
1 Trading.

1.1 What is a trade ?

An agreement between two parties, one of which (the buyer) pays the price, and
the second one (the seller) commits to deliver. Also called a contract. Every
trade is characterized by:

• the identities of the parties (buyer and seller)
• the price. There are two kind of prices: over the counter prices (OTC)
and market prices. The differences are huge. OTC prices are not known
beforehand; they are the result of a negociation process. If the negociation
breaks down, there is no price, and if the parties do not communicate the
result, the price will not be known. Market prices are publicly posted,
so they can be quoted even without a transaction, they are anonymous
(everyone gets the same price) and liquid (any quantity can be had for
that price). The structure of the market determines whether prices are
competitive, oligopolistic or monopolistic.

• the delivery:
— What ? The asset: precise definition of quantity and quality.

— When ? Immediate delivery (spot contract) vs. deferred delivery
(forward contract)

— Where ?

— On most organized markets, there are standardized forward contract,
called futures. See http://www.cmegroup.com/trading/commodities/

Further distinctions of importance:

• financial assets (flows of money) vs. physical assets (commodities, en-
ergy). Stock exchanges vs mercantile exchanges. Physical delivery vs
cash delivery

• contingent assets: the delivery (what ? when ?) depends on some well-
defined event, which may or may not occur in the future. Example: in-
surance

1.2 Basic financial assets

• future contracts with cash delivery
• stocks
• bonds. Zero-coupon bonds, coupon bonds and interest rates. The yield
curve

The prices change around the clock.
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1.3 Financial risk

Risk = commitment to an (partially) unknown financial flow

• prices go up or down (market risk). Example: interest rate risk and
mortgages

• one may not be able to sell/buy when required (liquidity risk)
• counterparty may default (credit risk). Example: Madoff
• defaults may spread mechanically (systemic risk).

Ideally, an investor should bear only the market risk. This is why organised
markets exist: they are tightly regulated in order to eliminate all but the market
risk:

• standardized contracts
• clearing house
• margin calls

There is a further question: should the market risk be the same for all,
ie should everyone have the same information ? In most stock exchanges, the
answer is yes (no insider trading)

1.4 Basic attitudes towards risk

• arbitrage (cash and carry, contango)
• hedging (use of futures contracts)
• investing (running the risk for an expected reward)

2 Risk measures
Prices change around the clock. There are two possibilities to model this process.
Either you understand how prices are formed, and you have a deterministic
model, or you don’t. In that case, the only know way of modeling uncertainty
is through probability, and we get a stochastic model. From now on, we will
consider financial positions as random variables. There are two approaches:

2.1 The scenario approach

There is a set of events Ω, one and only one of which will occur, thereby de-
termining the value of all financial assets. We turn it inot a probability space
(Ω,A, P ). A position is then a random variable X : Ω → R. It is usually
restricted to be in L∞.
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2.1.1 Definitions

A monetary risk measure is a map ρ : L∞ −→ R which is

• monotonic: X ≤ Y =⇒ ρ (X) ≥ ρ (Y )

• cash invariant: ρ (X +m) = ρ (X) −m (so that ρ (X + ρ (X)) = 0 and
ρ (1) = −1)

• normalization: ρ (0) = 0
It is convex if ρ is a convex function. A coherent risk measure is a monetary

risk measure which is

• positively homogeneous: ρ (λX) = λρ (X) for λ > 0

• subadditive ρ (X + Y ) ≤ ρ (X) + ρ (Y )

Note that a coherent risk measure is convex. The converse is not true (e.g.
the entropic risk measure)
Subadditivity is a desirable property, because it means that the task of

managing risk can be decentralized. Unfortunately, the V@R, which is the
most common risk measure does not have it.

2.1.2 Examples

1: The worst-case risk measure

ρmax (X) := − infX
This is a coherent measure of risk. Note that it is finite on L∞ only.

2: The V@R

V@Rλ (X) := inf {m | P [m+X < 0] ≤ λ}
This is a monetary measure of risk, it is positively homogeneous but it is

not subadditive (and hence not convex). It is the one used in practice (Basel
2 accounting regulations). Having a V@Rλ of m means that the chance of
losing m or more is less than λ. Altenatively, m is the least amount of equity
capital which has to be added to the position so that the likelihood of a negative
outcome is less than λ.

3: The entropic risk measure

ρe (X) :=
1

β
logE

£
e−βX

¤
This is a convex risk measure, but it is not coherent (neither positively

homogeneous nor subadditive). Note that it is finite on L∞ only.
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2.1.3 The acceptance set

Given a risk measure ρ, we define the associated acceptance set Aρ as follows:

Aρ = (X | ρ (X) ≤ 0)
Note that ρ can be recovered from Aρ:

ρ (X) = inf {m | m+X ∈ Aρ}

2.1.4 Convex risk measures: the penalty function

From now on, we assume that ρ is a convex risk measure (note that this excludes
the V@R) which is lower semi-continuous (lsc) with respect to the Lp topology,
for some p ∈]1,∞[. Note that this is always the case when Ω is finite. It then
extends to a convex lsc function ρ : Lp → R ∪ {+∞}, and we can use standard
Fenchel duality.. We have:

ρ∗ (X∗) = sup
X
{< X,X∗ > −ρ (X)}

ρ∗ (X∗) is usually called the penalty function associated with the risk mea-
sure ρ (X). By Fenchel duality:

ρ (X) = sup
X∗
{< X,X∗ > −ρ∗ (X∗)}

Proposition 1 If ρ is a monetary risk measure, and ρ∗ (X∗) is finite, then
−X∗ is a probability density

ρ∗ (X∗) ≤ +∞ =⇒ { X∗ ≤ 0 and E [X∗] = 1}
Proof. By cash-invariance, we have:

ρ∗ (X∗) = sup
X
{< X,X∗ > −ρ (X)}

= sup
X
{< X,X∗ > −ρ (X +m) +m}

= sup
X
{< X +m,X∗ > −ρ (X +m)− < m,X∗ > +m}

= ρ∗ (X∗)− < m,X∗ > +m

which implies that m = < m,X∗ >, or 1 = < 1,X∗ > so that X∗ integrates to
1.
Suppose X∗ > 0 for an event A ⊂ Ω set with P [A] > 0. Consider the

characteristic function 1A of A, and the random variable λ1A, for some constant
λ > 0. We have:

ρ∗ (X∗) = sup
X
{< X,X∗ > −ρ (X)}

≥ sup
λ>0

< λ1A,X
∗ > −ρ (λ1A)

= sup
λ>0

{λ < 1A,X
∗ > −ρ (λ1A)}

≥ sup
λ>0

λ < 1A,X
∗ >= +∞
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The entropic risk measure The penalty function is:

ρ∗ (X∗) = sup
X

½
< X∗,X > − 1

β
logE

£
e−βX

¤¾
(1)

The function X →< X∗,X > − 1
β logE

£
e−βX

¤
is concave We seek the

point X̄ where it attains its maximum. It is given by:

X∗ − 1
β

F 0 (X)
F (X)

= 0

where F (X) := E
£
e−βX

¤
. Computing the derivative, we find:

< F 0 (X) , Y > = lim
h→0

F (X + hY )− F (X)

h
= lim

h→0

Z
e−β(X+hY ) − e−βX

h
dP

= lim
h→0

Z
e−βY h − 1

h
e−βXdP =

Z
−βe−βXY dP

= < −βe−βX , Y >

so that F 0 (X) = −βe−βX . Substituting, we get:

X∗ = − e−βX

E [e−βX ]

We see that−X∗ is a probability density, as announced by the general theory.
Substituting into formula (1), and setting E

£
e−βX

¤
= c, we get:

ρ∗ (X∗) = sup
c

½
− 1
β
< X∗, log c+ log (−X∗) > − 1

β
logE

h
elog c+log(−X

∗)
i¾

=
1

β
< −X∗, log (−X∗) > (2)

−X∗ is the density of a certain probability Q with respect to P. The relative
entropy of Q with respect to P is defined to be the number:

H (Q | P ) := E [−X∗ log (−X∗)]

so that formula (2) is usually written:

ρ∗ (X∗) =
1

β
H (Q | P )
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2.1.5 Coherent risk measures

Recall that a coherent risk measure is convex.

Proposition 2 If ρ is coherent, then ρ∗ = δ (−X∗ | C) for some closed convex
set C ⊂ X∗ of probability densities:

ρ∗ (X∗) =

½
0 if X∗ ∈ −C
+∞ otherwise

ρ (X) = sup
X∗∈−C

{< X∗,X >}

This is usually written as follows:

ρ (X) = supEQ∈Q [−X]
where Q is the set of probability measures Q with density in −C.

The worst-case risk measure. Denoting, as usual, by Q the probability
which has density −X∗ with respect to P , so that dQ = −X∗dP

ρ∗max (X
∗) = sup

X
{< X∗,X > + infX}

= sup
X

½
−
Z

XdQ

¾
+ infX

= 0 for all probabilities Q

so Q is the set of all probability densities in Lq

Proposition 2 has a converse, which will allow us to build systematically
coherent risk measures:

Proposition 3 Given any closed convex subset −C of probability densities, and
denoting by Q the set of probability measures Q with density in −C, the formula

ρ (X) = < X∗,X > = sup
X∗∈C

Z
Ω

(−X) (−X∗dP )
= sup

Q∈Q
EQ [−X]

defines a coherent risk measure.

Quantiles From now on, we will suppose that the law of X is continous. The
λ-quantile of X is the only number qX (λ) such that

P [X ≤ qX (λ)] = λ (3)

Alternatively, P [X ≥ qX (λ)] = 1− λ. We have:

qX (λ) = sup {q | P [X ≤ q] ≤ λ} = inf {q | P [X ≤ q] ≥ λ}
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We can also express qX in terms of the distribution function FX , defined by

FX (x) := P [X ≤ x] . (4)

Comparing (3) and (4), we find λ = F (qX (λ)) and hence:

qX (λ) = F−1 (λ)

Lemma 4 Note that the V@R can be expressed in terms of quantiles:

V@Rλ (X) = −qX (λ) = q−X (1− λ) (5)

The average value at risk AV@R. We take:

C :=

½
X∗ | |X∗ (ω)| ≤ 1

λ
a.e
¾

and we define the average value at risk at level λ :

AV@Rλ (X) := sup
Q∈Q

EQ [−X]

It is a coherent measure of risk.

