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Abstract We present an algorithm to approximate the solutions to variational
problems where set of admissible functions consists of convex functions. The main
motivation behind the numerical method is to compute solutions to Adverse Selection
problems within a Principal-Agent framework. Problems such as product lines design,
optimal taxation, structured derivatives design, etc. can be studied through the scope
of these models. We develop a method to estimate their optimal pricing schedules.
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1 Introduction

Isaac Newton was the first person to state and solve a variational problem with convex-
ity constraints. In the Principia, he sought the shape of convex solid that encounters
the least resistance when moving through a fluid. The problem can be stated as follows.
Let � be a smooth, convex subset of R

2. Define
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46 I. Ekeland, S. Moreno-Bromberg

I [v] :=
∫

�

dθ

1 + |∇v|2 , and C := {v : � → R | v is convex}.

One seeks the v in C which minimize(s) I . It should be noted that even if the Lagrangian
satisfied the necessary coercivity properties (see for example [11, Sect. 8]), the restric-
tion v ∈ C would make it quite difficult to use the Euler–Lagrange equations, which
are satisfied only when the constraints are not binding. Newton solved the problem by
assuming, quite naturally, that the function (and the domain) were radially symmetric.
Four centuries later, Brock et al. [4] (see also [15]) showed that, if one removes the sym-
metry assumption on the solution, one gets a lower minimum, and this result sparked
new interest to the study of variational problems with convexity constraints. At the
same time, such problems were also cropping up in finance and economics, because of
concerns with asymmetry of information, particularly adverse selection (see [3] for a
comprehensive account). Typically, when a monopolist addresses a market consisting
of consumers with different tastes and means, he/she will not sell a single product,
but will devise a line of products with different qualities and prices, each of which
addresses a segment of the market. These products then compete with each other (even
if I am well off, I may want to buy the product devised for less wealthy people, even
though the quality is less, because I find it a better bargain). The monopolist’s problem
(also known in the economic literature as the principal-agent problem, the monopolist
being the principal and the consumers the agents) is to devise a pricing schedule such
that his/her profit is maximal. This is called non-linear pricing. The field took off in
1978 with a seminal paper of Mussa and Rosen [17], and since then has produced a
considerable stream of contributions ([2,7,19], etc.).

In models where goods are described by a single quality and the set of consumers is
differentiated by a single parameter, it is in general possible to find closed form solu-
tions for the pricing schedule, which is precisely the mathematical content of the paper
by Mussa and Rosen. This is, however, not the case when multidimensional qualities
and consumer types are considered. The question was first addressed by Rochet and
Choné [19], who provided conditions for the existence of an optimal pricing rule and
fully characterized the ways in which the monopolist discriminates among consumers
in a multidimensional setting. They pointed out that it is only in very special cases
that one can expect to find closed form solutions. The same holds true for models
where the set of goods lies in an infinite-dimensional space, even when agent types
are one-dimensional. This framework was first used, to our knowledge, by Carlier
et al. [7] to price OTC (over-the-counter) financial derivatives. It was then extended
by Horst and Moreno-Bromberg [12] to model the actions of a monopolist who has
an initial risky position that he/she evaluates via a coherent risk measure, and who
intends to transfer part of his/her risk to a set of heterogenous agents. In both cases
the authors find that only very restrictive examples allow for explicit solutions.

Given that a great variety of problems, such as product lines design, optimal tax-
ation, structured derivatives design, translate into variational problems with global
convexity constraints, there is a clear need for robust and efficient numerical methods
that approximate their solutions. Note here a particular requirement, which is an addi-
tional burden on the numerics: the quantity of interest is not the solution itself, i.e. the
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maximizing function, but its gradient. Indeed, if f (x) is the solution, then ∇ f (x) is
the quality bought by consumers of type x .

The main difficulty is to find an approximation of the cone of convex functions.
The first attempt in this direction, due to Kawohl and Schwab [13], consisted of using
a first-order finite elements method. Unfortunately it turned out to be flawed: indeed,
Choné and Le Meur [9] proved that, given a family of structured meshes Mh , one
can always find a convex function u that is not a limit of convex functions uh , with
uh piecewise linear on Mh . In other words, internal approximations with first-order
finite elements are bound to fail, and the authors illustrate their point by numerical
examples. Carlier et al. [8] then introduced an external approximation by first-order
finite elements, and showed that their algorithm converges when the functional to be
maximized (or minimized) is quadratic and there are no constraints. This is not the case
for the Rochet–Choné problem nor for most problems arising from economic theory,
to which this method does not provide an answer. The editor has drawn our attention
to a very interesting paper by Anguilera and Morin [1], which appeared while this one
was being revised, and which takes yet another approach. Anguilera and Morin con-
sider first- and second-order finite differences on a given family of structured meshes
Mh , which enables them do define a discrete gradient and a discrete Hessian; they
then consider the class of functions such that the discrete Hessian is non-negative, and
prove that any convex function can be approximated in this way. On each mesh, the
discretized problem is solved using semi-definite programming (SDP), and when h
goes to 0 the corresponding solutions converge to the theoretical solution.

Our approach differs from the preceding ones. It is an interior method: at each step
the approximate minimizer is convex. This is important from the economic point of
view because, as we mentioned earlier, the convexity condition embodies the infor-
mation constraint which any proposed contract must satisfy: non-convex functions
represent contracts which cannot be implemented (i.e. agents will not behave in the
way the principal expects). However, it is not a finite element method, nor does it use
finite differences or SPD: it relies on the well-known fact that a convex function is the
supremum of its affine minorants:

u(x) = sup
(a,x∗)

