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1. Homoclinic orbits

We are given a C? map H:IR x R?¥ IR, and we consider the associated system of
ordinary differential equations

x'=JV H(t, x), (1.1)
where J denotes the 2N x 2N matrix

0 I
=(2r o)
with J*=J"!= —J, and V_H(t, x) denotes the vector

0H
el <i<
8xi(t’x)’ 1<ig2N.

Systems of the form (1.1) are called Hamiltonian, and the function H is referred to
as the Hamiltonian of the system. Throughout this paper, it will be assumed that H
is periodic with respect to time:

AT>0:H(t+ T,x)=H(t,x) V(t,x).

A lot of attention has been devoted in recent years to finding periodic solutions
of system (1.1) under convexity assumptions. We refer to the forthcoming book [5]
for a survey. It is our purpose in the present work to find other types of solutions,
namely the doubly asymptotic solutions, first discovered by Poincaré [13].

If x is a periodic solution of system (1.1), that is X(t + T) = x(t) for all ¢, another
solution z will be called doubly asymptotic to X if |z(t)— x(¢)] -0 when t— + co.

Assume for instance that the periodic solution X is hyperbolic. This means that
the matrix M(T) has no eigenvalues of modulus 1. Here M(r) is the resolvent of the
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linearized system around X, which is defined by

dM e =
—d?' =JH (t, X(t))M

M(O)=1.

Then there are two smooth n-dimensional sub-manifolds W, and W, called
respectively the unstable and the stable manifold, defined by

EeW, iff |phtx—x(t) -0 when t——c0
EEW, iff |ohx—%(t)) >0 when t—+c0.

Here we have denoted by ¢;? the flow of (1.1), and assumed that it is globally
defined. We also have

X0 eW,nW,.
It follows from the definitions that a solution z(t) is doubly asymptotic to x if
and only if 20)e W,AW,.

In other words, a doubly asymptotic solution exists if and only if the stable and
unstable manifold intersect away from %(0). If they intersect transversally,
Poincaré ([13, Chap. XXXIII]; see [11] for a modern exposition) showed that
there must be infinitely many doubly asymptotic solutions.

The drawback in this approach is twofold: one must show (a) that W, and W,
intersect; (b) that the intersection is transversal. This can be done in certain
situations, the most notorious of which is the so-called Melnikov theory, [10] or
[6] which depends on the presence of a small parameter &. But it is not an easy task
in general.

This is why we are trying another, variational, approach. We first simplify the
problem by applying Floquet theory to the linearized system around %

Y =JH"(t, %(t))y. (1.2)

If, for instance, the eigenvalues of M(T) are simple (so that neither 1 or —1 is an
eigenvalue), by a suitable T-periodic change of variables

y=P(t)z, with P(t+T)=P(t)
we can bring system (1.2) in the form
7 =Ez, (1.3)

where E is a real matrix with constant coefficients, all eigenvalues of which have
non-zero real part. In addition, P(t) will be symplectic, [12] so that the
Hamiltonian form of the system will be preserved:

E=JA, with A*=A.
Write x=X(t)+ y, and separate the linear terms in system (1.1):

{ y =JH"(t,X(t)y + JV,K(t,y)
K(t, y)=H(t, X(t) + y) — (VH(t, X(1), y) — 5 (H'(t, (1)), ).
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Performing the symplectic change of variables y = P(t)z, we get another Hamilto-
nian system

2’ =JAz+ JV,R(t,2) (1.4

with R(t, z)= K(t, P(t)z). It follows from our construction that
Rl(ztl’f) 0 when |z]—0 (1.5)
R(t+T,2)=R(t,z) VY(t,2). (1.6)

We shall study Hamiltonian systems of type (1.4), satisfying conditions (1.5)
and (1.6). Of course, more stringent assumptions will be needed if we are to prove
the existence of doubly asymptotic orbits. We shall assume that

VtelR R(t,-) is strictly convex 1.7
and that, for some a>2 and k,,k,>0, we have
1
R(t,x)= &(VxR(t,x),x) Vt, Vx+0 (1.8)
kylx|* = R(t, x) S kylx|*. (1.9)

Condition (1.8) is equivalent to the following:
Yit,x), VA=1, R(t,Ax)=A*R(t,x) (1.109)

which implies in particular condition (1.5).
Then we prove

Theorem 1. Assume E =J A has no eigenvalues with zero real part, and that R is a C?
Sunction satisfying (1.6) to (1.9). Then (1.4) has at least two solutions z, and z, doubly
asymptotic to 0:

ZieX(R) and z;eD(R) Vy=p

(where B is the conjugate exponent of o, defined by% + % = 1), and which are non-
trivial and distinct in the following sense:
VkeZ,k+0, Vt 2z, ()Fz,t+kT)+0. [ (1.1
In the autonomous case, this result simplifies.
Theorem 2. Assume that R e CY(R?N,R) satisfies:
R is strictly convex, with R(0)=0 and R'(0)=0, (1.12)
Jo>0 suchthat |x||Ze=3(Ax,x)+R(x)>0, (1.13)
(x, R'(x)) 2 aR(x)

k|x|*< R(x). (114

3k>0, Ja>2 such that ||x||§g=>{

Then the equation

2'=JAz+JR'(2) (1.15)
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has at least one solution, which is non-trivial and doubly asymptotic to O
ze WHHR) and z+0. (1.16)

Proof. Modify R outside the ball |x[|<g to get a strictly convex function
Re CHR*", R) such that:

Ixl| <o = R(x)=R(x); .17
3(Ax, x)+ R(x)=0= |x|| <¢; (1.18)
¥x, VA1, R(Ax)=*R(x); (1.19)
Ik, k'>0 such that Vx, klx|*< R(x)<K|x|*. (1.20)

This is possible by the conditions on R. By Theorem 1, the equation
Z=JAz+JR(2) (1.21)

has a solution z+0, such that:

Zt)»0 when |[tj—o0. (1.22)

Since the equation is autonomous, its Hamiltonian is an integral of the motion:
L1(Az(t), )+ R =h Vt. (1.23)

