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John Forbes Nash, Jr., and his wife died in a taxi on May 2015, driving home
from the airport after receiving the Abel prize in Oslo. This accident does not
conclude his career, for long after a mathematician is dead, he lives on in his
work. On the contrary, it puts him firmly in the pantheon of mathematics,
along with Nils Henrik Abel and Evariste Galois, whose productive life was cut
short by fate. In the case of Nash, fate did not appear in the shape of a duellist,
but in the guise of a sickness, schizophrenia, which robbed him of forty years of
productive and social life.
His publication list is remarkably small. In 1945, aged seventeen, he pub-

lished his first paper, [12], jointly with his father. Between 1950 and 1954 he
published eight papers in game theory (including his PhD thesis) and one paper
on real algebraic geometry. Between 1950 and 1954 he published eight papers in
analysis, on the imbedding problem for Riemannian manifolds and on regularity
for elliptic and parabolic PDEs, plus one paper published much later (1995). A
total of nineteen ! For this (incredibly small) production he was awarded the
Nobel prize for economics in 1994, which he shared with John Harsanyi and
Reinhard Selten, and the Abel prize for mathematics in 2015, which he shared
with Louis Nirenberg. I will now review this extraordinary work

1 Game theory

1.1 Nash’s PhD thesis

The twentieth century was the first one where mass killing became an industry:
for the first time in history, the war dead were counted in the millions. The whole
economy was mobilized towards the war effort: weapons and ammunitions had
to be produced and transported thousands of miles away, together with men,
oil, and food. This was an unprecedented feat of management, and it was
accompanied and sustained by the development of quantitative methods. Linear
programming and convex optimization were born in the United States during
the WWII, to support the war effort. A new field of mathematics, operations
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research, was created to accomodate these quantitative methods of management,
which would soon incorporate deterministic and stochastic optimal control.
Princeton was the major center of this intellectual effort. There was Al-

bert Tucker, famous nowadays for the Kuhn-Tucker conditions in convex opti-
mization, and for the duality theory in linear programming. There one could
also meet John von Neumann, the mathematician, and Oskar Morgenstern, the
economist, both refugees from nazi Germany, bringing with them the scientific
tradition of Vienna. Vienna was the place were one took seriously the idea
that human beings can be thought of as optimizers, that is, that each of us is
characterized by a utility function, and strives to maximize it. This is the core
of modern economic theory, and indeed the first mathematical proofs of the
existence of market equilibrium were done in Vienna, by Abraham Wald, while
the whole theory was developed by Abraham Wald, with Friedrich Hayek and
Joseph Schumpeter in the background. They also would emigrate, and live on
to see the triumph of their ideas: Ronald Reagan and Margaret Thatcher are
their intellectual heirs, and we live in the world they envisioned.
However, seeing human beings as optimizing machines is not enough, for one

quickly encounters to problem of strategic behaviour: how do I take into account
what other people do ? When I run a 100 meter dash against an opponent, for
instance, it is clear what I should do: run as fast as possible. But when I play
chess ? What is a good move in a given situation ? To answer the question, I
have to know what he/she will answer, so I have to put myself in his/her shoes,
and there I will find the same problem: he/she cannot find his/her best move
without knowing what I would answer, so I am back in my own shoes with the
same problem, two steps later and much more complicated !
A game is a situation where the global outcome (a) depends on individual

decisions, and (b) affects differently the decision-makers. Chess is a very par-
ticular case where there are only two players (two-person game) and one’s loss
is the other’s gain (zero-sum game). Game theory aims to find a "solution" for
any given game, that is, to predict the outcome, or to find an agreement that
all players will find acceptable. Von Neumann was the first one to provide a
solution for two-person zero-sum games (this is the content of his famoux mini-
max theorem), and together with Morgenstern, in their famous book of 1944, he
proposed a solution for general games [23]. Such was the exciting atmosphere in
Princeton when Nash was a student. He rubbed shoulders, not only with these
masters, but also with other students, no less interested and no less bright: John
Milnor, Lloyd Shapley, Gary Becker, Harold Kuhn, David Gale, all of them ma-
jor contributors to game theory and economics. This was also the topic Nash
chose for his thesis: he would give his own solution for n-person games.

