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Abstract We consider a problem of derivatives design under asymmetry of informa-
tion: the principal sells a contingent claim to an agent, the type of whom he does not
know. More precisely, the principal designs a contingent claim and prices it for each
possible agent type, in such a way that each agent picks the contingent claim and pays
the price that the principal designed for him. We assume that the preferences of the
agent depend linearly on the parameters which determine the agent’s type; this model
is rich enough to accommodate quadratic utilities. The problem then is reformulated
as an optimization problem, where the optimization is performed within a class of
convex functions. We prove an existence result for the provide explicit examples in
the case when the agent is fully characterized by a single parameter

Keywords Derivatives design · Adverse selection · Calculus of variations

1 Introduction

Standardized contingent claims, such as futures contracts, bonds, stocks, and deriv-
atives, are traded at market prices in financial markets. There is a well-developed
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theory dedicated to the pricing and hedging issues of such contingent claims. Stan-
dard references are [9] and [4], but there are many more.

This is basically a theory of efficient markets without arbitrage opportunities. It
does not address the pricing of so-called structured securities. These are non-standard
contingent claims which are tailor-made for some economic agents (individual or firm)
facing risk. Major financial institutions routinely sell structured securities to agents
who cannot or will not go to the financial markets directly (more about this in the last
section of the paper). This puts the agents at an informational disadvantage, which the
firm will try to exploit when designing and pricing its product. For instance, the firm,
when offering a structured security to an agent, would like to extract the maximum
price from the agent, that is, would like to reduce him to his reservation utility. From
the point of view of the firm, this would be the first-best situation. However, this may
not be possible, either because the agent will hide his characteristics to the firm, or
because the agent may prefer another product available to him, and priced so that he
gets off with more than his reservation utility. Such a product may be available, either
from another firm, or from the same firm, which may have designed and priced it for
another customer. In fact, every structured security the firm designs is in competition
with the others. In this paper, we will deal with the monopoly situation, where there
is a single firm (the principal) the agents can trade with. The principal then has to
design its line of products and price them so as to achieve second-best optimum. This
is of course a standard situation in economics, but to the best of our knowledge it has
not yet been applied to the design of structured securities.

In the following, we formulate a model of optimal derivatives design for a financial
institution (the principal) dealing with a set of potential customers (the agents). The
principal is in a monopoly situation, and each agent has a reservation utility: agents do
not have to buy if their reservation utility is not met, but if they buy, they have to buy
from the principal. Each agent is characterized by the values of a set of parameters
(initial endowment, risk aversion, and so forth), which he knows, but which may or
may not be known to the principal. In both cases, the distribution of types is known
to the principal. He then designs a set of structured securities, and posts them with
the corresponding prices. Note that the pricing is inherently nonlinear: if the principal
offers X at price p, he is under no obligation to offer 2X at price 2p, nor indeed to
offer 2X at all. This imposes some restriction on trading operations: each agent is
allowed to trade only once with the firm, and cannot come back for more, so that one
cannot buy separately X and X in order to achieve 2X; second-hand trading among
agents is assumed not to occur. This is more or less reasonable according to the way
one interprets the model (see below), but we will not be going into that. The principal
then maximizes his profit under the constraint that the agent accepts his offer. This is
the so-called adverse selection situation.

There are two interpretations to the above setup. Either the firm is dealing with
a single customer of unknown type: in this case, the firm has an a priori probability
distribution of the type of the agent it is dealing with. Or the firm is dealing with
several customers, but cannot deal with them separately, so that all of them are aware
of the offers made to the others. In the latter case, it does not matter whether the firm
knows the type of each customer or not.

This paper belongs to two distinct lines of research, finance on the one hand, the
economics of asymmetric information on the other. On the financial side, there is an
extensive literature on securities design. We refer to Duffie and Rahi [10] for a survey
article. As we are only interested in the negotiation between two agents, we do not
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model general equilibrium models. In the case where there is no private information,
so that the firm is aware of the true preferences of its potential customer, our prob-
lem reduces to the so-called Pareto optimal contracts with the individual rationality
constraint. Here again there is a huge literature, see e.g. Bühlmann and Jewell [5],
Gerber [11] and the recent papers in financial mathematics by Barrieu and ElKaroui
[2], Jouini et al. [13], and Ruschendorf [23]. On the other hand, none of this litera-
ture takes into account the fact that the client may want to hide its true preferences
to strengthen his or her negotiating position, or that the firm may have to post its
prices to the public, so that any client can take advantage of an offer that was made
to another one. Here we have to resort to the economics of asymmetric information,
otherwise known as contract theory. We refer to the books of Bolton and Dewatripont
[3], Kreps [14], Laffont and Martimort [15], Salanié [24] for an account of the general
theory. The standard model in this line of research is the principal-agent model. There
are two parties, the principal and the agent, one of whom has private information.
The principal moves first, and offers a menu of contracts to the agent. The agent
picks one of the contracts on the menu, or declines all of them. If the principal is the
informed party, it is a signaling model, as in Akerlof [1] or Spence [25], if the agent
is the informed party, then it is a screening model as in Mussa and Rosen [16], and
Rochet and Choné [20].

Our model is very much inspired by the one in [20]. The firm moves first, so it is
the principal, and it is the uninformed party, so we have a screening model. As usual
in the principal-agent framework, this is a monopoly situation: the agent has to buy
from the firm, or not at all (in contrast, the paper by Rothschild and Stiglitz [22],
describes an equilibrium situation). The private information of the agent concerns
his/her type, described by a parameter θ . As in [20], this parameter will be assumed to
by multidimensional. It is natural, for instance, to characterize an investor by his/her
exposure to risk and his/her risk aversion. Except in particularly simple cases, this
requires several parameters. One such case occurs when the agents are assumed to
have quadratic utilities: in that case, the risk aversion can be described by a single
parameter.

However, the problem we end up with is very different for the one in [20], and
indeed in any one we have encountered in the contract theory literature. This is due
to the fact that, in this literature, and particularly in [20], it is usually assumed that the
agent’s utility function takes the form

u (θ , x) = θ ′x + u (x) (1.1)

that is, it separates into a type-independent part u (x), and a bilinear term θ ′x. We make
much more realistic assumptions on the utility functions. Indeed, x will be replaced by
X, a random variable, and we will consider as a typical example the mean–variance
case

u (λ, X) = E [X] − λVar [X] .

The type θ = (λ, Y) of an agent will be his/her risk aversion coefficient λ and his
portfolio Y, so that his/her utility becomes

u (θ , X) = E [X + Y] − λVar [X + Y] . (1.2)

We shall take a finite-dimensional parametric representation for Y, writing Y =
∑k

i=1 βiBi, where the (Bi)1≤i≤k’s are prescribed portfolios, so that the type θ becomes
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finite-dimensional, θ = (λ, β1, . . . , βk), but even with this reduction the utility function

u (λ, β1, . . . , βk, X) = E

⎡

⎣X +
k∑

i=1

βiBi

⎤

⎦− λVar

⎡

⎣X +
k∑

i=1

βiBi

⎤

⎦ (1.3)

is very far from being of the simple form (1.1). The advantage is clear: the parameters
λ and βi’s can be readily interpreted in economics terms. There is, however, a price to
pay: the mathematics of the problem become much harder. Whereas in [20], Rochet
and Choné end up with a mathematically simple problem (minimizing a positive defi-
nite quadratic functional over a closed convex cone), so that they can prove that the
solution exists and is unique without much trouble, in the present paper we end up
with minimizing a non-convex functional, which is not even coercive (i.e. it does not go
to infinity at infinity, so it is not clear that minimizing sequences are bounded, let alone
that they converge). Nevertheless, we are able to prove that a solution exists (but not
that it is unique), thanks to non-standard mathematical techniques. Taking advantage
of the simple mathematical form of their problem, Rochet and Choné were able to
give an explicit solution in a special, two-dimensional case. Since our problem is much
more complicated, we are unable to do so; instead we solve it in one-dimensional
situations.