Proposition 5 Suppose the law of X is continuous. Then

AV@Rλ (X) = − 1
λ

Z
X≤q

XdP

where q = q−X (λ) is the λ-quantile of X

Proof. We compute:

supEQ [−X] = sup
Z∗

½Z
Z∗ (−X) dP |

Z
Z∗ = 1,

1

λ
≥ Z∗ ≥ 0

¾
(6)

We have to find the Z̄∗ where the maximum is attained. To do this, we
rewrite the problem as a convex optimisation problem:

sup
Z∗

Z µ
Z∗X + δ

µ
Z∗|

·
0,
1

λ

¸¶¶
dPZ

Z∗ = 1

From convex optimization theory, there exists a Lagrange multiplier µ such
that Z̄∗ solves the unconstrained problem:

sup
Z∗

½Z µ
Z∗X + δ

µ
Z∗|

·
0,
1

λ

¸¶¶
dP + µ

Z
Z∗
¾
= sup

Z∗

½Z µ
Z∗ (ω)X (ω) + δ

µ
Z∗ (ω) |

·
0,
1

λ

¸¶
+ µ

¶
dP
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The integral of course can be maximized pointwise, leading to the solution:

Z̄ (ω)
∗
=

½
0 if −X (ω) < a
1
λ if −X (ω) > a

The level a is determined by the fact that Z∗ integrates to 1, so that:P [−X > a] =
λ. In other words, −a = qX (λ) is the λ-quantile of X.
We are now able the explain why it is called the "average" value at risk

Corollary 6 Suppose the law of X is continous. Then:

AV@Rλ (X) =
1

λ

Z λ

0

V@Rγ (X) dγ

Proof. By formula (5), we have:Z λ

0

V@Rγ (X) dγ = −
Z λ

0

qX (γ) dγ = −
Z λ

0

F−1X (γ) dγ

−
Z
X≤qX(λ)

XdP = −
Z qX(λ)

−∞
xdF (x) = −qX (λ)F (qX (λ)) +

Z qX(λ)

−∞
FX (γ) dγ

and a glance at the graph is enough to convince us that both quantities are
equal:

qλ =

Z q

−∞
F (γ) dγ +

Z λ

0

F−1 (γ) dγ

2.2 The law approach

In this approach, one know only the law of the random variable X. In other
words, one concentrates on law-invariant risk measures:
Given two random variablesX and Y , on the same probability space (Ω,A, P ),

we shall write X˜Y to express that X and Y have the same law:

EP [f (X)] = EP [f (Y )] for any non-negative Borel function f : R→ R

Definition 7 A risk measure is law-invariant if ρ (X) = ρ (Y ) whenever X˜Y

AV@R is law invariant. In fact, it serves as a building stone for all law-
invariant coherent risk measures. The basic result is the following:

Theorem 8 A lower semi-continuous risk measure ρ is coherent if and only it:

ρ (X) = sup
π∈P

Z
AV@Rλ (X) dπ (λ)

where P is a set of probabilities on the real line.
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3 Modelling asset prices by diffusions
The basic model is the following:

dXn = µn (t,X) dt+
PK

k=1 σ
nj (X) dW k, 1 ≤ n ≤ N

Si = f i
¡
X1, ...,XN

¢
, ...1 ≤ i ≤ I

(7)

where the Si are the asset prices, which are determined by outside factors Xn,
the evolution of which is partially deterministic and partly stochastic, the sto-
chastic part reflecting the uncertainty.

3.1 Mathematical issues:

See Oksendal, chapters 2,3,4, or Bjork, chapters 2,3,4,5, or Shreve chapters
1,2,3,4

3.1.1 Characterization of 1-d Brownian motion (BM)

3.1.2 Information

Filtration associated with BM. Adapted processes.

3.1.3 The stochastic integral

Definition for adapted step processes. Extension to general processes. Proof in
a particular case:X

(W (tk+1)−W (tk))W (tk)→ 1

2
W (T )

2 − T

2
in L2

3.1.4 n-d Brownian motion

Definition, filtration, and stochastic integrals of the form:Z
f (W1) dW2

3.1.5 The 1-d Ito formula

dWdW = dt
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Z
WdWZ
WdtZ
W 2dt

dX = µtdt+ σtdW

dX

X
= µtdt+ σtdW

dX = µ (a−X) + σdW

3.1.6 The n-d Ito formula

dWidWj = δijdt

3.2 The reality:

Are financial markets correctly modelled by diffusions?

• Theoretical issues: the noise as extrinsic to the market.
• Practical issues: Levy processes
• Statistical issues: the drift is impossible to estimate in any practical sense.

4 Portfolio management

4.1 Marketed assets and portfolios

Using the Ito formula on the basic model (7), we find that the asset prices are
Ito processes. In the following, we will bypass the factors and write the model
directly in terms of the Si. This leads to the modified model;

dSn = µnt dt+
PK

k=1 σ
nk
t dW k

t , 1 ≤ n ≤ N
dB = rtBtdt

(8)

where the W k, 1 ≤ k ≤ K are independent Brownian motions, µit, σ
nj
t ,rt are

stochastic processes, adapted to the filtration FW1,...,WK .
The interpretation is as follows:

• we are modelling a financial market where (N + 1) assets are traded (typ-
ically, bonds and/or stocks): Si is the unitary price of asset i

• the assets can be held in negative quantity: this is called shorting the
asset (basically, this means you owe it to a counterparty)
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• the Si are market prices in the sense we described at the beginning of this
course; for instance, they are liquid, meaning that you can buy or sell any
quantity without affecting the price

• there are no transaction costs: asset i trades at the price Si; in real life,
market-makers typically sell the asset at a higher price (the ask price)
then they buy it (the bid price), and they make a profit on the difference

• B is the riskless asset. It represent the accumulated deposit of a current
account, where interest is earned at the spot (overnight) rate. It is normal-
ized by B0 = 1, so Bt is the amount accrued at time t for one $ invested
at time 0. Note that:

Bt = exp

Z t

0

rsds

where the integral in taken along each trajectory (so that it is not a sto-
chastic integral).

