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Abstract We are given a list of tasks Z and a population divided into several groups
X j of equal size. Performing one task z requires constituting a team with exactly one
member x; from every group. There is a cost (or reward) for participation: if type x;
chooses task z, he receives p; (z); utilities are quasi-linear. One seeks an equilibrium
price, that is, a price system that distributes all the agents into distinct teams. We
prove existence of equilibria and fully characterize them as solutions to some convex
optimization problems. The main mathematical tools are convex duality and mass
transportation theory. Uniqueness and purity of equilibria are discussed. We will also
give an alternative linear-programming formulation as in the recent work of Chiappori
et al. (Econ Theory, to appear).
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398 G. Carlier, I. Ekeland

1 Introduction

Consider a population divided into several equal groups X;, 0 < j < N. We have to
divide the total population X = UX; into teams, each team comprising exactly one
member of each group. For N = 1 this is the classical marriage problem: there is a
group of men and a group of women, and they have to be paired one-to-one. As in
the marriage problem, the matching will have to maximize some overall criterion for
fitness.

This will be done by letting each individual pick a point z in a set Z, independently
of the others: more precisely, a set of prices (or costs) p; (z), 0 < j < N, will be
assigned to each z, and individuals in the category X ; will pick their z by maximizing
a quasi-linear utility. Individuals which choose the same z will be put in the same
team.

The functions p; (z) will be found as the solutions of an optimization problem, so
our result can be seen as giving a decentralized procedure for solving the matching
problem. Alternatively, it can be seen as showing the existence of equilibrium prices
in competitive markets where trading is not a two-sided interaction between buyer and
seller, but requires the intervention of several types of agents. To build a new house,
for instance, one has to hire (and pay) a wide variety of professionals (the architect)
and tradesmen (the plumber, the mason), all of whom come in independently of the
others and require market prices (as other examples, one may think of professors of
different fields teaming up in various universities or doctors of different specialties
in hospitals). Buying an existing house is not so simple a deal either: typically the
buyer will have to borrow part of the money, so that the bank comes in as a third party
into the deal. This approach was initiated in Ekeland (2005) for the case N = 1 (the
marriage problem), although the method used did not lend itself to such an extension.

The purpose of this paper is to generalize the results of Ekeland (2005) to the case
N > 2 by means of convex duality arguments. Recently and independently, Chiappori
et al. (2008) formulated the matching problem as a linear programming problem and
noticed that their approach also covers the multiple agents case. In Sect. 6, following a
suggestion of McCann, we will give a linear formulation of the problem as in Chiappori
et al. (2008).

The structure of the paper is as follows. Section 2 introduces the model; and in Sect. 3
matching equilibria are defined. In Sect. 4, we introduce two optimization problems
which are naturally related to the matching problem. In Sect. 5, we use convex duality to
prove existence of equilibria and we give a variational characterization. An alternative
formulation via linear programming is given in Sect. 6. Uniqueness and purity of
equilibria are discussed in Sect. 7. Finally, in Sect. 8, we extend our results to the case
where a team does not necessarily consists of a finite number of agents but is given
by a general measured space.

2 The model

We consider a market where there is single, indivisible good which comes in different
qualities z € Z. In the sequel, we will refer to Z as the quality space.
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Matching for teams 399

2.1 Buyers/consumers

Each consumer buys one unit of the good. Consumer are heterogeneous: each of them
is characterized by the value of some parameter xo € Xo, henceforth referred to as
her rype. Utilities are assumed to be quasi-linear with respect to prices: a consumer of
type xo buying one unit of quality z and paying pg derives the utility:

uo(xo, 2) — po.

Consumers’ types are assumed to be distributed in the population according to some
probability o on some o-algebra of X(. We normalize the size of the population of
consumers to 1.

2.2 Producers

There are N categories of producers denotedbyi = 1, ..., N.The production requires
specialized labor from every category of producers. Specifically, to produce one unit
of good (whatever its quality), one must assemble a team of one representative from
each category, and each producer can participate in the production of one unit only.

Each category of producers is heterogeneous. In category i, each producer is cha-
racterized her type x; € X; (skill parameters say) and a cost function¢; : X; x Z — R.
The population X; size is assumed to be 1, and types are assumed to be distributed in
the population according to some probability u; on some o -algebra of X;.

2.3 Teams and nonlinear transfers

For a good of a given quality to be traded, it is necessary in our model to gather a team
consisting exactly of one consumer, corresponding to the additional category j = 0,
and one producer of each category j = 1, ..., N. Note that this is consistent with our
assumption that all the populations have the same size.