This may be the place for us to discuss the question of dimension. Most papers in
adverse selection deal either with finitely many types (typically only two, high and low),
or with a one-dimensional continuum of types. This is clearly unrealistic: investors, for
instance, are characterized by their risk aversion and their risk exposure, which gives
at least two parameters. But the price to pay for more realistic models is mathematical
complexity, or even intractability. Models where the types are characterized by the
values of two continuous parameters or more lead to difficult mathematical problems,
where even the existence of a solution comes into question. Roughly speaking, the
optimality conditions no longer can be cast as differential equations: they now become
partial differential equations. In the particular framework of [20], this partial differ-
ential equation was of a known type (elliptic, linear, with constant coefficients), where
off-the-shelf theorems are available, but this is far from being the general case. In our
framework, for instance, no such results are available, and existence and uniqueness
are very much questions to be answered. The fact that we can show existence (but not
uniqueness) is the main result of our paper.

The structure of the paper is as follows. The model is described in Sect. 2, which
also provides a characterization of the incentive compatibility condition in terms
of convexity. In Sect. 3, the Principal’s maximization program is reformulated as a
(non-concave, non-coercive) problem in the calculus of variations: maximize a certain
functional within a set of convex functions. From the mathematical point of view, this
is a non-standard problem, and Sect. 4 is devoted to proving that a solution exists.
This existence result is interesting in itself, for it does not follow from usual existence
arguments, but relies heavily on the fact that optimal contracts are related to con-
vex functions. As stated earlier, we do not know what the solution looks like in the
two-dimensional case, so in Sect. 5, we focus on simpler one-dimensional cases, where
either the risk exposure or the risk aversion of the agent is known to the principal,
and we give explicit solutions. The last section discusses the significance of our results
and describes future directions for research.
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2 Problem formulation

Let (�, F , P) be a probability space. Financial assets, including the structured securi-
ties which the principal will design, are modeled as contingent claims, that is, random
variables on (�, F , P). They will be assumed to be square-integrable, i.e., we will
restrict our attention to X ∈ L

2(�, F , P). In this section, we describe a principal-agent
model where the agents have private information on both their risk aversion param-
eter and their initial endowment of risk. We first consider the case when agents have
mean–variance preferences and then we extend our analysis to a larger class of utility
functions.

2.1 Mean–variance utility

We are given a family of random variables {1, B1, . . . , Bk} in L
2(�, F , P) for some

integer k. For notational conveniency (and actually without loss of generality), we
will assume that B := (B1, . . . , Bk) satisfies

EB = 0 and VarB = Ik ,

where Ik is the identity matrix of R
k.

Each agent is characterized by an initial risk endowment β̃ = (β1, . . . , βk) and a risk
aversion parameter λ. The corresponding risk endowment is given by the portfolio
β̃ · B := ∑k

i=1 β̃iBi. The objective of the agent is to modify his risk profile by trading
with the principal.

For given characteristics (λ, β̃) ∈ R+ × R
k, the utility of the agent from a risk

transfer X is defined by the mean–variance criterion

U(λ, β̃, X) = E

[
β̃ · B + X

]
− λVar

[
β̃ · B + X

]

= E[X] − λVar[X] − 2λβ̃Cov[X, B] − λ|β̃|2 .

We next set β := 2λβ̃, and we observe that the agent preferences are not affected by
the addition of the constant −λ|β̃|2 to his utility function (note, however, that this will
affect his/her reservation utility). This leads to a reduced form of the utility function

U(λ, β̃, X) = E[X] − λVar[X] − β · Cov[X, B].
The aim of this paper is to analyze the risk exchange between the mean–vari-

ance agent and the principal in a situation of adverse selection, that is, when the
mean–variance agents are heterogeneous. The following are some examples of such
heterogeneity.

Example 2.1 Heterogeneous initial risk endowment. The risk-aversion parameter λ

is constant among the agents and known to the principal. The initial holding of risk,
defined by β, is private information, but the principal knows its distribution. The
reduced utility function is an affine function of the parameter β, and is given by

U0(β, X) := β · G0(X) + g0(X),

where

G0(X) := −Cov[X, B] and g0(X) := E[X] − λVar[X] .
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Example 2.2 Heterogeneous risk aversion. The initial risk endowment, described by
the parameter β, is constant within the agents’ population, and known to the princi-
pal. The risk aversion parameter λ is private information, and the principal knows its
distribution. The reduced utility function is an affine function of the parameter λ, and
is given by

U0(λ, X) := λG0(X) + g0(X),

where

G0(X) := −Var[X] and g0(X) := E[X] − βCov[X, B] .

Example 2.3 Heterogeneous risk aversion and initial risk endowment. The Princi-
pal knows the joint distribution of the parameters θ := (λ, β). The reduced utility
function is an affine function of the parameter θ , and is given by

U0(θ , X) := θ · G0(X) + g0(X),

where

G0(X) := − (Var[X], Cov[X, B]) and g0(X) := E[X] .

2.2 General preferences

More generally, we are given a set X of random variables on (�, F , P) containing
0. Here, X is the set of admissible contingent claims that the principal is allowed to
choose from. We then define a utility function on X by

U(θ , X) := θ · G(X) + g(X) , (2.1)

where θ is drawn from an open convex subset � of R
n, the random variable X lies in

X , and G, g are given maps from X into R
n and R, respectively, with

G(0) = 0 , g(0) = 0 . (2.2)

The latter condition implies that the reservation utility is zero

U(θ , 0) = 0 for every θ ∈ � . (2.3)

The common feature of such utilities is that they depend linearly on the parameters
θ , although their dependence on the contingent claim X may be quite general. In the
sequel, we shall assume that the image set

� := G(X ) is a closed subset of R
n . (2.4)

Remark 2.1 Condition (2.4) is satisfied in the mean variance examples, with X0 :=
L

2(�, F , P)

(i) In the context of a heterogeneous initial risk endowment of Example 2.1, we
have k = n and �0 := G0 (X0) = R

n.
(ii) In the context of a heterogeneous risk aversion of Example 2.2, we have �0 :=

G0 (X0) = R−.
(iii) In the context of a heterogeneous risk aversion and initial risk endowment of

Example 2.3, n = k+1 and it follows from the Cauchy–Schwarz inequality that

�0 := G0(X0) =
{
(x, y) ∈ R × R

n−1 : x + |y|2 ≤ 0
}

,

which is a closed subset of R
n.



Optimal derivatives design for mean-variance agents under adverse selection 63

2.3 Derivatives design

The principal designs and prices contingent claims in order to maximize the expected
profit from the exchange with the agent. A derivative contract consists of a random
variable, representing the risk transfer, together with a scalar premium representing
the price of the contract. In view of the uncertainty on the characteristics of the agent,
the principal prepares derivatives contracts depending on the distribution of agents
characteristics.

