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I. Homoclinic orbits 

We are given a C 2 map H :~. x ]R2N---~x., and we consider the associated system of 
ordinary differential equations 

x' = JVxn(t, x), (1.1) 

where J denotes the 2N • 2N matrix 

 :(oI '0) 
with J * =  J - l =  _ j ,  and VxH(t, x) denotes the vector 

OH 
( t ,  x , l_<i_<2N. 

Systems of the form (1.1) are called Hamiltonian, and the function/-/ is  referred to 
as the Hamiltonian of the system. Throughout  this paper, it will be assumed that H 
is periodic with respect to time: 

3T>O:H(t+ T,x)=H(t,x) V(t,x). 

A lot of attention has been devoted in recent years to finding periodic solutions 
of system (1.1) under convexity assumptions. We refer to the forthcoming book [5] 
for a survey. It is our purpose in the present work to find other types of solutions, 
namely the doubly asymptotic solutions, first discovered by Poincar6 [13]. 

If ~ is a periodic solution of system (1.1), that is ~(t + T ) =  ~(t) for all t, another  
solution z will be called doubly asymptotic to ~ if [z(t)-~(t)[~O when t ~  + ~ .  

Assume for instance that the periodic solution ~ is hyperbolic. This means that 
the matrix M(T) has no eigenvalues of modulus 1. Here M(t) is the resolvent of the 
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linearized system around 2, which is defined by 

[ ~---t =JH"(t, 2(t))M 

M(O) =I. 

Then there are two smooth n-dimensional sub-manifolds W u and W~, called 
respectively the unstable and the stable manifold, defined by 

~eWu iff Igo~x-2(t)[~O when t---}-oo 

~'W~ iff Iq~x-2(t)l--*0 when t--*+oo. 

Here we have denoted by tptd the flow of (1.1), and assumed that it is globally 
defined. We also have 

2(0)e W.n W,. 

It follows from the definitions that a solution z(t) is doubly asymptotic to 2 if 
and only if z(O) e W.r~ w,. 

In other words, a doubly asymptotic solution exists if and only if the stable and 
unstable manifold intersect away from 2(0). If they intersect transversally, 
Poincar6 ([13, Chap. XXXIII]; see [11] for a modern exposition) showed that 
there must be infinitely many doubly asymptotic solutions. 

The drawback in this approach is twofold: one must show (a) that W~ and Vr 
intersect; (b) that the intersection is transversal. This can be done in certain 
situations, the most notorious of which is the so-called Melnikov theory, [10] or 
[6] which depends on the presence of a small parameter 5. But it is not an easy task 
in general. 

This is why we are trying another, variational, approach. We first simplify the 
problem by applying Floquet theory to the linearized system around 

y'= JH"(t, 2(t))y. (1.2) 

If, for instance, the eigenvalues of M(T) are simple (so that neither 1 or - 1 is an 
eigenvalue), by a suitable T-periodic change of variables 

y=P(t)z, with P(t+ T)=P(t) 

we can bring system (1.2) in the form 

z' = Ez, (1.3) 

where E is a real matrix with constant coefficients, all eigenvalues of which have 
non-zero real part. In addition, P(t) will be symplectic, [12] so that the 
Hamiltonian form of the system will be preserved: 

E=JA, with A*=A.  

Write x=2(t)+y, and separate the linear terms in system (1.1): 

y' = JH"(t, 2(t))y + J ~K(t, y) 
K(t, y ) -  n(t, 2(0 + y ) -  wxn(t, 2(t)), y ) -  x ,, - 2 (H it, x(t))y, y). 



3k>0,  3 a > 2  

Then the equation 
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Performing the symplectic change of variables y = P(t)z, we get another Hamilto- 
nian system 

z' = JAz  + JVzR(t , z) (1.4) 

with R(t, z)=-K(t, P(t)z). It follows from our construction that 

R(t,z) ~ 0  when Izl~0 (1.5) 
Izl 2 

R(t + T, z) = R(t, z) V(t, z). (1.6) 

We shall study Hamiltonian systems of type (1.4), satisfying conditions (1.5) 
and (1.6). Of course, more stringent assumptions will be needed if we are to prove 
the existence of doubly asymptotic orbits. We shall assume that 

Vt ~ F,~ R(t,. ) is strictly convex (1.7) 

and that, for some ct>2 and kl, k2>O, we have 

R(t ,x)< l (vxR(t,x),x ) Vt, Vx4:0 (1.8) 

kllx] ~ < R(t, x) <= kzlx] ~. (1.9) 

Condition (1.8) is equivalent to the following: 

V(t,x), V2=> 1, R(t,2x)>=2"R(t,x) (1.10) 

which implies in particular condition (1.5). 
Then we prove 

Theorem 1. Assume E = J A has no eigenvalues with zero real part, and that R is a C 2 
function satisfying (1.6) to (1.9). Then (1.4) has at least two solutions z 1 and z 2 doubly 
asymptotic to O: 

z' i ~ LP(P,) and z i ~ L~(PQ V~ > fl 

(where fl is the conjugate exponent of ct, defined by 1 1  ) - +  =1 and which are non- ~ ' 

trivial and distinct in the following sense: 

Vk~Z,k~e0, Vt zt( t):~z2(t+kT):~O. [] (1.11) 

In the autonomous case, this result simplifies. 

Theorem 2. Assume that R ~ C2(~2N,~x) satisfies: 

R is strictly convex, with R(0)=0 and R'(0)=0,  (1.12) 

:10>0 such that Ilxll>~o =~�89 x )+R(x )>O,  (1.13) 

such that Ilxll_-<e =~ ~(x,R' (x))~aR(x)  (1.14) 
( klxl~< R(x). 

z' = JAz  + JR'(z) (1.15) 
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has at least one solution, which is non-trivial and doubly asymptotic to 0 

zeWl'tJ(R) and z4:0. (1.16) 

Proof. Modify R outside the ball I[xlI<Q to get a strictly convex function 
e C2(R 2", R) such that: 

Ilxll < e  =~/l(x) = R(x); (1.17) 

�89 x)+ ~(x)=O =:. [Ixtl < 0 ;  (1.18) 

Vx, V2>l ,  R(Xx)>2~R(x); (1.19) 

3k, k ' > 0  such that Vx, klxl'<R(x)<k'lx[ ~. (1.20) 

This is possible by the conditions on R. By Theorem 1, the equation 

z' =JAz + JR'(z) (1.21) 

has a solution ~4:0, such that: 

i ( t )~0  when [ t l~oe.  (1.22) 

Since the equation is autonomous, its Hamiltonian is an integral of the motion: 

�89 e(t)) +/~(e(t) = h Vt. (1.23) 

Because of (1.22), the constant h has to be 0. It then follows from (1.18) that 
I[~(t)lF <Q for all t, so that (1.15) and (1.21) in fact coincide in a neighbourhood of 
e(o. [] 

Note that we do not claim multiplicity in the autonomous case. This is because, 
if ~(t) is a solution, so is ~(t + to) for any to e JR. So, for any choice of T, condition 

(1.11) will be satisfied with, for instance, zl = ~ and z2(t)= ~(  t + T ) .  