Because of (1.22), the constant & has to be 0. It then follows from (1.18) that
12(t)]| <o for all ¢, so that (1.15) and (1.21) in fact coincide in a neighbourhood of
). O

Note that we do not claim multiplicity in the autonomous case. This is because,
if Z(t) is a solution, so is Z(t +1,) for any t,€R. So, for any choice of T, condition
(1.11) will be satisfied with, for instance, z; =7 and z,(t)=z2 <t+ —;)

The paper is organized as follows. In Sect. 2 we set up a variational problem on
WAR) and we show that its solutions z satisfy (1.4). From the definition of
W1 AR) we must have z(f)—0 when t—o0, so these solutions are doubly
asymptotic to zero. The variational formulation we use is inspired from the dual
action principle of Clarke, [3] and requires R(t, - ) to be convex. As in [4], we show
that the dual action functional has a local minimum at the origin but achieves
lower values somewhere else. In the case when one looks for T-periodic solutions,
one may then conclude existence by the Ambrosetti-Rabinowitz mountain-pass
theorem.

However, since we work in an unbounded domain, there is an inherent lack of
compactness, which we overcome by the concentration compactness method of
Lions [8, 97: this is the aim of Sect. 3. Then, in Sect. 4, we prove existence of one
homoclinic solution for (1.1). Sections 5 and 6 are devoted to prove Theorem 1.
More precisely in Sect. 5 we prove some additional compactness properties which
hold for our functional; this is done by introducing a slightly weaker version of the
Palais-Smale condition, which is satisfied by our functional if we assume
Theorem 1 is wrong, and suffices to prove a deformation lemma. Finally
Theorem 1 is proved in Sect. 6, by contradiction.
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Independently, P. Rabinowitz has found heteroclinic orbits for a second order
system, x” + V'(x)=0, with a periodic potential V. His method relies on minimizing
the corresponding Lagrangian on a suitable subset of path space, [14]. Moreover,
an earlier version of our paper has inspired some related work, such as the paper
[7] by Hofer and Wysocki, where the existence resuit (but not the multiplicity) is
extended to the non-convex case.

2. Variational formulation
We consider the following problem

{ x'=JAx+JVR(t, x)

x(+ 00)=0. 1)

We assume
(A1) A is a 2N x 2N symmetric matrix;
(A2) All the eigenvalues of E=JA have non-zero real part.

Remark 2.1. (i) Assumption (A1) implies that if o is an eigenvalue of E, then —a, &,
—& are also eigenvalues of E.

(i) From (A2)it follows that the flow e® induced by x’ = Ex is hyperbolic. Then
IR has a direct sum decomposition R?N = E, @ E, invariant under E such that the
induced flow on E; is a contraction (i.e. |e"Ex,| < ke ~¥|x,| for some k, b>0 and all
xo € EJ) and the induced flow on E, is a expansion (i.e. |e"Ex| = ke™|x,| for some
k,b>0and all x, € E,). Moreover such a decomposition is unique. From part (i) it
follows that dimE,=dimE,=N. [

On the nonlinearity we only assume, in this section,

(R1) ReCY(R xR?¥;R) and R(t,-) is strictly convex;

(R2) R(t+ T, x)=R(t,x) for some T>0;

(R3) R(t,x)=c,|x|* for some a>2 and R(t,0)=0.

We want to set up a (dual) variational formulation for problem (2.1). We start
by studying the linear part of (2.1).

1 1
Lemma 2.2. Let o>2, ot 5= 1. Suppose (A1-2) hold. Then Vue I!(R,IR%V)
there exists a unique solution z of the system
—JZ'—Az=u. (2.2)

suchthat ze WP L Vr = B. In particular, the equation z = Lu defines a self-adjoint,
bounded linear operator
L:If-1r.

Proof. Takeue If(IR,IR*Y). We want to prove that it exists a unique z € I*(R, R2¥)
such that
—Jz'—Az=u 2.3)

or
Z—Ez=Ju. (2.4)
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The general solution of (2.4) is given by
z(t) = eFE+ (}) EC )V y(t)de. (2.5)
Let P, and P, be the projections onto E, and E, [see Remark 2.1 (ii)]. Then
2(t)y=e"(PL+ PO+ (j: eECTIP Ju(t)dr + (}t; eE7OP Ju(t)dr. 2.6)
We claim that, choosing

Pé= ([) e FP Ju(t)dr

+

Pl=— [ e FPJu(r)dt
0

we have that the corresponding z given by (2.6) belongs to L'(R,R2?¥) Vr> 8. We
first observe that x is well defined. Indeed, we know that

le ™ ®PJu(t)] < ke®|PJu(t) < kye™|u(t)
hence

§ leP P Ju0lde sk, | eulo)]ds

0 la (+ o 1/
§k1{_j e""'dr} {j Iu(t)l”dt} <400,

— o0

With this choice of £ we find the following formula for z
t + o
()= [ X 7IPJu(t)di— [ €7 9P Ju(t)dr
- o0 t
or
+ + o
()= [ £y (t—1)PJu(t)dr— [ £y (t—1)PJu(r)dr, (2.7)

where
1 if s20

1=2"(=9)= {o if s<0.

We now prove that
+
z(t)= | " *(t—1) P Ju(t)dre I*(R,IR?M).

We first remark that

B¢y (t—1) PJu(r) Skye 0 y (£ —1) lu(r)].
Set g(x)=e"**x*(x). Then

[z (O k(g * lu) (),
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where * denotes convolution. Since

+o© + 1
[ lgh=] e "dx=—
— 0

ub
we have that

1
Yuz1 geIXR,R) and |gllh=—-.

ub
Using the well known convolution inequality
g * [ulll, < ligll, lull,
. 1 1 1
which holds for o= ; + a —1,and r,p,q=1, we find
g*|ule L(R,R*™) Vre[B, + o] 2.8)

hence z, e L(R,R?Y) for all r=p. The same arguments also prove that
z,€ (R, IR?M) so that z=Lu also belongs to I'(R,R?¥) Vr=p, and:

[Luli, = csllullg, (2.9)
ILullp=callulp- (2.10)

From the equation z' — Ez=Ju it easily follows that ze W8, So ze W!-An I’
for all r = B, as announced. In particular, z= Lu € I* (here we use the fact that a> 2,
so that a> f).

