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Abstract

We consider the market for an indivisible quality good, in the tra-
dition of standard hedonic equilibrium theory but replacing the com-
monly used quasi-linear assumption on consumers’ preferences by a
more realistic nonlinear budget constraint. Taking advantage of quasi-
linearity on the producer’s side, we prove that an optimal transport-
like argument can still be used to derive existence of equilibria. We
also discuss some simple one-dimensional examples.

Keywords: quality markets, equilibrium, optimal transport, non trans-
ferable models.

1 Introduction

In the Arrow-Debreu theory, goods are homogeneous and indefinitely divis-
ible, and equilibrium arises from equating quantity supplied with quantity
provided. However, many important goods, such as houses or jobs, do not
fit this description: they are heterogeneous (one is not like another one) and
equilibrium does not arise from adjusting quantities (after all, one job or one
house is usually enough for one individual). The idea of defining a good as
a bundle of attributes, originating perhaps with Court [5] and developed by
Houthakker [11], Lancaster [12], Becker [1] and Muth [14], provides a sys-
tematic framework for the economic analysis of the supply and demand of
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quality, and the proper definition of equilibrium. These are the so-called he-
donic models. Typically, in such models, the good comes in separate units,
each one characterized by a bundle of qualities, each consumer buys one unit
or none, each producer supplies one unit or none. The price of each unit de-
pends on its particular bundle of qualities, consumers maximize utility and
producers maximize profit, and a hedonic equilibrium obtains when the mar-
ket clears. Note that each consumer who enters the market is matched to a
producer (who also enters the market).

The first papers showing the existence of a hedonic equilibrium, with
separable utilities and in a one-dimensional situation (agents are fully char-
acterized by the value of a single parameter) are due to Rosen [15] and Mussa
and Rosen [13]. Ekeland noticed that this problem had the same mathemat-
ical structure as the theory of optimal transportation, which was undergoing
rapid progress at that time (see [17]). Building on that theory, Ekeland [6],
Chiappori, McCann and Nesheim [4] were able to characterize hedonic equi-
libria as solutions of convex minimization problems and to prove that they
exist in higher-dimensional situations, where the agents and the goods have
multiple characteristics.

However, all these results come with the price of assuming that utilities
are separable: if a consumer buys one unit with quality z and pays p for it,
her utility is assumed to be u (z) − p. This is mathematically convenient,
and leads down the road to very nice properties of the hedonic equilibria,
but they are empirically and theoretically unsound: on the one hand, they
have no empirical support, on the other, they are cardinal and not ordinal.

This paper will prove the existence of hedonic equilibria in the general
situation where utilities are ordinal, and consumers maximize their utility
under the budget constraint, that is, given a price system p (z), they seek a
bundle of qualities z which maximizes u (z) under the constraint p (z) ≤ w,
where u is the utility function of the consumer and w her wealth.

The model and the definition of equilibrium are presented in section 2,
in the simple case where the number of consumers is equal to the number of
producers (recall that each consumer buys one unit and each producer sells
one unit). One-dimensional examples (including examples of multiplicity or
non existence of equilibria) are considered in section 3. Section 4 gives a
general existence result. Section 5 extends the model to the case when there
is another consumption good on the market, ξ say, which is a quantity good,
so that consumers now choose a quantity ξ and a quality z by maximizing
u (ξ, z) under the constraint q ·ξ+p (z) ≤ w. If both markets, for the quantity
good and for the quality good, clear, then (q, p (z)) is an equilibrium price,
where q is linear pricing and p (z) is not. Such models have been used in
labour economics, where workers have to find a job z paying a salary p (z)
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and have to buy subsistence goods ξ at price q, thereby striking a compromise
between the quality of the job and the salary. See for instance the work of
Heckman, [7] and [10].

2 The model

We are interested in a quality good market. The set of all feasible qualities
is denoted by Z and assumed to be a compact metric space. The price of
one unit with quality z is p (z). In the sequel, each consumer buys one unit
and each producer sells one unit.

2.1 Consumers and producers

Let us now describe the demand and supply side of the market for the quality
good.

