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Monovariate risk measures

A monovariate risk measure (1-rm) is a function ρ : L∞ (Ω,F ,P)→ ∞
such that:

ρ (0) = 0

X ≥ Y =⇒ ρ (X ) ≤ ρ (Y )

ρ (X +m) = ρ (X )−m for m ∈ R
It is

convex if ρ is a convex function

coherent if it is convex and positively homogeneous:

ρ (X + Y ) ≤ ρ (X ) + ρ (Y )

ρ (λX ) = λρ (X )
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Law-invariant 1-r.m.

We shall write X ∼ Y to mean that X and Y have the same law. ρ is
law-invariant if X ∼ Y implies that ρ (X ) = ρ (Y )

Definition
A 1-rm is strongly coherent if it is convex, law-invariant and:

ρ (X ) + ρ (Y ) = sup
{

ρ
(
X + Ỹ

)
| Y ∼ Ỹ

}
There are two fundamental examples of s.c. 1-r.m.

1 Let F ∈ L1 be a probability density, so that F ≥ 0 and E [F ] = 1.
Define

ρF := sup
{

E
[
−FX̃

]
| X̃ ∼ X

}
2 Set:

ρ∞ (X ) := ess sup−X
Both ρF and ρ∞ are strongly coherent.
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Kusuoka’s theorem

Kusuoka (2001) has shown that all strongly coherent risk measures can be
built from ρF and ρ∞

Theorem
ρ is a strongly coherent 1-r.m. if and only if there is a probability density
F and a number s with 0 ≤ s ≤ 1 such that:

∀X ∈ L∞, ρ (X ) = sρ∞ (X ) + (1− s) ρF (X )
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Multivariate risk measures

A d-dimensional risk measure (d-r.m.) is a function
ρ : L∞ (Ω,F ,P;Rd )→ R such that:

ρ (0) = 0

X ≥ Y =⇒ ρ (X ) ≤ ρ (Y )

ρ (X +me) = ρ (X )−m for m ∈ R and e = (1, ..., 1)
It is

convex if ρ is a convex function

coherent if it is convex and positively homogeneous:

ρ (X + Y ) ≤ ρ (X ) + ρ (Y )

ρ (λX ) = λρ (X )
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Law-invariant d-r.m.

ρ is law-invariant if X ∼ Y implies that ρ (X ) = ρ (Y )

Definition
(Galichon, Henry) A d-rm is strongly coherent if it is convex, law-invariant
and:

ρ (X ) + ρ (Y ) = sup
{

ρ
(
X + Ỹ

)
| Y ∼ Ỹ

}
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Examples

There are two fundamental examples of s.c. 1-r.m.

1 Let F = (F1, ...,Fd ) ∈ L1
(
Rd
)
satisfy Fi ≥ 0, 1 ≤ i ≤ d , and

∑i E [Fi ] = 1. Define

ρF := sup
{

E
[
−FX̃

]
| X̃ ∼ X

}
= sup

{
∑
i

E
[
−Fi X̃i

]
| X̃ ∼ X

}
2 Denote by Sd the unit simplex in Rd and let ξ ∈ Sd , so that ξ i ≥ 0
and ∑ ξ i = 1. Define

ρξ (X ) := ess sup−X ξ = ess sup−∑Xi ξ i

3 Let µ be a probability on Sd . Set:

ρµ (X ) :=
∫
S d

ρξ (X ) dµ (ξ)

ρF and ρµ are strongly coherent d-r.m.
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Extension of Kusuoka’s theorem

Schachermayer and IE have shown that all strongly coherent risk
measured-r.m. can be built from ρF and ρ∞

Theorem

ρ is a strongly coherent d-r.m. if and only if there is some F ∈ L1+
(
Rd
)

with ∑i E [Fi ] = 1, a probability µ on Sd and a number s with 0 ≤ s ≤ 1
such that:

∀X ∈ L∞, ρ (X ) = sρµ (X ) + (1− s) ρF (X )

This result builds on an earlier result by Galichon, Henry and IE, which we
will explain in due course.
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Duality

If ρ : L∞ (Rd )→ R is a convex and law-invariant, it is lower
semi-continuous wrt σ

(
L∞, L1

)
(Jouini, Schachermayer, Touzi, 2006). It

follows that ρ is coherent (homogeneous) if and only if there exists a
closed, convex, law-invariant subset C of L1

(
Rd
)
such that.