Definition 2.1 Suppose 0 ∈ X . Let U : � × X −→ R be given with U(θ , 0) = 0

(i) A derivatives design is a pair (X, π) of maps θ �−→ (Xθ , πθ ) from � to X × R.
(ii) A derivatives design (X, π) satisfies the U-individual rationality condition if

U(θ , Xθ ) − πθ ≥ 0 for all θ ∈ � .

(iii) A derivatives design (X, π) is U-incentive-compatible if

U (θ , Xθ ) − πθ ≥ U (θ , Xθ ′) − πθ ′ for all θ , θ ′ ∈ �2 .

We denote by IR(U) the collection of all derivatives designs which satisfy the U-
individual rationality condition, and by IC(U) the collection of all derivatives design
which satisfy the U-incentive-compatibility condition.

The individual rationality condition states that the agent is allowed not to partici-
pate if it gives him/her less than his/her reservation utility. The incentive-compatibility
condition states that agents of type θ will choose the contract Xθ , πθ which the prin-
cipal designed for them, that is they will buy (or sell) the derivative Xθ and pay (or
get) πθ .

Remark 2.2 In an economic setting, it would be natural to require that U satisfies the
cash-invariance property, that is,

U(θ , X − π) = U(θ , X) − π

for every θ ∈ �, X ∈ X and π ∈ R. However, the cash-invariance condition is not
needed in the subsequent mathematical analysis.

A U-incentive-compatible design is a map from � to X × R satisfying certain
conditions. The next proposition shows that one can associate with any U-incentive-
compatible design (X, π) a convex function v on �, in such a way that (X, π) can be
recovered from v. In other words, the quest for (X, π) can be replaced by a quest
for v. The simplification is considerable: instead of looking for a map from � into an
infinite-dimensional space, one is looking for a real-valued function on �. It is the
key to solving the problem. This result is well-known in the case of utility functions
of the form (1.1), see Rochet [18], but it seems to be new in the case of utilities in
the form (2.1). We also refer to Carlier [6] for general utilities in a finite-dimensional
framework.

Recall that a convex function on an open convex subset of R
n (such as �) is locally

Lipschitz, and differentiable almost everywhere (see [21]).
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Proposition 2.1 Let (X, π) be a derivatives design.

(i) If (X, π) is U-incentive-compatible, then the function

v(θ) := U(θ , Xθ ) − πθ , θ ∈ � ,

is convex and G(Xθ ) ∈ ∂v(θ) for all θ ∈ �, in particular ∇v(θ) ∈ � a.e.
(ii) Conversely, let v be a convex function on � with ∇v(θ) ∈ � a.e. Then there exists

an U-incentive-compatible design (X, π) such that

G(Xθ ) ∈ ∂v(θ) and πθ = U(θ , Xθ ) − v(θ), ∀θ ∈ �.

Proof (i) If (X, π) is incentive-compatible then for all θ ∈ � :

v(θ) = sup
θ ′∈�

θ · G (Xθ ′) + g (Xθ ′) − πθ ′ ,

which proves that v is convex and, for (θ , θ ′) ∈ �2,

v(θ ′) − v(θ) ≥ θ ′ · G (Xθ ) + g (Xθ ) − πθ − v(θ) = (θ ′ − θ) · G (Xθ )

which precisely means that G (Xθ ) ∈ ∂v(θ). In particular if v is differentiable at
θ then ∇v(θ) = G(Xθ ) ∈ �.

(ii) Conversely, let v be a convex function on � with ∇v ∈ � a.e.. For every θ ∈ �,
there exists a sequence θk of points of differentiability of v, that converges to
θ and such that ∇v(θk) ∈ � for all k. Since v is locally Lipschitz, up to some
subsequence, we may assume that ∇v(θk) converges to some q ∈ �, it is easy
to check that q ∈ ∂v(θ). We deduce that for every θ ∈ � there exists Xθ ∈ X
such that G(Xθ ) ∈ ∂v(θ). Define then πθ := θ · G(Xθ ) + g(Xθ ) − v(θ) for all
θ ∈ �. Since G(Xθ ′) ∈ ∂v(θ ′) for all θ ′ ∈ �, it follows that U (θ , Xθ ) − πθ =
v(θ) ≥ v(θ ′) + (θ − θ ′) · G(Xθ ′) = U (θ , Xθ ′) − πθ ′ , hence (X, π) is U-incentive-
compatible. 	


Suppose that a derivatives design (X, π) is U-incentive-compatible. It follows from
the definition of v that (X, π) is also U-individually rational if and only if:

v(θ) ≥ 0, ∀θ ∈ �.

This observation will be useful in the next section.

2.4 The optimal design problem

Let C(X) be the cost incurred to the principal for issuing the contingent claim X.
So C is a real-valued function on X , the set of admissible securities. We assume that
C(0) = 0.

The profit realized by the principal from trading with agent θ is then given by

πθ − C (Xθ ) .

As noted in Remark 2.2, it would be natural to assume that C is cash-invariant, but
this is not needed for further developments.

We next assume that the characteristics θ of the agent are distributed according
to an absolutely continuous (with respect to Lebesgue) measure on �, with density
µ. The principal seeks to design a derivatives contract (X, π) that will maximize his
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expected profit, subject to the incentive-compatibility and the rational individuality
conditions. The precise formulation is then as follows:

	 := sup
(X,π)∈D(U)

∫

�

[πθ − C (Xθ )] µ(θ)dθ (2.5)

where D(U) is the collection of all derivatives designs in IR(U) ∩ IC(U) such that
(π − C ◦ X) is µ-measurable and the negative part of (π − C ◦ X) belongs to L

1(µ).
Let us remark that 	 ≥ 0 but need not be finite.

By contrast, the first-best problem, where the principal knows the characteristics
of the agents, and no agent has access to another’s contract, is given by

sup
(X,π)∈IR(U)

∫

�

[πθ − C (Xθ )] µ(θ)dθ .

3 Reformulation

By proposition 2.1, a derivatives design satisfying the individual rationality and
incentive-compatibility conditions is characterized by the choice of a convex func-
tion in the set

A := {
v : � −→ R , v is convex, ∂v(θ) ∩ � 
= ∅ and v(θ) ≥ 0 for every θ ∈ �

}

= {v : � −→ R , v is convex, ∇v ∈ � a.e. and v ≥ 0 } . (3.1)

A function v ∈ A can be interpreted as the indirect utility of the agent from
exchanging with the principal, and corresponds to the set of derivatives designs that
satisfy

πθ = U(θ , Xθ ) − v(θ) = θ · G(Xθ ) + g(Xθ ) − v(θ) , G(Xθ ) ∈ ∂v(θ), θ ∈ �. (3.2)

If (X, π) ∈ D(U) and v ∈ A satisfy (3.2) then it follows from the absolute continuity
of µ with respect to the Lebesgue measure on � that

∫

�

[πθ − C (Xθ )] µ(θ)dθ =
∫

�

[
θ · ∇v(θ) − v(θ) + g(Xθ ) − C (Xθ )

]
µ(θ)dθ .