Consumers are heterogeneous, more precisely they have types x which
have two components x = (θ, w) where θ ∈ X0 (a compact metric space) is a
preference parameter and w is a revenue parameter taking its values in the
interval [w,w] ⊂ R+. We denote by X := X0 × [w,w] the full type space,
the distribution of full types µ ∈ P(X) is known1 and we write it as

µ(dθ, dw) = µ(dθ|w)α(dw)

so that α ∈ P([w,w]) is the distribution of revenues2 and µ(dθ|w) is the
distribution of θ conditional on w. Consumers’ preferences are given by a
continuous utility function U ∈ C(X0 × Z). Given the price system z ∈
Z 7→ p(z) ∈ R+, consumers of type x maximize their utility subject to their
budget constraint. In other words, they solve:

Up(x) := max{U(θ, z) : p(z) ≤ w} (2.1)

where as usual the maximum is set to −∞ whenever the admissible set is
empty.

Producers are heterogeneous and differ in their production cost function
for the quality good. More precisely, there is a compact metric space Y and
a continuous function c ∈ C(Y ×Z) such that c(y, z) represents the cost for
producers of type y to produce one unit with quality z ∈ Z. The distribution

1Throughout the paper, whenever E is a compact metric space, P(E) denotes the set
of Borel probability measures on E, always endowed with the weak star topology.

2with no loss of generality, we may assume that w is in the support of α which will
justify the normalization minZ p = w in our definition of equilibria.
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of y is known and given by a probability measure ν ∈ P(Y ). Given a price
system z ∈ Z 7→ p(z) ∈ R+, producers of type y choose to produce a z that
minimizes their net cost c(y, z). In other words, setting:

pc(y) := min
z∈Z

{c(y, z)− p(z)} (2.2)

producer of type y choose some quality z such that p(z) + pc(y) = c(y, z).
Note that we assume throughout that µ (X) = ν (Y ) (and have normal-

ized this common value to 1) and also that there is no reservation utility
(each consumer will end up buying something).

2.2 Equilibrium

Before defining equilibria precisely, let us introduce a few notations. Given
two compact metric spacesX1 andX2, and β ∈ P(X1, X2) a Borel probability
measure, we shall denote by πX1#β the first marginal of β, which is defined
by πX1#β(A) := β(A × X2) for every Borel subset A of X1. The second
marginal πX2#β is defined in the same way. Given (m1, m2) ∈ P(X1)×P(X2)
we denote by Π(m1, m2) the set of Borel probability measures on X1 × X2

having m1 and m2 as marginals:

Π(m1, m2) :=
{
β ∈ P(X1 ×X2) : πX1#β = m1, πX2#β = m2

}

and recall that it is a nonempty convex and weakly star compact subset of
P(X1 ×X2).

Roughly speaking, an equilibrium is a price system which clears the qual-
ity market together with the corresponding joint distributions for demand
and supply. More precisely:

Definition 2.1. An equilibrium consists of a price p ∈ C(Z,R+) such that
minZ p = w, a quality line η ∈ P(Z) as well as consumer-quality and
producer-quality couplings γ and σ such that

1. γ ∈ Π(µ, η), σ ∈ Π(ν, η),

2. for γ-a.e. (x, z) = (θ, w, z), one has

p(z) ≤ w; and Up(x) = U(θ, z) (2.3)

3. for σ-a.e. (y, z), one has

p(z) + pc(y) = c(y, z). (2.4)

We will see in section 4 general regularity assumptions which guarantee
existence of equilibria.
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3 One-dimensional examples

In this section, we consider the simplest case where Z = [z, z] ⊂ (0,+∞),
and U(θ, z) is increasing in z so that the preference parameter θ becomes
irrelevant and we may equivalently take U(z) = z without changing con-
sumers’ behavior. On the supply side, we also assume in this section that
Y = [y, y] ⊂ (0,+∞), the production cost is c(y, z) = yz, the distribution of
producers’ types ν is atomless and Y is the convex hull of its support.

3.1 Discrete revenues

Let us consider the case where there are only two equiprobable values for the
consumers’ revenue i.e.

α =
1

2
(δw + δw)

with w > w > 0. Since consumers simply chose the maximal quantity they
can afford, if η is an equilibrium quality line associated to a price system p,
it is necessarily of the form

η =
1

2
(δz1 + δz2)

with

z1 := max{z ∈ [z, z] : p(z) ≤ w}, z2 := max{z ∈ [z, z] : p(z) ≤ w}.