1.2 Nash equilibrium

Nash’s work is not summarized, but fully contained in his paper [13]. It has
two pages, 48 and 49, in fact, only one, because another paper ends on page 48
and another one begins on page 49. The full proof is given, and take rather less
than four lines.
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This paper, for which Nash was awarded the Nobel prize in economics many
years later, defines mathematically the notion of equilibrium and gives condi-
tions under which it exists. A Nash equilibrium is a non-cooperative solution
for games: unilateral deviations are penalized (but multilateral ones may not
be). More precisely, if there are N players, and player n tries to maximize
un (x1, .., xN ), a Nash equilibrium is a set of individual actions (x̄1, ...x̄N ) such
that:

un (x̄1, ..., x̄N ) ≥ un (x̄1, ...x̄n−1, xn, x̄n+1, ...x̄N ) for 1 ≤ n ≤ N

Nash proved that, if the action sets Xn are convex and compact, and if the
un are upper semi-continuous and concave with respect to xn, then such an
equilibrium exists
Nash’s result did not create much excitement at the time, because it was

seen as extremely weak. It describes self-fulfilling contracts: once the players
have agreed to play (x̄1, ..., x̄N ), there is no need to worry about enforcing the
contract, for each individual finds it in his/her own interest to comply. So, the
argument goes, everyone will do his/her part without supervision or police. The
trouble with this argument is that it assumes that players do not communicate:
what if two of them, n and n+1, conspire to play (xn, xn+1) instead of (x̄n, x̄n+1)
? It may well be that they would do better than the equilibrium solution ! Isn’t
it the case in everyday life that people strike deals and cooperate, scratch my
back and I will scratch yours ? What then is the use of a definition that assumes
collusion away ? Isn’t it better to look for cooperative solutions, where players
are allowed to form coalitions ?
This was precisely the idea of von Neumann and Morgenstern. Unfortunately

the (cooperative) solution they proposed in their book never gained traction or
credence, it was just to unwieldy. As the years went by, people lost hope that a
cooperative solution would exist, and went back to Nash’s noncooperative one.
Today, is stands as the central mathematical concept of economic theory. Every
social interaction (competitive markets for instance) is understood as some kind
of Nash equilibrium. Following Nash, modern economic theory has given up on
cooperation. Individuals act within a set of rules, imposed by the state, and
within this set of rules they seek a Nash equilibrium.

1.3 The problem of collective action

Nash equilibria can be pretty bad for all players. To give you an example of
application, let me explain to you why our civilisation is doomed (I am not
joking). As everybody knows by now, we are on track for an increase in mean
temperatures > 5◦C by the end of the century. As a matter of comparison, this is
exactly what separates us from the last ice age, when most of Europe was two or
three kilometers of ice. Since we are in Italy, let me mention that temperatures
around the Mediterranean are set to increase by 10◦C in summertime; there is
no point to go and seek solace in the Arctic, for temperatures there will increase
by 15◦C. It seems clear that something should be done, and recently, at the

3



COP 21 in Paris, all nations pledged to do something. Will it be done ? No
(again, I am serious). Why ?
Let us look at France, for instance. If France participates, benefit for France

is NB and cost is c, so the balance is NB − c. If France does not participate,
benefit for France is (N − 1)B but cost is zero. If (N − 1)B > NB − c, or
c > B, France will find it to its advantage not to participate. It lets the others
do the work, and benefits from the result !
So France will not participate, and think itself smart. The problem is that

everyone does the same calculation, everyone tries to free ride on the others, so
no one participates. This is exactly what has been going on for twenty years,
and which will continue until the end (see my book [4]). In mathematical terms,
not participating is a Nash equilibrium, and it is the only one. We are firmly
on track for the collapse.