{〈x, x∗〉 + a|∀y, 〈y.x∗〉 + a ≤ u(y)
}

or, equivalently, of all its tangent hyperplanes:

u(x) = sup
y

{〈x − y, u′(y)〉 + u(y)
}

We will replace the preceding formula by the following:

uh(x) = sup
{〈x − y, u′(y)〉 + u(y)|y ∈ Mh

}

where Mh is a given mesh. It is clear that the function uh is convex, and we will show
that, under reasonable assumptions, it converges to u as the step h goes to 0. The
function uh is piecewise linear, in the sense that it is linear on certain cells downstairs,
but these cells are unrelated to the mesh Mh we started from; in particular, they do
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not have points in the mesh as vertices. In fact, the shape of these cells can be quite
complicated, as illustrated in Figs. 5 and 6 of Sect. 4 (although, of course, they are
convex polyhedra). In this sense our method differs from a finite-elements method,
where the given mesh determines the cells on which the approximate solution is linear
(or rather, affine). This is why it evades the criticism of Choné and Le Meur: since the
decomposition into cells is not given a priori, but adapts to the solution, there cannot
be the same geometrical obstruction that befalls a decomposition where the shapes
are defined a priori. The same reason may also explain why there are no geometri-
cal obstruction either arising from the fact that our method uses simultaneously the
function u and its gradient ∇u: since the decomposition into cells is unstructured, and
adapts to the solution, it will also adapt to fit any integrability conditions. In Lachand-
Robert and Oudet [14], have used a similar idea in a more geometrical setting: they
seek a convex body that minimizes a certain functional, and they proceed by starting
from an admissible polyhedron and iteratively modifying the normals to the facets in
order to find an approximate minimizer.

We first apply our method to a benchmark problem, taken from Choné and Le Meur
[9], where the solution can be computed explicitly, and we find that our method works
in situations where they find they do not have convergence. We then estimate the min-
imizers for the well known Rochet–Choné problem (see [19]), where we find that our
solution matches the theoretical one, to a problem in OTC pricing of securities [7],
and to a risk-minimization problem as in [12]. Our algorithm proves to be versatile
enough to provide approximate solutions even when the criterion is non-convex, as in
[7]. This is of particular interest for economic situations, since convexity goes hand-
in-hand with the assumption that the agents have quasi-linear preferences, which in
many cases is simply too restrictive.

The remainder of this paper is organized as follows. In Sect. 2, we state our problem
and provide our notation. Our algorithm and a proof of its convergence are presented
in Sect. 3, together with further discussion of the method. In Sect. 4, we show the solu-
tions obtained via our algorithm to several problems found in the literature.1 Since
these problems share a common microeconomic motivation, we include a brief dis-
cussion on the latter. The examples include the well known Rochet–Choné problem, a
one dimensional example from Carlier, Ekeland and Touzi and the risk transfer case of
Horst and Moreno-Bromberg for a principal who offers call options with type-depen-
dent strikes and evaluates his/her risk via the “shortfall” of his/her position. This section
is followed by our conclusions. Finally, the appendix is devoted to technical results.

2 Setting

Throughout this paper, we use the following notations:

• �, Q ⊂ R
n are convex and compact sets,

• µ denotes the Lebesgue Measure on R
n ,

• f is a (probability) density on �,
• L(θ, z, p) = z − θ · p + C(p), where C is strictly convex and C1,

1 Our Matlab codes can be downloaded from: http://www2.hu-berlin.de/math-finance/?q=node/72.
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• C := {v : � → R | v ≥ 0 is convex, and ∇v ∈ Q a.e},
• I [v] := ∫

�
L(θ, v(θ),∇v(θ)) f (θ)dθ .

Our objective is to (numerically) estimate the solution to

P := inf
v∈C

I [v]. (1)

Having in mind examples as the one presented in Sect. 4.1, we will refer to C as
the cost function. See Sect. 4.1 for the microeconomic motivation to the particular
structure of the Lagrangian. Given the properties of L and C we immediately have the
following

Proposition 2.1 Assume v solves P , then there is θ0 in � such that v(θ0) = 0.

Proof Let v0 = minθ∈� v(θ) (recall � is compact)and define u(θ) := v(θ) − v0,
then

I [u] =
∫

�

(u(θ) − θ · ∇u(θ) + C(∇u(θ))) f (θ)dθ = I [v] − v0 < I [v].

This would contradict the hypothesis of v being a minimizer of I over C unless v0 = 0.
�

Remark 2.2 Notice that Proposition 2.1 would hold for any Lagrangian of the form
L(θ, z, p) = G(θ, p) − θ · z for any strictly convex function G that does not depend
on z.

It follows from Proposition 2.1 that we can redefine C to include only functions
that have a root in �. This, together with the compactness of Q, implies the following
proposition, which we will use frequently.

Proposition 2.3 There exists 0 < K < ∞ such that v ≤ K for all v in C.

It follows from Proposition 2.3 and the restriction on the gradients that for each
choice of cost function C , problem P has a unique solution, since the functional I will
be strictly convex, lower semicontinuous and the admissible set is closed and bounded
(see [10]).

Remark 2.4 Our algorithm will still work with more general L’s as long as one can
prove that the family of feasible minimizers is uniformly bounded.

3 The algorithm

This section contains a detailed description of our algorithm (Sect. 3.1), as well as
a proof of its convergence (Sect. 3.2). From this point on, whenever we use super-
scripts we refer to vectors. For example V k = (V k

1 , . . . , V k
m). On the other hand a

subscript indicates a function to be evaluated over some closed, convex subset of R
n

of non-empty interior, ie, {Vj } is a sequence of functions Vj : X → R for some X
contained in R

n . We will only consider the domain � = [a, b]n . This choice is made
for computational simplicity and it plays no role in our proof of convergence.
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3.1 Description

In order to find a interior approximation to the solution to P we proceed as follows:

1. We partition � into �k , which consists of kn equal cubes of volume µ(�k) :=
( b−a

k )n . The elements of the partition �k will be denoted by σ k
j , 1 ≤ j ≤ kn . Then

we define �k as the set of centers of the σ k
j ’s. The elements of �k will be denoted

by θk
j . The choice of a uniform partition is done for computational simplicity.

2. We denote f k
i = ∫

σ k
i

f (θ)dθ and associate such weight with θk
i .