Since we have imposed in our normalization of equilbria that p ≥ w
we have p(z1) = w and p(z2) ≤ w with equality unless if z2 = z, hence
z1 6= z2 unless z1 = z2 = z. But, if z1 = z2 = z, price has to be constant
equal to w and producers would all chose to produce z and all consumers
on the contrary would chose to consume z a contradiction to the equilibrium
requirement. We thus necessarily have z1 < z2, p(z1) = w, p(z2) = w. At
equilibrium, producers should optimally chose to produce either z1 or z2 and
by our linear specification of the cost, they should produce z1 whenever their
type y is in the subinterval of Y where yz1 − w ≤ yz2 − w (and since ν is
atomless the indifference point is negligible) but since half the demand is
for good z1, this subinterval should be (y∗, y] where y∗ is the median of ν
(which exists since ν is atomless and is unique as soon as ν has an increasing
cumulative distribution function on Y ). One should then have

w − w = y∗(z2 − z1) ≤ y∗(z − z)

so that when y∗(z−z) < w−w there is no equilibrium. If y∗(z−z) > w−w,
the situation corresponding to z1 = z, z2 = z + 1

y∗
(w − w) and a concave
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piecewise linear tariff p with slope y∗ on [z, z2] and any slope in (0, y] on
[z2, z] is an equilibrium. In summary:

• if y∗(z − z) < w − w there is no equilibrium,

• If y∗(z − z) > w − w there are several equilibria.

By the same arguments, one can see that if ν has several medians then are
infinitely many equilibria which may be constructed as previously for each
choice of a median y∗.

3.2 Continuous revenues

We consider the same specifications as above but we now assume that rev-
enues and producers’ types have continuous distributions, α and ν. To make
explicit computations we actually take them uniform i.e. with respective
cumulative distribution functions Fα and Fν given by

Fα(w) :=






0 if w ≤ w
w−w

w−w
if w ∈ [w,w]

1 if w ≥ w

and Fν(y) :=






0 if y ≤ y
y−y

y−y
if y ∈ [y, y]

1 if y ≥ y.

To find an equilibrium in this setting, it is natural to look for an increasing
and concave price system z ∈ [z, z] 7→ p(z) so that p(z) = w. Making this
ansatz, quality z is chosen by consumers of revenues w = p(z) and produced
by producers with type y = p′(z) at least when (p(z), p′(z)) ∈ [w,w]× [y, y],
so that if we denote by η the quality line distribution, at equilibrium, we
should have3

α = p#η, ν = p′#η.

Since p is increasing and concave, by a change of variables argument, and
denoting by Fη the cumulative distribution of η this yields

Fη = Fα ◦ p = 1− Fν ◦ p
′.

We therefore have the following Cauchy problem for the tariff:

Fν(p
′(z)) = 1− Fα(p(z)), p(z) = w. (3.1)

3here we use the notation T#m to denote the image measure of a Borel probability
measure m by a measurable map T , T#m(B) := m(T−1(B)).
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While p remains strictly below w (equivalently p′ remains strictly above
y), under our uniform specification (and setting ∆w := w−w, ∆y := y− y),
integrating (3.1) directly gives

p(z) =
(
y
∆w

∆y

+ w
)
− y

∆w

∆y

exp
(∆y

∆w

(z − z)
)
. (3.2)

Since y∆w

∆y

+ w > w, there is a threshold (which is explicit) z∗ ∈ [z,+∞)

for which the concave increasing function of z on the right-hand side of
(3.2) remains below w on [z, z∗]. To find an equilibrium by the previous
considerations, we thus have to distinguish two cases:

• either z < z∗, in which case, p is given by (3.2) on [z, z], and p(z) < w,
p′(z) > y, consumers of revenue w less than p(z) chose the quality
p−1(w) and consumers of revenue in [p(z), w] all chose the maximal
quality z. On the supply side, producers of type y ∈ [y, p′(z)] all opti-
mally produce z and producers of type y ∈ [p′(z), y] produce (p′)−1(y).
Since by construction α([p(z), w]) = ν([y, p′(z)]) = a > 0, the distribu-
tion of supply and demand induced by p coincide and the corresponding
equilibrium quality line η has a Dirac mass with weight a at z.