It remains to show that L: I#— 7 is self-adjoint. Set z=Lu and w= Lv. Then

u=-—Jz'— Az

v=—Jw —A4Aw

(0, Lu)= 3@ (o(t), Lu(t)) dt

i (= Jw()— Aw(D), () dt

- 00

T (—Iw@.a0)de+ ] (An(e) 0)de

while

+ o + o0
(Lo,u)= § (=Jz(t),w(t))dt+ [ (Az(t), m(t))dr.
Hence, due to the symmetry of 4 and the skew-symmetry of J,
+©
(v, Lu)—(Lv,u)= | Edt-(—.lw(t), z(t))dt=0. (2.11)

Remark 2.3. It is not true, in general, that ue [f implies Lu e I* if §> 2. Take, for

example,
td— 1 t&
(7))
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.. . 1. .
for t large and positive. Then u € I provided 6 < — . Since in such a case Lu(t)=t°

(for ¢t large and positive), Lue [* if and only if § < — %. On the other hand we have

that —1<—1. ]
o

p

We now introduce the Legendre transform of R. We set
G(t, y)=max{(x, y)— R(t, x)| x e R*"} . (2.12)

It follows from (R1), (R2), (R3) that
(G1) GeCY(IR xR?¥;IR), and G(t, -) is strictly convex;
(G2) G(t+T,y)=G(t,y);
(G3) 0=G(t,y)<cshl’s
(G4) [7,G(t, I Scelyl .
We can now state our dual variational principle

Lemma 2.4. Suppose (A1-2), (R1-3) hold. Then the functional f:If(R,R?*¥)-R
defined b
fined by f)= { Glt.u)— 4 (u L)
R R
is well defined and of class C'. If ue I!(R,R?") is a critical point for f, then v(t)
=V,G(t,u(t) is a (classical) solution of (2.1).
Proof. From (G3) it follows that

[1G(t u)|<cs | lul’
R R

which implies that the first term of f is well defined. From Lemma 2.2 it follows
that Lue I* Yue I#, so that the quadratic term also is well defined. The fact that f is
of class C* follows from (G1) and (G4).

Suppose now that u is a critical point for f on I?. Then

V,G(t,u(t)) — Lu(t)=0 forae. teR.
Set o(t)=V,G(t, u(t)). Then

{v(t) =hG(t, u(t)
v(t)= Lu(t).

Using the Legendre reciprocity formula
BG(t,)=x = VR, x)=y
together with Lemma 2.2 we get
{u(t) = V.R(t, u(t))
u(t)= —Jv'(t)— Auv(t)
ie.
—JU'(t)= Av(t) + V. R(t, v(t)) .

Standard bootstrap arguments then show that » is actually a classical
solution. [J
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3. First compactness properties of f

To prove existence of critical points of f we need to show that f has some
compactness properties. We remark that our functional does not satisfy the Palais-
Smale (PS) condition. Indeed, suppose that u(¢) is a critical point of f. Then, for
every ke Z, v{t)=v(t + kT) is also a critical point for f and f(v)= f(v)). In spite of
that there is no subsequence of (v,) which converges.

This phenomenon is a consequence of the fact that f is invariant through the
action of the non-compact group Z and is reflected in the non-compactness of the
linear operator L (this in contrast to the periodic solution problem, where the
setting is very similar to ours but the corresponding linear operator is compact).

A general theory to deal with this kind of non-compactness has been described
by Lions [8, 9] under the name of “compactness by concentration”, and we shall
make use of it. We start by studying the compactness properties of L.

Lemma 3.1. Let (v,) e I/(R,IR2Y) be such that
) nfz loae)f = 2;
(i) Ye>0 IR >0 such that

A—e< _'f O <A V. (3.1)

Then there exists a subsequence v,, such that Lv, —w in L.

Proof. For heRR, set t,w(t)=w(t +h).
We know that a sequence (Lv,) € L* is precompact if

{Ve>0 Vo€R 36>0 suchthat |h<é (32)
= ||ty Lo, ~ Lo, |l Loy <& VN3
and

Ve>0 dw€R suchthat |Lv,|| «g\w) <€ Vn. (3.3)

To prove (3.2), we remark that from (2.7) it follows that
Ly,=% *v,, 3.4)

where

L= ()P —x " ()PJ)=Z ()~ L .(1) (3.5)
so that

T, Lo, — Lv,=1,(Z *v,) — F *v,=(1,L — L) *v,.
Hence, Vo€ R
[Tl — Loyl ooy S [(14F — £) * Ul Loy
SN hts— L) * Vpll Lawy + 1(ThZu— L) * Uyl oy
S Mt — s ||L°=/2(1R) + Tt — «g’u“uﬂ(n))

(we have used here the convolution inequalities described in Lemma 2.2). Since %,
and &, belong to L¥*(R), we get |1,.L,— Ll La2®)—0 as h—0 and (3.2) follows.
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To prove (3.3) we remark that for f, u=0 we have

{ [ dx (ijw Flx—1)u(t) dt)a}m
< { {dx [( T Fle—072 uef dt)w (T Fx—1)2 dt)mT}m

+ a/B) (B/a)(1/B)
= flifhm { {j} dx(_j Flx— P2 u(p)? dt) } X

By a standard inequality

+ o k) 1/k +
{f dx< | g(x.) d}’> } < | dy (j g(x,y)"dx)”"
Q —®© — 2

{ ] dx ( if: Fx—t)u(t) d:)a}m

+oo ue
S lim {_Iw dtlu(e)l’ <ff) flx—0?2 dx)'g ! “} : (3.6)

Let us now take Q €R. Denote Q=R\w. We have

hence

[ Lvg|l Loy S 115 * 04| o)+ | L4 * 0l i)
and

| L * vl Ly = {I dt
2

o

+ o
[ Py (t—1) PJv,(1)dr

+
[ ke ¥~y *(t—1) PJv,(t)dr

a}l/a
a} 1/a
and using (3.6) we find
(s * vl Ly Skylle —th+(t)“g§2(R)

+ w0 _ab(t—1) Bix) 1/8
X {I dflv..(f)l”(je 2 x+(t—7:)dt> } ’
0 o

ie.
+ o0 _abit—1) Bja) 1/8
| &, * v,.ilu(m-f-csk{j drfv, (7)) <{I} e 2 x'(t—1) dt) } .