3. We associate to each element θk
i of �k a non-negative number vk

i and an n-dimen-
sional vector Dk

i . The former represents the value of v(θk
i ) and the latter ∇v(θk

i ).
4. We solve the (non-linear) program

Pk := inf µ(�k)

kn∑
i=1

L(θk
i , v

k
i , Dk

i ) f k
i (2)

over the set of all vectors of the form v = (v1, . . . , vkn ) and all matrices of the
form D = (D1, . . . , Dkn ) such that:
(a) v ≥ 0 (non-negativity),
(b) Di ∈ Q for i = 1, . . . kn (feasibility),
(c) vi − v j + Di · (θ j − θ i ) ≤ 0 for i, j ∈ {1, . . . , kn} i �= j (convexity).
If the problem in hand includes Dirichlet boundary conditions these can be included
here as linear constraints that the Dk

i ’s corresponding to points on the “boundary”
of �k must satisfy.

5. Let (vk, D
k
) be the solution to Pk . Define vk(θ) := maxi pi (θ), where

pi (θ) = vk
i + D

k
i · (θ − θk

i ).

6. vk yields an approximation to the minimizer of P .

Remark 3.1 The constraints of the non-linear program determine a convex set. Notice
that the number of constraints associated to problem Pk over [a, b]n is kn + nkn +
kn(kn − 1). The summands correspond to the positivity, feasibility and convexity
constraints respectively. Hence, this number grows polynomially with the number of
elements in the lattice and exponentially with dimension.

Remark 3.2 4 (c) guarantees that pi is a supporting hyperplane of the convex hull of
the points {(θ1, v1), . . . , (θkn , vkn )}. Note that vk is a piecewise affine convex func-
tion, but that the cells on which it is affine are unrelated to the cells of partition �k .
We are not using a finite-elements method. This will be discussed further in Sect. 3,
where examples will be given.

It should be noted that the evaluation of vk is non-local. This has the drawback of
being numerically very expensive; however, it yields intrinsically convex functions.
Moreover, since these convex functions are lower semicontinuous (they are the point-
wise supremum of linear functions) and finite, the algorithm produces continuous
functions.
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3.2 Convergence

In this section, we prove convergence of the algorithm. We denote, for notational
convenience

Jk(v
k, Dk) :=

kn∑
i=1

(
vk

i − θ i · Dk
i + C(Dk

i )
)

µ(�k) f k
i .

Proposition 3.3 Under the assumptions made on L, the problem Pk has a unique
solution.

Proof The mapping

(vk, Dk) → Jk(v
k, Dk)

is strictly convex. It follows from Proposition 2.3 that any feasible vector-matrix pair
(vk, Dk) must lie in [0, K ]k ×Qk , which together with Remark 3.1 implies Pk consists
of minimizing a strictly convex function over a compact and convex set. The result
then follows from general theory (see, for example [10]). �
Proposition 3.4 There exists v ∈ C such that:

1. The sequence {vk} generated by the Pk’s has a subsequence {vk j }that converges
uniformly to v.

2. limk j →∞ I [vk j ] = I [v].
Proof The bounded (Proposition 2.3) family {v j } is uniformly equicontinuous, as it
consists of convex functions with uniformly bounded subgradients (they are required
to lie in Q). By the Arzela–Ascoli theorem we have that, passing to a subsequence if
necessary, there is a non-negative and convex function v such that

vk → v uniformly on �.

By convexity ∇vk → ∇v almost everywhere (Lemma A.4); since ∇vk(θ) belongs to
the bounded set Q, the integrands are dominated. Therefore, by Lebesgue Dominated
Convergence we have

lim
k→∞ I [vk] = I [v].

�
Let u be the maximizer of I [·] within C. Our aim is to show that {vk} is a minimizing

sequence of problem P , in other words that

lim
k→∞ I [vk] = I [u] .

To this end, we need the following auxiliary definition:
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Definition 3.5 Let u be such that infu∈C I [u] = I [u]. Given �k , define for i =
1, . . . , kn :

1. uk
i := u(θk

i ),
2. Gk

i := ∇u(θk
i ),

3. qi (θ) := uk
i + Gk

i · (θ − θk
i ), and

4. uk(θ) := maxi qi (θ).

Notice that uk(θ) is also constructed as the convex envelope of a family of affine
functions. The inequalities

Jk(u
k, Gk) ≥ Jk(v

k, D
k
), (3)

and

I [vk] ≥ I [u] (4)

follow from the definitions of Jk(v
k, D

k
), vk and uk , as does the following

Proposition 3.6 Let u and uk be as above, then uk → u uniformly as k → ∞.

Proposition 3.7 For each k there exist ε1(k) and ε2(k) such that

∣∣∣Jk(v
k, D

k
) − I [vk]

∣∣∣ ≤ ε1(k), (5)

∣∣∣Jk(u
k, Gk) − I [uk]

∣∣∣ ≤ ε2(k), (6)

and ε1(k), ε2(k) → 0 as k → ∞.

Proof We will show inequality (5) holds, the proof for (6) is analogous. Define the
simple function

wk(θ) := L(θk
j , v

k
j , D

k
j ), θ ∈ σ k

j ,

hence

Jk(v
k, D

k
) =

∫

�

wk(θ)dθ. (7)

The left-hand side of (5) can be written as

∣∣∣∣∣∣∣
∫

�

wk(θ)dθ − I [vk]

∣∣∣∣∣∣∣
. (8)
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It follows from Lemma A.6 that there exists ε1(k), such that

∣∣∣∣∣∣∣
∫

�

wk(θ)dθ − I [vk]

∣∣∣∣∣∣∣
≤ ε1(k),

and

ε1(k) → 0 when k → ∞.

�
We can now prove our main theorem, namely

Theorem 3.8 The sequence {vk} is minimizing for problem P .

Proof It follows from Proposition 3.7 and Eq. (3) that

I [uk] + ε2(k) + ε1(k) ≥ I [vk] ≥ I [u]. (9)

Letting k → ∞ in (9) and using Proposition 3.4 yields the desired result. �
Remark 3.9 In Choné and Le Meur [9] (see also Carlier et al. [8]), it was pointed
out that, when using finite elements on regular meshes, one encounters a geometrical
obstruction. Namely, let Tn be a sequence of quasiuniform regular triangulations Tn ,
and suppose there are two vectors h and k such that, for every unit vector ν which is
normal to an edge of each element in the triangulation

〈ν, h〉 · 〈ν, k〉 ≥ 0.