Given a tariff z € Z — po(z) € R, consumers of type xg € X purchase qualities
z which solve the program:

sup{uo(x0, 2) — po(2)}.

z€Z

Similarly, given a wage pattern z € Z — w;(z) € R for categoryi =1, ..., N, type
x; producers offer qualities z which minimize net cost:

inf {c; (x;, 2) — w; (2)}. ()

zeZ
It will be convenient in the sequel not to distinguish between the consumers’
category (j = 0) and the producers’ categories (j = 1,..., N) and to formulate

everything in terms of costs and transfers. For notational conveniency, we therefore
set
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400 G. Carlier, I. Ekeland

co i= —Ug
and for j =0, ..., N we define the transfer functions ¢; by:
9o(z) = —po(2), ¢i(z) =wi(z), 1 =i =N.
For given transfers, optimal qualities for type x; are determined by the program
07 () = inflej (6, 2) = 9 ()}, @
which is the indirect utility which type x; derives from the transfer ¢;. In the sequel,

we shall refer to (p;j as the c j-transform of the transfer function ¢ ;. Note that for every
(xj,2) € Xj x Z, one has the so-called Young’s inequality

07 (x)) + () < cjlxj,2). @

Let us also remark that, given the transfers ¢; for category j, the demand set D (x j)
for agents of type x, that is, the set of optimal qualities in problem (2), is defined by:

Dj (x)) := {Z € Z 1o () + (@) =cjlxj, z)}. 4)

Each team is assumed to be self-financed. In other words, in a team that produces z,
the price paid by the consumer, po(z), is the sum of the wages paid to the producers,

w;(z) fori =1, ..., N. Equivalently, the transfers satisfy the balance condition
N
> i) =0, VieZ ®)
j=0

Since we are dealing with a quality good, note that, even if the quality space has a
linear structure, the transfers are inherently nonlinear.

2.4 Data and assumptions

To summarize, the data of the model are the type spaces of each category Xo,

X1, ..., Xn, the probability distributions of types o, ..., un, and the cost func-
tions co, ..., cy (recall that co = —up). Throughout the paper, we will assume the
following:

e X is acompact metric space equipped with its Borel o -algebrafor j =0, ..., N,
e Z is a compact metric space,

e 1 is a Borel probability measure on X; for j =0,..., N,

° cjGCO(ijZ,R)forjzo,...,N.
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Matching for teams 401

We shall denote by A(X ;) the set of probabilities on X ;, so that u; € A(X;). For
probabilities on product spaces, y; € A(X; x Z), we denote by x;y; € A(X;) and
zy; € A(Z) respectively the first and second marginal of the joint probability y;.
In other words, for every f € CO(Xj, R) and g € C°(Z, R) one has:

(f(xj) + g@)dyj(x;, 2) =/f(xj)d7TXj7/j(xj) +/f(xj)dﬂz)/j(Z)-
xZ X; z

X

3 Equilibria
3.1 Couplings and product lines

Of course, there is not reason why the demand set D; (x j) should be a singleton,
that is, that the optimization problem (2) should have a unique solution. We will
therefore allow agents of type x; to randomize their choices between the several
optimal solutions. Alternatively, we can consider that not all agents of type x; pick the
same optimal quality, so that there is for each element of D; (x j) a certain proportion
of agents who choose it.

We will define a coupling y; between the type space X ; and the quality space Z as
any probability measure on the graph of D; C X; x Z which projects down to u:

TX;Yj = Hjs

¢j’(xj) +9j(z) =cj(xj,z) yj-asonX; X Z.

For every Borel subsets A; C X; and B C Z, we interpet y;(A; x B) as the
probability that an agent of category j has her type in A ; and an optimal quality in B.
At equilibrium, the distribution of the demand for the quality good and the distribution
of the supply for the quality good for each category should coincide, which means that

TZYj ="V

for some v € A(Z) which is independent of the category j. The probability v € A(Z)
will naturally be interpreted as a quality line. For v € A(Z), we define

M(pj,v) i={y € AX; x Z) | nx;y = pj, nzy = v}

so that the equilibrium condition on the good market means that there is a product line
v such that

yj € M(unj,v), j=0,...,N.
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402 G. Carlier, I. Ekeland

3.2 Definition of matching equilibria

An equilibrium consists of (quality dependent) transfers, (quality and type dependent)
couplings and a probability measure on the quality space (the product line) such that:

for each quality, the balance condition (5) is satisfied,

consumers of each type choose maximizing utility qualities,

producers of each category and each type choose minimizing cost qualities,

there is equilibrium on the market for the good: the demand probability distribution
equals the supply probability distribution for each category of producer’s.

This gives the following precise definition

Definition 1 A matching equilibrium consists of a family of transfers ¢; € C 9(Z,R),
a family of probabilities y; € A(X; x Z), j =0, ..., N and aquality line v € A(Z)
such that:

1. Forallz € Z:

N
Z(Pj(z) =0,
j=0

2. yje€(u;,v)forevery j =0,..., N,
3. forevery j =0,..., N, one has:

gojj(x.;) +¢j(@) =cj(xj,z) yj-asonX;xZ

4 Two related optimization problems

The aim of this section is to prove that matching equilibria are solutions of a cer-
tain optimization problem. To achieve this goal, we first need some basic results
from optimal transportation theory that are recalled in the next paragraph. Indeed, the
Monge—Kantorovich duality is of particular interest in our equilibrium context since
the last two conditions in the definition of an equilibrium exactly are the extremality
conditions for this duality.

