Multivariate Risk Measures

Ivar Ekeland and Walter Schachermayer

Zurich, May 5, 2011

Ivar Ekeland and Walter Schachermayer ()

Multivariate Risk Measures

Zurich, May 5, 2011 1 / 16

A monovariate risk measure (1-rm) is a function $\rho: L^{\infty}(\Omega, \mathcal{F}, P) \to \infty$ such that:

•
$$\rho(0) = 0$$

• $X \ge Y \Longrightarrow \rho(X) \le \rho(Y)$
• $\rho(X + m) = \rho(X) - m$ for $m \in R$

lt is

- convex if ρ is a convex function
- coherent if it is convex and positively homogeneous:

$$\begin{array}{rcl} \rho\left(X+Y\right) &\leq & \rho\left(X\right)+\rho\left(Y\right) \\ \rho\left(\lambda X\right) &= & \lambda\rho\left(X\right) \end{array}$$

Law-invariant 1-r.m.

We shall write $X \sim Y$ to mean that X and Y have the same law. ρ is law-invariant if $X \sim Y$ implies that $\rho(X) = \rho(Y)$

Definition

A 1-rm is strongly coherent if it is convex, law-invariant and:

$$ho\left(X
ight)+
ho\left(Y
ight)=\sup\left\{
ho\left(X+\widetilde{Y}
ight)\ \mid \, Y\sim\widetilde{Y}
ight\}$$

There are two fundamental examples of s.c. 1-r.m.

• Let $F \in L^1$ be a probability density, so that $F \ge 0$ and E[F] = 1. Define $\left(= \begin{bmatrix} - \widetilde{x} \end{bmatrix} + \widetilde{x} - x \right)$

$$\rho_F := \sup\left\{ \mathbb{E}\left[-F\widetilde{X} \right] \mid \widetilde{X} \sim X \right\}$$

2 Set:

$$\rho_{\infty}\left(X\right):=\mathrm{ess}\,\mathrm{sup}\,-X$$

Both $\rho_{\rm F}$ and ρ_{∞} are strongly coherent.

Kusuoka (2001) has shown that all strongly coherent risk measures can be built from $\rho_{\rm F}$ and ρ_∞

Theorem

 ρ is a strongly coherent 1-r.m. if and only if there is a probability density F and a number s with $0 \le s \le 1$ such that:

$$orall X\in \mathit{L}^{\infty}$$
, $ho\left(X
ight) =\mathit{s}
ho_{\infty}\left(X
ight) +\left(1-\mathit{s}
ight)
ho_{\mathit{F}}\left(X
ight)$

A *d-dimensional risk measure* (*d*-r.m.) is a function $\rho: L^{\infty}(\Omega, \mathcal{F}, P; \mathbb{R}^d) \to \mathbb{R}$ such that:

•
$$\rho(0) = 0$$

• $X \ge Y \Longrightarrow \rho(X) \le \rho(Y)$
• $\rho(X + me) = \rho(X) - m \text{ for } m \in R \text{ and } e = (1, ..., 1)$

lt is

- convex if ρ is a convex function
- coherent if it is convex and positively homogeneous:

$$\begin{array}{rcl} \rho\left(X+Y\right) &\leq & \rho\left(X\right)+\rho\left(Y\right) \\ \rho\left(\lambda X\right) &= & \lambda\rho\left(X\right) \end{array}$$

ho is law-invariant if $X \sim Y$ implies that $ho\left(X
ight) =
ho\left(Y
ight)$

Definition

(Galichon, Henry) A d-rm is *strongly coherent* if it is convex, law-invariant and:

$$ho\left(X
ight)+
ho\left(Y
ight)=\sup\left\{
ho\left(X+\widetilde{Y}
ight)\ \mid Y\sim\widetilde{Y}
ight\}$$

Examples

There are two fundamental examples of s.c. 1-r.m.