Let us now estimate
_ab(t—1

f@=7je 2 x*(t—7)dr.
2

Take 2 =7—00, —AJU[A, + o[, A>0. Then
0 if 1=2—4

ab(A+1)
%(1—6 2 )if 1<—4

—4 _abi—1)

fe 2 y*t—r)dt=

-
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and
_ab(4-9)
ie 2 if 1<4
+ _ablt—q) ab B
fe 2 yxte—vdt=
4 2
so that
2 ab(4 +1) _(lb(A—t)
%(1—8 2 +te 2 ) if 1£—A
7 _aba-q)
f)= %e 2 if —AZtZ4
2
E lf TéA.

4
In particular f(7)< o Take Re]1, A[. Then

2 _ak4-R)
f(t)gge 2 Vte]—R,R[.

We deduce, taking Q =]— o0, — AJU[A4, + o[ and Re]1, A[, that

+© 1/8
1% vnlliny S s {_& oo (o) f (2P dt}

seo] Lol speaes (b soteacs ol sopas)”

and hence

| & * Un”{«(!))

-R + o0 _BbA-R) R
é%{ [ o det [ [ofolf df} +¢i0€
— R

1 o0 dr.

Fix ¢>0 and choose R >0 such that
-R + o0 1/¢ B
cod | oD dr+ | |o0fdey<={=]).
~ o0 R 2 2
Then choose 4> R such that

_BbA—R) 1{e\f
Cyo€ 2 /lﬁ< 5(‘2‘) .

It follows that 5 5
1/¢ 1(¢
Hgs*vnuﬁa(ﬂ)é 5(5) + 5(5) s
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ie. .
L * Uyl oy 3

Since we can prove with the same argument that also ||.%, * v,]| o) < %, we see that

(3.3) holds and hence that (Lv,) e I(R) is precompact. [J

We are now in position to study the compactness properties of /. We need to
make some more assumptions on the non-linear term R (essentially the usual
superquadraticity assumption introduced by Ambrosetti and Rabinowitz [1]).

(R4) R(t,)S L FR(6,), %)

(RS) R(t, )< ks "
(R4) and (RS) imply
(G5) 0< %(VyG(t, PN G, Y);
(G6) G(t, )z klyl.

Lemma 3.2. Suppose that (A1-2) and (R1-5) hold. Then every sequence (u,) in If
such that f(u,)—c and f'(u,)—0 is bounded in L. Moreover ¢ 20 and inf{||ul||u=0
and f'(u)=0}>0.

Proof. Let (u,) € I*((R,IR*M) be such that f(u,)—c and f’(u,)—0. Then ¢, , < f(u,)
<c,,, 80 that

+ 0 + o
s | Glum)—3 | (uplu)Sess
+ oo +
_‘5 (VyG(t’ un), un) - _§ (um Lun) = (f,(un)’ un) .
Eliminating (u,, Lu,), we get
+ o0 1+ 1
f(un) = _5 G(t’ un) - —2‘ _j (VyG(ta u,,), un) + E(f’(un)’ un) é Ci2- (37)
Using (G5) we then deduce
ﬂ + 0 1 ,
1=2) 1 Glm)Sern+ 317 @)l o,
and using (G6) we deduce
+ 1
¢y § lul'scip+ 3 If ()l o Hltanll s

and since | f'(u,)]| L..—0 we deduce that ||u, s is bounded. Using this information
and (G5), it follows from (3.7) that

S@)2 =31 @)l = luall s —0.
Suppose now that ue I? is such that f'(u)=0. Then

0="T G u0~ § Ly
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or

+ oo

| G 00= | L.

Since G{t,-) attains its minimum at the origin, we have G(t,u) <(V,G(t, u), u).
Using condition (G5) and the boundedness of the operator L, we get:

+ w0 2
ky, | |“'ﬂ§03“u”ﬂ
- 0
from which we deduce

k -
<l O
C3

We can now state the main lemma concerning the compactness behavior of the
“Palais-Smale” sequences, ie. of the sequences (4,)e If such that f(u,)—c and

J(ug)—0.

Lemma 3.3. Suppose (A1--2) and (R1-5) hold. Suppose that (u,) € L is such that f(u,)
—c¢>0and f'(u,)—0. Then there exist 1 <m< + oo critical points (U™); <y < of f
(not necessarily distinct) and a subsequence (u, ), o such that

Uy, — Z u(k)(' +Yg‘)) -0, (38)
k=1

L8

where |y© —y®)| > + 00 as p—+ oo if k+k'. We also have

Sy~ 3 £) (39)

and the y\¥ can be taken to be integer multiples of T.

Proof. The proof is based on a lemma by Lions contained, for example, in [8]
which we recall here in the form best suited for our application.

+
Lemma (“Concentration compactness”). Suppose g,€ L'(IR,R), 0,20, | ¢,=1.

Then there exists a subsequence, which we still denote by g,, for which one of the
three following possibilities happens
(i) vanishing:
y+R
sup | ¢,»0 as n—>+ow YR>0;
yeR y—R
(i) concentration:

ym+R
3y,eR: Ve>0 IR>0: | ¢,=21—¢ Vn;
m—R
(iii) dichotomy:
Jy,eR, 31€]0,1[, IR., RZ R such that
1

R
(a) R,E,Rf—»+oo,—R~§-—>0;
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yn+t RE
(b) [ en—i:
yn— R4
ynt+R
(c) Ve>0 IR>0: | g,=i—¢ Vn;
y»m—R
yn+ R
d) { 0,24 as no+o. [
yn—RZ
luat)P

We will apply this lemma to g,(t)= AR
nlip
Step 0. There is some 6>0 such that ||u,|z= 4.
Suppose, by contradiction, that | u,| ;—0 (up to subsequences). Then from (G3)

it follows
+ o

0= | Gltu)=cslu,l§—0

and

+ oo

§ (U Lu,)

—

<c3llu,liF -0

so that
f(u,)-0,

which contradicts the assumption that lim f(u,) > 0. It then follows that g, satisfies
the assumptions of the concentration compactness lemma. The proof will now be
divided into three steps.