• or z ≥ z∗, in this case we define p by (3.2) when z ∈ [z, z∗] and
p(z) = p(z∗)+ p′(z∗)(z− z∗) = w+ y(z− z∗) when z ∈ [z∗, z]. Demand
and supply distributions match and in this case the corresponding equi-
librium quality line is absolutely continuous and supported on [z, z∗].

4 An existence result

We have seen in section 3 that, even in an elementary one-dimensional model,
if wages are discrete, equilibria may not exist. In this section, we identify
structural assumptions, under which existence is ensured. Among our as-
sumptions (see (H2)) one rules out the presence of atoms in the distribution
of consumers’ revenues.

Under the following assumptions

• (H1) Y is the closure of an open bounded connected subset of Rd with
a Lebesgue negligible boundary, ν is equivalent to the d-dimensional
Lebesgue measure on Y (that is ν has the same negligible sets as the
d-dimensional Lebesgue measure), c ∈ C(Y ×Z), c(., z) is of class C1 on
Y for every z ∈ Z, and its gradient ∇yc (y, z) is a continuous function.
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• (H2) U ∈ C(X0 × Z) is continuous and the revenue distribution α ∈
P([w,w]) has no atom.

we have the following existence result:

Theorem 4.1. Under (H1) and (H2), there exists at least one equilibrium.

We are going to prove Theorem 4.1 by a fixed-point argument. The
starting point is the observation that σ ∈ Π(ν, η) and p ∈ C(Z) are related
by (2.4) if and only if σ solves the mass tranport problem4:

inf
σ∈Π(ν,η)

∫

Y×Z

c(y, z)σ(dy, dz) (4.1)

and for η-a.e. z one has

p(z) = qč(z) := min
y∈Y

{c(y, z)− q(y)}

where q is a Kantorovich potential, that is, a solution of the Kantorovich
dual problem of (4.1) with marginals ν and η

sup
{∫

Y

q(y)ν(dy) +

∫

Z

qč(z)η(dz)
}

(4.2)

It follows from Prop. 6.1 in [2] that, under (H1), (4.2) admits a unique
solution q up to an additive constant. We choose the constant in such a way
that

min qč = w

and then set
p := qč = F1(η).

Then one deduces from the fact that functions of the form p = qč form
an uniformly equicontinuous family5 and the uniqueness of the optimal q in
(4.2) that:

Lemma 4.2. The map η 7→ F1(η) is continuous from P(Z) equipped with
the weak star topology to C(Z) (with the uniform norm).

4see the textbooks by Villani [17] or Santambrogio [16] for a detailed mathematical
presentation of the subject and Galichon [8] for an overview of optimal transport techniques
in economics.

5This is because c is uniformly continuous on the compact set Y × Z. More precisely,
denoting by dZ the distance on Z, we have |qč(z) − qč(z′)| ≤ ω(dZ(z, z

′)) with ω(t) :=
max{|c(y, z)− c(y, z′)|, y ∈ Y, (z, z′) ∈ Z2, dZ(z, z

′) ≤ t} → 0 as t → 0+.
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Proof. Let ηn weakly star converge to η, qn solve (4.2) with marginals µ and
ηn and pn = F1(ηn), by uniqueness, one can assume that qn = pcn, then both
families pn and qn are bounded and uniformly equicontinuous thus by Ascoli’s
theorem, they admit converging subsequences with respective limits p and q,
obviously min p = w, p = qč, q = pc and q solves the Kantorovich problem
with marginals ν and η, by uniqueness p = F1(η) which proves the desired
result.

Now given p ∈ C(Z) such that minZ p = w define F2(p) as the set of
probability measures γ on X × Z that satisfy:

• πX#γ = µ, i.e. the first marginal of γ is µ,

• p(z) ≤ w for γ-a.e. (θ, w, z) (or equivalently on the support of γ since
p is continuous) which may also be written as

∫

X×Z

(p(z)− w)+γ(dθ, dw, dz) = 0 (4.3)

• defining Up by (2.1), Up(x) = U(θ, z) for γ-a.e. (x, z), which, thanks to
(4.3), is equivalent to

∫

X

Up(x)µ(dx) =

∫

X×Z

U(θ, z)γ(dx, dz). (4.4)