The paper is organized as follows. In Sect. 2 we set up a variational problem on 
WI'~(R) and we show that its solutions z satisfy (1.4). From the definition of 
Wx'B(R) we must have z(t)~O when t ~ ,  so these solutions are doubly 
asymptotic to zero. The variational formulation we use is inspired from the dual 
action principle of Clarke, [3] and requires R(t,. ) to be convex. As in [4], we show 
that the dual action functional has a local minimum at the origin but achieves 
lower values somewhere else. In the case when one looks for T-periodic solutions, 
one may then conclude existence by the Ambrosetti-Rabinowitz mountain-pass 
theorem. 

However, since we work in an unbounded domain, there is an inherent lack of 
compactness, which we overcome by the concentration compactness method of 
Lions [8, 9]: this is the aim of Sect. 3. Then, in Sect. 4, we prove existence of one 
homoclinic solution for (1.1). Sections 5 and 6 are devoted to prove Theorem 1. 
More precisely in Sect. 5 we prove some additional compactness properties which 
hold for our functional; this is done by introducing a slightly weaker version of the 
Palais-Smale condition, which is satisfied by our functional if we assume 
Theorem 1 is wrong, and suffices to prove a deformation lemma. Finally 
Theorem I is proved in Sect. 6, by contradiction. 
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Independently, P. Rabinowitz has found heteroclinic orbits for a second order 
system, x" + V'(x) = 0, with a periodic potential V. His method relies on minimizing 
the corresponding Lagrangian on a suitable subset of path space, [14]. Moreover, 
an earlier version of our paper has inspired some related work, such as the paper 
[7] by Hofer and Wysocki, where the existence result (but not the multiplicity) is 
extended to the non-convex case. 

2. Variational formulation 

We consider the following problem 

x' = J A x  + JVxR(t, x) 
(2.1) 

x(+ 0o)=0. 

We assume 
(A1) A is a 2N x 2N symmetric matrix; 
(A2) All the eigenvalues of E = JA have non-zero real part. 

Remark  2.1. (i) Assumption (A 1) implies that if a is an eigenvalue of E, then - a ,  ~, 
- ~  are also eigenvalues of E. 

(ii) F rom (A2) it follows that the flow e tE induced by x' = E x  is hyperbolic. Then 
R2N has a direct sum decomposition IR 2N = Eu~)Es invariant under E such that the 
induced flow on E, is a contraction (i.e. le'Exol < ke-b'lxol for some k, b > 0 and all 
x o ~ Es) and the induced flow on Eu is a expansion (i.e. let~xol > kebtlxol for some 
k, b > 0 and all Xo ~ E,). Moreover such a decomposition is unique. From part (i) it 
follows that dim Es = dim E~ = N. [ ]  

On the nonlinearity we only assume, in this section, 
(R1) R e CI(IR x ~2N;R) and R(t , .  ) is strictly convex; 
(R2) R ( t +  T , x ) = R ( t , x )  for some T > 0 ;  
(R3) R( t , x )~cxJx l  ~ for some ~ > 2  and R(t ,O)-O.  
We want to set up a (dual) variational formulation for problem (2.1). We start 

by studying the linear part of (2.1). 

1 1 
Lemma 2.2. Let  ~>2,  - + = 1. Suppose (A1-2) hold. Then V u e L a ~ , f f ~  2N) 

there exists a unique solution z o f  the system 

- J z '  - A z  = u .  (2.2) 

such that z ~ W l' P nL" Vr > ft. In particular, the equation z = Lu defines a self-adjoint, 
bounded linear operator 

L: LP-o U . 

Proof. Take u e La(P~, p2N). We want to prove that it exists a unique z e U(R,  pEN) 
such that 

- J z ' -  A z  = u (2.3) 

o r  

z' - Ez  = Ju .  (2.4) 
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The general solution of (2.4) is given by 

z(t) = ert~ + i ee(t -~ dz. (2.5) 
0 

Let Ps and P.  be the projections onto E~ and E. [see Remark 2.1 (ii)]. Then 
t t 

z(t) = eZt(ps~ + P.~) + I eEft- ")PJu(z) dz + I eE(t - ~)Pju(z) dz.  (2.6) 
0 0 

We claim that, choosing 

0 

P ~ =  ~ e-E~P~,lu(z)dz 
- tx) 

P , ~ = -  ~ e - E ' P j u ( z ) d z  
0 

we have that the corresponding z given by (2.6) belongs to L'(R, R2N) u > ft. We 
first observe that x is well defined. Indeed, we know that 

hence 

]e-e 'p flu(t)l < keb'lPsJu(t)] < kleb~lu(t)l 

0 0 

j le-E~Pflu(T)l dz <= kl  ~ eb~lu(z)l dx 
- o o  - o o  

o )1/~(+~ )t/# 
<_~k 1 _~e~b~dz~ ~J~[u(z) l 'dz]  k < + 0o. 

With this choice of ~ we find the following formula for z 
t + a o  

z(t) = I eE(t -OP~Ju(z) dz - I eE(t- ~  dz 
- - o 0  t 

o r  

+ o o  + o o  

z ( t )  = S eE( t -  ") X + ( t  - z )  P f l u ( z )  d z  - 
- o o  - o o  

where 

eE(t-~ Z - ( t -  z) PuJu(z) dz,  (2.7) 

{~ if s > 0  
X + ( s ) = z - ( - s ) =  if s < 0 .  

We now prove that 
+ o o  

zl(t) = j" e e(t-'))~+(t- z) e j u ( z )  dz e L~(~, R2N). 
--00 

We first remark that 

]e E(t-'))( + (t - z) P ju(z)[ < k x e -  b(t-,) )s + (t - ~) l u(T)l. 

Set g(x) = e-b~z+(X). Then 

Izt(t)[ < k~(g * ]ul) (t), 
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where * denotes  convolut ion.  Since 

+F +oo 1 
]g]"= I e-UbXdx=-- 

- ~ o # b  

we have that  
1 

V/z___1 g ~ L ~ ( ~ , R ) a n d  I l g l l ~ : - ~ .  

Using the well known convolu t ion  inequali ty 

]lg * lul II, < Ilgllp Ilullq 

which holds for 1_ 1 1 = - + - - 1 ,  and r, p, q > 1, we find 
r p q 

g * lu[ e L ' (~,  R 2N) Vr e Eft, + ~ ]  (2.8) 

hence z l e l Z ( ~ , R  2N) for all r>fl .  The  same arguments  also prove that  
z2 e E ( R , R  2N) so that  z = L u  also belongs to E ( R , R  2N) Vr>fl,  and: 

II Lu ]t ~ ~ c3 II u II ~, (2.9) 

IlZulla <c411ulla. (2.10) 

F r o m  the equat ion  z ' - E z  = Ju it easily follows that  z e W l'a. So z e W~'anl5  
for all r > fl, as announced.  In particular,  z = Lu e L ~ (here we use the fact that  a > 2, 
so that  ct >/3). 