1.4 The Nash bargaining solution

Important though it is, the concept of equilibrium is not the only contribution
of Nash to game theory. He also defined a cooperative (!) solution to a very
particular game, the bargaining problem.
Let us imagine two individuals engaged in a negociation. We represent the

set of possible outcomes as a set A ⊂ R2
+: individual i seeks to maximize the

coordinate xi. We seek a fair outcome s (A) to the bargaining problem.
(axiom 1) if (x1, x2) ∈ A and there exists (y1, y2) ∈ A such that y1 > x1 and

y2 > x2, then (x1, x2) /∈ s (A)
(axiom 2) if A is symmetric, then s (A) is the highest point (x, x) ∈ S
(axiom 3) if A1 ⊂ A2 and s (A2) ⊂ A1, then s (A1) = s (A2)
In [14], Nash proved that, if A is convex and compact, the only solution

point s (A) ∈ A satisfiying these three axioms for all A is the point where the
product x1x2 is maximized on A.
Nash’s bargaining solution belongs to normative economics: a solution is

sought satisfying certain assumptions (fairness), whereas the Nash equilibrium
belongs to positive economics (what people actually do)

2 Mathematics

2.1 Real algebraic geometry

We are now entering a field I know very little about. Its diffi culty, however, is
easy to understand for a non-specialist. Algebraic geometry is the study of the
set of zeroes of a family of polynomial equations in Kn. If K = C, the field of
complex numbers, we will benefit from the fact that every polynomial in one
variable has a zero, which is no longer the case when K = R. An algebraic curve,
for instance, is defined by a polynomial equation P (z1, z2) = 0. In C2, it is a
Riemann surface, and its topology is perfectly well understood, but in R2 the
situation is quite different and much more complicated.
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Or is it ? The main problem, of course, are the singularities, the points where
the equations become linearly dependent or where two sheets cross. Let us be
more specific. Consider a set M ⊂ Rn defined by a family of equations:

M =

{
x = (x1, ..., xn) | fk (x) = 0,

1 ≤ n ≤ N
1 ≤ k ≤ K

}
It is a submanifold if this system never degenerates:

x ∈M =⇒ df1 (x) ∧ ... ∧ dfK (x) 6= 0

so that the tangent space to M at x ∈ M is an affi ne subspace of codimension
K:

TxM = {ξ | dfk (x) ξ = 0 ∀k}
It is an embedded submanifold if there are no crossing points:

x (t) ∈M
x (t)→ x (0) when t→ 0

=⇒ dx

dt
(0) ∈ Tx(0)M

So an embedded submanifold corresponds to our intuitive notion of a smooth
hypersurface. Nash, in a famous paper of 1952, raised (and answered) the
question: does it make much difference if we want the fk to be polynomials
(M would then be called an algebraic variety) ? His answer was, essentially
and suprisingly, no ! More precisely, he proved [17] that if If M is compact,
connected and dimM < n−1

2 , thenM can be C∞ approximated by a nonsingular
component of a real algebraic variety.
He also conjectured that any compact embedded submanifold is diffeomor-

phic to a nonsingular connected component of a algebraic variety, and made a
major step towards proving that result. It was established in 1973 by an Italian
mathematician, Alberto Tognoli [24], and is known today as the Nash-Tognoli
theorem.
Although Nash never again entered the field, and his contribution is limite to

this single paper of 1952, it is impossible today to read a paper on real algebraic
geometry without encountering his name, not only in his results, but also in the
tools he left behind, Nash functions, Nash manifolds, which have been picked
up by others and are now ubiquitous.