• Let $F = (F_1, ..., F_d) \in L^1(\mathbb{R}^d)$ satisfy $F_i \ge 0, 1 \le i \le d$, and $\sum_i E[F_i] = 1$. Define

$$\rho_{F} := \sup \left\{ \mathbb{E}\left[-F\widetilde{X} \right] \mid \widetilde{X} \sim X \right\} = \sup \left\{ \sum_{i} \mathbb{E}\left[-F_{i}\widetilde{X}_{i} \right] \mid \widetilde{X} \sim X \right\}$$

Obenote by S^d the unit simplex in R^d and let $\xi \in S^d$, so that $\xi_i \geq 0$ and $\sum \xi_i = 1$. Define

$$ho_{\xi}\left(X
ight):=\mathrm{ess}\,\mathrm{sup}\,{-}X\xi=\mathrm{ess}\,\mathrm{sup}\,{-}\sum X_{i}{\xi}_{i}$$

• Let μ be a probability on S^d . Set:

$$\rho_{\mu}(X) := \int_{S^{d}} \rho_{\xi}(X) \, d\mu\left(\xi\right)$$

 $\rho_{\it F}$ and $\rho_{\it u}$ are strongly coherent d-r.m.

Schachermayer and IE have shown that all strongly coherent risk measured-r.m. can be built from ρ_F and ρ_∞

Theorem

 ρ is a strongly coherent d-r.m. if and only if there is some $F \in L^1_+(\mathbb{R}^d)$ with $\sum_i E[F_i] = 1$, a probability μ on S^d and a number s with $0 \le s \le 1$ such that:

$$\forall X \in L^{\infty}$$
, $\rho(X) = s \rho_{\mu}(X) + (1 - s) \rho_{F}(X)$

This result builds on an earlier result by Galichon, Henry and IE, which we will explain in due course.

Duality

If $\rho: L^{\infty}(\mathbb{R}^d) \to \mathbb{R}$ is a convex and law-invariant, it is lower semi-continuous wrt $\sigma(L^{\infty}, L^1)$ (Jouini, Schachermayer, Touzi, 2006). It follows that ρ is coherent (homogeneous) if and only if there exists a closed, convex, law-invariant subset C of $L^1(\mathbb{R}^d)$ such that.

$$ho\left(X
ight)=\sup_{F\in\mathcal{C}}\left\langle F,X
ight
angle$$

We shall set $\rho = \rho_C$ to remember this fact. Denote by T the set of measure-preserving maps τ from Ω into itself. Set:

$$K := \{ (F, F \circ \tau) \mid F \in C, \ \tau \in \mathcal{T} \}$$

Since C is law-invariant, $K \subset C \times C$. Conversely:

Lemma

 ρ is strongly coherent iff $C \times C$ is the closed convex hull of K

Suppose $\rho = \rho_C$ and $C \times C$ is the closed convex hull of K. Then:

$$\begin{split} \rho_{C}\left(X\right) + \rho_{C}\left(Y\right) &= \sup\left\{-\langle F, X \rangle - \langle G, X \rangle \mid (F, G) \in C \times C\right\} \\ &= \sup\left\{-\langle F, X \rangle - \langle F \circ \tau, Y \rangle \mid F \in C, \ \tau \in \mathcal{T}\right\} \\ &= \sup\left\{-\langle F, X + Y \circ \tau^{-1} \rangle \mid F \in C, \ \tau \in \mathcal{T}\right\} \\ &\leq \sup\left\{-\langle F, X + \widetilde{Y} \rangle \mid \widetilde{Y} \sim Y\right\} = \rho_{C}\left(X + \widetilde{Y}\right) \end{split}$$

and the reverse inequality is always true

Theorem

Let $C \subset L^1(\mathbb{R}^d)$ be strongly coherent. Then there exists a number t, with $0 \leq t \leq 1$, and two closed convex law-invariant subsets C^r and C^s of $L^1(\mathbb{R}^d)$ such that:

1
$$C = (1-t) C^r + t C^s$$

2
$$C^r$$
 is $\sigma(L^1, L^\infty)$ -compact

Solution C^s ⊂ (L[∞])^{*} is σ ((L[∞])^{*}, L[∞])-compact, and its extreme points are purely singular

This is the case when $C^s = \emptyset$. In other words, $C = C^r$ is weakly compact in $L^1(R^d)$. For instance, $C \subset L^p(R^d)$, so that $\rho = \rho_C$ is continuous in the $L^p(R^d)$ norm. This case was dealt with in an earlier paper by Galichon, Henry and IE. Since C is weakly compact, it is the closed convex hull of its set of strongly exposed points. Let $F \in C$ be such a point. We claim that $\rho = \rho_F$. By definition, there is some $X \in L^{\infty}(\mathbb{R}^d)$ such that $\sup_{H \in C} - \langle H, X \rangle = - \langle F, X \rangle$ and if $H_n \in C$ is a maximizing sequence, then $H_n \to F$ strongly in $L^i(\mathbb{R}^d)$. Since ρ is strongly coherent, we have:

$$\rho\left(X\right) + \rho\left(Y\right) = \sup\left\{-\left\langle G, X\right\rangle - \left\langle G \circ \tau, Y\right\rangle \mid G \in \mathcal{C}, \ \tau \in \mathcal{T}\right\}$$