Step 1. Vanishing cannot occur.
Suppose vanishing occurs. This implies, in particular, that there is a sequence
g,—0 such that

s+1
[ lue)fdt: Se,llu,lf VseR.
s—1
Then, using the same notations as in (3.5), we write

|Luy(8) S | &, * u (O] + | L, * u,(2)]
with

+
L u )= [ 7 (t—1)PJu,(t)de

t
<kie™ | uo)lde

+00 t—k
Skie™ Y [ eMufo)lde
k=0 t—k~1
+a t—k la ( t—k 1/8
<ke ™y < | etdr [ luo)if dr
k=0 (t-k-1 t—k—1

__e"‘zb 1fa +
éklg'}/ﬂ”unnﬁe—br( — ) ebtkzoe bk
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and finally

1___e—ab 1/a 1
szs*un(t)lgklsz/”||unu,,< ~ ) ——
so that
|Lu,ll,—0 as n—+oo if vanishing occurs. (3.10)

Since
+ @ + o
ILuli= § |Luf* <[\ Lu,j%? | |Lu,f
— 0 — o

and since [|Lu,|lz<c4lu,ll; by Lemma 2.2 we find that

| Lu,li,—0
and hence

l(um L“n)j é “un ”ﬁ ”Lun Ha_)o .
Using now the fact that f(u,)—0 we deduce
V,G(t,u,)=Lu,+ f'(u,)—»0 in L*

and using condition (G6) again

+ o 1 tw 1
g funl’ < K, I (RGtw)u) < 5 I7,G(t, unlla llunll =0,

1e. |lu,ll;—0, which contradicts Step 0. So vanishing cannot occur.

Step 2. Concentration implies compactness.
If concentration occurs, we set

Will)

W"(t) = un(t - yn)’ vn(t) = ” W"H s '

Then
+ w0
[ loaff=1
and for every ¢>0 there is some R>0 such that

+R
1_6§ I lvnlﬁél-
-R

Using Lemma 3.1 we deduce that it exists a subsequence {(which we still denote
by v,) and some Z such that
Lv,—% in I*.

By Lemma 3.2 and Step 0, the sequence ||u,| 5 is bounded away from 0 and
infinity. We can therefore find some z in L* such that

Lw,—~z in [,
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We can always assume, without loss of generality, that y,=n,T is an integer

multiple of T (if this is not the case it is enough to take w,(f)=u,| t+ l:&] T

T
where {¢] is the integer part of o). It follows that f(u,)= f(w,) and that f'(w,)(¢)
= f"(u,) (- + y,), so that f(w,)—c, f'(w,)—0. But then

z, ()= V,G(t, wt)) = f'(w,) () +(Lw,) ()—z() in L°.
Using the Legendre reciprocity formula we then deduce
w(t)=VR(t, 2,(t) > V.R(t, z(t))=w(t) in If
since z(t)- V.R(t, z(t)) is continuous from I* into If. From

w,—»w in If

we deduce
Lw,—»Lw in I*
and
V,G(t,w,)-V,G(t,w) in L,
so that

V,G(t,w)—Lw= lim (V,G(t, w,)— Lw,)= 1iqm f'(w,)=0,

i.e., wis a critical point for f. It is clear that in such a situation Lemma 3.3 holds
with m=1.

Step 3. Dichotomy.
If dichotomy occurs, we set

Walt) =t + ),
where y, is an integer multiple of T and
W(8)=w,(t) Xpera(®)
Wi (t)=w,(t) (1 — xpcraft) s
wit)=w,{t)—wi () — wiD(e).

(g
w,, (L . .
Set also vﬁl’(t)=ﬁ. The sequence vl satisfies the assumptions of
n Hp
Lemma 3.1. As in Step 2 we deduce

wilsz in 7. (3.11)

We first prove that f(u,) splits into f(w{?)+ f(w!¥) up to a small reminder.
Consider

S0 = O+ SOP)+ )= WD, Lw) = | (w2, Low+ w2,

—~ 0
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Since

+ 3 + oo + oo ! + © 2
f W= f wlf— | W= | w0
— — — —

+ oo
we have that f(w?)—0 as well as | (W(>, Lw( +w?))-0.
- 00
Next we consider the term

+ o0
f W LwP)y= | dre ™ (w,,(t), [ et t—r)PJ w,,(r)) dr.
) B(RA)°

— B(RA

We know that
0 if t=1

|9E('_I)X+(I—T)P|§{ .
T ke 0 i <t

In particular
[eFC Dy (t—1)P < ke 7 v 1

It follows that

+ o " 2
| W, Lw?)
- 0

<k, [ dt | dee w0 w, (o)l
B(R}))  B(R3)*

b
- lt—1
dt [ die 2 |w,0)lIwy(7)].
B(RY)  B(R3)*

It is easy to show that the double integral is bounded independently from n.
Since |R! — R2|— + oo, we have that

+
f W Lw®)—-0 as n-+o0.
- a0

This proves the splitting formula
Sw)=fWD)+ fwP) +oln), (3.12)

where o(n)—0 as n— + 0.
We now claim that f'(w{")—0. Let us remark that, for every n

(R, R*")=I(B(R,), R*M)@® L/(B(R}), R*M)® L/(R\(B(R;)UB(R})), R*").