2.2 Calculus of variations

This is Hilbert’s 19th problem (1900). It originates of course with Dirichlet’s ob-
servation that the Poisson equation −∆u = f satisfying u = 0 on the boundary
is the Euler equation associated with the integral:∫

Ω

(
1

2
|∇u|2 − fu

)
dx

so that any minimizer of this integral in the class of functions satisfying the
boundary condition must satisfy the Poisson equation −∆u = f in the interior.
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Riemann took the existence of the minimizer for granted, Weierstrass came up
with a counterexample, and the problem was there for Hilbert to state: given a
C∞ map F : RN ×RK ×RKN → R, a domain Ω ⊂ RN with C∞ boundary and
a map f : RN → RK , does the problem:

min
u

∫
Ω

(F (x, u,∇u)− fu) dx (1)

u = 0 on ∂Ω (2)

have a C∞ solution u (x) ?
From 1900 onwards, mathematicians benefited from Lebesgue’s newly de-

veloped theory of the integral. LeonidaTonelli, for instance, put it to full use
in his great book [25], which unfortunately deals only with the one-dimensional
case, where Ω is an interval and the Euler equation an ODE. Progress on the
higher-dimensional case, where Ω ⊂ RN and the Euler equation is a PDE, came
only when the decision was made to separate the problem in two different is-
sues, existence on the one hand and regularity on the other, the pionneer in this
direction being Jean Leray, in his thesis on the Navier-Stokes equation. Nowa-
days, one considers integrals such as (1) as functions over some Sobolev space,
typically u ∈ W k,p, and one shows that, under suitable growth and convexity
assumptions on F , there is a minimizer, which satisfies the Euler equations in a
suitably weak sense, obtained by integrating by parts again C∞ test functions
ϕ. So the existence problem is solved. The regularity problem consists of show-
ing that the minimizer is not only in W k,p but in C∞, and the Euler equation
will play a crucial role in such a proof.
As an example, consider the problem:∫

Ω

(F (∇u)− fu) dx

where F ∈ C∞
(
RKN

)
, |F (p)| ≤ c |p|2 and the derivatives Ank (p) := ∂F/∂pkn

satisfy the growth and ellipticity conditions:

|Ank (p)| ≤ c |p| ,
∣∣∣∣∂Ank∂pjm

(p)

∣∣∣∣ ≤ c, ∂Ank
∂pjm

(p) ξknξ
j
m ≥ c |ξ|

2

If u is a minimizer of F , then it satisfies the Euler equation:∑
n,k

∫
Ω

Ank (Du)
∂ϕk

∂xn
dx = fϕ ∀ϕ ∈W 1,2

0

(
Ω;RK

)
which we rewrite as:

−
∑
n

∂

∂xn
[Ank (Du)] = fk

Differentiating, we find that any derivative vi := ∂u/∂xi satisfies the elliptic
system:

−
∑
n

∂

∂xn

[
∂Ank
∂pjm

(Du)
∂vji
∂xm

]
=
∂fk
∂xi

6



Suppose now f ∈ C∞. Is it the case that u ∈ C∞ ? If u ∈ C1, the coeffi cients
∂An

k

∂pjm
(Du) are Lipschitz functions of x, and it follows that vj ∈ C1, so that in

fact u ∈ C2. Iterating, we find that eventually u ∈ C∞. The problem is to start
! In other words, the diffi culty is to prove that, if u ∈ W 1,2

0

(
Ω;RK

)
is a weak

solution, then u is C1.
In the scalar case (K = 1), the system reduces to a single equation for the

derivative vn := ∂u/∂xn:

∂

∂xj

(
∂2F

∂pi∂pj
(Du)