Then, if u is the limit in L∞
loc of a sequence of convex functions un which are piecewise

linear on the triangulation, we must have:

∂2u

∂h∂k
≥ 0.

As Figs. 2 and 3 in the next section will show, the partition generated by our method is
not a triangulation, nor is it regular, so it is not affected by this geometrical obstruction.

4 Examples

In this section, we show some results of implementing our algorithm. The first three
examples reduce quadratic programs, whereas the fourth and fifth ones are non-linear
optimization programs. All the computer coding has been written in Matlab. However,
the supplemental Tomlab 6.0 Optimization Toolbox was used to speed up running
times. To develop Examples 4.2, 4.3 and 4.4 we have used the drop-in replacement for
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quadprog in Matlab’s Optimization toolbox. We have also used the drop-in replace-
ment for fmincon in Example 4.5. To solve the non-linear program in Example 4.6 we
used Tomlab’s solver conSolve. In all of our examples the Exit Flag returned was 0. In
other words, the iteration points were close. These examples, which have been taken
from [7,9,12,19], share a common microeconomic motivation, for which we provide
an overview. We refer the interested reader to [3] for a comprehensive presentation of
Principal-Agent models and Adverse Selection, as well as multiple references.

4.1 Some microeconomic motivation

Consider an economy with a single principal and a continuum of agents. The latter’s
preferences are characterized by n-dimensional vectors. These are called the agents’
types. The set of all types will be denoted by � ⊂ R

n . The individual types θ are
private information, but the principal knows their statistical distribution, which has a
density f (θ).

We assume goods are characterized by (n-dimensional) vectors describing their
utility-bearing attributes. The set of technologically feasible goods that the prin-
cipal can deliver will be denoted by Q ⊂ R

n+, and it will be assumed to be compact
and convex. The cost to the principal of producing one unit of product q is denoted
by C(q). Products are offered on a take-it-or-leave-it basis, each agent can buy one or
zero units of a single product q and it is assumed there is no second-hand market. The
(type-dependent) preferences of the agents are represented by the function

U : � × Q → R.

The (non-linear) price schedule for the technologically feasible goods is represented
by

π : Q → R.

When purchasing good q at a price π(q) an agent of type θ has net utility

U (θ, q) − π(q).

Each agent solves the problem

max
q∈Q

{U (θ, q) − π(q)} .

By analyzing the choice of each agent type under a given price schedule π , the principal
(partially) screens the market. Let

v(θ) := U (θ, q(θ)) − π(q(θ)), (10)
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where q(θ) belongs to argmaxq∈Q{U (θ, q) − π(q)}. Notice that for all q in Q we
have

v(θ) ≥ U (θ, q) − π(q). (11)

Analogous to the concepts of subdifferential and convex conjugate from clas-
sical Convex Analysis, we have that the subset of Q where (11) is an equality is called
the U -subdifferential of v at θ and v is the U -conjugate of π (see, for example,
[6]). We write

v(θ) = πU (θ),

and

∂U v(θ) := {q ∈ Q | πU (θ) + π(q) = U (θ, q)}.

To simplify notation let π(q(θ)) = π(θ). A single pair (q(θ), π(θ)) is called a con-
tract, whereas {(q(θ), π(θ))}θ∈� is called a catalogue. A catalogue is called
individually rational if v(θ) ≥ v0(θ) for all θ ∈ �, where v0(θ) is type’s θ

non-participation (or reservation) utility. We normalize the reservation utility of all
agents to zero, and assume there is always an outside option q0 that denotes non-
participation. Therefore we will only consider functions v ≥ 0. The Principal’s aim is
to devise a pricing function π : Q → R as to maximize his/her income

∫

�

(π(θ) − C(q(θ))) f (θ)dθ. (12)

Inserting (10) into (12) we get the alternate representation

∫

�

(U (θ, q(θ)) − v(θ) − C(q(θ))) f (θ)dθ. (13)

Expression (13) is to be maximized over all pairs (v, q) such that v is U-convex and
non-negative and q(θ) ∈ ∂U v(θ). Characterizing ∂U v(θ) in a way that makes the
problem tractable can be quite challenging. In the case where U (θ, q(θ)) = θ · q(θ),
as in [19], for a given price schedule π : Q → R, the indirect utility of an agent of
type θ is

v(θ) := max
q∈Q

{θ · q − π(q)} . (14)

Since v is defined as the supremum of its affine minorants, it is a convex function
of the types. It follows from the Envelope Theorem that the maximum in Eq. (14) is
attained if q(θ) = ∇v(θ), and we may write

v(θ) = θ · ∇v(θ) − π(∇v(θ)). (15)
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56 I. Ekeland, S. Moreno-Bromberg

The principal’s aggregate surplus is given by

∫

�

(π(q(θ)) − C(q(θ))) f (θ)dθ. (16)

Inserting (15) into (16) we get that the principal’s objective is to maximize

I [v] :=
∫

�

(θ · ∇v(θ) − C(∇v(θ)) − v(θ)) f (θ)dθ (17)

over the set

C := {v : � → R | v convex, v ≥ 0, ∇v(θ) ∈ Q} .