We write accordingly u=u"+u® +u® for every u in I
We now prove

(f'wa), u )= (f WD), u)+ 04(m) 4Dl (3.13)
(f'wa), u®) = (W), u®) + 0,(m) |4Vl 5 (3.14)

where 0,(n), 0,(n)—0 as n— + co. In fact

SO u)= | (BGEwAED)— | (L)

() 4 D)= | (LD, D)~ (L@, ulh).
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We have already seen that

+ o
J (Lw?,uh)
-

<o |[u®l;  (dist(Suppw?, Suppu'’)—c0)
and that

oM uV],  WP-0 in IF).

+
| Lw,u)
-

From this (3.13) and (3.14) follow. Then, for every ue I’/(R,IR?Y)

(fD) ) =(F W) u D)+ (WD), u®) + (f (WD), u®)
=(f'(wa), u'V+u?) + (f WD), uD) = (04(m)+ 0(m) [uP]5.  (3.15)

The first and last term on the right clearly go to zero. We investigate the second
one. Note that:

+ o + o
(S WD), u®) = [ (FGEwD),u®)— [ (Lwid,u®)
+
=— [ (Lw,u®).
Moreover,

<k

+ o0
[ (L, u?)
— @

R}
§ dtlu(t)] | e ¥ "lw(r)| dr.
[—RZ, — RAVIRA, R3] ~RA

R
Taking now R such that [ |w(z)|®dt=>A1—¢ we have that
-R

R
[ e w(z)| dr=g(t)
with g(t)=g,(t)+ g,(t), where
R
gi)= [ e P wz) de<cype” M
—R

while

g:(t)= | e P Tlw(t)| dr S ¢y see bl T RAL
[— R4, — R)JVIR, R}]

Finally, we deduce

+ o0
_f (Lwi, u®)| <k, ) dt{|u(®)] (c1qe =" + ¢ see B RA}

[~ R#, — RAIUIRA, R3]
Scyele RN 1) llu‘”llp .
Writing this into (3.15), we find that f'(w{")—0. We know that w{!) converges to

a limit z in I* by (3.11). So z has to be a critical point of f, that is, f’(z)=0. Now
consider the sequence

wn(t) = Wn(t) - Z(t) .
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We have, by the splitting (3.12):
+ o0
{ W f-1—-1>0
— o

JWp)—c—f2)
J'(#,)—0.

We can argue for w, as for u,; vanishing cannot occur since [|W,| z~1— 4, hence
either concentration of dichotomy applies.
Iterating this procedure K times, we get z!, ..., z¥ such that f"(z¥)=0and f(w,)

k
- f(z')+ ...f(zX). As we have seen in Lemma 3.2, we must have ||z¥|[7 "¢ > C—z >0

3
for every k, while |w,|l;—||z'l|5+ ...]|z%]|;. So K has to be bounded. This is the
content of Lemma 3.3.

4. Existence of a critical point for f

To prove existence of a critical point for f we will apply the Mountain Pass lemma
of Ambrosetti and Rabinowitz [1] together with Lemma 3.3. First of all we check
that the geometrical conditions of the MP lemma are verified.

Lemma 4.1. Suppose (A1-2) and (R1-5) hold. Then there exist r>0, >0, and
ve PR, R?Y) such that

(@) fW=6 for |ulg=r, f()20 for |ulz<r;

(b) llvllg=r and f(v)<O.

Proof. (a) follows from
+ o {1 to
fw= | Glt,u)=5 | (uLu)
+ 0 p 1 2
2k, __f ] "Ecanu”p

1
=k Julf = 5l

Since f<2, (a) follows if |lul|, is small enough.
(b) We claim that there exists v, e I(IR,IR?*") such that

+
{ (vo,Lvg)>0.

Then, considering
2 +o

+ o A
S(Avg)= _jw G(t, Avg)— 5 __L (vo, Lvo)

+® A2+
écslﬂ _j |Uo|ﬁ— a5 _j (vo, Lvg)
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we have that (b) follows for A large enough. To prove the claim, let
volt)= —JzZ'(t) + Az(2),
where z(t)e C* and

sinkt

0
z(t)= for tef—a,a];
coskt

0

z2(t)=0 for |t|=a;
lz(B) =1 Ve,
IZ@Isk Ve,

where ke N and aeR will be determined presently. Since Lv, =z, we find
+ + w0
§ (o, Lvg)= | (—Jz'+Az,2)

since — (z(t), JZ'(t)) = k[sin?kt +cos?kt]=k for |t| <a, we have that

+ o
{ (vg, Lvg)=2ka— f  (z—=J2)+ [ (z,A2)
- asit|<a+2 asjtiLa+2
=22ka—4k—2| Al (a+2)
=2k(a—2)—2||A| (a+2),
S .\ . a+2
which is positive provided a>2, k> ||A| = O

From Lemma 3.3 and Lemma 4.1 follows.

Theorem 4.2. Suppose (A1-2) and (R1-5) hold. Then problem (2.1) has at least one
solution u=0.

Proof. Tt is well known that, using FEkeland’s variational principle (sce
[2, Chap. 5]) applied to the functional

I(y)= St;pf ,

where yeI'={yeC([0,1]; /(R,R*¥)) such that y(0)=0, f(y(1))<0}, one can
deduce the existence of a sequence u, € If such that

f(u)—a=infsupf
r v
f(u,)-0.
From Lemma 3.3 immediately follows the existence of a critical point for f. []

Remark 4.3. Even if the critical point u found via Theorem 4.2 arises from a
sequence u, such that f(u,)—»>a= infsupf, we only get in the limit f(u)<a. Note
however that f(u)>0. [J r
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5. Further compactness properties of f

We saw in Sect. 3 that f does not satisfy the Palais-Smale condition, because of its
invariance for the non-compact group Z. In this paragraph we will use the fact that
Z is discrete to introduce a slightly weaker condition, which does not seem to have
been noted before. We denote it by (PS).

