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1: Variational principles: old and new
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The classical variational principle

Definition
Let X be a Banach space. We shall say that f : X → R is
Gâteaux-differentiable at x if there exists a continous linear map
Df (x) : X → X ∗ such that

∀ξ ∈ X , lim
t

1
t
[f (x + tξ)− f (x)] = 〈Df (x) , ξ〉

In other words, the restriction of f to every line is differentiable (for
instance, partial derivatives exist). If the map x → Df (x) from X to X ∗

is norm-continuous, f is called C 1.

Theorem (Classical variational principle)

If f attains its minimum on X at a point x̄ , then Df (x̄) = 0. If f is C 2,
then the Hessian D2f (x) is non-negative

Any point where Df (x̄) = 0 is called a critical point.
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Maximum, minimum or critical point ?

Hero of Alexandria (3d century BCE) : light takes the shortest path
from A to B. Deduces the laws of reflection
Fermat (17th century): light takes the quickest path from A to B.
Deduces the law of refraction
Maupertuis (18th century): every mechanical system, when going
from one configuration to another, minimizes the action. This is the
least action principle.

In fact, nature is not interested in minimizing or maximizing. It is
interested in critical points. The laws of physics are not

f (x) = min

They are of the form
f ′ (x) = 0

The mathematical diffi culty is that x is not a point, but a path, i.e. a map
from R to Rn (ODE) or a map from Rp to Rn (PDE). The path space will
be infinite-dimensional, and cannot be compact.
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The billiard:

Theorem (Birkhoff)
Any convex billiard table has two diameters

The large diameter is obtained by maximizing the distance between two
points on the boundary. But where is the small diameter ?
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The extended variational principle (EVT)

Theorem (Ekeland, 1972)

Let (X , d) be a complete metric space, and f : X → R∪ {+∞} be a
lower semi-continuous map, bounded from below:

{(x , a) | a ≥ f (x)} is closed in X ×R and f (x) ≥ 0

Suppose f (x0) < ∞. Then for every r > 0, there exists some x̄ such that:

f (x̄) ≤ f (x0)
d (x̄ , x0) ≤ r

f (x) ≥ f (x̄)− f (x0)
r

d (x , x̄) ∀x

So (a) x̄ is better that x0 (b) x̄ can be chosen as close to x0 as one wishes
(c) x̄ satisfies a cone condition
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Local version

Form now on, X will be a Banach space with d (x , y) = ‖x − y‖

Definition
f : X → R is ε-supported at x if there exists some η > 0 and some
x∗ ∈ X ∗ such that:

‖x − y‖ ≤ η =⇒ f (y)− f (x)− 〈x∗, y − x〉 ≥ −ε ‖y − x‖

Theorem
Suppose there is a C 1 function ϕ : X → R such ϕ (0) = 1, ϕ (x) = 0 for
‖x‖ ≥ 1 and ϕ ≥ 0. Then , for every lower semi-continuous function
f : X → R and every ε > 0, the set of points x where f is ε-supported is
dense in X .
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Differentiability of convex functions.

Recall that, in a complete metric space, a countable intersection of open
dense sets is dense (Baire).

Corollary
For every convex function f .on X , there is a subset ∆ ⊂ X, which is a
countable intersection of open dense subsets, such that F is
Fréchet-differentiable at every point x ∈ ∆ :

‖x − y‖ ≤ η =⇒ ‖f (y)− f (x)− 〈x∗, y − x〉‖ ≤ ε ‖y − x‖
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2: Optimization
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First-order version of EVP

Theorem
Let X be a Banach space, and f : X → R∪ {+∞} be a lower
semi-continuous map, non-negative and G-differentiable. Then for every
x0 ∈ X and r > 0, there exists some x̄ such that:

f (x̄) ≤ f (x0) ,
‖x̄ − x0‖ ≤ r

‖Df (x̄)‖∗ ≤ f (x0)
r

Corollary
There is a sequence xn such that:

f (xn)→ inf f

Df (xn)→ 0

Proof.
Apply EVP to g (x) := f (x)− inf f ≥ 0. Just take x0 such that
f (x0)− inf f ≤ ε and r =

√
ε and let ε = 1

n .
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Proof

For simplicity, take x0 = 0 and inf f = 0. Apply EVP to x = x̄ + tu and
let u → 0. We get:

f (x̄ + tu) ≥ f (x̄)− f (0)
r
t ‖u‖ ∀ (t, u)

lim
t→+0

1
t
(f (x̄ + tu)− f (x̄)) ≥ − f (0)

r
‖u‖ ∀u

〈Df (x) , u〉 ≥ − f (0)
r
‖u‖ ∀u, or ‖Df (x)‖∗ ≤ f (0)

r
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Existence problems
The compact case

Theorem
Suppose f is a lower semi-continuous function on a compact space.Then it
attains its minimum

Proof.
There is a sequence xn such that f (xn)→ inf f and Df (xn)→ 0. By
compactness, it has a subsequence which converges to some x̄ , and by
semi-continuity, f (x̄) ≤ lim inf f (xn) = inf f
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Existence problems
The complete case

Definition
We shall say that f satisfies the Palais-Smale condition(PS) if every
sequence xn such that f (xn) converges and Df (xn)→ 0 has a convergent
subsequence

