
JOURNAL OF DIFFERENTIAL EQUATIONS 34, 523-534 (1979) 

Periodic Solutions of Hamiltonian Equations and a Theorem of 
P. Rabinowitz 

IVAR EKELAND 

Centre de Recherche de Matht%mtiques de la Decision, Universitd Paris IX, 
Place du Marechal de lattre de Tassipy, 75775 Paris, Cedex 16, France 

Received November 20, 1978; revised April 1 I, 1979 

The existence of nontrivial orbits with prescribed period is proved by a direct 
variational method. 

I. STATEMENT 

Let H be a C* function on Iw’* x [w”, the Hamiltonian, and consider Hamilton’s 
equations on the time interval [0, T] 

9 = fg (x9 P), $ = - f&p). 

It is well known (Maupertuis principle of least action) that the solutions (x, p) 
of these equations are the extremals of the functional 

s [P* - H(x, P)] dt. 

However, from a calculus of variations viewpoint, this functional is quite 
untractable: it is unbounded, and is linear with respect to derivatives. It is of 
very little use in existence theory (finding solutions satisfying given boundary 
conditions, x(0) = x,, and N(T) = .rr for instance, or x(0) = x(T) and p(O) = 

PGV. 
The main point of this paper is that the solutions of Hamilton’s equations 

can be related to a much more tractable functional, involving the Legendre 
transform G of H. From now on, we will assume H to be convex, which will 
ensure that G is defined globally by Fenchel’s formula 

WY, q) = Try @Y + Pq - H(x, PI> 
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and is a lower semicontinuous convex function, which may assume the value 
+co. If H is minimum at (0, 0) with value zero, we also have 

Gb 4) 3 WA 0) = 0 for all (y, 4). 

These functions need not be differentiable. However, at every continuity 
point they have a well-defined subgradient (see any textbook on convex analysis, 
for instance, [7] or [4]). The following three statements are known to be equiva- 
lent: 

0) (v, d E aH(x, P), 

(ii) (.y, p) E WY, q), 

(iii) my + pi = H(x, p) + G(y, q). 

Consider Hamilton’s equations 

(-b(t), k(t)) E aH(x(t), p(t)) a.e. (4 

If H is assumed to be differentiable, this relation becomes i = EH/@ and 
$ = --BH/ilx, which may be more readily recognized. We are interested in 
finding periodic solutions to (&?-apart from the obvious one, s(t) = 0 and 
p(t) = 0 for all t. Specifically, we want to prove that for any T > 0, Eq. (8) 
has a nontrivial solution of period T. 

This was done first by Rabinowitz [6], under assumptions on H which imply 
quick growth at infinity and slow growth near the origin; the orbits of small 
periods then are to be found near infinity. Recently [3] adapting an idea of 
Clarke [2], we have been able to prove the same results under different assump- 
tions, that H be convex, grow slowly at infinity and quickly near the origin; 
in that case, the orbits of smaller periods are to be found near the origin, and it 
can actually be proved that T is the minimal period. 

This paper borrows something from both approaches. The growth assump- 
tions are Rabinowitz’. We have to assume that H is convex, but we prove an 
a priori estimate on the solution. The method is a critical point argument a la 
Rabinowitz, but applied to the same variational problem as in [3], the result 
being considerably simpler than [6]. 

THEOREM 1. Assume that H: IF!” x UP 4 R’ is convex, minimum at (0, 0), 
with minimum value zero, and that there is a constant 0 E [0, 4) such that, for all 
h > 1 andaZZ(x,p) # (O,O), 

H(hx, Ap) > WE+, p) > 0. (0) 

Then, for every T > 0, there is a nonconstant T-periodic solution of (c-j) such that 

0 < H(x(t),p(t)) = h a.e., 

11 < C!‘T’-2@‘, 
(2) 
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where C is a constant depending only on 6 and the minimum value of H on the unit 
sphere. 