4.1 Mass transportation and Kantorovich duality
Given two compact metric spaces X and Z, probability measures u € A(X), v €

A(Z), and a cost function ¢ € C%(X x Z, R), the Monge—Kantorovich optimal trans-
portation problem consists in finding a transport plan y with least cost:

(Myn) We(it, v) = inf / c(x, 2)dy (x,2) : y € (1, v)
XxZ
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Here IT(u, v) denotes the set of probability measures on X x Z having i and v as
marginals. If y e IT(u, v) solves (M, ,), it is called an optimal transportation plan
between p and v for the cost c. Slightly abusing notations, we shall say that y solves
W, v).

It is customary in the Monge—Kantorovich theory to consider also the dual problem:

(Du,y)  sup /(pc(x)du(x)+/<p(z)dv(z) ,

0
9eCO%(ZR) S

where by definition ¢¢ is the “c-concave transform” of ¢. I it is defined for all x € X
by:

pe(x) = Zirelg{C(x, 2) — ¢(2)}. (6)

It is immediate to check that if ¢ is bounded on Z, then ¢¢ € C%(X, R).The main
results from optimal transportation theory (we refer to Rachev and Riischendorf 1998
and Villani 2003 for proofs) that we shall need are summarized in the following:

Theorem 1 Assume u € A(X), v € A(Z), and c € C%X x Z,R). Then:

1. the supremumin (D, ) is attained by some ¢ € C%Z,R), the infimum in (Mpuv)
is attained by some y € I1(u, v),

2. the duality relation W (i, v) = inf (M, ) = sup( Dy, ) holds,

3. @ solves (D) and y solves (M, ) if and only if:

©(x) =c(x,2) — @) y-aeonX x Z.

In the Monge—Kantorovich problem, note that we allow to split the mass at x € X
to different destinations z € Z. Indeed, we can write a coupling y € II(u, v) as
y = y* ® u where y* is the conditional probability of the destination z given the
source x. One may therefore view the Monge—Kantorovich as a stochastic problem
where one source x can be sent to several destinations z according to a conditional
probability y*. If one does not allow such a splitting of mass and imposes instead that
x is sent to a single destination z = o (x) (in other words if one imposes that y* is the
Dirac mass at o (x) or that y is supported by the graph of some function o: X — Z)
then one obtains the so-called Monge problem. The requirement that the probability
distribution v is a prescribed target may be expressed by

ot =v,
where o fu is the push-forward (or image measure) of p through o and given by
otu(B) = p(o ' (B))
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for every Borel subset B of Z. A Borel 0 : X — Z such that offix = v is called a
transport map between p and v. The Monge problem then reads as:

inf /c(x, o(x))dux):ocfu=vyg. (7)

X

Let us remark that transport maps between p and v may not exist; for instance,
this is the case if u is a Dirac mass whereas v is not. Even when there exist transport
maps, there may not exist an optimal one. In fact, the Monge problem is much more
complicated than the (linear) Monge—Kantorovich problem and in general it does not
admit solutions unless further assumptions are imposed on the data, especially on the
cost function. More precisely, let us assume the following:

e X =, with Qan open bounded subset of R,

e 1 € A(X) is absolutely continuous with respect to the Lebesgue measure, such
that u(02) = 0,

e the cost function c is continuous and Lipschitz “in x uniformly in z” (i.e. there exists
a constant C such that |c(x1, z) —c(x2, 2)| < Cllx; —x2||, V(x1, X2, 2) € X2 x Z),

e c(., 7)isdifferentiable on 2 for every z € Z and satisfies the Generalized Spence—
Mirrlees condition:

if (x,z1,22) € X x Z2 satisfy Vyc(x, z1) = Vic(x, z2) then z1 =z2. (8)

Theorem 2 Under the conditions above, the Monge—Kantorovich problem (M, )
admits a unique solution y which is of the form y = (id, o) where o is the unique
(up to u-a.e. equivalence) solution of the Monge problem (7).

In other words, under the Spence—Mirrlees assumption (and the other regularity
assumptions listed above), optimal transportation plans are unique and in fact given
by an optimal transport map. We refer to Carlier (2003) for a proof of this result. This
will be useful when we will discuss uniqueness and purity of equilibria in Sect. 7.

Finally, let us note a duality result, which is much in the spirit of what is to come.
Denote by A(Z) the space of Radon measures on Z, which is the dual of C 0(z,R).
Define for all ¢ € C°(Z, R):

Flg) = — / ¢ (0)du(x). ©
X

Corollary 1 F is a convex continuous function on C°(Z, R). The Fenchel transform
of F is given for every v € M(Z) by:

WC(/‘L’ V) lfV € A(Z)v
+00 otherwise.