It follows from standard measurable selection arguments (see [3]) that
F2(p) is well-defined, nonempty as well as convex and compact. We finally
set

F (η) := {πZ#γ, γ ∈ F2(F1(η))} (4.5)

so that F is the composition of the continuous map F1, the nonempty-convex-
compact valued map F2 and a linear continuous marginal map, it is thus
a nonempty-convex-compact valued self set-valued map of P(Z). We will
deduce Theorem 4.1 from the existence of a fixed-point of F . We thus have
to prove that F has a closed graph, obviously setting A := {p ∈ C(Z) :
min p = w} it is enough to prove that p ∈ A 7→ F2(p) has a closed graph:

Lemma 4.3. Under (H2), p ∈ A 7→ F2(p) has a closed graph.

Proof. Let us first study some basic properties of Up for fixed p ∈ A. First
observe that for every θ ∈ X0, w ∈ [w,w] 7→ Up(θ, w) is nondecreasing, there
is therefore an at most countable (left) jump set that we denote by Jp(θ) on
which Up(θ, .) is discontinuous:

Jp(θ) := {w ∈ (w,w]; : Up(θ, w) > Up(θ, w
−)}
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where
Up(θ;w

−) := lim
δ→0+

Up(θ, w − δ).

With respect to the variable θ, Up is obviously continuous. More precisely
denoting by dist the distance on X0 and

ω(t) := sup{|U(θ, z)− U(θ′, z)|, z ∈ Z, (θ, θ′) ∈ X2
0 , dist(θ, θ

′) ≤ t}

then for every (θ, θ′, w) ∈ X2
0 × [w,w], one has

|Up(θ, w)− Up(θ
′, w)| ≤ ω(dist(θ, θ′)). (4.6)

Let D0 be a countable dense subset of X0 and define the finite or countable
set Jp := ∪θ∈D0

Jp(θ), it is then easy to deduce from (4.6) that

Up(θ, w) = Up(θ, w
−), ∀θ ∈ X0, ∀w ∈ (w,w] \ Jp. (4.7)

Now, let pn ∈ A converge to p and γn ∈ F2(pn) converge to γ, obviously
one has πX#γ = µ and (4.3) holds, it remains to deduce from

∫

X

Upn(x)µ(dx) =

∫

X×Z

U(θ, z)γn(dx, dz), (4.8)

that (4.4) holds. The right-hand side of (4.8) converges to the right-hand side
of (4.4), as for the left-hand side, we proceed as follows. First we observe
that

lim sup
n

Upn ≤ Up

and also that for every θ, w ∈ (w,w] and ε > 0 such that w− ε ≥ w one has

lim inf
n

Upn(θ, w) ≥ Up(θ, w − ε)

indeed if Up(θ, w − ε) = U(θ, z) for some z ∈ Z such that p(z) ≤ w − ε then
pn(z) ≤ w for large enough n so that Upn(θ, w) ≥ Up(θ, w − ε). We then
have, thanks to Fatou’s Lemma, for every ε > 0:

∫

X

Up(x)µ(dx) ≥ lim sup
n

∫

X

Upn(x)µ(dx) ≥ lim inf
n

∫

X

Upn(x)µ(dx)

≥

∫

X

Up(θ, w − ε(w − w))µ(dθ, dw)

thanks to Lebesgue’s dominated convergence Theorem, this gives

lim inf
n

∫

X

Upn(x)µ(dx) ≥

∫

X

Up(θ, w
−)µ(dθ, dw).
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It follows from (4.7) that Up(θ, w
−) = Up(θ, w) whenever w /∈ Jp, but since

α has no atoms by (H2) and Jp is at most countable α(Jp) = 0, hence we
have ∫

X

Up(θ, w
−)µ(dx, dw) =

∫

X

Up(θ, w)µ(dx, dw)

passing to the limit in (4.8) then gives (4.4) so that γ ∈ F2(p).

This allows us to conclude:

Proof of Theorem 4.1: we deduce from Lemma 4.2 and Lemma 4.3 that
the non-empty convex-compact valued map F : P(Z) → 2P(Z) has a closed
graph. It thus follows from Glicksberg’s fixed-point theorem [9] that there
exists η ∈ P(Z) such that η ∈ F (η) i.e. η = πZ#γ for some γ ∈ F2(p) where
p = F1(η). Letting σ be a solution of the Monge-Kantorovich problem (4.1),
it is straightforward to check that the collection p, η, γ, σ is an equilibrium.