Definition 5.1. We will say that a C' function f on a Banach space E satisfies
condition (PS) if, whenever u, is a sequence satisfying:

Su)—e;
f'(u)—~0;
4+ 1 — tal| =0,
then (u,) is convergent. []
This condition is sufficient for the deformation lemma to hold:

Lemma 5.2. Let E be a Banach space, f: E-R a C! functional which satisfies (PS).
Suppose Je>0 such that

S Mla—s.b+e)U{ueE| f'(u)=0}=9.
Then dne C([0,1] x E; E) such that
(i) 70, x)=x V¥xekE;
(i) f(x)<a—¢ or f(x)=b+e=>n(s,x)=x Vse[0,1];
(i) f(x)=b=> f(n(1,x))<a.
Suppose, moreover, that f is invariant for the isometric representation T of a
group G, such that any orbit G, = {T(g)x|g € G} with f(x)e [a—¢,b+¢] is such that

ox=inf{||x — T(g)x| t|g€ G—{0}} >0.

Then we may choose n such that
(iv) ¥(g,t,x)e G x[0,1] x E, T(g)n(t, x)=n(t, T(g)x). [

Proof. Consider the projection p:E—E/T, x+—xX=G, Define &(x,7)
=inf{||x— T(g)yl zlg € G}. & is well defined on (E/T)?, symmetric and satisfies the
triangular inequality. Moreover, if |x — y|| < 3 min(g,, ¢,), then &(%, §)=||x — | ¢.
Hence 6(%, 7)=0 implies X=y, and & is a metric.
Now, to each xe Y={yeE; f'(y)%0, f(y)e[a—¢, b+¢]} we may associate a
x

vector V. eE and a radius r, < 5 such that, for any ye Bg(x,r,):
{ 1 O ee 1Vl e =26 —a)
SO, Vo=a-b.
We may also impose, for any (x,g)e Y x G:
{rx = rT(g)x =Trs
VT(g)x = T(g) Vx .

U = {By(X,r,)| X € Y/T} is then an open covering of the metric, thus precompact
space (Y/T, 6). % has therefore a locally finite refinement { W,|ie I}. Now to any i we
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may associate x; such that W,;CBy(X;, 7). The family

{@i,g =p~ {W)INBLT(g)x; 1) (> 8) €I X G}

is then a locally finite covering of Y.

Choose ¢ :R—R™*, smooth, with ¢(x)=1 for all x&[a,b] and ¢(x)=0 for all
xe]—-c0,a—e]ul[b+e, + o[

Define V(x) by

((i- a)ezl x G d(x, Y\O,,,) VT(a)"")
V(x)=o(f(x)) ( Y dx, Y\(gi’g))

(i,g)eIxG

V(-) is a locally Lipschitz vector field such that
(a) Vx€E, | f'(x)lg | V(x)ll e S 20— a);

(b) f(x)¢[a—e b+e]l = V(x)=0;

(c) VxeE, {f'(x), V(x)) £0;

d) f(x)ela,b] =< f'(x),V(x)) <a—b;

(¢) VgeG, Vo T(g)=T(g)~ V.

Define n by

70, x)=x xeE
ﬁ (5, x)=Vons, x) 5§20
asn > - r’ El =V

Let [0, L, [ be the maximal interval of definition of #(-, x).
Suppose that for some xe E, L, < + co. This implies

Lx

[ 1Venx)ldi=+co,

Vte [09!‘x[af° ”(tﬂ X)E [a_s’ b+8] .
Consider the sequence (t,),>, such that

to=0, t,<t,, <L,

th+1
J IVon(t,x)|| dt=)/L,—t,.

We have

@ il Ifen 0l S2b-a)f sup (Ventxl]™
<2b-a))/L,—t,

® sup i, x) =1, )| S )/ L, —1,

W, v)€ltn,tn+1
Ix + o
(») fIVen(t,x)l|dt= 3 }/L,—t,, where I ,=lim¢t,<L,.
0 n=0 n— o

If I <L,, the left term of (y) is finite, and the right one infinite. So we always
have I,=L,, and )/L,—t,—0.
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ChOOSing U, = ”(Sm X), with 5, € [tn’ tn+ 1] and ” Vo 11(5,,, x)”E §4(b - a) l/ Lx_ s
and applying PS to (u,), we obtain a contradiction with f(u,) decreasing to
cela—e, b+e] [see (b)—(c)].

We have thus proved that # is defined on R* x E. Then (b) gives (ii), (c) and (d)
give (iii) and (e) gives (iv). [

Lemma 5.3. Suppose (A1-2) and (R1-5) hold. Suppose, moreover, that f has only
critical points of the form u(- +&T), u given by Theorem 4.2. Then (PS) holds for {.

Proof. Consider a sequence (u,)CLf such that f(u)—c, f'(u,)—0 and
ety — 1ty || 0.

We know, by Lemma 3.3, that ¢=mf(u) for some integer m>0.

Suppose that for some A>0 and £>0 we could extract (u, ), o such that

vp unp¢ U B(“(+Y1)++u(+ym),8),
(¥15. 0 ¥Ym)eD
where D={(y,, ...,y €Z"T|i%j=|y;—y|> A}, D=Z for m=1.
The existence of (u, ) contradicts Lemma 3.3. So there is no such subsequence
and we have

m

u— L ul- +317)

-0, (5.2)

L8

where |y® ~ y%Y— + oo if k= k' and where the y, are integer multiples of T.
Let us remark that

inf u(-)—u(- +kT)|,s=6>0. (53)

This follows easily noticing that
kliin iu(-y—u(- +kT) s =2(ull1s >0

and that
wt)=u(t+kT)
implies u(t)=0 for every t.
If m=1in (5.2) we have that
Ittty = upll =ty g —0(- + Vi 1) F (- + Vi ) —u(- + ) Fu(- +y,)—u,l
2 [[u(- + Yy ) —u(- + Yl = i — (- +yps )l = fu(- + y,) —u,|
which implies
N+ Yoy ) —u(- +y)ll Sty — 1]
Flthge g — sl + Your M+ U +yp)—u, || <65
hence
y.=¢ for n sufficiently large.
It follows that
u,—u(- +¢)
and (PS) holds.
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For m>1 we have, proceeding analogously:

Hi (- + 5. —ul- +49)

m
é |Iun+l_un” + Upt1— kzl u(' +y£|k3-1

+ H T u(-+y)—u,
k=1

On the other hand, for n large,

m m
B )~ E)1Z B ) -+ —e.