In order to reformulate the problem (2.5) in terms of v only, we introduce the function

H(p) := inf {C(X) − g(X) : X ∈ X and G(X) = p} for all p ∈ �. (3.3)

Note that H(0) ≤ C(0) − g(0) = 0 by the normalization (2.2). Let us consider the
following problem in the calculus of variations:

sup
v∈A

φ(v) , φ(v) :=
∫

�

ϕ (θ , v(θ), ∇v(θ)) µ(θ)dθ , (3.4)

where

ϕ(θ , r, p) := θ .p − r − H(p) for (θ , r, p) ∈ � × R+ × �. (3.5)

Under mild assumptions on H, the following statement gives the precise connection
between the principal’s problem (2.5) and its reformulation (3.4).
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Proposition 3.1 Assume that H is lower semi continuous on � and that for every p ∈ �,
there exists X ∈ X such that G(X) = p and C(X) − g(X) = H(p), then

(i) 	 := supv∈A φ(v),
(ii) if v ∈ A satisfies 	 = φ(v), then every derivatives design (X, π) such that

G(Xθ ) ∈ ∂v(θ), πθ = θ · G(Xθ ) + g(Xθ ) − v(θ), ∀θ ∈ �,

and C(Xθ ) − g(Xθ ) = H(∇v(θ)) for µ-a.e. θ ∈ θ , (3.6)

solves the principal’s problem (2.5).
(iii) if (X, π) solves (2.5), then v defined by:

v(θ): = θ · G(Xθ ) + g(Xθ ) − πθ , ∀θ ∈ �

solves the calculus of variations problem (3.4).

Proof (i) Let (X, π) ∈ D(U) and define v by v(θ) = θ · G(Xθ ) + g(Xθ ) − πθ for all
θ ∈ �, then v ∈ A and G(Xθ ) = ∇v(θ) µ-a.e.. We then have

πθ − C(Xθ ) = θ · ∇v(θ) − v(θ) + g(Xθ ) − C(Xθ ) ≤ ϕ(θ , v(θ), ∇v(θ)).

Hence 	 ≤ supv∈A φ(v). By Proposition 4.1 proved below, for every α <

supv∈A φ(v), there exists v ∈ A such that

φ(v) ≥ α and ϕ(θ , v(θ), ∇v(θ)) ≥ −H(0) µ-a.e..

Let (X, π) satisfy (3.6), then ϕ(θ , v(θ), ∇v(θ)) = πθ −C(Xθ ) a.e., (X, π) ∈ D(U)

and

α ≤ φ(v) =
∫

�

[πθ − C (Xθ )] µ(θ)dθ ≤ 	.

since α < supv∈A φ(v) is arbitrary, we finally have 	 = supv∈A φ(v).
(ii) By the a priori estimate of Proposition 4.1, we may further assume that

ϕ(θ , v(θ), ∇v(θ)) ≥ −H(0) a.e.. If (X, π) satisfies (3.6), then ϕ(θ , v(θ), ∇v(θ)) =
πθ − C(Xθ ) a.e., (X, π) ∈ D(U), which yields

∫

�

[πθ − C (Xθ )] µ(θ)dθ = φ(v) = 	.

(iii) The statement immediately follows from:

	 =
∫

�

[πθ − C (Xθ )] µ(θ)dθ

=
∫

�

[
θ · ∇v(θ) − v(θ) + g(Xθ ) − C(Xθ )

]
µ(θ)dθ

≤
∫

�

[θ · ∇v(θ) − v(θ) − H(∇v(θ)] µ(θ)dθ = φ(v).

	




Optimal derivatives design for mean-variance agents under adverse selection 67

By the previous Proposition, the existence and the characterization of an optimal
derivatives design [i.e. a solution of (2.5)] is reduced to the variational problem (3.4).

We conclude this section by providing the expression of the function H in the
context of a mean variance utility function for the agents. As for the principal, we
shall assume that he has access to a complete market. Then the cost function is given
by the (unique) arbitrage price of the contingent claim

C0(X) = E[ZX] for some Z ∈ X0, with Z > 0 and E[Z] = 1 . (3.7)

The random variable Z is the density with respect to P of the unique risk-neutral
measure of the complete market.

Example 3.1 Heterogeneous initial risk endowment, continued. In this context, the
function H0 := H is defined by

H0(p) := inf {E[ZX] − E[X] + λVar[X] : Cov[X, B] = −p} .

By direct computation, we obtain

H0(p) = λ|p|2 − p · Cov[Z, B] − 1
4λ

(
Var[Z] − Cov[Z, B]2

)
.

The minimizer in the expression of H0 is unique up to a constant (this is a consequence
of the cash invariance of the problem), with zero-mean minimizer given by

X0(p) = 1
2λ

(1 − Z + (Cov[Z, B] − 2λp) · B) .

Setting

ζ := Var[Z] and ξ := Cov[Z, B] . (3.8)

the principal’s problem then becomes

sup
∫ [

(β + ξ) · ∇v (β) − v (β) − λ|∇v (β) |2 + 1
4λ

(
ζ − ξ2

)]

µ (β) dβ

v convex, v ≥ 0.

Example 3.2 Heterogeneous risk aversion, continued. In this context, the function
H0 := H is defined by

H0(p) := inf {E[ZX] − E[X] + β · Cov[X, B] : Var[X] = −p} .

A direct computation yields

H0(p) = −√−pVar[Z + β · B] ,

the minimizer in the expression of H0 is unique up to a constant, as a consequence of
the cash invariance of the problem, the zero-mean minimizer given by

X0(p) = −
√ −p

Var[Z + β · B] (Z − 1 + β · B) .

Using the notations (3.8), the principal’s problem then becomes

sup
∫ [

λv′ (λ) − v (λ) +
√

− (
ζ + |β2| + 2β · ξ

)
v′ (λ)

]

µ (λ) dλ

v convex,v ≥ 0, v′ ≤ 0.
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Example 3.3 Heterogeneous risk aversion and initial risk endowment, continued. In
this context, the function H0 := H is defined by

H0(p) := inf {EZX − EX : (VarX, Cov[X, B]) = −(x, y)} ,

where p = (x, y), and we directly compute that

H0(p) = −y · Cov[Z, B] −
√

−x − |y|2
√

VarZ − Cov[Z, B]2 for p = (x, y) ∈ �0 ,

and the corresponding zero-mean minimizer is given by

X0(p) = −
√

−x − |y|2
VarZ − Cov[Z, B]2 (Z − 1 − Cov[Z, B] · B) − y · B.

The principal’s problem then becomes

sup
∫
⎡

⎣λ
∂v
∂λ

+ (β + ξ) · ∂v
∂β

− v (λ, β) +
√

− ∂v
∂λ

−
∣
∣
∣
∣
∂v
∂β

∣
∣
∣
∣

2√

ζ − ξ2

⎤

⎦µ (λ, β) dλdβ

v convex, v ≥ 0,
∣
∣
∣
∣
∂v
∂β

∣
∣
∣
∣

2

+ ∂v
∂λ

≤ 0.

Observe that the integrand is not a concave function of the derivatives ∂v
∂β

and
∂v
∂λ

, and does not go to infinity when the derivatives go to infinity. One may contrast
this, for instance, with the situation in [20], where the integrand is a simple quadratic
function of the derivatives. For this reason, it is a mathematical challenge to prove
that the principal’s problem does have a solution. We address this problem in the next
section.