4.2 A benchmark

Following in the footsteps of Choné and Le Meur [9], we use the following example
as a benchmark. Within this section, we use the notation

C :=
(

1 ρ

ρ 1

)
,

where ρ ∈ (−1, 1). Our aim is to study the problem of minimizing

I [v] =
∫

[0,1]2

(
1

2
∇v(θ)t C ∇v(θ) − θ · ∇v(θ)

)
dθ

over the set of convex functions with positive partial derivatives. The main interest
behind approximating the solution to this problem is that the “true” solution can be
given explicitly. To do so, one first shows that the Euler–Lagrange equations for the
above problem have, up to an additive constant, the solution

ṽ(θ1, θ2) = 1

2(1 − ρ2)

(
θ2

1 − 2ρθ1θ2 + θ2
2

)
. (18)

It follows from general theory (see for example [11, Chapter 8]) that for A = H
2

([0, 1]2), the problem infA I [v] has a unique solution. Next, one observes that for
|ρ| < 1, ṽ satisfies the convexity constraint and the positivity constraints on the
partial derivatives on [0, 1]2. Therefore Eq. (18) is the solution to the convexly-
constrained problem. We proceed to compare the performance of our algorithm against
ṽ. A description of how the quadratic program is setup can be found in Sect. 4.3, the
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Fig. 1 The L2-error for ρ = −0.1, 0 and 0.1

only difference being that for partition �k , the the four k2 × k2 blocks towards the
Southeast corner of matrix H are of the form(

I ρ · I

ρ · I I

)
,

where I stands for the identity matrix of size k2 × k2. For the error estimates we have
used the L2 norm with a uniform discretization of the domain consisting of 106 points.
In contrast to what was found by Choné and Le Meur in [9], our method exhibits good
convergence behaviour for the case ρ < 0. In the case ρ ≥ 0, both out method and
the examples in their paper show an adequate reduction of the error as the partitions
(or meshes) become finer. The running times for the �15 case and ρ = −0.1, 0 and
0.1 were: 452.12 s, 388.21 s and 437.74 s, respectively (Fig. 1). These were obtained
running Matlab Release 2007a on a computer with an AMD Athlon 64×2 Dual-Core
Processor running at 1.80 GHz and with 2 MB of RAM. It is interesting to note that
about 30 s are devoted to the construction of the affine envelopes, while the rest goes
into solving the quadratic programs. Finally we present, for the case ρ = 0, the plot of
graph{ṽ} in Fig. 2a and the plot of graph{v̄} (the output of our algorithm) in Fig. 2b.
We used a 14 × 14 lattice to generate Fig. 2b.

4.3 The Rochet–Choné problem

In this example, we test our algorithm on the Roche–Choné problem (also known as
the Mussa–Rosen problem in a square). A description of the solution to this problem
was found by Rochet and Choné in [19], and the output of our algorithm matches it
in a satisfactory fashion. The following structures are shared with Example 4.4:

• x = (vk, Dk), this structure will determine any possible candidate for a minimizer
to Jk(·, ·) in the following way: vk is a vector of length k2 that will contain the
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Fig. 2 The true versus the approximate solutions for ρ = 0

approximate values of the optimal function v evaluated on the points of the lattice.
The vector Dk has length 2 ∗ k2 and it contains what will be the partial derivatives
of v at the same points.

• h is a vector of length 3∗ k2. The product h · x provides the discrete representation
of the integral

∫
�(θ · ∇v − v(θ)) f (θ)dθ .

• B is the matrix of constraints. The inequality Bx ≤ 0 imposes the non-negativity
of v and D and the convexity of the resulting vk .

Let � = [1, 2]2, C(q) = 1
2‖q‖2, and assume the types are uniformly distributed.

In this case we have to solve the quadratic program

sup
x

{
h · x − 1

2
xt H x

}

subject to

Bx ≤ 0.

Here H is a (3∗k2)× (3∗k2) matrix whose first k2 columns are zero, since v does not
enter the cost function; the four k2 × k2 blocks towards the Southeast corner form a
(2∗ k2)× (2∗ k2) identity matrix. Therefore 1

2 xt H x is a the discrete representation of∫
�

1
2‖∇v(θ)‖2dθ . Figure 3 was produced using a 17×17-points lattice and a uniform

density.
In Fig. 4, we compare the region of traded qualities found in [19] (Fig. 4a) to the

output of the previous execution of our algorithm (Fig. 4b). Notice that the above
execution does a good job of capturing the region of “high quality” products, i.e. those
destined to the upper echelon of the market. However, at this level of precision the
Southwest corner of the set of fully differentiated products is slightly widened. This is
not too surprising and it showcases the difficulty of the problem in hand: one requires
not only v̄, but also ∇v̄.

Our algorithm generates at each step a new partition of the domain into cells on
which the approximate minimizer is affine. Figures 5 and 6 show the cells correspond-
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Fig. 3 Solution for uniformly distributed agent types

Fig. 4 The traded qualities

ing to the �3 to �6 cases (3 × 3 to 6 × 6 partitions of the domain). We stress again
that these sub-divisions arise ex-post: their characteristics are not known a priori, but
follow from the execution of the optimization routine.

4.4 The Mussa–Rosen problem with a non-uniform density

We keep the cost function and the partition of the previous example, but now assume
the types are distributed according to a bivariate normal distribution with mean (1.9, 1)

and variance-covariance matrix

[
0.3 0.2

0.2 0.3

]
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Fig. 5 Subdivisions of the domain for the 3 × 3 and 4 × 4 lattices

Fig. 6 Subdivisions of the domain for the 5 × 5 and 6 × 6 lattices

The weight assigned to each agent type is built into h and H , so the vector x remains
unchanged. We obtain Fig. 7.

Remark 4.1 It is interesting to see that in this case bunching of the second kind, as
described by Roché and Choné in [19], appears to be eliminated as a consequence of
the skewed distribution of the agents. This can be seen in the non-linear level curves
of the optimizing function v, and it is also quite evident in the plot of the traded
qualities.

The codes for the two previous examples were run on Matlab 7.0.1.24704 (R14)
in a Sun Fire V480 (4 × 1.2 HGz Ultra III, 16 GB RAM) computer running Solaris
2.10 OS. In the first example 57.70 s of processing time were required. The running
time in the second example was 81.72 s.
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Fig. 7 Optimal solution for normally distributed agent types

4.5 An example with non-quadratic cost

In this example we approximate a solution to the problem of a principal who is selling
over-the-counter financial derivatives to a set of heterogeneous agents. This model is
presented by Carlier et al. [7]. They start with a standard probability space (
,F , P),
and the types of the agents are given by their risk aversion coefficients under the
assumption of mean-variance utilities; namely, the set of agent types is � = [0, 1],
and the utility of an agent of type θ when facing product X is

U (θ, X) = E[X ] − θVar[X ].