Taking n large and recalling (5.3) we deduce from the above inequalities that
y®  =y® for n sufficiently large,

contradiction which proves that m=1 and that (PS) holds. [

6. Existence of a second critical point

In this section we will prove the existence of a second solution for system 2.1. It will
be found by a suitable inf-max procedure.
From now on, we set
s*u(t)=u(t+s).

The map u+— s*u is clearly an isometry of If into itself. Because of the
periodicity of R, we have:

f(T*u)=f(u) Yuel®, VnekZ.
We now prove

Theorem 6.1. Assume (A1-2) and (R1--5) hold. Then problem (2.1) has at least two
solutions v and w such that kT*v+w=+0 VkeZ.

Proof. We know by Theorem 4.2 that f has a critical point v+ 0. We will assume
that all critical points of f are of the form kT* v for some k € Z, and we will derive a
contradiction.
Set:
lvllg=py

inf lv—kT*v|=pu,.
k+0
We know that u, >0, u,>0, and p, <2u,. Now take p>0 so small that
p<ip, and |u|Sp=fu)<c=[(v).
Next consider the sets:
rs={yeC=([0,1]; L)|(0)=0, f(s * y(1)) <0 Vs}

and, for every yeI™,

5= {veC""([O, 1% 1)

¢(0,5)=0 a(1,s)=sT*y(1)}
o(t,0)=y(t) o(t, 1)=T*y(t) )}’
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Consider also the related sets I' and Z, which satisfy the same conditions
I*={ye CA[0,1}; I/)[#(0) =0, f(s * ®1)) <0 Vs}

and, for every yel™,

Zo= {O'GCO([O, 112, If)

a(0,5)=0 a(l,s)=sT*y(1)}
o(t,0)=2) o(t,)=T*y() )’

where ye ™.
Since C* is dense in C°, we must have:

inf max foy= inf maxfoy=c,
yels yel*

inf inf maxfoy= inf inf maxfeoy=c,.
vel's geZ¥ yelc geX*

Taking a(t, s)=sT* y(t), we find ¢, <c,. By Lemma 4.1, we have ¢, =¢; 26>0.
Since we have assumed that f has only critical points of the form kT * v, condition
(PS) holds, and hence the deformation Lemma 5.2 with G=Z, T(n)=nT*. Using
the corresponding deformation, we find that

cy=c=c,.
So, for every £>0, there exists y,eI'* and ¢, € X)_such that
supfeo,<c+e.
The family (@5 0> ¢i:[0,11* =R defined by
@ils, )= [178) = KT * () — I7e() = l[ve(sH

is equicontinuous.
Indeed

lo(s +h, 5"+ K)— @uls, N Z20ys + B) = vl + 2/ 708"+ B) = 7o) -

Moreover, ¢,(0,0)=0 Yk=0. By the Ascoli-Arzela theorem (¢,) is thus precom-
pact for the uniform topology.
But, for all (s, 5",

17e(8) —kT* y () =z 17 + 175 -

So, if a subsequence (¢, ) converges uniformly the limit must be zero. Finally (@)
converges uniformly to zero.
Hence, setting

pelk) = inf {[|,(6) = kT* 7 7Ol 2 5 176 2 2}

we see that there exists K,>0 such that, whenever k= K,, we have

3u
>
sk} 2 7
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Now define a map &,:[0,1] x [0, K,]—>If by:
Gt,s)=kT*ao,t,s—kT),

where k is the integer part of s/T.
Note that the maps d,:[0,1] x [0, K,]—IR defined by

dk(t9 S) = |'6£(ta S) —kT* U”
are C*, so that, by Sard’s theorem, almost every ue R is a regular value. We may

therefore assume that the subsets d; * % are either empty or closed submanifolds

of dimension 1, that is, either loops contained in the interior part of the rectangle
or arcs starting and ending on the boundary.

These curves have no self-intersections since they are submanifolds. By the
definition of u,, they are pairwise disjoint. We claim that there is no arc connecting
the side s=0 with the side s=K,.

Indeed, suppose there is such an arc, starting at (t,,0) and ending at (¢,, K,).
Then there is some k, such that

”08(t07 0)_koT* UH = —lzi

ot K)—koT*vl =2

and hence
”GE(tO’ 0) - ae(tla Ke)“ é u.
Now 6 ,(to, 0)=7.(to)and o,(t,, K,)= K, T*y,(t,). We have thus contradicted the
definition of K,, unless
lo(to, O)ll <p
or

”ae(tla Ks)” = "O'g(tl, 0)” <u.

Writing this in the preceding inequalities, we get ||koT*v| = ||v|| < 7“ <y,

which contradicts the definition of u,. The claim is proved.
Since there is no arc connecting s=0 with s=1, we can construct a C* path

¢:[0,1]-[0,1] x[0,K,]

such that &(0) lies on t=0, &(1) lies on t=1 and £ does not intersect any of the
AR
d; 5 )

Vh, YkeZ, |ofl(h)—kT*vll2

b

N =

Set
jW=a&h), Oshsi.
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The 7, belong to I' for every ¢>0, and

max foJ,— inf max foy=c.
yel

Extract a sequence 7,, ne N, such that

Vh, YkeZ, [§{h)—KkT*o] gg

max fo,< inf max foy+ 1
yel n
By Ekeland’s variational principle there will be for each nsome §, & I' such that
1
max fo$,< inf max foy+ —
yel n
1
— Vhe([0,1]
n

7

A 1 A ~
Vyel,maxgoy2maxfoj,— —ﬁmfx 15(h) —F(A)

and the latter condition translates into (see [1])

1 9m—FuW)l =

3y fo Pulha) = max f o 9,(k)

1
A h <,
£ @R = Vn

Setting 7,(h,)=u,, we have found a sequence such that

fu)>c,  fu)—~0
VkeZ, uu,,—kT*ungg.

This contradicts the concentration-compactness lemma and ends the
proof. [J
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