∂v

∂xi

)
= 0

If u is a weak solution, the coeffi cients ∂An
k

∂pjm
(Du (x)) are at best L∞ (not

continuous). So we have an elliptic linear equation with L∞ coeffi cients. In [18]
and [19], Nash showed that the solution is Hölder continuous, and that is enough
to start the bootstrapping argument and go all the way to C∞. At the same
time, Ennio de Giorgi, in Italy, proved the same result by a different method in
[6]. Each of them was unaware of the other: it is one of the great coïncidences
of mathematics that such an important problem was solved simultaneously by
two mathematicians working an ocean away from each other.
So Hilbert’s problem was solved in the case of a single equation. The mul-

tidimensional case K > 1, leading to a system of PDEs, is still open. Nash, as
usual, left the field almost immediately. De Giorgi went on to study the multi-
dimensional case. He eventually found an example of a function F (x,Du) with
all imaginable blessings, but with a non-smooth solution, namely u (x) = x/ |x|γ
(see [7]). This was extended by Giaquinta and Giusti in [8] to a function
F (u,Du) with minimizer u (x) = x/ |x|. It seems that in the multidimensional
case, even when the integrand is convex (not to mention the nonlinear elasticity
problems of continuum mechanics), the existence of singularities (fractures) is
the rule, not the exception, although no one has a clear idea of what is going
on.

2.3 Can Riemannian geometry be realized ?

2.3.1 The smooth case

In his thesis Über die Hypothesen, die der Geometrie zugrunde legen (1854),
Bernhard Riemann defined an intrinsic geometry on manifolds by a quadratic
form

∑
gij (x) ξiξj on the tangent space at x. The question immediately arose:

does that bring anything new ? Can every such Riemannian manifold be realized
as a submanifold of Euclidian space ?
To restate this problem in a precise way, given a Riemannian manifold M ,

define an isometry as a one-to-one map ϕ : M → RN of class C2 which preserves
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the given quadratic form g (x) on TxM :

K∑
j,k=1

(
∂ϕn

∂xj
(x) ξj ,

∂ϕn

∂xk
(x) ξk

)
RN

=
∑

gjk (x) ξjξk

N∑
n=1

∂ϕn

∂xj
(x)

∂ϕn

∂xk
(x) = gjk (x)

Very early on, Elie Cartan and Maurice Janet solved the local problem:
given a point x on a Riemannian manifold, one can alway find some N large
enough and a neighbourhood of x small enough to embed isometrically into
a neighbourhood of 0 in RN . Of more interest is the global problem. The
particular case whenM is a two-dimensional sphere with a Riemannian stucture,
which one seeks to embed as a convex hypersurface of R3, was known as the Weyl
problem, and was solved by Hans Lewy in the analytic case, and independently
by Louis Nirenberg and Alexei Pogorelov in the C∞ case.

The general case was solved by Nash, in [21]. He showed any compact Rie-
mannian manifold can be imbedded isometrically into an Euclian space of suffi -
ciently high dimension. Nash’s proof goes by showing that the set of Riemannian
structures on M (i.e. the set of fields g (x)) which can be isometrically embed-
ded is both open and closed. The latter is relatively easy, the former is quite
diffi cult. An isometry ϕ fromM into RN induces a map Φ from the Riemannian
structures of M to the Riemannian structures of RN . We want to show that
the set of g such that Φ (g) = I is open. Let us try to apply the inverse function
theorem (IVT). Clearly, Φ is of the form [Φ (g)] (ϕ (x)) = F (x, g (x) , Dg (x)).
Differentiating at g0, we get

Φ′ (g0) γ = Fx + Fuγ + FpDγ

So Φ′ (u) maps Ck into Ck−1. This derivative is not recovered by inversion:
Φ′ (u) γ = ω with ω ∈ Ck−1 does not imply that ω ∈ Ck except in very spe-
cial cases. There is a global loss of derivatives, and the usual IVT does not
apply. Nash constructed a "hard" IVT to solve the embedding problem, and
described his procedure (for the analytic case) in [22]. Simultaneously, Niko-
lai Kolmogorov in the USSR, with the collaboration of Vladimir Arnol’d con-
structed such an IVT to solve the resonance problem in celestial mechanics (see
[1], [2] and [3]). This is another remarkable case where two great mathemati-
cians, an ocean apart, simultaneously solve a great problem. Their ideas were
carried forward by Jürgen Moser, whose name appears both in the Nash-Moser
theorem (a generic name for inverse function theorems with loss of regularity)
and in the Kolmogorov-Arnol’d-Moser theorem (the existence of invariant tori
in near-integrable systems of classical mechanics). These theorems and meth-
ods today very active fields of research, with important applications the work
of Clément Mouhot and Cedric Villani [11] being the most recent testimony.
Together with Eric Séré, I have tried to import new ideas into that field [5].
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2.3.2 The non-smooth case