In the sequel, we shall denote by FW
t the filtration generated by

¡
W 1, ...,WK

¢
and by H the class of all stochastic processes h on (Ω, P ) such that:

• ht is FW
t -adapted

• EP

hR t
0
h (t, ω)2 ds

i
<∞

Definition 9 A portfolio is a family
¡
h0t , h

1
t , ..., h

N
t

¢
of adapted processes such

that hn ∈ H for 0 ≤ n ≤ N
The value of the portfolio is given by:

Xt := h0tBt +
NX
n=1

hnt S
n
t

The portfolio is self-financing if

dXt = h0tdBt +
NX
n=1

hnt dS
n
t

=

Ã
h0t rtBt +

NX
n=1

hnt µ
n
t

!
dt+

NX
n=1

KX
k=1

hnt σ
nk
t dW k

t

Introduce the relative portfolio weights :

ξn =
hnSn

X

The the above formula can be rewritten as:

dXt

Xt
= r0t ξ

0
t +

NX
n=1

ξnt
dSnt
Snt
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4.2 Discounted values

By definition, the discounted value of Bt is 1 (constant dollars), and the dis-
counted value of a risky asset n is:

S̃nt :=
Sn

Bt
= Sn exp

µ
−
Z t

0

rsds

¶
We have:

dS̃n =

Ã
µnt dt+

KX
k=1

σnkt dW k
t

!
exp

µ
−
Z t

0

rsds

¶
− rtS̃

ndt, 1 ≤ n ≤ N

The discounted value of portfolio
¡
h0t , h

1
t , ..., h

N
t

¢
is:

X̃t : = h0t +
NX
n=1

hnt S̃
n
t

dX̃t

X̃t

=
NX
n=1

ξnt
dSnt
Snt

and
¡
h0t , h

1
t , ..., h

N
t

¢
is self-financing if:

dX̃t =
NX
n=1

hnt dS̃
n
t =

NX
n=1

ξnt
dS̃nt
S̃nt

(9)

where
³
ξ0t , ξ

1
t , ..., ξ

N
t

´
are the relative portfolio weights.

Lemma 10 Any adapted process
¡
h1t , ..., h

N
t

¢
with hn ∈ H for 1 ≤ n ≤ N is

the risky part of a self-financing portfolio. The initial value x can be chosen
arbitrarily.

Proof. If the
¡
h1t , ..., h

N
t

¢
are given, we derive X̃t from (9) and the initial value

x. Then Xt = X̃tBt, and we get h0t from the equation:

h0tBt = Xt −
NX
n=1

hnt S
n
t

4.3 Utility function and portfolio management

Preference for money. The Saint-Peterburg paradox. The utility function u :
R −→ {−∞} ∪ R and the von Neumann-Morgenstern model. Concavity and
risk aversion (the Jensen inequality).
Preference for the present. Psychological discount rate.
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The terminal-wealth problem:

max e−ρtEP

h
u
³
X̃tBt

´i
hn ∈ H, 1 ≤ n ≤ N

dX̃t =
PN

n=1 h
n
t dS̃

n
t

X0 = x

(10)

Note that there are no condition on the hn beyond the fact that they should
belong to H. This is the import of Lemma 10
Note that the e−ρt factor drops out of the integral: this is because we are not

giving the investor the option to stop earlier, so preference for the present plays
no role. It will not be the case in more general porfolio management problems.

4.4 Admissible portfolios and AOA

Let T > 0 (the investment horizon) be given.

Definition 11 An admissible portfolio is an arbitrage opportunity if its value
Xt satisfies the following:

X0 = 0
XT ≥ 0 a.s.

P [XT > 0] > 0 a.s
(11)

Note that if
¡
h0t , h

1
t , ..., h

N
t

¢
is an arbitrage opportunity, so is λ

¡
h0t , h

1
t , ..., h

N
t

¢
for every λ > 0. If there exists an arbitrage opportunity, then the maximum
expected value in problem (10) is +∞. In other words, there are investment
strategies which require no initial investment, which in the worst case will cost
nothing in the future, and will bring in money with positive probability. It will
be assumed that such opportunities no longer exist in the market:

Definition 12 We shall say that the market is arbitrage free if there are no
arbitrage opportunities

We shall now draw the consequences of AOA.
Denote by V the set of all terminal discounted values which can be reached

by an admissible self-financing portfolio with 0 initial value:

V =

(
X̃T | hn ∈ H, dX̃t =

NX
n=1

hnt dS̃
n
t , X̃0 = 0

)
.
It is clearly a linear subspace of L2

¡
Ω, FW

T , P
¢
. Now denote by C the set

of all contingent claims which are non-negative at time T and positive with
positive probability:

C :=
©
Y ∈ L2

¡
Ω, FW

T , P
¢ | Y (ω) ≥ 0 a.s. and P [Y > 0] > 0

ª
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It is a convex subset.of L2
¡
Ω, FW

T , P
¢
If there is AOA, then:

K ∩ C = ∅
Separating K from C, we get some Z ∈ L2

¡
Ω, FW

T , P
¢
with Z 6= 0 such

that:

EP [ZY ] ≥ 0 for all Y ∈ C

EP [ZX] ≤ 0 for all X ∈ V

Since V is a vector space, we have in fact:

EP [ZX] = 0 for all X ∈ V

If Y 1 ∈ C so does Y 1+λY 2 for all Y 2 ≥ 0. Plugging this into the preceding
equation, we find that:

EP

£
ZY 1

¤
+ λEP

£
ZY 2

¤ ≥ 0 for all λ ≥ 0
and hence:

EP

£
ZY 2

¤ ≥ 0 for all Y 2 ≥ 0
so that:

Z ≥ 0
Setting Z0 = Z/EP [Z], we find that Z0 is a probability density. Define a

new probability Q on
¡
Ω, FW

T

¢
by:

EQ [X] := EP [ZX] ∀X ∈ L2
¡
Ω, FW

T , P
¢

Proposition 13 The probability Q is absolutely continuous with respect to P
and the discounted value of any self-financing portfolio is a Q-martingale

Proof. Let X be a self-financing portfolio. Take any t between 0 and T , and
any event A in FW

t . Consider a portfolio Y consisting of holding X until time
t, and then:

• if A occurs, cashing in the portfolio and putting the money in a current
account until time T

• if A does not occur, keeping the portfolio Xs,s ≥ t until time T

Proof. We have, for s ≥ t :

Ys = 1A
Xt

Bt
Bs + (1− 1A)Xs

Discounting, this becomes:

Ys
Bs

= 1A
Xt

Bt
+ (1− 1A) Xs

Bs

14



so that:

EQ

·
YT
BT

¸
= EQ

·
XT

BT

¸
EQ

·
1A

Xt

Bt
+ (1− 1A) XT

BT

¸
= EQ

·
XT

BT

¸
EQ

·
1A

Xt

Bt

¸
= EQ

·
1A

XT

BT

¸
But the latter equality means precisely that:

Xt

Bt
= EQ

·
XT

BT
| FW

t

¸
(12)

Definition 14 Any probability Q equivalent to P and satisfying (12) is called
a martingale measure

Theorem 15 The market is arbitrage-free if and only if there is a martingale
measure.

Proof. We have proved that there is a probability Q, absolutely continuous
with respect to P , satisfying (12). With more effort, we can prove that Z > 0
almost everywhere, so that Q is in fact equivalent to P , and this would prove the
"only if" part. Now suppose there is a martingale measure Q and an arbitrage
opportunity, ie a process Xt satisfying (11). Then:

X0 = EQ

·
XT

BT

¸
> 0

contradicting the fact that X0 = 0

4.5 Solving the terminal-wealth problem

Problem (10) is meaningful only if the market is arbitrage-free. In that case, it
can be rewritten as follows, with Z denoting the Radon-Nikodym derivative of
Q with respect to P :

supEP

h
u
³
X̃TBT

´i
EP

h
ZX̃T

i
= x

X̃T ∈ L2 (Ω,FT , P )
which we can rewrite in a more geometric way, involving the interior product in
L2 (Ω,FT , P ):

sup
R
Ω
u
³
X̃TBT

´
dPR

Ω
ZX̃dP = (Z, X̃)L2 = x
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We are consists maximizing a concave function on a closed linear subspace of
L2. Assume there is a maximizer X̂.. If the usual theory of Lagrange multipliers
applies, there will be some λ ∈ R such that X̂ actually minimizes the functional:Z

Ω

h
u
³
X̃TBT

´
− λZX̃T

i
dP

over all of L2. Maximizing pointwise under the integral, and bearing in mind
that u is concave, we are led to the equation:

BTu
0
³
X̃TBT

´
= λZ (ω) P -a.e.

which fully characterizes the solution X̂.
So, if the maximizer exists, it must be given by the formula:

X̂ =
1

BT
[u0]−1 (λZ) (13)

Proposition 16 Suppose there is some λ > 0 such that X̂T given by formula
(13) is square-integrable and satisfies the constraint (Z, X̃T )L2 = x. Then X̂T

solves the terminal-wealth problem

Proof. Take another Ỹ ∈ L2 such that (Z, Ỹ )L2 = x. Since u is concave, we
have:

u
³
Ỹ (ω)BT (ω)

´
≤ u

³
X̃T (ω)BT (ω)

´
+BT (ω) (Ỹ (ω)−X̂ (ω))u0

³
X̃T (ω)BT (ω)

´
P -a.e.

By definition, BTu
0
³
X̃TBT

´
= λZ. Substituting into the inequality and

integrating, we get:Z
Ω

u
³
Ỹ BT

´
dP ≤

Z
Ω

u
³
X̃TBT

´
dP + λ

Z
Ω

(Ỹ − X̂T )ZdP

and the last term vanishes because it is just λ (x− x). So X̂ is indeed a mini-
mizer, and the result follows.
The optimal wealth process is then given by:

X̃t = BtEQ

h
X̃T | t

i
= BtEP

h
X̃TZ | t

i

4.5.1 Example 1: u (x) = lnx

Equation (13) becomes:

X̂ =
1

λZ
.

and we adjust λ to satisfy the constraint:

x =
³
Z, X̂

´
=
1

λ

16



Hence the optimal wealth process and the optimal value:

X̂T =
x

Z

X̂t = xEQ

·
1

Z
| t
¸

(14)