F*(v) = [

As an immediate consequence, the function v — W, (u, v) is convex and weakly
* L.s.c. The proof is given in the Appendix.
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4.2 Optimization properties of equilibria

Let us assume that (¢}, y;, v) is a matching equilibrium. It then follows from the
last two conditions in the definition of an equilibrium and from Theorem 1 that
each coupling y; solves (M, ), and that ¢; solves its dual (Dy; ). So, for all
j=0,...,N,one has:

We; (j, v) = / c,-(xj,z)dyj(xj,z)=/¢§jd/xj +/<pjdv'

XjxZ X; VA
Summing these equalities and using the balance condition (5) then yields:
N N
¢
PR ATTEDS /so,s’duj. (10)
Jj=0 7=0 x;

Now let ¢ € C 0(Z, R) be another balanced family of transfers:

N
> i) =0, VzeZ (11)

J=0

The Monge—Kantorovich duality formula yields:

WeGuo = [dus+ [ s (12)
Z

X;
summing these inequalities and using (11) we then get:
N N
¢

D We(ujin) =) / v du;. (13)

Jj=0 J=0x,
With (10), we deduce that the transfers ¢;’s solve the following (concave) program:

N N
o
(P) sup Z /(pj'/duj : ij =0
j=0 Xj j=0

Take some n € A(Z). With the Monge—Kantorovich duality formula, the balance
condition (5) and (10), we get
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N N N
D Weujm=D /fﬂjjdll«] /(de'? =Z/<ﬂ,’dﬂj Z S (s v).
j=0 j=0 X; j=0Xj
So that v solves
N
(P*) inf § > We, (1), v) : v € A(Z)
j=0

It turns out that this is a convex problem as a consequence of Corollary 1. Let us
also remark that when N = 1, X and X are subsets of R?, and ¢y = ¢; =
squared euclidean distance, then (P*) is solved by the McCann interpolant between
o (absolutely continuous with respect to the Lebesgue measure, say) and u1, i.e.
nip = %(id + T)t#uo where T denotes Brenier’s optimal transport between g and
1 (see Brenier 1991).

To sum up, at this point, we have not proven anything about the existence of equi-
libria, but have discovered that if (¢}, y;, v) is a matching equilibrium then:

o the transfers ¢;’s solve (P),
e the quality line v solves (P*),
e foreach j, y; solves We; (i, v).

Moreover in this case
N
min(P*) = > We, (1), v) = Z/%de,] = max(P). (14)
j=0 i=0%,

It follows from (14), that if a matching equilibrium exists then (P) and (P*) both
possess solutions and achieve the same value. Hence a necessary condition for the
existence of a matching equilibrium is:

max(P) = min(P*).
We shall prove in the next section that this condition is fulfilled and actually sufficient
for the existence of a solution. Indeed, programs (P) and (P*) are in fact dual pro-

blems in the usual sense of convex analysis (as developed for instance in Ekeland and
Temam 1999).

5 Existence and characterization of equilibria
5.1 Solving (P) and (P*)

In accordance with definition (9) we set, for ¢ € C 0z, R):

Fi@) = [6au. j=0. N
Xj
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These are convex functions, and their inf-convolution H (see Ekeland and Temam
1999 for instance) is defined by:

N N N
Hp) = (0 Fp(g) =inf 1 3 File)) © D 0j =9 (15)
= j=0 i=0

The inf-convolution is exact if the infimum is attained, that is, if for every
NS CY%(Z, R) there exists @0, ..., QN In CY%(Z, R) such that

N N
D wj=¢ and > Filp;) = Hp).

j=0 J=0

It is well-known that H is a convex function on CY(Z, R) and that the Legendre-
Fenchel transform of H is given by:

N
N
H* (v) = (0 F))* ) =3 F} (). (16)
1= ]=0

Following the standard arguments in Ekeland and Temam (1999), we rewrite (P*)
as:

*

N N
inf Ff(v) =— F? 0) = —H™(0).
ve%‘ha; T jzz()) 7] © )

Of course, by definition sup(P) = — H (0) hence sup(P) = inf (P) provided H (0) =
H**(0), that is, H is lower semi-continuous at O for the strong (or, since H is convex,
equivalently for the weak) topology of C%(Z, R). It is in fact the case as stated in the
next proposition, whose proof can be found in the Appendix.

Proposition 1 Ler H be defined by (15), then the following holds:

1. the infimal convolution is exact
2. H is convex and lower semi-continuous, so that:

*

N
n=w= 3k
j=0

The next result states that () and (P*) possess solutions and have the same value
(no duality gap).

Theorem 3

max(P) = min(P*). (17)
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Proof The fact that (P*) possesses solutions is easy to see. Indeed, A(Z) is weakly *
compact in M(Z) and each function v — W¢, (14, v) is Ls.c. for the weak * topology.
The fact that the supremum is attained in (P) follows from Proposition 1 (with ¢ = 0).
By Proposition 1, H = H™** so that in particular sup(P) = —H(0) = —H**(0) =
inf (P*). O

5.2 Existence and characterization of matching equilibria

Consider a family of transfers ¢ ; € C%(Z, R), afamily of probabilities y; € A(X; x Z),
j =0,...,N and a quality line v € A(Z). We want to know if they constitute a
matching equilibrium, in the line of Definition 1. With the existence and duality results
of Theorem 3 at hand, we have the following characterization:

Theorem 4 (¢;, y;, v) is a matching equilibrium if and only if:

e the functions ¢;’s solve (P),
e v solves (P*),
o foreachj=0,...,N,yjsolves Wcj(uj,v).