4 Existence result

4.1 An a priori estimate

We shall prove the existence of solutions to (3.4), under mild assumptions. The key
point is given by proposition 4.1 which states that if H(0) = 0, given any derivatives
contract such that the principal loses money on certain types of agents, there is another
contract which increases the overall profit, and such that the principal now breaks even
on all types θ ∈ �. In other words, if the null contract has zero cost (H(0) = 0), cross
subsidies among agents are not efficient. Let us explain the economic intuition behind
this result (we also refer to [6] for a similar result with nonlinear utilities). Imagine
that a derivatives menu makes negative profit for some types and positive for others,
then we can firstly remove the bad contracts from the initial menu and secondly offer
the bad types their prefered contract in the set of good contracts completed by the
null contract. If we do so, we obtain a new incentive-compatible menu that leaves
the good agents with their initial contract and forces the initially bad ones to chose a
contract which is either the null contract or makes money. Up to some mathematical
subtleties, the proof of proposition 4.1 heavily builds upon the previous intuition.
From the mathematical point, the assumption H(0) = 0 plays no particular role in
the proof (one may change H into H − H(0), provided H(0) is finite, without loss of
generality) but is only practical for the previous economic interpretation.
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Proposition 4.1 Assume that H is lower semi-continuous on � and H(0) = 0. Then for
all v ∈ A there exists w ∈ A such that

φ(w) ≥ φ(v) and ϕ (θ , w(θ), ∇w(θ)) ≥ 0 for a.e. θ ∈ � , (4.1)

where the previous quantities possibly take the value +∞.

Proof For a subset S ⊂ �, we denote by

S+(v) := {θ ∈ S : ∇v(θ) exists and ϕ (θ , v(θ), ∇v(θ)) ≥ 0} .

If �+(v) has zero Lebesgue measure, i.e. λ
(
�+(v)

) = 0, then w = 0 satisfies
φ(0) = 0 ≥ φ(v), ϕ (θ , 0, 0) = 0, and the proof is complete. We then concentrate
on the case

λ
(
�+(v)

)
> 0 . (4.2)

1. We first assume in addition that � is bounded and v is Lipschitz-continuous on �,
and prove that the statement of the proposition holds with

w(θ) := max
{
0, w̃(θ)

}
w̃(θ) := sup

θ ′∈�+(v)

{v(θ ′) + ∇v(θ ′) · (θ − θ ′)} , θ ∈ � .

Clearly, the function w is convex, w ≤ v on �, and w = v on �+(v). By the convexity
of v, and its differentiability on �+(v), this implies that ∂w(θ) ⊂ ∂v(θ) = {∇v(θ)} for
every θ ∈ �+(v). Thus, w is differentiable at each point of �+(v) and ∇w = ∇v on
�+(v). Then

∇w ∈ � and ϕ (θ , w(θ), ∇w(θ)) ≥ 0 for every θ ∈ �+(v) , (4.3)

since these properties are already satisfied by v. We shall next prove that

∇w ∈ � and ϕ (θ , w(θ), ∇w(θ)) ≥ 0 for a.e. θ ∈ � \ �+(v) . (4.4)

In view of (4.3), the first claim in (4.4) shows that w ∈ A, and the second claim
implies in particular that ϕ (θ , w(θ), ∇w(θ)) ≥ ϕ (θ , v(θ), ∇v(θ)) for a.e. θ ∈ �, since
ϕ (θ , v(θ), ∇v(θ)) < 0 a.e. on � \ �+(v). This implies that φ(w) ≥ φ(v), which proves
the required claim.

We now turn to the proof of (4.4). Let θ ∈ � \ �+(v) be a point of differentiability
of w.

1.1. If w(θ) = 0, θ is an interior point of minimum for w, recall that � is an open
subset of R

n. Then ∇w(θ) = 0, and (4.4) follows from the fact that 0 ∈ � and H(0) = 0.
1.2. If w(θ) > 0, there exists a sequence (θk) ⊂ �+(v) such that

w(θ) = lim
k→∞

v(θk) + ∇v(θk) · (θ − θk) . (4.5)

Since �̄ is compact and v is Lipschitz-continuous on �, the sequences θk and ∇v(θk)

are bounded. Then, after possibly passing to a subsequence, and using the closure of
�, we have

(θk, ∇v(θk)) −→ (θ̄ , p̄) ∈ �̄ × � .

Since θk ∈ �+(v), it follows from the definition of w and (4.5) that

w(θ ′) ≥ lim
k→∞

v(θk) + ∇v(θk) · (θ ′ − θk)

= w(θ) + p̄(θ ′ − θ) for every θ ′ ∈ � ,
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Hence p̄ ∈ ∂w(θ) = {∇w(θ)}. Since p̄ ∈ � this shows the first part of (4.4). To see that
the second part of (4.4) is also satisfied, let us recall that, since θk ∈ �+(v), one has

ϕ (θk, v(θk), ∇v(θk)) = θk · ∇v(θk) − v(θk) − H(∇v(θk)) ≥ 0.

The lower semi-continuity of H and (4.5) then implies

H (∇w(θ)) ≤ lim inf
k→∞

H (∇v(θk)) ≤ lim inf
k→∞

θk · ∇v(θk) − v(θk)

= − lim
k→∞

v(θk)+∇v(θk) · (θ − θk)+ lim
k→∞

∇v(θk) · θ

= −w(θ) + ∇w(θ) · θ ,

and the proof of (4.4) is complete.
2. We now drop the compactness condition on the set �̄. Let (�n)n≥1 be an increasing
sequence of compact subsets with ∪n≥1�n = �. By (4.2), we may assume in addition
that λ

(
�+

n (v)
)

> 0. For every n ≥ 1, we set

wn(θ) := max
{
0 , w̃n(θ)

}
, w̃n(θ) := sup

θ ′∈�+
n (v)

{v(θ ′) + ∇v(θ ′) · (θ − θ ′)} , θ ∈ �

w(θ) := max
{
0 , w̃(θ)

}
, w̃(θ) := sup

θ ′∈�+(v)

{v(θ ′) + ∇v(θ ′) · (θ − θ ′)} , θ ∈ � .

Since wn is convex for every n, we have by construction

(wn(θ), ∇wn(θ)) −→ (w(θ), ∇w(θ)) for a.e. θ ∈ � .

For each n ≥ 1, it follows from the previous step that wn ∈ A, ϕ (θ , wn(θ), ∇wn(θ)) ≥ 0
and ϕ (θ , wn(θ), ∇wn(θ)) ≥ ϕ (θ , v(θ), ∇v(θ)) a.e. on �n. By the lower semi-continuity
of H, we then obtain by an immediate passage to the limit that

w ∈ A , ϕ (θ , w(θ), ∇w(θ)) ≥ 0 and ϕ (θ , w(θ), ∇w(θ)) ≥ ϕ (θ , v(θ), ∇v(θ)) ≥ 0

a.e. on �, and the proof is complete. 	

4.2 Existence of optimal derivatives design

In order to prove the main result of this paper, let us extend H on R
n by setting

H = +∞ outside �, and introduce its Legendre–Fenchel transform

H∗(θ) := sup
p∈Rn

(p · θ − H(p)) = sup
p∈�

(p · θ − H(p)) ,

Since H(0) ≤ 0, it follows that H∗ ≥ 0. Throughout, we adopt the convention
sup ∅ = −∞.