EP

h
u
³
X̂T

´i
= EP

h
ln
³ x
Z
BT

´i
= lnx+EP

·
ln

µ
BT

Z

¶¸
Note that EQ

h
X̃T

i
= EP

h
ZX̃T

i
= x, as it should be. For 0 < t < T , we

use the following result, which is an elaborated form of Bayes’ rule:

Lemma 17 Consider a probability space (Ω,F , P ), and let Q be another prob-
ability on (Ω, F ), absolutely continuous wrt P, so that dQ = ZdP , Z ∈ L1 (Ω, ).
Assume G ⊂ F is another, smaller, σ-algebra. Then:

1. For any random variable X on (Ω,F , P ), we have:
2. Denote by PG and QG the restrictions of P and Q to G. Then:

EQ [X |G ] = EP [ZX |G ]
EP [Z |G ] (15)

dQG = EP [Z |G] dP (16)

Proof. Let us prove that EQ [X |G ]EP [Z |G ] = EP [ZX |G ]. It is suffient to
prove that, for any G ∈ G, the integrals of both sides over G are equal:Z

G

EQ [X |G ]EP [Z |G ] dP =

Z
G

EP [ZEQ [X |G ] |G ] dP

=

Z
G

ZEQ [X |G ] dP

=

Z
G

EQ [X |G ] dQ =
Z
G

XdQ

As a consequence, formula (14) becomes:

X̂t = x
EP

£
1
ZZ | t¤

EP [Z | t] = x
1

EP [Z | t]

5 Arbitrage pricing

5.1 Finding the martingale measure(s)

Let W be a one-dimensional BM on (Ω, FT , P ). Consider an Ito process:

dSt = µtdt+ σtdWt

17



Let Q be a martingale measure. What does it look like ? Can there be
several of them ?
Suppose we have found one. We have:

dQ = ZdP on FT

Definining Zt = E [Z | t], Bayes’ rule gives us:
dQ = ZtdP on Ft

The process Zt constitutes a martingale on the filtration Ft, 0 ≤ t ≤ T , so
it is natural to try to write it as a stochastic integral. In addition it is positive,
so we may well write it in the form:

dZt
Zt

= λtdWt

Z0 = 1

Applying Ito’s formula, we can express Zt in terms of the process λt :

Zt = exp

·Z t

0

λsdWs − 1
2

Z t

0

λ2sds

¸
(17)

We will now adjust λt so that St is a martingale under Q. We have:

EP [dXt | t] = µtdt

EP

h
(dXt)

2 | t
i
= σ2tdt

and by repeated application of Bayes’ rule (formula (15))

EQ [dXt | t] =
EP [Zt+dtdXt | t]

Zt

=
EP [(Zt + dZt) dXt | t]

Zt

=
EP [ZtdXt | t]

Zt
+

EP [dZtdXt | t]
Zt

= Zt
EP [dXt | t]

Zt
+

EP [dZtdXt | t]
Zt

= µtdt+ λtσdt

EQ

h
(dXt)

2 | t
i
=

EQ

h
Zt+dt (dXt)

2 | t
i

EP [Zt+dt | t]

=
EP

h
Zt (Xt+dt −Xt)

2 | t
i

Zt
+

EP

h
dZt (Xt+dt −Xt)

2 | t
i

Zt

= Zt
EP

h
(Xt+dt −Xt)

2 | t
i

Zt

= σ2tdt

18



So Xt is an Ito process under Q:

dSt = µ0tdt+ σ0tdW̃

with µ0t = µt+λtσt and σ0t = σt. so that St will be a martingale under Q if and
only if:

λt = −µt
σt

The whole procedure can be made rigorous. This is the content of Girsanov’s
Theorem:

Theorem 18 SupposeW is aK-dimensional BM on
¡
Ω, FW

T , P
¢
, and let

³
λ1t , ..., λ

K
t

´
be adapted processes such that:

EP

"
exp

Ã
1

2

Z T

0

KX
k=1

³
λkt

´2
dt

!#
<∞

Define Zt by:

dZt
Zt

=
KX
k=1

λkt dW
k

and set dQ = ZT dP . Then there is a K-dimensional Brownian motion W̃ on
(Ω, FT , Q) such every P -Ito process St:

dSt = µtdt+
KX
k=1

σkt dW
k

becomes a Q-Ito process:

dSt =

Ã
µt +

KX
k=1

λkt σ
k
t

!
dt+

KX
k=1

σkt dW̃
k

Corollary 19 Suppose adapted processes
³
λ1t , ..., λ

K
t

´
can be found such that:

µt +
KX
k=1

λkt σ
k
t = 0

Then Q is a martingale measure.

5.2 Complete markets

We return to our standard model (8). Since asset prices are positive, there is
no loss of generality in rewriting it as follows:

dSnt
Snt

= µnt dt+
PK

k=1 σ
nk
t dW k

t , 1 ≤ n ≤ N
dBt
Bt

= rtdt
(18)
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or, in discounted prices:

dS̃nt
S̃nt

= (µnt − rt) dt+
KX
k=1

σnkt dW k
t , 1 ≤ n ≤ N

Assume that it is arbitrage-free, so that there is a martingale measure Q,
and the discounted values S̃n are Q-martingales. By the preceding section,

there must be adapted processes
³
λ1t , ..., λ

K
t

´
and a K-dimensional Q-Brownian

motion W̃ such that S̃n is a Q-Ito process given by:

dS̃n

S̃n
=

Ã
µnt +

KX
k=1

λkt σ
k
t − rt

!
dt+

KX
k=1

σnkt dW̃ k
t , 1 ≤ n ≤ N (19)

Since the S̃n are Q-martingale, we must have:

KX
k=1

λkt σ
k
t = rt − µnt , 1 ≤ n ≤ N (20)

This is a system of N equations with K unknowns for the λkt . If they
determine the λkt uniquely, then the martingale measure Q is unique. The λkt
are known as the market prices of risks.