Proof The “only if” part has already been proven in Sect. 4.2. Assume now that
the ¢;’s (P) solve, that v solves (P*) and that y; solves W, (11, v) for every j. In
particular this implies that the ¢;’s are balanced and that y; € II(u;, v) for all j.
Since y; solves We, (i, v), one has

We;(nj,v) = / cj(xj, 2)dyj(x;, 2),
X_,'XZ

using the fact that the ¢;’s solve (P), that v solves (P*), using (17), the balance
condition and y; € IT(u;, v) we then get:

N N
Z / cj(xj, D)dyj(x;,2) = z We,; (j, v)
7=0x'xz Jj=0
N . N .
= min(P*) = max(P) = Z/‘P;/dﬂj — Z /wjfd'uj +/g0jdv
jZOXj j=0 X; 7

N
=> / (@7 () + 9 @)y (xj, 2).
i=0x ’xz

One thus deduce from Young’s inequalities (3) that for every j one has
<p;j(xj) +¢j(@) =cj(xj,z) yj-as.onX x Z,

which proves that (¢}, y;, v) is a matching equilibrium. O
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Since existence of solutions to (P) and (P*) has already been proven in Theorem 3
and existence of optimal plans for WCJ. (uj, v) follows from Theorem 1, we thus
immediately deduce:

Proposition 2 There exist matching equilibria.

5.3 An example

Let us illustrate the previous characterization results by a simple example. Consider
the unidimensional case where X; = Z = [a,b] forall j = 0, ..., N and the cost
function of category j is

1 2
cj(xj.2) =Aj\ 52" —xjz ),

where the A;’s are positive constants that sum to 1 (this last condition is of course
without loss of generality). Let us further assume for simplicity that u ;, the probability
distribution of type x;, is absolutely continuous with a positive density on [a, b] for
every j.Let F; be the cumulative distribution function of the type x ;. Our assumptions
imply that F; is continuous and increasing on [a, b] with Fj(a) = 0, F;(b) = 1, hence
F;j is invertible with an increasing inverse F j_l 1[0, 1] — [a, b]. In this case there is
a unique monotone increasing function o such that oo = u; (of course oy = id)
and o; is given by the explicit formulao; = F ]Tl o Fy. Let us then define

N
o= D xjoj | tuo, ¥, :=(0j,0)uo, and ¥ :=5tuo,
j=0

and for all j and z € [a, b],

Z

9i(z) = /)»j (S —0j OEfl(s)) ds.

a

We claim that (¢;, ¥ ;, V) is an equilibrium and that it is the only one (up to the
addition of constants that sum to 0 to the @ ;’s) since the generalized Spence-Mirrlees
condition is satisfied here for all the cost functions (see Sect. 7 for a more detailed
discussion). Indeed, by construction the family ¢ ;s isbalanced, y ; € IT1(u;, V) solves
WCJ. (uj, V) (the support of y j is indeed included in the graph of a nondecreasing
function and this ensures the optimality, see Villani 2003 for details) and it easy to
check that:

1
9 (0 (x0)) + (0 (x0) =4 (Eﬁz(xo) —0j (xo)E(XO)) , Vxo € [a, b]
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so that ¢/ (x;) + Ej(z) = Xj(%zz — x;z) yj-a.s., which proves that (Ej, Vi V)isa
matching equilibrium.

6 Linear programming reformulation

Chiappori et al. (2008) gave a linear programming formulation of the hedonic price
equilibrium problem. In this section, following a suggestion of McCann, we prove
that equilibrium product lines, that is, solutions v of (P*), can be obtained by solving
a linear programming problem.

First define X := Xo X --- x Xy and for every, x := (xg, ..., xy) € X, the least
cost:
N
c(x) :=c(xg,...,xy) :=inf ch(xj,z), ze€”Z
j=0
For the sake of simplicity, let us assume that for every x = (xo, ..., xy) € X there is

a unique cost-minimizing quality z =: Z(x):
N
ex) = D cjlxj. 7(x)).

j=0

Now let us consider the multi-marginal Monge—Kantorovich problem

inf /E(xo, oo xn)dy(xo, ..., XN, (18)
yell(po,....un)
where IT(no, .. ., uy) denotes the set of probability measures on X having uo, ..., Uy

as marginals. Note that this is a linear programming problem in the variable y .
The connection between the multi-marginal Monge—Kantorovich problem (18) and
(P*) is the following (the proof is given in the Appendix):

Proposition 3 Under the previous assumptions, one has:

1. the infimum in (18) is attained and its value coincide with inf (P*),
2. ify solves (18) then v := Zfiy solves (P*),
3. if v solves (P*) then there exists a solution of (18), ¥, such that v := Zy.