Inequality (2) implies that the energy level h goes to zero as T goes to infinity: 
The orbits of large period are to be found near the origin. Note that T may not 
actually be the minimal period of such orbits. This is in contrast with the Clarke- 
Ekeland setting [3], where the orbits of large period are to be found at infinity, 
and where the period T can be proved to be minimal. 

Inequality (0) implies that the Hamiltonian H has more than quadratic growth 
at infinity, and that its Hessian at the origin U”(0, 0) is zero. 

Indeed, calling M the maximum value of H on the sphere x2 + p2 = 1, 
and wz its minimum value, we get 

H(x,p) > (x2 + p2)1+em when .x2 + p2 + a, 

H(x, p) < (x2 + p2)1!2efif when .x2 + p2 - 0 

(please note that the condition is h > 1, and not X > 0). It will now be put in 
another form, which is the one Rabinowitz stated and which is equivalent in 
the convex case. The following lemma was pointed out to me by G. Haddad: 

LEMMA. Assume H is continuously d@rentiable. Then inequality (0) is equiv- 
alent to the following: 

H(x, P) < @H&, P) + pH;(x, P))? all (x7 PI. (1) 

Proof. First, we prove that (0) implies (1). Consider the two functions @ 
and Y of the real variable t 

G(t) = H(ts, tp), 

Y(t) = W’H(x, p). 

They are both defined for t 3 0, and satisfy 

@(I) = Y(l), 

@p(t) 2 y(t) for t>l. 

It follows that @‘(I) 3 Y(l), which yields 

~cH;(x, P) + ~Hl(x, P) 2 ‘B H(x, P). 
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We now prove that (I) implies (0). Define as above the function @ by @(t) = 
H(tx, ( p)). It is assumed that 

W(t) = EH&X, tp) + pH@, tp) 

= f [txH,(tx, tp) + wG(tx, tp)] 

> f H(tx, tp) = f Q(t). 

Using Gronwall’s inequality for G(t), we get 

CD(t) > N%j(l), 

H(tx, tp) >, tlI@H(x, p). 1 

II. PROOF 

We shall prove Theorem 1 under the added assumption that His differentiable 
and strictly convex and that there is some constant a > 0 such that 

H(x, p) < ; (9 + p2)l”’ for all (x, p). (3) 

The general case will be derived later. 
We first spell out some consequences for H and G of assumptions (1) and (2). 

LEMMA 1. Set b = 2 Min{H(x, p) ) x2 + p2 = I}. It is strictly positiwe, and 

we have for all (x, p) in W x W 

H(x, p) 2 ; (x2 + p2)1j2e, (4) 

H’(x, p) < &21/e - 6)(x2 + pz)(l-s@. (5) 

Proof. Since H is convex, we have the inequality 

H(u) + H’(u)(v - 4 d H(v) for all 2’ E Rgn X IP. 

We take the supremum of both sides over all v such that 1 v - u 1 = 1 u 1. 
Using assumption (3), we get 

1 H’(u)1 < & (; 1 2u 11~‘s - ; / u (l/e). 

Setting u = (x, p) and 1 u 1 = (9 + p2)l12, we get the desired result. 1 

LEMMA 2. G is everywhere finite and Cl. 

Proof. By Lemma 1, the supremum is always achieved in the right-hand 
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side of Fenchel’s formula, and G(y, n) has to be finite. Moreover, since H is 
strictly convex, this supremum is achieved at a single point (z,p), which is the 
one element in aG(y, n), by the equivalence (ii) 9 (iii). It is a standard fact that 
if aG(y, 4) is a singleton, over an open set, G is continuously differentiable on 
that set, with aG( y, 4) = {G’( y, 4)). 

LEMMA 3. We have, for all (y, q) E R” x R” 

WY, q) > & (y” + q2)1’2”-@‘, 

WY, 4 B (1 - NYGXY, d + @Xyt qh (7) 

WY, q) < $ (y’ + q2)“2’1-8’, 

1 G’(y, q)/ < F e”l-e’(y” + qz)e/zc’-o’~ 
[ I 

Proof. Condition (6)-(9) follow from the corresponding conditions on H, by 
using Fenchel’s formula and the equivalences (i) o (ii) o (iii); we derive (6) 
from (3), (8) from (4), and (9) from (5). As for (7), simply write condition (4) 
as follows: 

ffb P) < ‘?xy + pq), 

H(x, P) = XY + pq - WY, 4). 