Theorem 4.1 Let H be a lower semi-continuous function on �, and assume that
H∗ ∈ L

1(µ) and

lim sup
|p|→∞

(p · θ − H(p)) < −H(0) for every θ ∈ � . (4.6)

Then 	 < ∞ and existence holds for the principal problem defined in (3.4), i.e. there
exists v ∈ A such that

φ(v) ≥ φ(w), ∀ w ∈ A.
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Proof 1. By possibly adding a constant to H, we may assume that H(0) = 0. Since
H is assumed to be lower semi-continuous, we deduce from proposition 4.1 that
there exists a sequence (vn)n≥1 ⊂ A such that

	 := sup
v∈A

φ(v) = lim
n→∞ φ (vn) (4.7)

and

θ · ∇vn(θ) − H (∇vn(θ)) ≥ vn(θ) ≥ 0 for all n ≥ 1 and a.e. θ ∈ � . (4.8)

2. For r ≥ 0, let Br denote the ball of center 0 and radius r, and define the function

γ (θ , r) := sup
p∈�\Br

(p · θ − H(p)) ,

Clearly, γ is convex in θ , non-increasing in r, γ (θ , 0) = H∗(θ) ≥ 0 and by assump-
tion (4.6), for every θ ∈ �, there exists r = r(θ) > 0 such that γ (θ , r) < 0 . Then
the function

ρ(θ) := inf {r > 0 : γ (θ , r) < 0} , θ ∈ � ,

is finite. From the convexity of γ in θ , it can readily be checked that ρ is quasi-
convex, i.e. ρ (λθ1 + (1 − λθ2) ≤ max {ρ (θ1) , ρ (θ2)}.

3. It follows from (4.8) that

|∇vn(θ)| ≤ ρ(θ) and 0 ≤ vn(θ) ≤ θ · ∇vn(θ) − H (∇vn(θ)) ≤ H∗ (θ) , θ ∈ � a.e.
(4.9)

Since ρ is finite and quasi-convex on �, it is in fact locally bounded on �, this
implies that vn and ∇vn are locally uniformly bounded in �. By Ascoli’s Theorem,
we deduce that (up to some subsequence) the sequence (vn)n≥1 converges uni-
formly on compact subsets of � to some (convex nonnegative) function v, after
possibly passing to a subsequence. By convexity, we also have the a.e. convergence
of ∇vn towards ∇v, which implies that the limit function v ∈ A.

4. We also deduce from (4.8) that

0 ≤ ϕ (θ , vn(θ), ∇vn(θ)) = θ · ∇vn(θ) − vn(θ) − H (∇vn(θ))

≤ θ · ∇vn(θ) − H (∇vn(θ)) ≤ H∗ (θ) .

This shows that

	 = lim
n→∞ φ(vn) ≤

∫

�

H∗(θ)µ(θ)dθ < ∞.

It follows from Fatou’s Lemma that

	 = lim
n→∞

∫

�

ϕ (θ , vn(θ), ∇vn(θ)) µ(θ)dθ

≤
∫

�

lim sup
n→∞

ϕ (θ , vn(θ), ∇vn(θ)) µ(θ)dθ ≤ φ(v) ,

which shows that 	 = φ(v). 	
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4.3 Application to mean–variance agents

We now show that the existence result of Theorem 4.1 applies to our examples of
mean–variance agents when the Principal has access to a complete market. We shall
denote

ζ := Var[Z] and ξ := Cov[Z, B] .

Example 4.1 Heterogeneous initial risk endowment, continued. We recall that in this
case λ > 0 is fixed and

H0(p) = λ|p|2 − p · ξ − 1
4λ

(
ζ − |ξ |2

)
.

It therefore follows from Theorem 4.1 that there exists an optimal derivatives design
provided

∫
Rn |β|2µ(β)dβ < ∞. Observe that, in this case, Problem (3.4) satisfies an

usual coercivity in the calculus of variations and by strict convexity, its solution is
unique. Let us also remark that, in this example, problem (3.4) has the same mathe-
matical structure as the problem studied by Rochet and Choné in [20].

Example 4.2 Heterogeneous risk aversion, continued. In this case β ∈ R
n is fixed and

H0(p) = −√−pVar[Z + βB].
Setting χ := Var(Z + β · B), we have

lim
p→−∞ pλ − H0(p) = lim

p→−∞ pλ +√−χp = −∞ for every λ > 0 .

Moreover, the Legendre–Fenchel transform is given by

H∗
0 (λ) := χ

4λ
for λ > 0 .

We then conclude by Theorem 4.1 that existence holds if the characteristics distribu-
tion µ satisfies

∫∞
0 (µ(λ)/λ) dλ < ∞.

Example 4.3 Heterogeneous risk aversion and initial risk endowment, continued. In
this case, we denote θ = (λ, β) ∈ �0 ⊂ R+ × R

n−1, p = (x, y) ∈ �0 ⊂ R− × R
n−1 and

recall that

H0(x, y) = −y · ξ − α

√
−x − |y|2 with α := √

ζ − |ξ |2 ≥ 0.

Let θ = (λ, β) ∈ �0 and let p = (x, y) ∈ �0 be such that

λx + β · y − H0(x, y) ≥ 0. (4.10)

Using |y| ≤ √−x together with the Cauchy–Schwarz inequality, (4.10) yields

λx + (|β + ξ | + α)
√−x ≥ 0.

Since x ≤ 0 we get x ∈ [−λ−2(|β + ξ | + α)2, 0]. Condition (4.6) of Theorem 4.1 is
therefore satisfied.

We next directly compute that

H∗(λ, β) = sup
x+|y|2≤0

xλ + y · β + y · ξ + α

√
−x − |y|2 = α2 + |β + ξ |2

4λ
,
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and we conclude by Theorem 4.1 that existence holds provided that
∫

�0

α2 + |β + ξ |2
λ

µ(λ, β)dλdβ < ∞.

5 Examples of explicit solutions in dimension 1

5.1 Heterogeneous initial risk endowment

We first consider the case when all agents have the same risk aversion λ > 0, but hold
different amounts β̃ ≥ 0 of a single asset B (the market portfolio). Without loss of
generality, we assume that Var[B] = 1, and, as above, we set β := 2λβ̃ to be the type
of the agent.

The only characteristic of the agent is his/her initial portfolio βB/2λ. We assume

that β ∈
[
β, β̄

]
, with β ≥ 0 . The density of types is µ (β) > 0, and the cumulative

distribution function is P (β):

P(β) :=
β∫

β

µ (s) ds, with P
(
β̄
) = 1.

If agent of type β adds X to his portfolio and pays π , his resulting utility is

E

[
β

2λ
B + X

]

− λVar
[

β

2λ
B + X

]

− π .

If the agent does not trade, so that X = 0 and π = 0, he then gets his reservation
utility, namely

(
2βE [B] − β2) /4λ. So the individual rationality constraint of type β

becomes

E

[
β

2λ
B + X

]

− λVar
[

β

2λ
B + X

]

− π ≥ 1
4λ

(
2βE [B] − β2)

⇔ E [X] − λVar [X] − βCov (B, X) − π ≥ 0

which is consistent with our earlier notations, by taking the reduced utility function
to be

u (β, X) := E [X] − λVar [X] − βCov [B, X]

and setting the reservation utility to 0. As above, we assume that the principal has
access to a complete market, so that her cost for producing X is E [XZ] for some
positive Z ∈ L2 with E [Z] = 1.