It remains to show that  L: L a ~ L  ~ is self-adjoint. Set z = Lu and w = Lv. Then  

u= - J z ' - A z  

v= - J w ' - A w  

+ o o  

(v, Lu) = ~ (v(t), Lu(t)) dt 
- -  oO 

+ 0 0  

= [. ( -  J w ' ( t ) -  Aw(t), z(t)) dt 
- o o  

+ 0 o  + 0 o  

= i ( -  Jw'(t), z(t)) dt + ~ (Aw(t), z(t)) dt 
- o o  - o o  

while 
�9 t - o 0  "4"00 

(Lv, u) = [. (-- Jz'(t), w(t)) dt + I (Az(t), w(t)) dt.  
- a o  - 0 o  

Hence,  due to the symmet ry  of A and the skew-symmetry of J ,  

+o~ d 
(v, L u ) -  (Lv, u) = _ I  ~ ( -  Jw(t), z(t)) dt = 0.  (2.11) 

Remark 2.3. It is not  true, in general, that  u e L p implies Lu e L ~ if fl > 2. Take,  for 
example,  
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1 
for t large and positive. Then u s L a provided 6 < - ~. Since in such a case Lu(t) = t ~ 

(for t large and positive), Lu ~ L ~ if and only if 6 < _ -.1 On the other hand we have 
1 1 

that - - < [ ]  
- - f l "  

We now introduce the Legendre transform of R. We set 

G(t, y) = max{(x ,y) -  R(t, x) lx eR2N} . (2.12) 

It follows from (R1), (R2), (R3) that 
(G1) Gr C1(~ x R2N;R), and G(t,. ) is strictly convex; 
(G2) G(t + T, y) = G(t, y); 
(G3) 0 <  G(t,y)<=cslyla; 
(G4) J~G(t, Y)] < c6]y} p- 1. 
We can now state our dual variational principle 

Lemma 2.4. Suppose (A1-2), (R1-3) hold. Then the functional f : L P ( R , I ( 2 N ) - ~  
defined by 

f (u)  = ~ G(t, u ) -  �89 ~ (u, Lu) 
R R 

is well defined and of  class C 1. I f  u~La(F,~,IR zN) is a critical point for  f ,  then v(t) 
= ~G(t, u(t)) is a (classical) solution o f  (2.1). 

Proof. From (G3) it follows that 

~ lG(t,u)l<c5 ~ lul p 
R R 

which implies that the first term of f is well defined. From Lemma 2.2 it follows 
that Lu ~ U u ~ L ~, so that the quadratic term also is well defined. The fact that f is 
of class C 1 follows from (G1) and (G4). 

Suppose now that u is a critical point for f on ft .  Then 

VrG(t,u(t))-Lu(t)=O for a.e. t ~ R .  

Set v(t)= ~G(t, u(t)). Then 

v(t) = ~G(t, u(t)) 

v(t) = Lu(t). 

Using the Legendre reciprocity formula 

VyG(t, y) = x r V~R(t, x) = y 

together with Lemma 2.2 we get 

u(t) = ~R(t ,  u(t)) 

u(t)= -Jv ' ( t ) - -Av( t )  

i.e. 

- Jv'(t) = Av(t) + VxR(t, v(t)). 

Standard bootstrap arguments then show that 
solution. [] 

v is actually a classical 
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3. First compactness properties of f 

To prove existence of critical points of f we need to show that f has some 
compactness properties. We remark that our functional does not satisfy the Palais- 
Smale (PS) condition. Indeed, suppose that v(t) is a critical point of f. Then, for 
every k ~ Z, vk(t ) -  v(t + k T )  is also a critical point for f and f ( v ) =  f(Vk). In spite of 
that there is no subsequence of (Vk) which converges. 

This phenomenon is a consequence of the fact that f is invariant through the 
action of the non-compact group Z and is reflected in the non-compactness of the 
linear operator L (this in contrast to the periodic solution problem, where the 
setting is very similar to ours but the corresponding linear operator is compact). 

A general theory to deal with this kind of non-compactness has been described 
by Lions [-8, 9] under the name of "compactness by concentration", and we shall 
make use of it. We start by studying the compactness properties of L. 

Lemma 3.1. L e t  (v , )~  La(R, ]R zN) be such that  

(i) I lv~(t)lP=2; 
11 

(ii) Vt > 0 3R > 0 such that  
R 

A - e <  I [v.( t )f<2 Vn. (3.1) 
- R  

Then  there  ex i s t s  a subsequence  v . .  such that  Lv . , - -*w in L ~. 

Proof .  For h e I/ ,  set ~hW(t) = w(t + h). 
We know that a sequence (Lvn)e  L ~ is precompact if 

Ve>0 Vo)~R 3 8 > 0  suchthat  Ihl<6 
(3.2) 

=~ II%Lv.-Lv.llL~r <~  Vn; 

and 

r e > 0  3 toUR suchthat  [ILv, llL.<n~\~)<~ Vn. 

To prove (3.2), we remark that from (2.7) it follows that 

L v  n = ~ * V n , 

where 

.oq'(t) = ett(Z + (t) Psd  -- Z -  (t) P . J )  = ~q~(t) -- ~LFu(t ) 

so that 

(3.3) 

(3.4) 

(3.5) 

% L v .  - L v .  = ~h(.~f *Vn) -- ~ * V. = ( % . ~  -- ~q') * V. . 

Hence, Vr ~ R 

---- II(~h~s-- ~s) * v. IlL-tin 4- II(TJe.- ~.) * vnllL.r 

(we have used here the convolution inequalities described in Lemma 2.2). Since A~ 
and La. belong to L~/2(R), we get II~hLes-A~ as h--,0 and (3.2) follows. 
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To  p rove  (3.3) we r e m a r k  tha t  for f ,  u > 0 we have  

{iax I+~ \q'/= [ s  s(x-,)u(,)~,) 
f F/+<~ k ' # f  \ ' : l<Cl  ~1<< 

--  x/t s :(x-,:,:.: t-:5: :(x-,: 17 
= llfll[i,22<R) dx f(x-t)#/2u(t)#dt 

By a s t a n d a r d  inequa l i ty  

/+~o VCl i lk +~o 
S.dxtSg("'s)dY) t <= SeY(S~g(x'Y)kex) ''~ 

hence 

i(x-,)u(,)e,) 
(+oo " i l l #  

L.l~(l~) f ( x  - -  t )  ~12 d x  #1= . 

Let  us now take  ~ ~ R .  D e n o t e  12 = R\~J .  W e  have  

and 
IILv.II L~(o)N I1~ * v.II L- (o )+  I1~. * V.IIL.<O~ 

I1~: v.tI~:(~>= f l  
I+~ I<,) 1/<, 

�9 _ atls :"-"x+(t-*) P,J".(') d~l j> 
( + oo =) 1/= 

S lln dt _~ ke-b(t-OZ+(t--z)Pflv,(,)& 

a n d  using (3.6) we find 

- b t  + 1/2 tl2':*v,,ltv,(a~Nkttle X (t)llv.~(m 

x{:~&iv . ' z ' i# (Je  - -  

IIL#,'v.llL:<a)<cs{~dzlv.(z)l#(~ e - -  

Let  us now es t imate  
a b ( t  - -  ~) 

f(z)= ~ e 2 Z+(t_z)dt. 
l i  

T a k e  O = ] - oo, - A]  u [A, + oo [, A > 0. Then  

- a ~b(t- O [ 0 if 

e 2 X+(t_T)dt= 

L - oo 2 / ~b(a+~)~ 

~ t l - e  2 ) if 

i.e. 

