the tangent space to lf(Zo) = r. at 6, = y(uo) is 

w,,, r,) = (0) x (01 x .+,). 
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We now go back to 6, a critical point of 4, on S. Since G belongs to S. 
Eq. (1) holds, and tells us in effect that Q:,,(G) can be represented by a vector 
z’ in T(rr,(G), r,) : 

By continuity, r(G, r,) is close to r(n,(G), To); so no linear functional 
represented by a non-zero vector in the second space can vanish identically 
3n the first one. Since @L,(G) E N(M?; r,), we must have @;JGj = 0. In other 
words, Eqs. (1) and (3) together imply equation (2). 

The problem is now reduced to finding critical points of $, on Te. Any 
such critical point G solves G:,,(G) = 0, and 1/1-‘(G) is a periodic solution of 
(.~,j with energy h. 

But r, is (diffeomorphic to) an (I - 1 j-sphere, with the natural S’-action 
(Hopf fibration; note I is even), and $, is a smooth S’-invariant function. By 
a well-known result. which apparently was first proved by Krasnoselski in 
[lo]. such a function has at least lj2 distinct critical orbits. This concludes 
the proof of the theorem. 1 

Weinstein’s theorem on periodic orbits near an equilibrium follows 
immediately: 

COROLLARY 19. Assume H: Ip” x R” --$ IR is C’, with H(u) = 0, 
H:(O) = 0, and H,:,,(O) positive definite. For all h > 0 sufficiently small, the 
Hamiltonian system li E OH:(U) has at least n distimt periodic orbits with 
energJl h. I 

This problem reduces to the preceding one by blowing up the situation at 
the origin. We set 

H(E, u) = E -‘H(E, u) for e > 0 

H(0, u) = ;(H”(O) u, u). 

The solutions to ti = aH(0, U) split into k families with periods T, ,..., r, 
and dimensions II ,,..., nk. We have 1, + ... + I, = 2n. Care is taken in 
separating the families, so that two distinct families have no common period. 

Theorem 18 then applies separately to each of these families, giving rise to 
142 + --. + 1,/2 = IZ trajectories at least. These are distinct within the same 
family, by Theorem 18, and from one family to another, because they have 
no common period (by continuity). Hence the result. 
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