Note that both the agent’s utility and the principal’s cost are cash-invariant: a secu-
rity X is worth the same as (X − E [X]) plus a cash payment of E [X], both for the
principal and the agent. So the gains from trading X are exactly the same as the gains
from trading (X − E [X]). This means that, without loss of generality, we can assume
that the agents are trading zero-mean securities

E [X] = 0.
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In other words, the agents are trading risk, not cash. Henceforth, we set

Z0 = Z − E [Z] , B0 = B − E [B] .

5.1.1 The first-best

If the principal knows the type β ≥ 0 of the agent, she will offer him his reservation
utility. So the first-best problem is

sup {−λVar [X] − βCov [B, X] − E [XZ] : E [X] = 0 } .

The solution is

X (β) = − 1
2λ

Z0 − β

2λ
B0

At the first best, the principal trades with all agents. The security she offers decom-
poses into two parts: full insurance, namely −βB0/2λ, and a fixed part, −Z0/2λ,
independent of the type. In other words, the principal pays the agents to produce
−Z0/2λ and resells it on the complete market. After the transaction, all agents bear
the same risk, namely −Z0/2λ.

5.1.2 The second-best

As stated in Example 3.1, the reduced version of the second-best problem is given by

sup

β̄∫

β

[

βv′ − v − λv′2 + Cov [B, Z] v′ + 1
4λ

(
Var [Z] − Cov [B, Z]2

)]

µ (β) dβ

v ≥ 0, v convex.

The constant in the integral plays no role in the optimization, and may be discarded.
We end up with

sup

β̄∫

β

[
βv′ − v − λv′2 + Cov [B, Z] v′]µ (β) dβ

v ≥ 0, v convex.

Changing v (β) to v (β) − c, we increase the value of the integral, until we hit the

positivity constraint. From this it follows that v must vanish somewhere on
[
β, β̄

]
.

Let x be such a value—say for instance it is the greatest—so that v (x) = 0.
For the sake of simplicity, we assume from now on that the cost of producing B0 is

non-negative and that types are uniformly distributed

Cov [B, Z] ≥ 0, µ (β) = 1

β̄ − β
, P (β) = β − β

β̄ − β
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Integrating by parts, the integral to be maximized reduces to

− v
(
β̄
)+ 1

β̄−β

β̄∫

β

[(
2β + Cov [B, Z] − β

)
v′ − λv′2

]
dβ

= 1
β̄−β

x∫

β

[(
2β + Cov [B, Z] − β

)
v′ − λv′2

]
dβ

+ 1
β̄−β

β̄∫

x

[(
2β + Cov [B, Z] − β̄

)
v′ − λv′2] dβ

which is to be maximized among all points x ∈
[
β, β̄

]
and all increasing functions

v′ (β).
The pointwise maximum is achieved for

v′
1 (β) = 1

2λ

(
2β + Cov [B, Z] − β

)
and v′

2 (β) = 1
2λ

(
2β + Cov [B, Z] − β̄

)

inside the first and second integral, respectively. Note that v′
1 (β) ≥ 0 on

[
β, β̄

]
, while

v′
2

(
β
)

≤ 0 if 2β + Cov [B, Z] − β̄ ≤ 0. This leads us to two distinct cases

5.1.3 Case 1: Cov [B, Z] > β̄ − 2β

In that case, the optimal choice is x = β. We have

v′ (β) = v′
2 (β) = 1

2λ

(
2β + Cov [B, Z] − β̄

)

and hence

v (β) = 1
2λ

(
β2 + (

Cov [B, Z] − β̄
)
β + c

)
.

The constant c is adjusted by the fact that v
(
β
)

= 0, which yields

v (β) = 1
2λ

(
β + Cov [B, Z] + β − β̄

) (
β − β

)
.

Note that in that case, v′
(
β
)

> 0.

5.1.4 Case 2: Cov [B, Z] ≤ β̄ − 2β

In that case, the optimal choice is given by v′
2 (x) = 0, so that

x = 1
2

(
β̄ − Cov [B, Z]

)
.
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The maximum in the first integral is achieved for v′
1 (β) ≥ 0, but this leads to v′ = v′

1

being increasing on
[
β, x

]
, and since v′ (x) = 0 we would have v′ (β) < 0, in violation

of the positivity constraint. So we must have v′ (β) = 0 on
[
β, x

]
. The solution is

v′ (β) = 0 if β ≤ x

v′ (β) = 1
2λ

(
2β + Cov [B, Z] − β̄

)
if β ≥ x

which gives v (β) up to constant, which is adjusted by setting v (x) = 0

v (β) = 0 if β ≤ x

v (β) = 1
2λ

(β − x)2 if β ≥ x.

Note that in that case, v′ (x) = 0.

5.1.5 The optimal design

As noted earlier, we have

−Cov [B, X(β)] = v′ (β) ,

recalling Example 3.1, we then have

X (β) = 1
2λ

[−Z0 + (
Cov [B, Z] − 2λv′ (β)

)
B0
]

= − 1
2λ

Z0 −
[
v′ (β) − 1

2λ
Cov [B, Z]

]
B0

π (β) = −λVar [X(β)] − βCov [B, X(β)] − v (β)

= βv′(β) − v(β) − 1
4λ

Var
[−Z0 + (

Cov [B, Z] − 2λv′ (β)
)

B0
]

so that

X (β) = − 1
2λ

Z0 − 1
2λ

(
2β − β̄

)
B0 if β ≥ 1

2

(
β̄ − Cov [B, Z]

)

X (β) = − 1
2λ

Z0 + 1
2λ

Cov [B, Z] B0 if β ≤ 1
2

(
β̄ − Cov [B, Z]

)
.

In particular, we have

X
(
β̄
) = − 1

2λ
Z0 − 1

2λ
β̄B0

and:

X
(
β
)

=
{

− 1
2λ

Z0 − 1
2λ

(
2β − β̄

)
B0 if β ≥ 1

2

(
β̄ − Cov [B, Z]

)

− 1
2λ

Z0 − 1
2λ

Cov [B, Z] B0 if β ≤ 1
2

(
β̄ + Cov [B, Z]

)

As usual, there is no distortion at the top, but there is distortion at the bottom: agent
β̄ gets the first-best security, and pays less than the first-best price. On the other hand,
the agent with the lowest risk does not get the first-best security.
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5.2 Heterogeneous risk aversion

We now consider the case of heterogeneous risk aversion. All agents have the same
initial risk endowment equal to zero, but they have heterogenous risk aversion coeffi-
cient λ. The distribution of λ is known, and denoted by µ. In this case the optimal
design problem amounts to solving the problem

sup

{

I(v) :=
∫
[
λv′ − v − H

(
v′)] dµ : v ≥ 0, convex, non-increasing

}

(5.1)

Assuming that the principal has access to a complete market, so that C (X) = E [ZX],
where Z ∈ L2, Z ≥ 0 and E [Z] = 1, and defining ζ := Var [Z], we have

H (p) = inf {E[ZX] − E[X] : Var[X] = −p} = −√−pζ .