ρ (X ) = sup
F∈C
〈F ,X 〉

We shall set ρ = ρC to remember this fact. Denote by T the set of
measure-preserving maps τ from Ω into itself. Set:

K := {(F ,F ◦ τ) | F ∈ C , τ ∈ T }

Since C is law-invariant, K ⊂ C × C . Conversely:

Lemma
ρ is strongly coherent iff C × C is the closed convex hull of K
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Proof

Suppose ρ = ρC and C × C is the closed convex hull of K . Then:

ρC (X ) + ρC (Y ) = sup {−〈F ,X 〉 − 〈G ,X 〉 | (F ,G ) ∈ C × C}
= sup {−〈F ,X 〉 − 〈F ◦ τ,Y 〉 | F ∈ C , τ ∈ T }
= sup

{
−〈F ,X + Y ◦ τ−1〉 | F ∈ C , τ ∈ T

}
≤ sup

{
−〈F ,X + Ỹ 〉 | Ỹ ∼ Y

}
= ρC

(
X + Ỹ

)
and the reverse inequality is always true
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Geometry of strongly coherent sets

Theorem

Let C ⊂ L1
(
Rd
)
be strongly coherent. Then there exists a number t,

with 0 ≤ t ≤ 1, and two closed convex law-invariant subsets C r and C s of
L1
(
Rd
)
such that:

1 C = (1− t)C r + tC s
2 C r is σ

(
L1, L∞)-compact

3 C s ⊂ (L∞)∗ is σ
(
(L∞)∗ , L∞)-compact, and its extreme points are

purely singular
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The regular case

This is the case when C s = ∅. In other words, C = C r is weakly compact
in L1

(
Rd
)
. For instance, C ⊂ Lp

(
Rd
)
, so that ρ = ρC is continuous in

the Lp
(
Rd
)
norm. This case was dealt with in an earlier paper by

Galichon, Henry and IE.
Since C is weakly compact, it is the closed convex hull of its set of strongly
exposed points. Let F ∈ C be such a point. We claim that ρ = ρF .

Ivar Ekeland and Walter Schachermayer () Multivariate Risk Measures Zurich, May 5, 2011 12 / 16



Proof

By definition, there is some X ∈ L∞ (Rd ) such that supH∈C
− 〈H,X 〉 = − 〈F ,X 〉 and if Hn ∈ C is a maximizing sequence, then
Hn → F strongly in Li

(
Rd
)
. Since ρ is strongly coherent, we have:

ρ (X ) + ρ (Y ) = sup {− 〈G ,X 〉 − 〈G ◦ τ,Y 〉 | G ∈ C , τ ∈ T }

Let (Gn, τn) be a maximizing sequence. Since we have = instead of ≥, we
must have ρ (X ) = sup−〈Gn,X 〉 and ρ (Y ) = sup−〈Gn ◦ τ,Y 〉 so
Gn → F and:

ρ (Y ) = sup
τ
−〈F ◦ τ,Y 〉 = sup

τ
−〈F ,Y ◦ τ−1〉 = sup

Y∼Ỹ
−〈F , Ỹ 〉

so ρ = ρF as desired
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The singular case 1

Let G = (Ai ) be a finite partition of Ω. On each Ai we are given a point
xi ∈ Sd and an element βi ∈ (L∞ (R))∗. We then build an element
βG ∈

(
L∞ (Rd ))∗ by the formula

〈βG ,X 〉 = ∑〈βi , (xi · X )〉

Denote by δi the Dirac mass at xi . We associate with βG the Borel
measure µG on S

d defined by:

µG = ∑ δi βi (Ai )

Lemma

Suppose βG is law-invariant. Then, for X ∈ L∞ (Rd ) we have:
sup
τ∈T
−〈βG ◦ τ,X 〉 =

∫
S d
sup− (x · X ) dµ (x)
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Proof

∫
S d
sup− (x · X ) dµ (x) =

∫
S d
sup−

(
x · X ◦ τ−1

)
dµ (x)

= ∑ sup−
(
xi · X ◦ τ−1

)
βi (Ai )

≥ −〈βG ◦ τ,X 〉

and the reverse inequality follows from the fact that βG is purely singular.
Taking points (ξ i ) and disjoint sets (Bi ) with P (Bi ) > 0 such that

ess sup−xi · X = −xi · ξ i and Bi ⊂ {|X − ξ i | < ε}
we can find a set N with 0 < P (N) < inf P (Bi ) such that βG1N = βG .
We then find a measure-preserving transformation which maps N ∩ Ai into
Bi and the result follows
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The singular case: simple elements

Let β ∈
(
L∞ (Rd ))∗ ≥ 0 be a purely singular element. We define a finitely

additive measure |β| by:

|β| [A] = 〈e1A, β〉

Let G = (Ai ) be a finite partition of Ω. Set:

βG = ∑ ξ i (|β| [Gi ])

ξ i =
〈ei1Gi , β〉
〈e1Gi , β〉

We can approximate β by the βG which have a simpler form. We associate
with βG the Borel measure:

µG = ∑ |β| [Gi ] δξ i

and we show that the µG converge to some µ as the βG converge to β.
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