Under the assumptions of a zero risk-free rate and access to a complete market by
the principal, his/her cost of delivering product X (θ) is given by

√−ξv′(θ); where ξ

is the variance of the Radon–Nikodym derivative of the (unique) martingale measure,
and Var[X (θ)] = −v′(θ). The principal’s problem can be written as

sup
v∈C

∫

�

(
θv′(θ) +√−v′(θ) − v(θ)

)
dθ, (19)

where C := {v : � → R | v convex, v ≥ 0, v′ ≤ 0 and Var [X (θ)] = −v′(θ)}.
Figure 8 shows an approximation of the maximizing v using 25 agent types.

4.6 Minimizing risk

The microeconomic motivation for this section is the model of Horst and Moreno [12].
We present an overview for completeness. The principal’s income, which is exposed
to non-hedgeable risk factors, is represented by W ≤ 0. The latter is a bounded
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Fig. 8 The approximating function v25

random variable defined on a standard, non-atomic, probability space (
,F , P). The
principal’s goal is to lay off parts of his/her risk with the agents whose preferences
are mean-variance. The agent types are indexed by their coefficients of risk aversion,
which are assumed to lie � = [a, 1] for some a > 0. Notice that the variational
problem that arises in this example is structurally different than the previous ones. We
have included it to show that our method can be used in more general setting. The
principal underwrites call options on her income with type-dependent strikes:

X (θ) = (|W | − K (θ))+ with 0 ≤ K (θ) ≤ ‖W‖∞.

If the principal issues the catalogue {(X (θ), π(θ))}, he/she receives a cash amount
of
∫
� π(θ)dθ and is subject to the additional liability

∫
� X (θ)dθ . He/she evaluates

the risk associated with her overall position

W +
∫

�

(π(θ) − X (θ))dθ

via the “entropic measure” of his/her position, i.e.

ρ

⎛
⎜⎝W +

∫

�

(X (θ) − π(θ))dθ

⎞
⎟⎠ ,

where ρ(X) = log(E[exp{−β X}]) for some β > 0. The principal’s problem is to
devise a catalogue as to minimize his/her risk exposure. Namely, he/she chooses a
function v and contracts X from the set

{(X, v) | v ∈ C, v≤K1, −Var[(|W |−K (θ))+]=v′(θ), |v′|≤K2, 0≤K (θ)≤‖W‖∞},
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in order to minimize

ρ

⎛
⎜⎝W −

∫

�

{
(|W | − F(v′(θ)))+ − E[(|W | − F(v′(θ)))+]} d

⎞
⎟⎠− I (v),

where

I (v) =
∫

�

(
θv′(θ) − v(θ)

)
dθ.

We assume the set of states of the World is finite with cardinality m. Each possible
state ω j can occur with probability p j . The realizations of the principal’s wealth are
denoted by W = (W1, . . . , Wm). Note that p and W are treated as known data. The
objective function of our non-linear program is

F(v, v′, K ) = log

⎛
⎝exp

⎧⎨
⎩−

n∑
i=1

Wi pi + 1

n

n∑
i=1

⎛
⎝ n∑

j=1

T (K j − |Wi |)
⎞
⎠ pi

− 1

n

n∑
i=1

⎛
⎝ n∑

j=1

T (K j − |Wi |)
⎞
⎠ pi

⎫⎬
⎭
⎞
⎠+ 1

n

∑
vi − θ iv

′
i

where K = (K1, . . . , Kn) denotes the vector of type dependent strikes. We denote by
ng the total number of constraints. The principal’s problem is to find

min
(v,v′,K )

F(v, v′, K ) subject to G(v, v′, K ) ≤ 0,

where G : R
3n → R

ng determines the constraints that keep (v, v′, K ) within the set
of feasible contracts. Let (1/6, 2/6, . . . , 1) be the uniformly distributed agent types,

W = 4 ∗ (−2,−1.7, 1.4,−.7,−.5, 0) and

P = (1/10, 1.5/10, 2.5/10, 2.5/10, 1.5/10, 1/10).

The principal’s initial evaluation of his/her risk is 1.52. Figure 9 shows the plots for the
approximating v and the strikes. Note that for illustration purposes we have changed
the scale for the agent types in the second plot. The interpolates of the approximate
to the optimal function v and the strikes are given in Table 1. After the exchanges with
the agents, the principal’s valuation of his/her risk decreases to −3.56.

Remark 4.2 Notice the “bunching” at the bottom.
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Fig. 9 Optimal solution for underwriting call options

Table 1 The optimal function v

and the strikes
v1 4.196344 K1 1.078869

v2 3.234565 K2 0.785079

v3 2.321529 K3 0.733530

v4 1.523532 K4 0.713309

v5 0.745045 K5 0.713309

v6 0.010025 K6 0.713309

5 Conclusions

In this paper, we have developed a numerical algorithm to estimate the minimizers
of variational problems with convexity constraints, with our main motivation stem-
ming from Economics and Finance. Ours is an internal method, so at each step the
approximate minimizers lie within the acceptable set of (convex) functions. This is of
particular interest given our microeconomic motivation, where non-convex functions
would correspond to non-implementable contracts. Our examples are developed over
one or two dimensional sets for illustration reasons, but the algorithm can be imple-
mented in higher dimensions. However, it must be mentioned that, as is the case with
the other methods found in the related literature, implementing convexity has a high
computational cost which increases geometrically with precision and exponentially
with dimension.