Subtracting, we get the desired result. 1 

We now proceed to the proof of the theorem, which is another extension of 
the direct method introduced by Clarke in [2]. Let T > 0 be given. Setting 
(y. = I/( 1 - e), with 1 < OL < 2, we consider the following classical problem 
in the calculus of variations: 

extremize 
s ‘{G(--Q, 3) - 04) dt; 

0 

j Eqo, 1; R”), y(0) = 0 = y(l), 

4 ELyO, 1; R”), q(0) = 0 = q(1). 

(9) 

In other words, consider in L=(O, 1; IJP) the closed linear subspace E of all 
functions whose integral vanishes. Set q(t) = ji p(s) ds, and consider the func- 
tional Ion E x E defined by 

/(A P) = JFb PC--4,~) - Tyq} dt. 
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LEMMA 4. Suppose ( y, q) is an extremal of problem (g), i.e., ( j, 4) is a critical 
point of J on E x E. Then, (x, p) defined by 

x(t) = G; (-4 (+),j (+)j, 

p(t) = G (-4 (+)d (+)) 

is a nonconstant T-periodic solution of Eq. (6). 
We also have constants TV and pcLI E RF such that 

x(T) = TY (+) + CL, 

(11) 

P(T) = Tq (+) - P’. 

Proof. Inequality (8) implies that J is finite everywhere; by Fatou’s lemma, 
it is lower semicontinuous, and since it is convex, it is continuous as well (see [4, 
pp. 13, 2391). Inequality (9), with e/(1 - 0) = (Y - 1, implies that / is Gateaux 
differentiable, and since it is convex, it is Cl as well (see [4, p. 3471). The two 
components of its gradient in E* x E* are 

G;(--Q,j) - Tq + /I = f ELa’, 

-G&j, j) + Ty + $ = g E La’, 

where 0~’ = CX/(~ - 1) = l/0 is the conjugate exponent of 0~. Here TV and p’ are 
constants such that 

s,l f (t) dt = i’g(t) dt = 0. 

If ( j, 4) is a critical point, then f = g = 0. Setting x(t) = Ty(t/T) + p and 
p(t) = Tq(t/T) - I”‘, which are obviously T-periodic, we get 

G;(--p(tT), k(tT)) - p(tT) = 0, a.e., 

-G;(--j(tT), k(tT)) + x(tT) = 0, a.e. 

In other words, (x, p) E aG(+, ‘) f x or almost every t. Using the equivalence 
(i) o (iii), we get (-+, 9) E aH(x, p), the desired result. 1 

It is clear that the constant (0, 0) is a critical point of J (we will see presently 
that it is a local minimum). The problem is reduced to showing that this func- 
tional has at least one more. This will be done by applying a theorem of 
Ambrosetti and Rabinowitz: if a functional J on some Banach space satisfies 
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condition (C) of Palais and Smale, is zero at the origin, is bounded away from 
zero on the boundary of some open ball B, and is zero again at some point 
outside I?, then it has a critical point outside B (see [ 1, 21). We first set the stage. 

LEMMA 5. Let B be the unit ball in E x E. Constants y > 0 and p > 0 can 
be found such that 

(60) f: (j,d)~pB =i J(j,4) > J(O,O) =O, 

I(99 4) a Y on the boundary of pB. 

Proof. Clearly, JO, 0) = 0. By condition (6), we have 

.I($, 4) 3 J’,’ 1; (4” + j*P’* - Tjq\ dt. 

Since q(0) = 0, and using the Cauchy-Schwarz inequality, we get 

(12) 

(13) 

s 
’ jq dt < II 9 lla II q IL, < II 3 /Ia II 4 W’” 

0 

On the other hand, we have 

(4’ + j2)=‘* >, I 4 la + I j Ia. 