�9 b(t-~) \al<<) l ib  

-i -Z+(t_z)dt) ~ ' 

2 Z+(t-z)dt)  ~ �9 

z> --A 

"~< - A  

(3.6) 
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and 

so that 

+ oo c*b(t - r) 

S e 2 X + ( t _ z ) d t =  
A I~ 

e - - -  

ab (A  - ~) 

if z < A  

if z >  A 

[ ?b(A_+ T) _ 1 
" 2 ~ 1 _  e 2 + e  

2 
f ( z ) =  ~ e  

2 

eb 

ctb(A - t) 

2 

if r <  - A  

if - - A < _ z < A  

if T < A .  

4 
In particular f ( z ) <  ~ .  Take R ~ ]1, A[. Then 

9 ab (A  - R)  

f(t)<= ~ e  2 V t e ] - R , R [ .  

We deduce, taking D = ] -  oo, - A ] u [ A ,  + oo[ and R ~ ] I , A [ ,  that 

IlLfs*v,,llL.tm<cs{~(lv,,(z)laf(r)a/~'dz} 1/a 

<=% [v,,(r)laf(z) slid'c+ I Iv,,('Olaf('O a/~'d'c+ I Iv,,('r)laf(T) a/~'dz 
- R  R 

and hence 

<c9 iv.(z)la dr + iv.(v)la dr +clo e 2 S 
R - R  

Fix e > 0 and choose R > 0 such that 

c9 Iv.(t)l ~ dr + f Iv.(t)l adz < . 

Then choose A > R such that 

cloe 2 i f <  2 \2 , ]  " 

It follows that 

Iv~(t)l ' d~. 
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i . e ~  

Since we can prove with the same argument that also II Aau * v, IIL~(n) < ~, we see that 
(3.3) holds and hence that (Lv,)~ U(P,,) is precompact. [] 

We are now in position to study the compactness properties of f.  We need to 
make some more assumptions on the non-linear term R (essentially the usual 
superquadraticity assumption introduced by Ambrosetti and Rabinowitz [1]). 

(R4) R(t,x)< -1 VxR(t,x),x); 
Gt 

(R5) R(t, x) < k I Ixl =. 
(R4) and (R5) imply 

B (VyG(t, y), y) < G(t, y); (G5) 0 =< 

(G6) G(t, y) > kzlyJ ~. 

Lemma 3.2. Suppose that (A1-2) and (R1-5) hold. Then every sequence (Un) in L ~ 
such that f (Un)~ C and f'(un)~O is bounded in L ~. Moreover c > 0 and inf{ 11 u It lu �9 0 
and f'(u) = 0} > 0. 

Proof. Let (u,)~ La0R, ~2~) be such that f(Un)~C and f'(Un)~O. Then c11< f(Un) 
<c12, SO that 

+~ l+ fo  cll < I G(t, Un)- ~ (un, Lun)<Cxz 
- - 0 0  - - 0 0  

+ o O  + o r )  

(~G(t, Un),U.)- ~ (un, Lun)=(f'(Un),Un). 
- - o 0  - - o 0  

Eliminating (Un, Lu.), we get 

+o~ 1 +o~ 1 , 

f(Un)= -cos G(t, un)--~ _~ (VyG(t'un)'un)+-~(f (un)'Un)<Cx2" (3.7) 

Using (G5) we then deduce 

1 -- I G(t, un)<c12+ ~ I[f'(u,)llL= [lUnlIL,, 
--o0 

and using (G6) we deduce 

+oo ] 

Cx3 f. lUnIa <Clz + ~ IIf'(Un)IIL. llUn[ILo 
- -  o0 

and since I ;f ' (u.) l lL.-- ,0 we deduce that Ilun[IL~ is bounded. Using this information 
and (G5), it follows from (3.7) that 

f(Un) ~ -- �89 [I f'(Un)[I L" II Un II L,--'0. 

Suppose now that u ~ L a is such that f'(u)= 0. Then 
+ c o  + ~  

o =  ~ (v,6(t ,u),u)- S (u,t,u) 
- - o 0  - - o 0  
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o r  

+oo +Qo 

(VyG(t,u),u)= ~ (u, Lu). 
- o o  - o o  

Since G(t, .) attains its minimum at the origin, we have G(t,u)<=(~G(t,u),u). 
Using condition (G5) and the boundedness of the operator L, we get: 

+0o 

k2 I lulP<c311ull~ 
- o o  

from which we deduce 

kA~llull~ -~ [ ]  
r  

We can now state the main lemma concerning the compactness behavior of the 
"Palais-Smale" sequences, i.e. of the sequences (u,)~L ~ such that f(un)--"C and 
f'(Un)~O. 

Lemma 3.3. Suppose (A1-2) and (RI-5) hold. Suppose that (u,) ~ L tJ is such that f (u,) 
~ c  > 0 and i f  (Un)40. Then there exist 1 <__ m < + ~ critical points (u~*))l < k <_,, of f 
(not necessarily distinct) and a subsequence (u,p)v ~= o such that 

u . , , -  k= ~,  u'k)(" + Y(vk)) ]L, ~ 0 ,  (3.8) 

where lytp~)-- ytpk')l~ + 0O as p ~  + 0o if k 4=k'. We also have 

f ( u . ) ~  ~ f (u  tk)) (3.9) 
k = l  

and the " ~k) Yv can be taken to be integer multiples of T. 

Proof. The proof is based on a lemma by Lions contained, for example, in [8] 
which we recall here in the form best suited for our application. 

+oo 

Lemma ("Concentration compactness"). Suppose Q. e Lx(R, R), Qn_-> 0, ~ Q. = 1. 
- o o  

Then there exists a subsequence, which we still denote by Q., for which one of the 
three following possibilities happens 

(i) vanishing: 
y + R  

sup ~ 0 . ~ 0  as n--.+oo u  
y e R  y -  R 

(it) concentration: 

3 y . e R :  Ve>0 3 R > 0 :  
yn+ R 

0 .>1- -5  Vn; 
Yn - R 

(iii) dichotomy: 
3yn~R, 32~]0,  1[, : 2 3R., Rn e ~. such that 

R 1 
R I  l~2 .4 . . .k  c,r~ - - n  - 4 0 ;  

(a) . . , , . . .  _ ~ , R 2  
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y , , + R ~  

(b) I 0. -o2; 
Yn -- R 1 

y n + R  

(c) Ve>0 3R>O: I q , > 2 - - e  Vn; 
y n - R  

yn  + R ~  

(d) f On ' '~  as n ~  + oo. [] 
y~ - R 2 

lu.(t)l a 
We will apply this lemma to 0n(t)= Ilu.ll~" 

Step O. There is some ~ > 0  such that Ilu.ll~>& 
Suppose, by contradiction, that I1 u.II 0-o0 (up to subsequences). Then from (G3) 

it follows 
+ m  

O< I G(t,u,)<csllunllaa ~ 0  
- o o  

and 

~( (Un, LU.) <_c~llu. ll~-oO 

so that 

f(Un)-oO, 

which contradicts the assumption that limf(un) > O. It then follows that e, satisfies 
the assumptions of the concentration compactness lemma. The proof will now be 
divided into three steps. 