A Appendix

In order to prove convergence of our algorithm we make use of the Convex Analysis
results contained in this section. We work on �, an open and convex subset of R

n and
we use the classical notation ∂ f (θ) to denote the subdifferential of f at θ . Recall that
∂ f (θ) �= ∅ for any θ in the interior of the effective domain of f .
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Definition A.1 A convex function f : � → R is said to be twice A-differentiable
at a point θ0 ∈ C if ∇ f (θ0) exists and if there is a symmetric, positive definite matrix
D2 f (θ0) (the Alexandrov Hessian of f at θ0), such that for any ε > 0 there is
δ > 0 such that if ‖θ − θ0‖ < δ, then

sup
θ ∗∈∂ f (θ )

‖θ∗ − ∇ f (θ0) − D2 f (t0)(θ − θ0)‖ ≤ ε‖θ − θ0‖ (20)

The following theorem is due to Alexandrov [18]

Theorem A.2 Let f : � → R be convex, then it is almost everywhere twice A-dif-
ferentiable on �. Moreover, if f is A-differentiable at θ0 ∈ B, then

lim
h→0

f (θ0 + h) − f (θ0) − 〈∇ f (θ0), h〉 − 1
2 〈D2 f (θ0)h, h〉

‖h‖2 = 0.

Corollary A.3 Let f : � → R be convex. Then the mapping

θ → ∇ f (θ)

is well defined and continuous almost everywhere.

Proof Let � be the set where f is twice A-differentiable. By definition ∇ f is well
defined on �, which is a set of full measure. When restricted to �, expression (20)
can be written as

‖∇ f (θ) − ∇ f (θ0) − D2 f (t0)(θ − θ0)‖ ≤ ε‖θ − θ0‖,

which implies continuity of ∇ f . �
The following is a well known property of convex functions. We were first made

aware of it by Carlier [5], but it probably dates back to Mosco or Joly (see for example
[16]).

Proposition A.4 Let � ⊂ R
n be a convex, open set. Assume the sequence of con-

vex functions { fk : � → R} converges uniformly to f̄ , then ∇ fk → ∇ f̄ almost
everywhere on �.

Proof Denote by Di f the derivative of f in the direction of ei . The convexity of
fk and f̄ implies the existence of a set B, with µ(�\B) = 0 such that the partial
derivatives of fk and f̄ exist and are continuous in B. Let θ ∈ B. To prove that
Di fk(θ) → Di f̄ (θ), consider η such that θ + ηei ∈ �. Since fk is convex

fk(θ + hei ) − fk(θ)

h
≥ Di fk(θ) ≥ fk(θ − hei ) − fk(θ)

h

for all 0 < h < η. Hence

fk(θ+hei )− fk(θ)

h
−Di f̄ (θ)≥ Di fk(θ)−Di f̄ (θ)≥ fk(θ−hei )− fk(θ)

h
−Di f̄ (θ).
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The left-hand side of this inequality is equal to

fk(θ + hei ) − f̄ (θ + hei )

h
+ f̄ (θ) − fk(x)

h
+ f̄ (θ + hei ) − f̄ (θ)

h
− Di f̄ (θ).

For ε > 0 let 0 < δ < η be such that

∣∣∣∣ f̄ (θ + hei ) − f̄ (θ)

h
− Di f̄ (θ)

∣∣∣∣ < ε (21)

for |h| ≤ δ. Let N ∈ N be such that

−εδ ≤ fn(θ) − f (θ) ≤ εδ,

n ≥ N . Hence, taking h = δ (notice that Eq. 21 still holds in this case), we have that
for all n ≥ N ,

fn(θ + hei ) − f (θ + hei )

h
≤ ε and

f (θ) − fn(θ)

h
≤ ε.

Hence,

3ε ≥ Di fn(θ) − Di f (θ)

for all x ∈ B. The same argument shows that

−3ε ≤ Di fn(θ) − Di f (θ)

for all n ≥ N and all x ∈ B, which concludes the proof. �

Proposition A.5 Let � ⊂ R
n be a convex, compact set and let g : U → R be a

convex function such that for all θ ∈ �, the subdifferentials ∂g(θ) are contained in Q
for some compact set Q. Then there exists {g j : � → R} such that g j ∈ C1(�) and
g j → g uniformly on �.

Proof Fix δ > 0 and define

�δ := {(1 + δ)x | x ∈ �}.

Extend g to be defined on �δ . Define

�(θ) :=
{

K e
− 1

1−‖θ‖2 , ‖θ‖ < 1;
0, otherwise.
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Here K is chosen so that
∫
Rn �(θ)dθ = 1. For each ε > 0 define the mollifier

�ε(θ) := ε−n�(θ/ε) (for a discussion on the properties of mollifiers see, for exam-
ple [11]). The functions

hε := g ∗ �ε

are convex, smooth and they converge uniformly to g on U as long as ε is small enough
so that

Uε := {θ ∈ �δ | d(x, ∂�δ) > ε}

is contained in �. Let n ∈ N be such that T1/n ⊂ �, then the sequence {g j := h1/j }
has the required properties. �
Lemma A.6 Consider φ(θ, z, p) ∈ C1(�×R× Q → R), where � = [a, b]n and Q
is a compact convex subset of R

n. Let { fk : � → R} be a family of convex functions
such that ∂ fK (θ) ⊂ Q for all θ ∈ �, and whose uniform limit is f . Let �k be the
uniform partition of � consisting of kn cubes of volume µ(�k) := ( b−a

k )n. Denote by
σ k

j , 1 ≤ j ≤ kn, be the elements of �k and let

µ(�k)

kn∑
i=1

φ
(
θk

j , fk(θ
k
j ),∇ fk(θ

k
j )
)

be the corresponding Riemann sum approximating
∫
� φ(x, fk(θ),∇ fk(θ))dθ , where

θk
j ∈ σ k

j and σ k
j ∈ �k . Then for any ε > 0 there is K ∈ N such that

∣∣∣∣∣∣∣
∫

�

φ(θ, fk(θ),∇ fk(θ))dθ − µ(�k)

kn∑
i=1

φ(θk
j , fk(θ

k
j ),∇ fk(θ

k
j ))

∣∣∣∣∣∣∣
≤ ε (22)

for any k ≥ K .

Proof By Lemma A.5, for each fk there exists a sequence of continuously differen-
tiable convex functions {gk

j } such that

gk
j → fk uniformly.