Problems of the form (18) for the optimal coupling of several marginals are in
general difficult to solve for a cost function which does not have a nice structure (such
as the sum of pairwise costs). There is however a duality theory for such problems
that generalizes the case of two marginals.
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7 On purity and uniqueness of equilibria

This section is devoted to investigate when equilibria are unique, and when they are
pure. A pure equilibrium is an equilibrium in which agents of the same type and the
same category all choose the same quality:

Definition 2 A matching equilibrium (¢}, y;, v) is called pure if and only if all the
couplings y;’s are of the form y; = (id, oj)fiuj with o; measurable X; — Z.

Note in particular that the previous definition implies that o; is a transport map
between p; and v (i.e. o;f; = v) but also (by Theorem 4) that it is an optimal
transport between 1 ; and v, meaning that it solves the Monge problem:

inf /Cj(x, o(x)duj(x):offu; =v¢. (19)
Xj

It thus follows from Theorem 2 that if all the probabilities i ;’s and all the cost
functions ¢;’s satisfy the assumptions preceding Theorem 2 and in particular the
generalized Spence—Mirrlees condition, then every matching equilibrium is in fact
pure.

Now, for uniqueness:

Proposition 4 If some particular jo, 1 j, and cj, satisfy the assumptions preceding
Theorem 2, then the equilibrium product line v is unique: problem (P*) has a unique
solution.

Proof Indeed assume that v and 7 both solve (P*) and let (¢, ..., ¢n) be a solution
of (P). Let y; and n; be respectively optimal transportation plans for W, (14, v) and
WC/. (tj, 7). On the one hand, Theorem 4 tells us that (¢;, y;, v) and (¢;, n;, T) are
matching equilibria. On the other hand, Theorem 2 and our assumptions on category
Jo, imply that y;; = (id, 0j,)duj, and nj, = (@d, tj))fiu;, for two maps o, and ¢},
which satisfy

V=05, T =il (20)
By the definition of equilibria, for u j,-a.e. x € X, the following holds
Cj .
9l (x) = inf {cio(x.2) — 92}

= CjO(-x’ Uj()(-x)) - on()(o'j()(-x))
= Cjo(x, 1jo(x)) = @jy (1o ().

Our assumptions imply that gojé ¢ is Lipschitz continuous on X j;, and hence, by Rade-
macher’s Theorem, differentiable 1 j,-a.e.
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If <p;(; % is differentiable at x and the equalities above are satisfied at x then one has:

¢
V' (x) = Vicjy (x, 0jy(0) = Viej(x, 1, (x))
with the generalized Spence—Mirrlees condition this then yields
Ojo = Ljo» M jo-a.S.

with (20) we then have v = 7 which proves the uniqueness of the equilibrium product
line. O

8 Extension to a general measured category space

In this final section, we extend our main results to the case of a general measured
category space that we denote ®¢ := ® U {0} where § = 0 again corresponds to the
consumers’ population and ® is the space of producers’ categories. We assume that
®p is a compact metric space equipped with a nonnegative measure m € A(®q) of
the form mqg = m + §p. As before, the quality space is denoted Z and assumed to be a
compact metric space. We also suppose that there is a unique characteristic (compact
metric) space X for both consumers and producers of each category 6. The category
0 is characterized by a cost function ¢y € C 0(X x Z,R) (with the interpretation that
co = —uo, the opposite of the consumers’utility function) and a distribution of type
given by a probability gy € A(X). Itis assumed that for a given quality to be produced,
a consumer and a team of producers of the different sectors has to be formed, drawn
according to the measure m. Of course, the finite case where ®¢ = {0, ..., N} and
moy = Z;V:O d; corresponds to the case studied in the previous sections.
We will also assume:

o (1g)oeco, is a Borel family of probability measureson X (i.e.0 — fX fx)due(x)
is Borel for every Borel bounded f : X — R),

e joint continuity of the cost,i.e. (0,x,z2) € Oy X X X Z — cp(x,7) € CY%Oy x
X x Z,R).

Before going further let us recall the definition of a Carathéodory function:

Definition 3 Let Y a compact metric space and let (6, y) — fy(y) be a real-valued
function defined on ©g x Y, (fg)seo, is a Carathéodory function on ®¢ x Y if:

e for mp-almost every 6 € O, fp is a continuous function on Y,
e forally €Y,0 — fy(y) is measurable on Oy.

We shall denote by A(®¢ x Y) the set of bounded Carathéodory functions on ®¢ x Y.

It is well-known that if (fp)eco, € A(®g x Y) and (pg)eco, is a Borel family of
probability measures on Y then the map 6 +— fY fo(¥)dpe(y) is measurable.