Step 1. Vanishing cannot occur. 
Suppose vanishing occurs. This implies, in particular, that there is a sequence 

e.-oO such that 
s + l  

f. ]un(t)[~dt: ~en[[u,]]~ V s ~ R .  
s - - 1  

Then, using the same notations as in (3.5), we write 

with 

]Lu,(t)] =< ]~'q~s * un(t)] + ].LP u * u~(t)] 

t 

<kle-bt ~ eb~lun(~)ldz 
- -00  

+ oo t - k  

~kt  e-bt Z f eb'lu.(z)l dz 
k = O  t - k - 1  

<__kle -bt ~, e~b* dz lu,(z)la dz 
/ = 0  { . t - k -  1 { t - k -  1 

<--kle~/Pllunll~e-bt( 1-e-~b'~t/~-~ ] ebt ~" ~ 
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and finally 

so that 

Since 

ilu.[i,{l - e - ' b )  ~/" 1 I~s*u.(t) l<kld./~ \ -~ I l - e  -b 

ItLu.lt~-oO as n ~ + ~  if vanishing occurs . 

+nO + o 0  

IlLu.ll~= I ILu.l~llLu.ll~ -~ I ILu.I a 
- o o  - a o  

and since IILu.llp~callu~llp by Lemma 2.2 we find that 

IILu.L-~0 
and hence 

](u., Lu.)l < ]tu.llp ItLu.lt~O. 

Using now the fact that f'(u.)-~O we deduce 

VrG(t,u.)=Lu.+ f'(u.)-oO in 

and using condition (G6) again 

U 

+oo 1 + ~  1 I I ~ G ( t , u . ) l l ~ l l u ~ [ l a ~ O ,  lu.lP__< ~ j(v~a(t,u.),u.)<= 
- o o  

i.e. Ilu.ll~--,0, which contradicts Step 0. So vanishing cannot occur. 

Step 2. Concentration implies compactness. 
If concentration occurs, we set 

w.(t) 
w.(t)=u.(t-y.), v.(t) = IIw.l[-~" 

Then 

(3.1o) 

Lw,--.z in U .  

+ o o  

Iv.l" = i 
--00 

and for every ~ > 0 there is some R > 0 such that 

+ R  

l - e <  I Iv.I a < l .  
- R  

Using Lemma 3.1 we deduce that it exists a subsequence (which we still denote 
by v,) and some ~ such that 

L v , ~  in U .  

By Lemma 3.2 and Step 0, the sequence Ilu.ll~ is bounded away from 0 and 
infinity. We can therefore find some z in U such that 
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We  can a lways assume,  wi thout  loss of  generality,  that  Yk = nkT is an integer 

m u l t i p l e o f T ( i f t h i s i s n o t t h e c a s e i t i s e n o u g h t o t a k e w . ( t ) = u . ( t + [ ~ l T  ) 

where [ a ]  is the integer pa r t  of  a). It  follows tha t  f(u,) = f(w.) and tha t  f '(w.) (t) 
=if(u.)(.  + Yk), so tha t  f (w. )~c ,  f'(Wn)~O. But then 

z,(t) = ~G(t, w.(t)) = f'(w,) (t) + (Lw,) (t)~z(t) in L ~ . 

Using the Legendre  reciproci ty  formula  we then deduce 

w.(t) = V,R(t, z.(t))~ V,R(t, z(t)) = w(t) in L a 

since z(t)~ V~R(t, z(t)) is con t inuous  f rom U into L p. F r o m  

w . ~ w  in L ~ 

we deduce 

and  

so tha t  

L w . ~ L w  in U 

~G(t, w.)~  VyG(t, w) in U ,  

VyG(t, w) - Lw = l i m  (VyG(t, w,) - Lw,) = lira if(w,) = O, 

i.e., w is a critical poin t  for f .  I t  is clear tha t  in such a s i tuat ion L e m m a  3.3 holds  
with m = 1. 

Step 3. Dicho tomy.  
If  d i cho tomy  occurs,  we set 

w.(t) = u,(t + y.), 

where y .  is an integer mult iple  of  T and  

w~'~(t) = w.(t)  x,,(~,.~(t), 

w~2)(t) = w.(t)(1 - XB(R~)(t)), 

w~3~(t) = w . ( t ) -  w~'(t)  - w ~ ( t ) .  

w~l)(t)' The  sequence v~ 1) satisfies the assumpt ions  of  Set also v~l)(t)= ilwk~) b. 
L e m m a  3.1. As in Step 2 we deduce  

w~l)--*z in L ~. (3.11) 

W e  first p rove  tha t  f(u.) splits into f(w~l))+f(w~ 2~) up to a small  reminder.  
Consider  

+~O +oo 
(1) (2) (3) [u~( 1 ) I r a (  2)'1 - -  I t~ , (  1 ) .z- u~( 2 )~'~ f(w.)  = f (w.  ) + f (w .  ) + f (w .  )-- I ,"n , - "n  , f (w(~ s), ~ " .  -- "'~ - "  

- o o  - o o  



A variational approach to homoclinic orbits in Hamiltonian systems 149 

Since 
+ a O  + o 0  h-oO + o 0  

f ]wLa)la= $1w.I a -  $ Iw(J)le- $ Iw())la--'0 
- o o  - o o  - c o  - ~  

+oo 
/'a,,(3) / /u , (1)  _l_ uy(2)]]---~l~l we have that  f(w~3))---~O as well as I v , .  ,~ t . . .  - . - .  ,, - .  

- - 0 0  

Next  we consider the term 

+oo 

(Wn , L w ,  ) -  ) ~ (1) ( 2 ) _  [. dte-~t(w,(t) ,  ~ eE~)~+(t-z)Pflwn(Z) d~. 
-- oo B(R 1) \ B(R2)c 

We know that  

In  part icular  

lee(t_~)X+(t_z)p~l < ( 0  if t__r 
= (k~e -b(t-~) if t < z .  

I eE(t- *)X +(t-- z)Ps[ <= kle-bt'-~l Vt, z.  

It follows that  

+ | Lsw(2)) jo(w(J ), <kl ~ dt ~ dve-bl'-~llw.(t)llw.(v)l 
B(R~) B(R~)" 

_b ,_ ~ b _ 
< k l e  21R. R.t ]. dt ~ dze 21~ "llw.(t)llw.(OI. 

B(R~) B(R2) c 

It  is easy to show that  the double  integral is bounded  independent ly  f rom n. 
Since IR. 1 2 - R . i ~  + o% we have that  

+oo 

(w. ,Lsw . ) 0 as n ~ + o o .  (1) (2) _ . .  

- o o  

This proves the splitting formula  

f (w.) = f (w(. 1)) + f(w(. 2)) + o(n), (3.12) 

where o(n)~O as n ~  + o0. 

We now claim that  f'(w(.1))~O. Let us remark  that, for every n 

LP(~, R 2N ) = LP(B( R '.), R 2N) e LO(B(R~.) c, R 2~)e  L~(R \ (B(R '.)u B(R~.)c), R 2~) . 

We write accordingly u = u(1)+ u(2)+  u (3) for every u in L a. 
We now prove 

(if(w,), u (1)) = (f'(w(1)), u (x)) + o,(n) II u")ll ~ (3.13) 

(if(w.), u (2)) = (f'(w(Z)), u (2)) + (x) o2(n) Ilu I1~ (3.14) 

where ol(n), o : ( n ) ~ 0  as n--* + ~ .  In fact 

+oo +oo 

- u(lh u(l)) (if(w.), u (x)) = I (~G(t, w.), , -  I (Lw., 
- o o  - o o  

+oo +oo 
=(f'(w(1)),u(1)) - ~ (Lw(.Z),u(')) - ~ (Lw(3),u(')). 