To fix ideas, we assume that µ is supported on some interval [a, b] and absolutely
continuous with respect to the Lebesgue measure on that interval. We denote by F
the cumulative distribution function of µ, so that F ′ is the corresponding probability
density function. Let us remark that if v is admissible for (5.1) then I(v − v(b)) =
I(v) + v(b) ≥ I(v) hence the optimal solution must satisfy v(b) = 0. Defining w := v′,
it follows from a direct integration by parts that

I(v) = J(w) :=
b∫

a

[
(λµ + F)w +√−wζ · F ′]dλ.

The problem (5.1) therefore simply amounts to maximizing J in the set of nondecreas-
ing, non-positive functions w. We then have a concave optimization problem subject
to a monotonicity constraint, such problems are standard in adverse selection prob-
lems (see Guesnerie-Laffont [12], Rochet [19] or Mussa and Rosen [16]). To solve
this problem, let us first define w0 as the function that maximizes the integrand in the
definition of J, forgetting about the negativity and the monotonicity constraints, an
elementary computation yields

w0(λ) = −ζ

4

(
F ′(λ)

λF ′(λ) + F(λ)

)2

. (5.2)

We continue the analysis of this example by considering two cases.
1st case Observe that w0 is nondecreasing as soon as λ �−→ λ + F(λ)/F ′(λ) is.

The previous condition is satisfied for instance when µ is uniform or more generally
whenever the hazard rate function F ′/F is non-increasing. In this case, w0 character-
izes the optimal contract (recall that −w0(λ) is the variance of the risk transfer Xλ

chosen by agents with λ-risk aversion).
2nd case We next consider the case where w0 is not monotone nondecreasing. This

leads to the so-called bunching effect, i.e. there are intervals of characteristics β which
are offered the same contract. The economic interpretation of the bunching phenom-
enon is the following: when the incentive problem is serious, it is too costly for the
Principal to offer a discriminating contract. As an example of this phenomenon, let
us consider the case where ζ = 1, a = 0, b = 1 and the density is (up to a normalizing
constant) given by

F ′(λ) = 1 − λ2(1 − λ4)
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Then w0 is no longer nondecreasing (see figure below) hence cannot be the solution.
In other words, the incentive-compatibility condition is binding at the optimum.
However, the shape of w0 and the so-called ironing procedure (see Rochet [19]
or Mussa and Rosen [16] for details) imply that the solution is actually of the form
w∗ = min(w0, w0(λ

∗)) for some λ∗ ∈ (0, λ0) where λ0 denotes the maximum point of
w0. Optimizing with respect to λ∗ yields the optimality condition

1∫

λ∗
(λF ′ + F)dλ = 1

2
√−w0(λ∗)

1∫

λ∗
µdλ

An approximate value λ∗ ≈ 0.815 is found numerically.
The graphs of w0 and of the solution are given in the following figure.
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6 Conclusion

In conclusion, we would like to raise a number of issues which this paper leaves
unsolved.

The first one is mathematical. Although we have stated the principal’s problem
for utility functions of the type u (θ , X) = θ · G (X) + g (X), and we have given an
existence result for this general class, we have no qualitative results, and no efficient
numerical algorithm, except of course in the one-dimensional case. In other words, as
soon as the type is multi-dimensional, θ = (θ1, θ2), we have no idea what the second-
best security design looks like, and no efficient algorithm to compute the solution.
The situation here is very different from the one described by Rochet and Choné [20],
where they were able to give a complete solution in a (simple) two-dimensional case;
to be sure, their mathematical problem was much simpler, and could readily be seen
to have a unique solution, whereas in our case we do not have uniqueness, and proving
existence was a mathematical challenge. The algorithms developed by Carlier et al.
[7,8] could probably be adapted to the present situation, but this is yet to be done.

More generally, we claim that most problems in adverse selection are inherently
multi-dimensional, that is, the agent is fully described by the values of k parameters
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θ1, . . . , θk, with k ≥ 2. Most of the literature deal with the one-dimensional case,
k = 1, where the agent is characterized by the value of a single continuous parameter
θ , or even with the simpler case when θ can take only two values, θ and θ̄ . While this
(excessive) simplification makes the mathematical model tractable, we would argue
that it restricts the scope and power of the theory. In the case of an investor, for
instance, it would not be reasonable to claim that he/she is fully characterized by
his/her wealth and his/her risk aversion: the only defensible position is that he/she is
characterized by both values together. In that sense, the two one-dimensional models
we solved explicitly in the preceding section are academic: the only interesting one
is the full two-dimensional model of Example 3.3. Unfortunately, it turns out to be a
mathematical problem which has no precedent in the mathematical or physical liter-
ature, so the whole analysis has to be conducted from scratch, and we have been able
to carry it through only to a certain point: we have shown that the solution exists, but
we do not know what it looks like !

More precisely, let us note that we have allowed ourselves infinitely many
instruments, while there are only finitely many types: indeed, the only restriction
on the security X to be designed is that it should belong to L2(�), which is infinitely-
dimensional unless � is finite. So any bunching which occurs will be purely endoge-
nous, and cannot be attributed to the paucity of instruments. It would therefore be
fascinating to see the rich interplay between the risk aversion and the risk exposure of
the agents. Unfortunately, this is not possible at the present state of the art, for want
of adequate mathematical tools. So it is quite urgent to develop efficient numerical
methods for this new class of mathematical problems, in order to understand the
economics of adverse selection in realistic cases.

The remaining ones stem from economics. The obvious question is: what about
competition? We have assumed a monopoly situation, where the agent can deal only
with one financial institution. This may be the case, to a certain extent, when the
agent negotiates over the counter an option with his preferred bank, but then why
does he not turn to another bank and get another quote? He may be restrained from
doing so by informal transactions costs (shifting his account, running another set of
negotiations, sharing confidential information with too many people). There may also
be advantages for the agent in always dealing with the same bank: in an ongoing rela-
tionship, the bank learns about the agent, his past history and special needs, and this
kind of information would be much more difficult to convey in a one-time transaction.
In fact, there is empirical evidence to suggest that firms tend to stick with one financial
intermediary: see for instance the paper1 by Raghuan Rajan [17].

However, there is no denying that if we could have treated the competitive case,
either from the market power or perfect competition perspective, we would have done
it. Unfortunately, we do not know how to do so, thereby joining the vast majority of
contributors to the literature on adverse selection, which is mainly confined to the
monopoly situation. The main exception is, of course, the paper [22] by Rothschild
and Stiglitz, which defines and studies equilibrium in a competitive insurance market
with two types of agents (low-risk and high-risk); it is hard to see how their results
could be extended to a framework where there is a continuum of agents. Perhaps
there will be some better idea in the future.

Finally, Pierre-André Chiappori has brought to our attention the fact that in the
insurance industry, it is the principal, not the agent, who has private information.

1 We are indebted to the referee for pointing out this reference.
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Large insurance companies who want to sell off part of their risk portfolio certainly
know more about what they are selling than the prospective buyer. They have there-
fore to find a way to convince investors that they are not simply keeping good risks
for themselves, and selling bad ones to an unsuspecting public. This problem seems
extremely interesting to us, and we hope to investigate it in the near future. In sum-
mary, we hope that this paper does not close an avenue of research, but rather opens
new ones.
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