Combining these inequalities, we get 

/(A 4 3 & (II 4 !I: + II i, IIF=3 - T II 9 !L II 4 Ila/21’0L’. 

Since (Y < 2, the desired conclusions follow. 1 

LEMMA 6. There is a nonzero (e, f) E E x E where the functional is zero: 

(e,f) f (O,O> and J(e,f) = 0. 

Proof. Choose y. E R”, and set y(t) = y. sin 2rt, q(t) = y. cos 2?rt, so that 

s 

1 
j(t) q(t) dt = wyo2. 

0 

On the other hand, by inequality (LX), we have 

s 

1 

0 
G(--Q(t), 3(t)) dt < $ I yo I*. 

This gives us 

505/34/3-13 

1 
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Since o( < 2, we can choose y, so large that 

Now consider the path s + (sj, ~4) in E x E, joining ( j, 4) (for s == 1) to the 
origin (for s = 0). The function s + J(sj, ~4) is strictly negative for s = 1, and 
because of Lemma 5 it is strictly positive for small value s0 E (0, 1). By the 
intermediate value theorem, it has to vanish somewhere on (s,, , 1). 1 

LEMMA 7. The functional / satisjies condition (C) of Palais and Smale: any 
sequence (3j,, , I&) in E x E, along which J( $,, , Pn) is bounded and J’( 9, , gn) 
converges to zero, possesses a convergent subsequence. 

Proof. Let ( sn , gn) be such a sequence. In other words: 

cl < r 1{f+4n,jn)- Tq,jn)dt<c~, (14) 
‘0 

GA-4n ,A) - Tqn + CL,, =fn - 0 in Lo’, (15) 

-G(-4n ,%I + 5n + r: = g, - 0 in La’. (16) 

It follows from (14) that 

i 

1 

Tq,, j,, dt = - 
0 

j-’ Twin dt 3 -cp + I’ G(-&a ,~,a) dt, 
0 0 

T s,l hJ’, - ?‘&I dt >, -2c, + 2 1’ G(-tjn , j,) dt. 
0 

The left-hand side can be written differently, using (15) and (16): 

T J’b &A - ?~nPnl dt = J‘l kGd-4n , JL) - PnGX-Pn , A,)) dt 
0 

- o1 {fn *in + gn4nl dt. s 

By condition (7), the first term on the right-hand side can be estimated as 
follows: 



Adding all these inequalities, we get 

-2c, + 2 j-’ G(-9, , j,,) dt < a 1’ G(-Qn , 9,) dt - j-’ {fnj, + g&z) dt, 0 ‘0 ” 

(2 - a) lo1 G(-4n , jn) dt < 2~ - j-l {f,& + g&J dt. 
0 

Using inequality (6), this yields 

Since 01 :> 1 and the lIfn ;(a> are bounded, as well as the /I g, IIll, , we find a 
constant ca such that 

‘I 4n I!& G c3 and I1 9, /I& G c3 . (17) 

It follows that there is a subsequence, still denoted by ( j, , Qn), and some 
(p,4) in E x E such that 

Yn --j weakly in L”, 

4n - 4 weakly in La, 

Yn -tY uniformly on [0, 11, 

Pn - 9 uniformly on [0, 11. 

Because of inequalities (9) and (17), the functions G;( -d8 , yin) and Gi( -gn , 
j,,) are bounded in Lb’. It then follows from (15) and (16) that the sequences p,, 
and p: are bounded, so that, after extracting a subsequence: 

Pn - P and CL; - P‘. 