Let (G_n, τ_n) be a maximizing sequence. Since we have = instead of \geq , we must have $\rho(X) = \sup -\langle G_n, X \rangle$ and $\rho(Y) = \sup -\langle G_n \circ \tau, Y \rangle$ so $G_n \to F$ and:

$$\rho\left(Y\right) = \sup_{\tau} - \langle F \circ \tau, Y \rangle = \sup_{\tau} - \langle F, Y \circ \tau^{-1} \rangle = \sup_{Y \sim \widetilde{Y}} - \langle F, \widetilde{Y} \rangle$$

so $ho=
ho_F$ as desired

The singular case 1

Let $\mathcal{G} = (A_i)$ be a finite partition of Ω . On each A_i we are given a point $x_i \in S^d$ and an element $\beta_i \in (L^{\infty}(R))^*$. We then build an element $\beta_{\mathcal{G}} \in (L^{\infty}(R^d))^*$ by the formula

$$\langle \beta_{\mathcal{G}}, X \rangle = \sum \langle \beta_i, (x_i \cdot X) \rangle$$

Denote by δ_i the Dirac mass at x_i . We associate with $\beta_{\mathcal{G}}$ the Borel measure $\mu_{\mathcal{G}}$ on S^d defined by:

$$\mu_{\mathcal{G}} = \sum \delta_i \beta_i \left(A_i \right)$$

Lemma

Suppose $\beta_{\mathcal{G}}$ is law-invariant. Then, for $X \in L^{\infty}(\mathbb{R}^d)$ we have:

$$\sup_{\tau \in \mathcal{T}} -\langle \beta_{\mathcal{G}} \circ \tau, X \rangle = \int_{S^d} \sup - (x \cdot X) \, d\mu(x)$$

Ivar Ekeland and Walter Schachermayer ()

$$\begin{split} \int_{\mathcal{S}^{d}} \sup - \left(x \cdot X \right) d\mu \left(x \right) &= \int_{\mathcal{S}^{d}} \sup - \left(x \cdot X \circ \tau^{-1} \right) d\mu \left(x \right) \\ &= \sum \sup - \left(x_{i} \cdot X \circ \tau^{-1} \right) \beta_{i} \left(A_{i} \right) \\ &\geq - \left\langle \beta_{\mathcal{G}} \circ \tau, X \right\rangle \end{split}$$

and the reverse inequality follows from the fact that $\beta_{\mathcal{G}}$ is purely singular. Taking points (ξ_i) and disjoint sets (B_i) with $\mathbb{P}(B_i) > 0$ such that

ess sup
$$-x_i \cdot X = -x_i \cdot \xi_i$$
 and $B_i \subset \{|X - \xi_i| < \varepsilon\}$

we can find a set N with $0 < \mathbb{P}(N) < \inf \mathbb{P}(B_i)$ such that $\beta_{\mathcal{G}} \mathbf{1}_N = \beta_{\mathcal{G}}$. We then find a measure-preserving transformation which maps $N \cap A_i$ into B_i and the result follows

The singular case: simple elements

Let $\beta \in (L^{\infty}(\mathbb{R}^d))^* \ge 0$ be a purely singular element. We define a finitely additive measure $|\beta|$ by:

 $\left|eta
ight|\left[A
ight]=\left< e\mathbf{1}_{A},eta
ight>$

Let $\mathcal{G} = (A_i)$ be a finite partition of Ω . Set:

$$\begin{array}{lll} \beta_{\mathcal{G}} & = & \sum \xi_i \left(|\beta| \left[G_i \right] \right) \\ \xi_i & = & \frac{\langle e_i \mathbf{1}_{G_i}, \beta \rangle}{\langle e \mathbf{1}_{G_i}, \beta \rangle} \end{array}$$

We can approximate β by the $\beta_{\mathcal{G}}$ which have a simpler form. We associate with $\beta_{\mathcal{G}}$ the Borel measure:

$$\mu_{\mathcal{G}} = \sum |eta| [G_i] \, \delta_{\xi_i}$$

and we show that the $\mu_{\mathcal{G}}$ converge to some μ as the $\beta_{\mathcal{G}}$ converge to β .

16 / 16