Let hk be the first element in {gk
j } such that ‖hk− fk‖ ≤ 1

k and ‖∇hk(θ)−∇ fk(θ)‖ ≤ 1
k

for all θ ∈ � where ∇ fk is continuous. Then hk → f uniformly, and by Lemma A.4
we have that ∇hk(θ) → ∇ f (θ) a.e. It follows from Egoroff’s theorem that for every
n ∈ N there exists a set �n ⊂ � such that:

µ(�\�n) < 1/n and ∇hk → ∇ f uniformly on �n .
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Let X σ k
j
(·) be the indicator function of σ k

j and define

gk(θ) := φ(θ, hk(θ),∇kk(θ)) −
kn∑
j=1

X σ k
j
(θ)φ(θk

j , hk(θ
k
j ),∇hk(θ

k
j )).

Fix n, consider θ0 ∈ �n and let {θk
0} be the sequence of θk

j ’s converging to θ0 as the

partition is refined. By uniform convergence, ∇ f is continuous on �n , hence

lim
k→∞ hk(θ

k
0) = f (θ0) and lim

k→∞ ∇hk(θ
k
0) = ∇ f (θ0). (23)

It follows from (23) and the continuity of φ that gk → 0 almost everywhere on �n .
Notice that as a consequence of the compactness of � and Q and the definition of hk

we have

‖φ(θ, fk(θ),∇ fk(θ))‖ ≤ K1, for all θ ∈ � and some K1 > 0,

and

∣∣∣∣∣∣gk(θ) −
⎛
⎝φ(θ, fk(θ),∇ fk(θ)) −

kn∑
j=1

X σ k
j
(θ)φ(θk

j , fk(θ
k
j ),∇ fk(θ

k
j ))

⎞
⎠
∣∣∣∣∣∣ ≤ K2

k

for some K2 > 0 and all θ ∈ � where ∇ fk is continuous. Therefore

∣∣∣∣∣∣∣
∫

�

φ(θ, fk(θ),∇ fk(θ))dθ − ‖σ k
j ‖

kn∑
i=1

φ(θk
j , fk(θ

k
j ),∇ fk(θ

k
j ))

∣∣∣∣∣∣∣

≤ K2‖�‖
k

+

∣∣∣∣∣∣∣
∫

�

gk(θ)dθ

∣∣∣∣∣∣∣
. (24)

By Lebesgue Dominated Convergence

lim
k→∞

∫

�n

gk(θ)dθ = 0,

moreover, the definition of �n implies

∫

�\�n

gk(θ)dθ ≤ 2K1

n
.
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Given ε > 0 take n ∈ N such that 2K1
n ≤ ε

2 and K such that

K2‖�‖
K

+

∣∣∣∣∣∣∣
∫

�n

gK (θ)dθ

∣∣∣∣∣∣∣
≤ ε

2
.

Then Eq. (22) holds for all k ≥ K . �

References

1. Anguilera, N.E., Morin, P.: Approximating optimization problems over convex functions. Numer.
Math. 111, 1–34 (2008)

2. Armstrong, M.: Multiproduct nonlinear pricing. Econometrica 64, 51–75 (1996)
3. Bolton, P., Dewatripoint, M.: Contract Theory. MIT Press, Cambridge (2005)
4. Brock, F., Ferone, V., Kawohl, B.: A symmetry problem in the calculus of variations. Calc. Var. Partial

Differ. Equ. 4, 593–599 (1996)
5. Carlier, G.: Calculus of variations with convexity constraint. J. Nonlinear Convex Anal. 3(2), 125–143

(2002)
6. Carlier, G.: Duality and existence for a class of mass transportation problems and economic applica-

tions. Adv. Mathe. Econ. 5, 1–21 (2003)
7. Carlier, G., Ekeland, I., Touzi, N.: Optimal derivatives design for mean-variance agents under adverse

selection. Math. Finan. Econ. 1, 57–80 (2007)
8. Carlier, G., Lachand-Robert, T., Maury, B.: A numerical approach to variational problems subject to

convexity constraints. Numer. Math. 88, 299–318 (2001)
9. Choné, P., Le Meur, H.V.J.: Non-convergence result for conformal approximation of variational prob-

lems subject to a convexity constraint. Numer. Funct. Anal. Optim. 22(5), 529–547 (2001)
10. Ekeland, I., Témam, R.: Convex analysis and variational problems. Classics in Applied Mathematics,

vol. 28. SIAM (1976)
11. Evans, L.: Partial differential equations. Graduate Studies in Mathematics, vol. 19. American Mathe-

matical Society, Providence (2002)
12. Horst, U., Moreno-Bromberg, S.: Risk minimization and optimal derivative design in a principal agent

game. Math. Finan. Econ. 2(1), 1–27 (2008)
13. Kawohl, B., Schwab, C.: Convergent finite elements for a class of nonconvex variational problems. IMA

J. Numer. Anal. 18, 133–149 (1998)
14. Lachand-Robert, T., Oudet, É.: Minimizing within convex bodies using a convex hull method. Siam

J. Optim. 16(2), 368–379 (2005)
15. Lachand-Robert, T., Peletier, A.: Extremal points of a functional on the set of convex functions. In:

Proceedings of the American Mathematical Society, vol. 127–136, pp. 1723–1727 (1999)
16. Mosco, U.: Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3,

510–585 (1969)
17. Mussa, M., Rosen, S.: Monopoly and product quality. J. Econ. Theory 18, 301–317 (1978)
18. Nicolescu, C., Persson, L.-E.: Convex Functions and their Applications. CMS Books in Mathematics.

Springer Science+Business Media, Heidelberg (2006)
19. Rochet, J.-C., Choné, P.: Ironing, sweeping and multidimensional screening. Econometrica 66, 783–

826 (1988)

123


	An algorithm for computing solutions of variational problems with global convexity constraints
	Abstract
	1 Introduction
	2 Setting
	3 The algorithm
	3.1 Description
	3.2 Convergence

	4 Examples
	4.1 Some microeconomic motivation
	4.2 A benchmark
	4.3 The Rochet--Choné problem
	4.4 The Mussa--Rosen problem with a non-uniform density
	4.5 An example with non-quadratic cost
	4.6 Minimizing risk

	5 Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