We now write (15) and (16) somewhat differently, using the equivalence 
(i) 0 (ii); this yields 

9, = XX T?/, + P; - g, 7 Tqn - in + .fn) a.e., 

Gn = -HXTy, + pi, -g, , Tqn - A +fn) a.e. 
with 

Tyn + CL,: - g, - 5 + P’ in Lx*, 

Tqn - in + .fn - Q - P in La’. 
(19) 

Since the derivative H’ is continuous and satisfies estimate (5), the mapping 
(#J, #) -+ H’($, #) is continuous from La’ x La’ into Ly x La (this is a theorem 
of Krasnoselskii; see [4, p. 771). It follows that the right-hand sides of formulas 



(18) converge inLCx: then XI do the I&-ha.nd sides: $,, A-C end i,, d i sevon$\-. . 
as desired. 1 

All the assumptions of the ,4mbrosetti-Rabinowitz theorem have been 
checked; it follows that the functional J does have a nontrivial critical point in 
E x E. Hence Theorem 1. 

To prove estimate (2) we first relate the critical value c to the energy level k. 
Denoting by ( j, Q) the critical point we have just found, we have 

c = 
s 

’ (G(-tj, 9) - Tpj) dt. 
0 

Taking into account the relation s: (~9 + ~4) dt = 0, this becomes 

c = 
s 

’ {G(-cj,j~) - +(Tqjl - Tycj)) dt 
0 

=: s ‘{G(+) - t(jG;(-4,~) - cjG;(-cj,p))}dt. 
0 

We now use the equivalence (ii) 0 (iii), taking into account Lemma 4. We get 

c = f j-‘{+(dz;(x, p) + ~ff,‘(.r, P)) - f+, ~1) dt. 
0 

By assumption (l), this yields 

By the constancy of H along the trajectory, we get 

C.,(&l,. (20) 

We now try to relate the critical value c to the period T. This will require 
some more information about c. The Ambrosetti-Rabinowitz theorem defines 
it as follows: 

c = $j ,l&, Mth 

where r is the set of all continuous paths y: [0, l] - E x E, such that y(O) = 
(0,O) and r(l) = (e,f). Taking the same path y as in Lemma 6, 
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with r(t) = y0 sin 27rt and q(f) = y0 cos 27rt, we get 

The right-hand side is readily estimated; we have seen that 

The right-hand side is maximum for 

Hence the desired estimate: 

1 
c+aGi 2 ( 1 

a/(2-a) 2 _ (y 

46’ 
(21) 

The conclusion follows by putting together (20) and (21). 
Now for the general case, where H is no longer differentiable nor strictly 

convex, and where inequality (3) does not hold. We leave it to the reader to check 
that there is a sequence H, of convex functions, differentiable, strictly convex, 
satisfying 

H&, P) G h&W, PI + YWG PI>, (22) 

fL(x, P) < 2 (x2 + P~Y’~~, (23) 

for constants 0, -+ 0 and a, --f a, and converging to H uniformly on the ball of 
radius Max(l, C/T11t1-2e)). Here a is the supremum of 2H(x, p)/(x2 + p2)llze on 
B. By the preceding result, there is for each n a T-periodic function (x% , p,) 
such that 

(-M), fn(tN = Kz(x&h P,#) a.e., (24) 

H&,(t), p,(t)) < C,/T1”1-2e) for all t. (25) 

The constants C, , given by formula (21) are uniformly bounded because 
H, converges to H uniformly on the unit sphere. It then follows from inequality 
(25) that the (jr, ,p,) are uniformly bounded in La, and by Eq. (24) so are the 
(*, , j,). We can extract a subsequence (jf, , j,) which converges in Lac weak-star, 
so that (x, , p,J converges everywhere on [0, T]. Passing to the limit in (24) 
(using Mazur’s lemma and the fact that i?H is convex compact-valued; see [4, 
p. 2581 and (25), we get the desired result: 

(-P(t)> W)) E: =W),P(~) a.e., (26) 
H@(t), p(t)) < C/T1/‘1-2e’ for all t. (27) 
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The solution (x(t),p(t)) is clearly T-periodic. To see that it is nontrivial, 
we note that Lemma 5 gives us for each n an inequality c, > yn , with 3/n > 0 
depending only on a, . Since a, + a, we have yn > y > 0. Taking limits in 
the equation 

we see that the right-hand side cannot go to zero. 
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