The (unknown) transfers will be given by a family (¢g)pco, € A(O¢ x Z). The
interpretation is again that ¢y (z) = — po(z) (with po(z) the price of the quality good z)
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and ¢y (z) is the wage paid to producers of category 6 € ® for producing z. The self-
financing budget constraint of the team then reads as:

/(pg(z)dm()(e) =0, forallz e Z. 2D
S
The natural definition of an equilibrium in this context then reads as:
Definition 4 A matching equilibrium ((¢s)ec®,, (¥)oce,, V) consists of a bounded

Carathédory function (¢g)pco, € A(®¢ X Z), a probability measure v € A(Z) and
a family (y)geo, of elements of A(X x Z) such that:

1. Forallz € Z:

/<P9 (z)dmo(8) =0,

)

2. yp € I (ug, v) for mp-almost every 6 € O,
3. for mp-almost every 6 € ®¢, one has:

<p§9 (x) =co(x,z) —@o(z) yo-almost everywhere on X x Z.

To prove existence and give a characterization of equilibria, one may follow the
same strategy as in the discrete case, by considering the two optimization problems:

(P) sup / / @y’ (\)dp (x) | dmo(6)
X

(p0)oee 65(0)®0

with
E(0) := 1 (g9)oeo, € A(Og x Z) : /(pe(z)dmo(e) =0 forallze Z
CN)
and its dual:

P it [ Wetaa. viamoo).
ve M ( )@0

Of course, there are measure-theoretic subtleties (like the measurability of
0 — W, (1, v)) and specific difficulties to generalize Proposition 1, but the main
results basically are the same as in the finite case:
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Theorem 5 1. Both (P) and (P*) possess solutions and
max(P) = min(P*),

2. let (pg)oco, € AOg x Z), v € A(Z) and (yp)oco, be a family of elements of
A(X x Z), then ((¢g)oeoy, (Vo)oecoy, V) is a matching equilibrium if and only if:

(@ (pg)oco, solves (P),
(b) v solves (P*),

(c) for mg-almost every 6 € ®y, yy is an optimal transportation plan between
e and v for the cost cy, i.e.:

Weo (o, v) = / cp(x, 2)dyp(x, 2).
XxZ
In particular, there exists matching equilibria.

The proof which is omitted here may be obtained from the authors upon request.

Appendix
On c-concave analysis
Let X and Z be two compact metric spaces. For ¢ € C%X x Z,R) and Qe c%z,R),

the c-concave transform of ¢ is the function ¢¢ defined on X by formula (6), the
c-concave envelope of ¢ is the function denoted ¢““ defined by:

0“(z) = ing({c(x, 7) —¢°(x)} forall z € Z. (22)

We then have the following properties (we refer to Carlier 2003 or Ekeland 2005 for
proofs):

ce

e >¢p onZ, (¢°) =¢° onX. (23)

Let us denote by d the distance on Z, and by w, the modulus of continuity of ¢ with
respect to its second argument:

we(1) = supfle(x, 21) — e(x, 22)| (x,21,22) € X x Z%,d(z1,22) <1} (24)

since X x Z is compact w,(t) tends to 0 as t — 0. Regularity of c-concave envelopes
is guaranteed by the following:

Lemma 1 Forall 71, 2o € Z* we have:

lp°“(z1) — ¢““(22)| < wc(d(z1, 22)).
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This proves that the family {¢, ¢ € C°(Z, R)} is uniformly equicontinuous on
Z. Similarly, {¢¢, ¢ € C°(Z, R)} is uniformly equicontinuous on X.

Proof of Corollary I The claim of continuity immediately follows from the contrac-
tion property:

95 — @5llco.x < o1 — @2lloo.z, Vg1, 92) € (C°(Z, R))>. (25)

The claim of convexity immediately follows from the definition (6) which implies
that for fixed x € X, ¢°(x) is a concave function of ¢.
Let v € M(Z). By the definition of the Fenchel conjugate:

F*(v) = sup /(ﬂ"(X)dM(X)Jr/sO(Z)dV(Z)

0
9eCO(Z,R) S

If v is not a non-negative measure, there exists ¢ < 0 such that f 7 ¢dv > 0. For
every t > 0, we then have (t¢¢) > miny 7 ¢, hence:

F*(v) > sup t/(pdv + min ¢ = 4o0.
>0 XxZ
z

Ifv(Z) #1 = pu(X), we get:

F*(v) > sup {t(v(Z) — n(X))} + min ¢ = +o0.
teR XxZ

Finally, if v € A(Z), using the duality relation of Theorem 1 we get F*(v) =
W, v). o

Proof of Proposition 1 Let us prove first that the infimal convolution is exact. Let
(wg, e (p]fv)k be a minimizing sequence for the minimization problem (15) defining
H(p).For j =1,..., N define

Y= ()
and
N
o= = D U5 (26)

j=1

By construction (l/f(’)‘, ey 1//]’§,) is admissible for H (¢), I/f;{ > (p]; and (wj.‘)“.i = ((pj?)cj
for j =1,..., N, hence we have ‘ '

N N
Y=o —> v <o - ok =¢f
j=1 j=1
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and since the co-transform is order reversing, we obtain (wO)CO > ((p )0, Thus, we
get

N N
Z Fi(y Z Fj ((pJ
j=0 j=0

so that (1//(])‘, e, lp,ﬁ,)k is also a minimizing sequence for the minimization problem
(15). Since the problem (15) is invariant by adding to the ¢; constants that sum to 0,
there is no loss of generality in assuming that minz 1//}‘ =O0forevery j =1,..., N.
For j =1, ..., N defining ; the modulus of continuity of ¢ with respect to its second
argument:

wj(t) == sup{lc;(xj, z1) — c(xj, 22)| (xj,21,22) € Xj x Z%,d(z1,22) <t} (27)
and using Lemma 1 we then get:
0< wf <M;:=wj(diam(Z)) onZ, forj=1,...,N.