5 Extension to the case of an additional quan-

tity good

We now consider an extension of the previous model to the case where con-
sumers do not only consume the quality good but also a divisible good
whose price is linear in the quantity and exogenously given.We call this
extra good the quantity good. The dimension of the quantity good is d,
its price vector q ∈ (0,+∞)d is given. As previously, consumers’ prefer-
ences are hetereogeneous but now they also depend on an extra consump-
tion variable ξ ∈ R

d
+. Denoting by θ ∈ X0 the consumers’ preference

parameter, the consumers preferences are now given by a utility fonction
V : (θ, ξ, z) ∈ X0 × R

d
+ × Z → R. As in paragraph 2.1, we denote by

x = (θ, w) ∈ X := X0 × [w,w] the full type of consumers, α ∈ P([w,w]) the
revenue distribution and µ ∈ P(X) the joint distribution of (θ, w). Given a
tariff z ∈ [z, z] 7→ p(z), consumers of type x = (θ, w) solve

Ṽp(x) := max{V (θ, ξ, z) : q · ξ + p(z) ≤ w} (5.1)

as we shall again impose that minZ p = w, the budget constraint imposes
that ξ a priori remains in the compact set

∆ := {ξ ∈ R
d
+ : q · ξ ≤ w}.

The assumptions and notations on the producers of the quality good are
exactly the same as in paragraph 2.1. In this setting, equilibria are defined
by:

11



Definition 5.1. An equilibrium consists of a price p ∈ C(Z,R+) such that
minZ p = w, a quality line η ∈ P(Z) as well as the couplings γ̃ ∈ P(X×∆×
Z) and σ ∈ P(Y × Z) such that

1. πX#γ̃ = µ, πZ#γ̃ = η, σ ∈ Π(ν, η),

2. for γ̃-a.e. (x, ξ, z) = (θ, w, ξ, z), one has

q · ξ + p(z) ≤ w; and Ṽp(x) = V (θ, ξ, z) (5.2)

3. for σ-a.e. (y, z), one has

p(z) + pc(y) = c(y, z). (5.3)

We then have:

Theorem 5.2. If we assume that V ∈ C(X0 × R
d
+ × Z), that the revenue

distribution α ∈ P([w,w]) is atomless and (H1), there exists at least one
equilibrium in the sense of definition 5.1.

Proof. The proof is very similar to the one of section 4 and consists in finding
a fixed point of the set-valued map F̃ : P(Z) → 2P(Z) defined by

F̃ (η) := {πZ#γ̃, γ̃ ∈ F̃2(F1(η))}

where F1 is defined exactly as in section 4 (i.e. by the Kantorovich problem

(4.2)) and F̃2 is the set-valued map A := {p ∈ C(Z) : minz∈Z p = w} →

2P(X×∆×Z), which maps p ∈ A to F̃2(p), the set of probability measures γ̃ on
X ×∆× Z that satisfy:

• πX#γ̃ = µ,

• q · ξ + p(z) ≤ w for γ̃-a.e. (θ, w, ξ, z) (or equivalently on the support of
γ̃ since p is continuous)

• Ṽp(x) = V (θ, ξ, z) for γ̃-a.e. (x, ξ, z), (recall that Ṽp is defined by (5.1)).

The same proof as in Lemma 4.3 shows that F̃2 has a closed graph which
exactly as in section 4 gives the existence of a fixed point for F̃ .
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6 Conclusion

We have achieved our aim, which was to prove the existence of equilibria in
hedonic models under the same assumptions on the (ordinal) utility func-
tions that are used in the Arrow-Debreu theory. There is, however, one last
extension to make, namely to the case when the number of producers and
consumers is different, that is, µ(X) is different from ν(Y ). An analysis
along the lines of [6] is certainly possible, we would have to endow consumers
and producers with reservation utilities, and we would reach the same con-
clusions, namely that, in equilibrium, some agents will be priced out of the
market. However, we feel that the mathematical complications would obscure
the main achievement which we have presented here
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