- o o  - o o  
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We have already seen that 

I+ (Lwt2),u ~')) 
oo 

<o~(n) [lumlla (dist(Suppwt, 2), Suppu(1))~ oo) 
--CO 

and that 

~ (  (Lw (3), u ( 1 ) )  ~o2(n ) Ilur "'(w n(3)--.0 in L a) 

From this (3.13) and (3.14) follow. Then, for every u ~ LafR, R 2N) 

( f  '( w~ 1 ~), u) = ( f  '(w~ 1 )), u ~1) ) + (f'(w~ 1 )), u ~ 2 )) + (f,(w~l)), u~3)) 

=(f'(wn),u(1)Wu(2))+(f'(w(1)),u(3))--(ol(n)+o2(n)) Ilumll#. (3.15) 

The first and last term on the right clearly go to zero. We investigate the second 
one. Note that: 

4-00 -I-oo 

(f'(w?~), u ~3~) = I (v~6(t, w'.'), ~ ) -  I (Lw~.', ~ )  
- o o  - c o  

+ o o  

= -  I (Lw~.',u~)). 
--00 

Moreover, 

(Zsw(nl),u (3)) <kl I dtlu(t)] I e-blt-~llw(z)] dr" 
[ -  R L  - R ~ ) I u t R .  ~, R~I - R~ 

R 

Taking now R such that I ]w(z)ladz>R-e we have that 
- R  

e-blt-'llw(z)] dz =g(t) 
- R ~  

with g(t) = gl(t) + g2(t), where 

gl(t) = 

while 

g2(t) = S 

R 

f e-bJt-~llw(z)l dz<=c14e-bltl 
-R 

e-blt-'llw(z)l dz ~ c15ee-blt- R~l . 
[ - R~, - R ) ] u [ R ,  Rn 1] 

Finally, we deduce 

I (Lsw~l), u~3)) <=kl I dt{]u(t)l(cl,,e-bltl+cl,ee-blt-"~l)} 
- oo [ - a ~ ,  - R ~ i u t R ~ ,  R~] 

<c16(e -bIRAI +~)[lula)ll~, 
, (1 )  (1 )  O Writing this into (3.15), we find that f (w.)--*0. We know that w. converges t 

a limit z in L ~ by (3.11). So z has to be a critical point o f f ,  that is, f ' (z )=0.  Now 
consider the sequence 

~.(t) = w . ( t ) -  z(t). 
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We have, by the splitting (3.12): 

+co 

- o o  

f(ff:,)~c -- f(z) 

f ' (k , ) -~0.  

We can argue for k ,  as for u,; vanishing cannot occur since I]k, ll~-~1-2, hence 
either concentration of dichotomy applies. 

Iterating this procedure K times, we get z I . . . .  , z K such that f '(z k) = 0 and f(w,) 

-~f(zl)+...f(zK). As we have seen in Lemma 3.2, we must have II?ll~-~>__ k2 >0 
C3 

for every k, while hlw,]lp-~llzlllo+ ... [Iz~l]B. So K has to be bounded. This is the 
content of Lemma 3.3. 

4. Existence of a critical point for f 

To prove existence of a critical point for f we will apply the Mountain Pass lemma 
of Ambrosetti and Rabinowitz [1] together with Lemma 3.3. First of all we check 
that the geometrical conditions of the MP lemma are verified. 

Lemma 4.1. Suppose (AI-2) and (R1-5) hold. Then there exist r>0 ,  6>0 ,  and 
v ~ L/~(R, ~2u) such that 

(a) f(u)>5 for Ilul]B--r, f(u)>O for ]lullp<r; 
(b) llvll~>r and f (v)<0.  

Proof. (a) follows from 

+oo 1 + ~  

f(u) = -ool G(t,u)- ~ ~ (u, Lu) 

+oo 1 2 

~k2 Joo lUlls-- "2 c3HuII~ 

1 2 =k21luilg- ~c3[lul]~. 

Since/ /<2,  (a) follows if Itullp is small enough. 
(b) We claim that there exists Vo ~ L~(~, p.2N) such that 

+co 

(Vo, Lvo) > O. 
--CO 

Then, considering 

+co ~2 +co 

f()wo) = I G(t, 2Vo)-  ~- Joo (v~ Lv~ 
--CO 

<cj~ -| IvolB- -y _~ (Vo, LVo) 
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we have that (b) follows for 2 large enough. To prove the claim, let 

Vo(t ) = -- Jz'(t) + Az(t) ,  

where z(t) �9 Coo and 

s i ;kt  

z ( t ) = ] C o k t  for t � 9  

z(t)=0 for [ t l>a;  

Iz(t)l< 1 Vt; 

Iz'(t)l < k Vt, 

where k �9 N and a �9 ~-. will be determined presently. Since Lvo = z, we find 
+ o o  -boo 

S (Vo, Lvo) = ~ (--  Jz' + Az, z) 
- oo - oo 

since - (z(t), Jz'(t)) = k[sin z kt + cos 2 kt] = k for [tl < a, we have that 

+ o o  

(Vo, LVo) = 2 k a -  ~ (z, - Jz') + ~ (z, Az) 
- o o  a < t t l < = a +  2 a < l t l < a +  2 

> 2 k a - 4 k -  21falt (a+2)  

= 2 k ( a -  2 ) -  2 II a II (a + 2), 

a + 2  
which is positive provided a > 2, k > II A II aZ 5- [] 

From Lemma 3.3 and Lemma 4.1 follows. 

Theorem 4.2. Suppose (A1-2) and (R1-5) hold. Then problem (2.1) has at least one 
solution u :l: O. 

Proof. It is well known that, using Ekeland's variational principle (see 
[2, Chap. 5]) applied to the functional 

I(?) = sup f ,  
Y 

where y �9 F -  {7 �9 C([0, 1]; La(N, R2N)) such that V(0) = 0, f(v(1)) < 0}, one can 
deduce the existence of a sequence u. �9 L a such that 

f ( u . ) ~ a  - inf s u p f  
F y 

f ' (u . )  ~ 0  . 

From Lemma 3.3 immediately follows the existence of a critical point for f. []  

Remark 4.3. Even if the critical point u found via Theorem 4.2 arises from a 
sequence u, such that f ( u , ) - - *a -  inf sup f, we only get in the limit f ( u ) <  a. Note 
however that f (u)  > O. [] r 
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5. Further compactness properties of f 

We saw in Sect. 3 that f does not satisfy the Palais-Smale condition, because of its 
invariance for the non-compact group Z. In this paragraph we will use the fact that 
Z is discrete to introduce a slightly weaker condition, which does not seem to have 
been noted before. We denote it by (PS). 

Definition 5.1. We will say that a C 1 function f on a Banach space E satisfies 
condition (PS) if, whenever un is a sequence satisfying: 

f (u,)  ~ c; 
! 

f (u , )~0 ,  

Ilu,+ ~--u, ll--'0, 

then (u,) is convergent. []  

This condition is sufficient for the deformation lemma to hold: 

I_emma 5.2. Let E be a Banach space, f :  E ~ ~R a C 1 functional which satisfies (-ffS). 
Suppose 3e > 0 such that 

f - l ( [a - e , b  + e])u{u ~ EIf'(u)=O} = 0 .  