Theorem (Palais and Smale, 1964)
Any lower semi-continuous function on a Banach space, which is
G-differentiable, bounded from below, and satisfies PS attains its minimum

Proof.
By EVP, there is a sequence xn such that f (xn)→ inf f and Df (xn)→ 0.
By PS, it has a subsequence which converges to some x̄ , and by
semi-continuity, f (x̄) ≤ lim inf f (xn) = inf f

The EVP allows us to consider more restricted classes of minimizing
sequences
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Second-order version

Theorem (Borwein-Preiss, 1987)

Let X be a Hilbert space, and f : X → R∪ {+∞} be a C 2 function,
bounded from below. Then for every minimizing sequence xn of f in X ,
there exists a sequence yn of f such that:

f (yn)→ inf f

‖xn − yn‖ → 0

Df (yn)→ 0

lim inf
n

(
D2f (yn) u, u

)
≥ 0 ∀u ∈ X

So we can consider even more restricted classes of minimizing sequences,
those along which Df (xn)→ 0 and lim inf Df (xn) ≥ 0.
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3: Critical point theory
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The mountain-pass theorem
Existence

Theorem (Ambrosetti and Rabinowitz 1973)
Let f be a continuous G-differentiable function on X . Assume that
f ′ : X → X ∗ is norm-to-weak* continuous and satisfies PS.Take two
points x0 and x1 in X , and define:

Γ :=
{
c ∈ C 0 ([0, 1];X ]) | c (0) = x0, c (1) = x1

}
γ := inf

c∈Γ
max
0≤t≤1

f (c (t))

Assume that γ ≥ max (f (x0) , f (x1)). Then there exists some point x̄
with

f (x̄) = γ

Df (x̄) = 0
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The mountain-pass theorem
Characterization

Theorem (Hofer 1983, Ghoussoub-Preiss 1989)
The critical point x̄ in the preceding theorem must satisfies on of the
following:

either there is a sequence xn of (weak) local maxima such that xn → x̄

or x̄ has mountain-pass type, namely, there exists a neighbourhood U
of x such that U ∩ {f < γ} is neither empty nor connected.
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Proof

Consider the set of paths Γ and endow it with the uniform distance. It is a
complete metric space. Consider the function ϕ : Γ→ R defined by:

ϕ (c) := max
0≤t≤1

f (c (t))

It is bounded from below by γ, and lower semi-continuous. We can apply
EVP, we get a path cε, take tε where f (cε (t)) attains its maximum, and
set xε = cε (tε). We show that ‖Df (xε)‖∗ ≤ ε, we let ε→ 0 and we apply
PS.
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4: Inverse function theorems
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A non-smooth inverse function theorem

Theorem (Ekeland, 2012)
Let X and Y be Banach spaces. Let F : X → Y be continuous and
G-differentiable, with F (0) = 0. Assume that the derivative DF (x) has a
right-inverse L (x), uniformly bounded in a neighbourhood of 0:

∀v ∈ Y , DF (x) L (x) v = v
sup {‖L (x)‖ | ‖x‖ ≤ R} < m

Then, for every ȳ such that

‖ȳ‖ ≤ R
m

there is some x̄ such that:

‖x̄‖ ≤ m ‖ȳ‖
F (x̄) = ȳ

The standard inverse function theorem requires F to be C 1, and does not
provide the sharp estimate on x̄
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Proof

Consider the function f : X → R defined by:

f (x) = ‖F (x)− ȳ‖

It is continuous and bounded from below, so that we can apply EVP with
r = m ‖ȳ‖. We can find x̄ with:

f (x̄) ≤ f (0) = ‖ȳ‖
‖x̄‖ ≤ m ‖ȳ‖ ≤ R

∀x , f (x) ≥ f (x̄)− f (0)
m ‖ȳ‖ ‖x − x̄‖ = f (x̄)−

1
m
‖x − x̄‖

I claim F (x̄) = ȳ .
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Proof (ct’d)

Assume F (x̄) 6= ȳ . The last equation can be rewritten:

∀t ≥ 0, ∀u ∈ X , f (x̄ + tu)− f (x̄)
t

≥ − 1
m
‖u‖

Simplify matters by assuming X is Hilbert. Then:(
F (x̄)− ȳ
‖F (x̄)− ȳ‖ ,DF (x̄) u

)
= 〈Df (x̄) , u〉 ≥ − 1

m
‖u‖

We now take u = −L (x̄) (F (x̄)− ȳ), so that DF (x̄) u = − (F (x̄)− ȳ).
We get a contradiction:

‖F (x̄)− ȳ‖ ≤ 1
m
L (x̄) ‖F (x̄)− ȳ‖ < ‖F (x̄)− ȳ‖
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Global inverse function theorems

Taking R = ∞ gives:

Theorem
Let X and Y be Banach spaces. Let F : X → Y be continuous and
Gâteaux-differentiable, with F (0) = 0. Assume that the derivative DF (x)
has a right-inverse L (x), uniformly bounded on X

∀v ∈ Y , DF (x) L (x) v = v
sup
x
‖L (x)‖ < m

Then, for every ȳ there is some x̄ such that:

‖x̄‖ ≤ m ‖ȳ‖
F (x̄) = ȳ

The C 1 version is due to Hadamard.
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