With Lemma 1, the previous bounds and (26), we deduce that the sequence (wf)k is
bounded and uniformly equicontinuous forevery j = 0, ..., N. By Ascoli’s theorem,
we may therefore assume, taking subsequences if necessary, that each 1/;5? converges

as k — +o0in C%(Z, R) to some @;. By the continuity of F; (see Corollary 1) we
immediately deduce that

N N
Sei=¢ and > Fi(ep) = H(p).
Jj=0 j=0

so the inf-convolution is exact, as announced. Moreover, let us remark that the ¢;’s
obtained above satisfy

0<9; <Mj, lgj(z1) —¢j(z2)| <w;(d(z1,22)), Y(z1,22) € Z%, j=1,...,N.
(28)

Now it remains to prove that H is l.s.c (convexity is obvious). Assume that a

sequence (cpk)k converges to some ¢ in CO(Z, R), then one can find continuous
functions ((p(’)‘ ey (p][‘\,) that satisfy the estimates (28) and such that

N N
Doy =¢" ad D) =H".
=0 j=0

Thanks to (28) and Ascoli’s Theorem again, we may assume, up to some subse-
quence, that H ((pk) converges to lim inf H (gok ) and that (golj‘.) converges to some ¢; in
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C%Z, R). Since the ¢ j’s sum to ¢ and the F;’s are continuous, we get:

N N
H(p) <> Fi(pj) =1lim >  Fj(¢}) = liminf H(¢").
j=0 j=0

Proof of Proposition 3

Assertion 1. The fact that the infimum is attained in (18) follows at once from the weak-
* compactness of I1(uo, ..., un) and the continuity of ¢. Let v € A(Z) and y; €
IT(u j, v) forevery j. The disintegration theorem allows to write y; = y ]Z ®v (interpret
the family yjz as conditional probabilities) for a measurable family of probabilities yf

on X ;. Now let n € A(X x Z) be defined for every F € CYX x 2) by:
/ F(x,2)dn(x,z) := / F(xo,...,xy,2)dy5(x0) ...dyy(xn)dv(z).
XxZ

By construction, the marginal of 7 on X; x Z is y; and defining y as the projection
of non X one has y € I1(uo, ..., uyny). Now we have:

N N

Z / Cj(Xj,Z)d)/j()Cj,Z)Z/ZCj()Cj,Z)dT]()C,Z)
7=0x’xz xxz I=0
> /E(X)dﬂ(X,Z)=/5(X)dV(X)~
XxZ X

Since v and the y;’s are arbitrary in the previous inequality and since y € IT(uo,
.., L), we deduce that the value of (P*) is greater than that of (18).

Assertion 2. Let ¥ be a solution of (18) and define v := z#fy and y; := (n;, Dty
(where 7 (x) := x;). Note that by construction y; € I1(u;, V). We then have:

N
inf(P*) > / c(0)dy (x) = / > ej(x). 7(0))dy (x)
x J=0

X
N N

:Z / Cj(x]‘,z)dyj(x]‘,z)ZZWCj(Mj,ﬁ)Zinf(P*).
I=0xxz j=0

This proves that the value of (18) is inf (P*) and that v = zfy solves (P*).
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Assertion 3. Finally assume that v solves (P*), let j € IT(w ;, v) be such that
We, (1, ) = / ¢;d7 ;.
Xj xZ
Let us disintegrate each i ; by writing ¥ ; := 7; ® v and define 7 € A(X x Z) by:
[ Foodie. = [ Fao o 007500 075 0de)
XxZ

forall F € C%(X x Z). Finally denote by ¥ the projection of 77 on X. By construction,
v € I (wo, - .., ny) and thus the common value of (P*) and (18) equals

N N

> [ atawea = [ 3 e a0

7=0x ' xz xxz 1=0
> /E(x)dﬁ(x,z)=/5(x)d7(x).
XxZ X

This proves on the one hand that 3 solves (18) and on the other hand that for 7-a.e.
(x, z) one has

N
> cj(xj.2) =2(x)

j=0

by continuity, this also implies that the support of 7 is included in the graph of Z.
Hence for y-a.e. x € X, the conditional probability 7* is the Dirac mass at z(x), we
thus have 7 = (idy, )4y and, in particular v = zfy. O
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