Then 3t 1 ~ C([0, 1] • E; E) such that 
(i) r/(0, x) = x Vx e E; 

(ii) f ( x ) < a - e  or f ( x )>b+5=~ rl(s,x)=x Vse[0 ,1] ;  
(iii) f (x )  < b =:. f(r/(1, x)) < a. 
Suppose, moreover, that f is invariant for the isometric representation T of a 

group G, such that any orbit Gx = { T(g) xlg e G} with f (x )  ~ [ a -  5, b + e] is such that 

Ox = inf{ Hx- T(g) xilrlg e G -  {0}} > 0. 

Then we may choose r I such that 
(iv) V(g,t ,x)~G x [0, 1] x E, T(g)rl(t,x)=rl(t, T(g)x). [] 

Proof. Consider the projection p: E--,E/T, x ~ ; = Gx. Define 6(~,37) 
-- inf{ IP x - T(g)y II E Ig e G}. 6 is well defined on (E/T) 2, symmetric and satisfies the 
triangular inequality. Moreover, if Ilx - yllE < �89 min(ox, Q,), then 6(;, 3717) = [ Ix-  ylls. 
Hence 6(~, 37)= 0 implies ~ = y, and ~ is a metric. 

Now, to each x ~ Y = {y e E; f '(y) 4: O, f (y)  ~ [ a -  5, b + 5]} we may associate a 

vector V,,eE and a radius r~< ~ such that, for any y~B~(x,r~): 

{ [If'(Y)IIE. I[ V~ll~<2(b-a) 

( f ' (y) ,  V~) < a - b .  

We may also impose, for any (x,g)~ Y• G: 

f r x = rT(g)x = r~ 
VT(g)x = T(g) V~. 

qt -- {B6(~, rs)l ~ e Y/T} is then an open covering of the metric, thus precompact 
space (Y/T, 6). ql has therefore a locally finite refinement { W~[i e I}. Now to any i we 
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may associate xi such that Wi C B~(~i, r~,). The family 

{d?i,g =P- l(Wi)c~Be(T(g)x, rrtg)x,)[ (i, g) e I x G} 

is then a locally finite covering of Y. 
Choose q~ : R ~ R  +, smooth, with q~(x) = 1 for all x e [a, b] and q~(x) = 0 for all 

x ~ ] - ~ , a - ~ ] w [ b + ~ ,  + ~ [ .  
Define V(x) by 

( E• d(x, Y\Oi,o)Vr(o)x,'~ 
z r t X x x \ ( i , g ) e l  G ] 

v( )= tjt , " 

\ ( i ,g)et  x (7 " } 

V(. ) is a locally Lipschitz vector field such that 
(a) Vx ~ E, II f'(x)lIE, ]1V(x)II E =< 2(b-- a); 
(b) f (x)$ [a-e ,b+e]  ~ V(x)=O; 
(c) VxeE, <if(x), V(x))=<O; 
(d) f (x )e  [a,b] =~ (if(x), V(x)) < a - b ;  
(e) Vg e G, V o T(g) = T(g) o V. 
Define q by 

] xeE 
r/(s, x) = Vo ~/(s, x) s > O. 

Let [0, Lx[ be the maximal interval of definition of r/(., x). 
Suppose that for some x ~ E, L~ < + oo. This implies 

I II Vo tl(t, x)l[ dt  = + oo, 
0 

Vt ~ [0. L~[, f ~ tl(t, x) E [a-- e, b + el. 

Consider the sequence (t.). > o such that 

to=O, t ,<t.+t <L~ 
tn+ 1 

I IlVorl(t,x)[I dt= L~- tq .  
tn 

inf I[f'oq(t,x)l[<2(b-a)[ sup IIVo~/(t,x)ll] -1 
I t . ,  t .  + d Li t . ,  t .  + 21 

<2(b-a)  Ll/~-t. 

(fl) sup II rl(u, x) - q(v, x)LI < ~ - t. 
(u,v)ett,,,t.+ 112 

Ix + oo 

(~) I IlVoq(t,x)lldt= Y. V 'Lx- t . ,  where Ix= l i m t . < L x .  
0 n = O  n-~oo 

If lx < Lx, the left term of (7) is finite, and the right one infinite. So we always 
have lx=Lx, and ~ ~ 0 .  

We have 
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Choosing u.__= r/(s., x), with s. e Et., t .  + 1-1 and II V o ~(s~, x)II ~ 5 4(b - a) ~ t., 
and applying PS to (u.), we obtain a contradiction with f(u.) decreasing to 
c e [a - e, b + e] [see (b)-(c)]. 

We have thus proved that t/is defined on R + x E. Then (b) gives (ii), (c) and (d) 
give (iii) and (e) gives (iv). [] 

Lemma 5.3. Suppose (A1-2) and (RI-5) hold. Suppose, moreover, that f has only 
critical points of the form u( . + k T), u given by Theorem 4.2. Then (PS) holds for f.  

g Proof. Consider a sequence (u,)CL t~ such that f (u.)~c,  f (u.)  0 and 
IqU.--Un- 11q--*0. 

We know, by Lemma 3.3, that c = mf(u) for some integer m > 0. 
Suppose that for some A > 0 and e > 0 we could extract (u.p)p__>o such that 

vp u.,r U B(u(. +Yl )+  .-. +u( .  +Ym),~), 
(Yt . . . . .  y m ) e D  

where D={(y 1 . . . .  , y r , ) eZ 'T l i~  j => lyi-yj[>A}, D = Z  for m = l .  
The existence of (u,,) contradicts Lemma 3.3. So there is no such subsequence 

and we have 

u,-- k= l ~ u(" + y~k)) L~ -',0, (5.2) 

where (k) ~(k')  lY, --.,. --* + ~ if k~-k' and where the y. are integer multiples of T. 
Let us remark that 

inf 1[ u(. ) -  u(. + kT)[1L~ = 6 > 0. (5.3) 

This follows easily noticing that 

lim [[u(-)-u(. +kT)IIL~=2IlU[IL~>O 
k ~ + o o  

and that 

u(t) = u(t + kT) 

hence 

It follows that 

and (P-S) holds. 

Ilu(" + Y.+ 0 - u ( "  + Y~)II ~ {lug+ 1--u.II 

+ tlu~+ 1 - u ( .  +y .+  i)11 + Ilu(" +Y~)-u.[I <t~; 

y . = ~  for n sufficiently large. 

u . - - ,u (  �9 + ~) 

implies u(t)= 0 for every t. 
If m = 1 in (5.2) we have that 

Ilu,+ 1 - u ,  II = Ilu.+ 1 - u ( .  +y,+O+u(" +y.+l)-u(" +y.)+u(. +y , ) -u . I I  

>_-IJu(" +y .+  0 - u ( - + Y , ) I I -  [lu,+ 1 - u ( .  +Y.+ 1)ll- Ilu(" + y . ) -  u.ll 

which implies 
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For m > 1 we have, proceeding analogously: 

k~l (u(. +y~+~ 0-u(. +y~))) 

_-__ttu.+,-u.rt + u.+~- k:~ u(. +y~,+,) + ~ l U (  +y(.~,)-u.. 