Note that, in 1827, Carl Friedrich Gauss had found an invariant: the curvature
is preserved by any isometry. It is the famous Theorema Egregium, the theorem
which stands out of the flock. As usual, the presence of an invariant leads
to obstructions (impossibilities): a sphere of radius R, for instance, cannot be
compressed isometrically into a ball of radius r < R (look at the curvature of
extreme points).
But what about C1 embeddings ? If ϕ is C1 only, the Riemannian structure

(including curvature) no longer makes sense, only the metric is left. Such an
embedding will be called isometric if the length of any path c (t), 0 ≤ t ≤ 1, on
M , coïncides with the length of its image ϕ (c (t)) in RN . This makes excellent
sense, and we are rid of the curvature ! Now everything is possible, including
sending a sphere of radius R into a ball of radius r < R, as the following theorem
shows:

Theorem 1 (Nash-Kuiper) Let f : M → RN , with N > dimM , be any map
which is 1-Lipschitz:

‖f (x)− f (y)‖ ≤ ‖x− y‖

Then, for any ε > 0, there exists a C1 embedding ϕ : M → RN which is
isometric and satisfies

‖f (x)− ϕ (x)‖ ≤ ε ∀x ∈M

Nash’s original proof gave N > dimM + 1, and the improvement is due to
Kuiper. Note that there is still some regularity left: according to the theorem,
a piece of paper of format A4 can be put into one’s pocket without creating
creases or folding !
This result was the first in a line of research with has been extremely ac-

tive ever since. It was a first step towards Gromov’s h-principle (if there are
no topological obstructions, there are no holonomy obstructions) and convex
integration. Right now, the idea that obstructions that stand in the way of reg-
ular solutions disappear for non-regular ones is behind such major advances as
the existence of non-energy preserving solutions of the Euler equations in fluid
mechanics.

3 The nature of genius

There is no doubt that Nash was a genius. It is not only what he did, but
how he did it. His work on game theory is conceptually simple and the proofs
are natural. His work on mathematics, on the other hand, is far from being
either. Reading one of his proofs is like being led by the hand in a dark forest,
following meandering paths until one is utterly lost, and then, at the very last
moment, when one has given up all hope of ever leaving the darkness, the path
opens into a clearing in front of a beautiful castle, with all the windows lit up.
His death seals the fate of a unique personnality. It also leads us to meditate
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on that fragile boundary between genius and madness. Nash was schizophrenic
most of his adult life, when he was not mathematically, productive, but where
these subconscious forces already active when he was ?
We do not need to know the answer to render homage to John Nash’s great-

ness. A fitting epitaph would be the one Stéphane Mallarmé composed for Edgar
Poe:

Tel qu’en lui-même enfin l’éternité le change
Le poète suscite avec un glaive nu

Son siècle épouvanté de n’avoir pas connu
Que la mort triomphait par cette voix étrange.

Eux, comme un noir sursaut d’hydre oyant jadis l’angre
Donner un sens plus pur aux mots de la tribu

Proclamèrent très haut le sortilège bu
Dans le flot sans honneur de quelque noir mélange..

Du sol et de la nue hostiles, ô grief !
Si notre idée avec ne sculpte un bas-relief
Dont la tombe de Poe éblouissante s’orne,.

Calme bloc, ici-bas chu d’un désastre obscur !
Que ce granite au moins trace à jamais sa borne
Aux noir vol du blasphème épars dans le futur.
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