On the other hand, for n large, 

,~1- _(u( + y~,+ ,)-u(.  + y~,)) :> ~=,~ ,,u(. + y~,+ , ) -  u(. + y(:,),,-~. 

Taking n large and recalling (5.3) we deduce from the above inequalities that 

y(k) =y~) for n sufficiently large n +  

contradiction which proves that m = 1 and that (PS) holds. []  

6. Existence of a second critical point 

In this section we will prove the existence of a second solution for system 2.1. It will 
be found by a suitable inf-max procedure. 

From now on, we set 
s * u(t) = u(t + s). 

The map u ~ s* u is clearly an isometry of L p into itself. Because of the 
periodicity of R, we have: 

f ( n T * u ) = f ( u )  V u ~ L  p, V n ~ Z .  

We now prove 

Theorem 6.1. Assume (A1-2) and (R1-5) hold. Then problem (2.1) has at least two 
solutions v and w such that kT*  v~w+-O Vk~Z .  

Proof. We know by Theorem 4.2 that f has a critical point v ~ 0. We will assume 
that all critical points o f f  are of the form kT*  v for some k e Z, and we will derive a 
contradiction. 

Set: 
Ilvlla=/~x 

inf I I v - kT*  vii =/~z- 
k:r  

We know that #1 >0,  g2>0 ,  and/~z <2#1. Now take ~ > 0  so small that 

/~<]#2  and I l u l l < # = . f ( u ) < c = f ( o ) .  

Next consider the sets: 

r"  = {y e C~176 ]; LP) Iv(O) = 0, f ( s  �9 ~(1 )) < 0 Vs} 

and, for every y e F', 

{ I a(0, s )=0  tr(1, s ) = s T *  ,(1)~. 
Z~= ),~C~176 p) a(t,O)=y(t) a(t, 1 )=T*y( t )  J 
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Consider also the related sets F c and X~, which satisfy the same conditions 

FC = {Y e C~ La) 17(0) = 0, f ( s  * 7(1)) < 0 Vs} 

and, for every ? �9 F ~, 

Z~= {aeC~ 112;L p) a(O,s)=O, a(1 ,s )=sT*7(1)~ 
a(t, 0) = 7(t) a(t, 1) = T* 7(t) ) '  

where 7 e F ~. 
Since C ~ is dense in C ~ we must have: 

inf m a x f o T =  inf m a x f o T = c l  
7 ~ F  s ~,~.r e 

inf inf maxfo  7 = inf inf m a x f o  7 =c2 .  
~ r  s a~F,  s 7 E F  c a ~  c 

Taking a( t , s )=sT*  7(t), we find c 1 <c2. By Lemma 4.1, we have c2 > c l  ~ > 0 .  
Since we have assumed that f has only critical points of the form k T *  v, condition 
(PS) holds, and hence the deformation Lemma 5.2 with G = Z, T(n) = nT*.  Using 
the corresponding deformation, we find that 

C l  - ~ - C ~ - C  2 . 

So, for every e > 0, there exists 7~ e F s and a~ e X~, such that 

s u p f  oa~<=c +e .  

The family (q~k)k = O, q~k:[ O, 1] 2 ~F,. defined by 

r s') = [I 7,(s) - k T* 7(s')[I - [q 7~(s)I[ - [I 7,(s')I[ 

is equicontinuous. 
Indeed 

I~Pk(S + h, s' + h') - qgk(S, S')I < 2 II 7,(S + h)-- 7,(s)I[ + 2 II 7,(s' + h ' ) -  7,(s')ll. 

Moreover, ~pk(0, 0)= 0 Vk > 0. By the Ascoli-Arzel/~ theorem (r is thus precom- 
pact for the uniform topology. 

But, for all (s, s'), 

]lT~(s)-kT* 7~(s')ll ~ 1lT,(s)tl + llT~(s')tl �9 

So, if a subsequence (rpk) converges uniformly the limit must be zero. Finally (~Pk) 
converges uniformly to zero. 

Hence, setting 

#,(k) = inf{ 117,(0- k T *  7,(t')ll 1117~(t)ll >_- g, 117,(t')ll > ~t} 

we see that there exists K, > 0 such that, whenever k > K,, we have 

3g 
#,(k)_-> T "  
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Now define a map t~,: [0, 1] x [0,K,]--*L p by: 

~e(t ,  s)  = k T * a,(t, s -  k T),  

where k is the integer part of siT. 
Note that the maps dk: [0, 1] x [ 0 , K j ~ R  defined by 

dk(t, s)= IIt~(t, s)-- k T * v[I 

are C ~176 so that, by Sard's theorem, almost every/~ ~ P,. is a regular value. We may 

therefore assume that the subsets dk 1 ( ~ )  are either empty or closed submanifolds 

of dimension 1, that is, either loops contained in the interior part of the rectangle 
or ares starting and ending on the boundary. 

These curves have no self-intersections since they are submanifolds. By the 
definition of #2, they are pairwise disjoint. We claim that there is no arc connecting 
the side s = 0 with the side s = K,. 

Indeed, suppose there is such an arc, starting at (t o, 0) and ending at (tl, K,). 
Then there is some ko such that 

and hence 

][tr~(to, O ) - k o T  * vii = 2 

tl a , ( t l ,  K ~ ) -  k o T*  v II = #- 
2 

II a,(to, 0 ) -  a~(tl, K~)H < ~t. 

Now try(to, 0) = 7~(to) and a,(tl, K~) = K,T* ~,,(q). We have thus contradicted the 
definition of K~, unless 

IIo~(to,0)ll < #  

o r  

llo,(tl, K3LI = ILa~(tl, O)LI < ~ .  

Writing this in the preceding inequalities, we get ILkoT* vJl = JJv]] < ~ <#1, 

which contradicts the definition of/~1. The claim is proved. 
Since there is no arc connecting s=O with s =  1, we can construct a Coo path 

: [0, 1 ] -~ [0, 1 ] • [0, K d  

such that ~(0) lies on t=O, ~(1) lies on t =  1 and ~ does not intersect any of the 

V k e Z ,  Lla~(~(h))-kT* vii > ~ ,  Vh, 
s 

Set 

~(h) = o,(~(h)), 0_< h ~ 1. 
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The ~7~ belong to F for every e > 0, and 

m a x f o  ~7,~ inf m a x f o  y = c. 

Extract a sequence ~., n e N, such that 

Vh, Vk~Z, I l f~ (h) -kT ,  vll > ~- 
= 2  

m a x f o ~ , <  inf maxfo~ ,+  1 
?~F Y/ 

By Ekeland's variational principle there will be for each n some ~. ~ F such that 

m a x f o  ^ < 1 ~, = inf m a x f o  ~ + - 
~,~F n 

1 
II%(h)-~.(h)[I-<_ ~nn Vh~[0, 13 

Vy r F, maxg o ~, R m a x f o  ~. - ~nnmaX II~(h)- ~.(h)ll 

and the latter condition translates into (see [1-]) 

/ 3h. : fo  ff.(h.)= m a x f o  ~.(h) 

1 
][f'(ff.(h.))[I < ~ .  

Setting ~.(h.)= u., we have found a sequence such that 

f(u.)-oc, f'(u.)--*O 

VkeZ,  I lu,-kT*vlt> # 
= 2 "  

This contradicts the concentration-compactness lemma and ends the 
proof. []  
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