Definition 20 The market is complete if the martingale measure is unique.

A rule of thum is that if there are as many (or more) assets N than sources
of risk K, then the market is complete. Otherwise, it is called incomplete.

5.3 Pricing European options in complete markets

From now on, we are dealing with a complete market, described by the equations
(18)

dSnt
Snt

= µnt dt+
PK

k=1 σ
nk
t dW k

t , 1 ≤ n ≤ N
dBt
Bt

= rtdt

and the martingale measureQ is characterized by the adapted process
³
λ1t , ..., λ

K
t

´
and the K-dimensional Q-Brownian motion

³
W̃ 1, ..., W̃K

´
.

The P -equations for discounted processes S̃n are:

dS̃nt
S̃nt

= (µnt − rt) dt+
KX
k=1

σnkt dW k
t , 1 ≤ n ≤ N

The S̃n are Q-martingales, and by Girsanov’s theorem„ the Q-equations for
the same processes are given by:

20



dS̃nt
S̃nt

=
KX
k=1

σnkt dW̃ k
t , 1 ≤ n ≤ N (21)

Going back to the undiscounted prices, we find the Q-equations:

dSnt
Snt

= rtdt+
KX
k=1

σnkt dW̃ k
t , 1 ≤ n ≤ N (22)

We ask ourselves what happens if the market authorities introduce an ad-
ditional asset SN+1t , to be traded alongside

¡
Bt, S

1
t , ..., S

N
t

¢
. If the market is

to remain arbitrage-free, and if no new Brownian motion has been introduced,
there should still be a martingale measure Q̂ on (Ω, FT ). In other words, we
will have:

Snt = EQ̂

·
XT

BT
| FW

t

¸
, 1 ≤ n ≤ N + 1

Since the original market
¡
Bt, S

1
t , ..., S

N
t

¢
was supposed to be complete, the

N first equations are enough to determine the market prices of risk, so we must
have Q = Q̂. In other words, in complete markets, the pricing formula:

X̃t = EQ

h
X̃T | Ft

i
(23)

holds for any asset, not only for portfolios.

Definition 21 A European option on
¡
B,S1, ..., SN

¢
with exercise time T is

an asset which delivers f
¡
B,S1T , ..., S

N
T

¢
at time T .

At what price Pt should such an option trade ? Clearly, we have introduced
no new source of risk, so the preceding results apply. The only arbitrage-free
price is given by (23):

Xt = BtEQ

·
1

BT
f
¡
S1T , ..., S

N
T

¢ | Ft¸
It is natural to expect that the current price of the option should depend

only on the current prices of the assets and the time to maturity. In other words,
we are seeking a (deterministic) function ϕ

¡
t, s1, ..., sN

¢
such that:

Xt = ϕ
¡
t, Bt, S

1
t , ..., S

N
t

¢
We are now in the Q-world. Apply Ito’s formula, using the Q-equations (22):

dXt =

Ã
∂ϕ

∂t
+ rt

∂ϕ

∂b
Bt + rt

NX
n=1

Snt
∂ϕ

∂sn
+
1

2

NX
n,m=1

KX
k=1

σnkt σmk
t Snt S

m
t

∂2ϕ

∂sn∂sm

!
dt+

NX
n

KX
k=1

σnkt
∂ϕ

∂sn
SndW̃ k

dX̃t =

Ã
∂ϕ

∂t
+ rt

∂ϕ

∂b
+ rt

NX
n=1

S̃nt
∂ϕ

∂sn
+
1

2
Bt

NX
n,m=1

KX
k=1

σnkt σmk
t S̃nt S̃

m
t

∂2ϕ

∂sn∂sm
− rtX̃t

!
dt+

NX
n

KX
k=1

σnkt
∂ϕ

∂sn
S̃n

21



For X̃ t to be a Q-martingale, the drift coefficient must vanish. We are left
with:

Proposition 22 Suppose rt, the µnt and the σnkt are deterministic functions
of
¡
Bt, S

1
t , ...S

N
t

¢
. The arbitrage-free price of a European option, with terminal

value f
¡
BT , S

1
T , ..., S

N
T

¢
, is given by:

Xt = ϕ
¡
t, Bt, S

1
t , ..., S

N
t

¢
where the (deterministic) function ϕ

¡
b, s1, ..., sn

¢
satisfies the second-order PDE:

∂ϕ

∂t
+rt

Ã
∂ϕ

∂b
+

NX
n=1

sn
∂ϕ

∂sn

!
+
1

2

NX
n,m=1

KX
k=1

σnkt σmk
t

∂2ϕ

∂sn∂sm
snsm−rϕ = 0 (24)

with the boundary condition:

ϕ
¡
T, b, s1, ..., sN

¢
= f

¡
b, s1, ..., sN

¢
(25)

Finding the hedging portfolio is now easy. One seeks a portfolio
¡
h0t , h

1
t , ..., h

N
t

¢
which:

• has the same value as the option Xt, so that:

dXt = rtdt+
NX
n

KX
k=1

σnkt
∂ϕ

∂sn
SndW̃ k

• is self-financing, so that:

dXt = h0t rtBtdt+
NX
n

hnt

KX
k=1

σnkt
∂ϕ

∂sn
SndW̃ k

=

Ã
h0tBt +

NX
n=1

hnt S
n

!
rtdt+

NX
n=1

KX
k=1

hnt S
n
t σ

nkdW̃ k
t

= rXtdt+
NX
n=1

KX
k=1

hnt σ
nkSnt dW̃

k
t

Identifying, we get:

hnt =
∂ϕ

∂sn
¡
t, Bt, S

1
t , ..., S

N
t

¢
, 1 ≤ n ≤ N

h0t =
1

Bt

Ã
Xt −

NX
n=1

hnt S
n

!
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5.4 The Black and Scholes world

5.4.1 The martingale measure

Consider the simplest possible market (µ, σ, r are positive constants)

dS

S
= µdt+ σdW

dB

B
= r

Note that the value of St can be given explicitly in terms of Wt :

St = S0 exp

·
σWt +

µ
µ− 1

2
σ2
¶
t

¸
The martingale measure Q is found by writing equation (19) in this context:

dS̃

S̃
= (µ+ λσ − r) dt+ σdW̃

Setting the drift to 0 gives λ = − (µ− r) /σ (the market price of risk) so
that the evolution of the risky asset under Q is given by:

dS̃

S̃
= σdW̃

Going back to non-discounted values gives:

dS

S
= rdt+ σdW

Note that, by formula (17), we have:

Zt = exp

·Z t

0

λdWs − 1
2

Z t

0

λ2ds

¸
= exp

·
λWt − 1

2
λ2t

¸
(26)

5.4.2 Pricing a call

Consider a European call C on asset 1:

CT =

½
S1T −K if S1T ≥ K (exercise price)

0 if S1T ≤ K

The Black and Scholes formula Its price at time 0 is given by:

C0 = BtEQ

"¡
S1T −K

¢
+

BT

#
= e−r(T−t)EQ

h¡
S1T −K

¢
+

i
This can be evaluated by numerical simulations.
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However, equation (24) with the boundary condition (25) provides us with
an explicit formula. We have:

Ct = ϕ (t, St)

and the function ϕ is given by:

∂ϕ

∂t
+ r

∂ϕ

∂s
s+

1

2
σ2

∂2ϕ

∂s2
s2 − rϕ = 0

ϕ (T, s) = (s−K)+

Setting x = ln s, and considering the function ψ (t, x) := ϕ (t, ex), changes
the equation to:

∂ψ

∂t
+ r

∂ψ

∂x
+
1

2
σ2
µ
∂2ψ

∂s2
+

∂ψ

∂x

¶
− rϕ = 0

which is linear with constant coefficients (basically the heat equation, with the
time direction reversed). So there is an explicit solution, given by the celebrated
Black and Scholes formula:

C0 = S0N (d+ (T, S (0)))−Ke−rTN
¡
d_ (T, S (0))

¢
where N is the distribution function of a standard Gaussian variable, and

d± (T, s) =
1

σ
√
T

·
ln

s

K
+

µ
r ± σ2

2

¶
T

¸
Note that it does not depend on the trend µ. Two investors who have

different estimates of µ, one believing that the stock will go up, and the other
believing that the stock will go down, agree on the price of the call. But the
first one will buy the call, and the other will sell it. As we shall see now, it the
call trades at ϕ (t, St), the seller can invest the price into a portfolio which will
exactly cover his loss, if any. In other words, the seller takes no risk.

The heding portfolio We value of the call is precisely the value of a portfolio
consisting of h0t in cash and ht in risky asset, with:

ht =
∂ϕ

∂s
(t, St)

h0t = ϕ (t, St)− ∂ϕ

∂s
(t, St)

This is the heding portfolio, or replicating portfolio. Whoever sells the call
can buy the hedging portfolio, and manage it by simply applying the formula
ht = ∂ϕ

∂s (t, St). By doing so, the seller incurs no risk: if the call is in the money,
the hedging portfolio will have earned exactly enough to cover the loss, if the
call is out of the money, the hedging portfolio will have terminal value 0. If the
call was traded at any other price than ϕ, the hedging portfolio would become
an arbitrage opportunity.
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5.4.3 Solving the terminal-wealth problem

supEP

nh
ln
³
X̃TBT

´i
| X0 = x

o
The current value of the investment We want to solve the terminal-wealth
problem with logarithmic utility. It has been shown that the value of the optimal
portfolio is given by:

Xt = x
1

EP [Z | t]
Using formula (26), this becomes:

Xt = x exp

·
−λWt +

1

2
λ2t

¸
The value is given in terms of the current value ot the Brownian motion Wt;

it would be easier to express it in terms of the current value of the stock St.
Since St is Ft-measurable, this is possible. We want to write Xt = ϕ (t, St).
This gives:

lnSt = lnS0 + σWt +

µ
µ− 1

2
σ2
¶
t

lnXt = lnx− λWt +
1

2
λ2t

= lnx− λ

σ

µ
lnSt − lnS0 −

µ
µ− 1

2
σ2
¶
t

¶
+
1

2
λ2t

Writing λ = −µ−r
σ in the last equation, we find:

lnXt = lnx+
µ− r

σ2

µ
lnSt − lnS0 −

µ
µ− 1

2
σ2
¶
t

¶
+
1

2

µ
µ− r

σ

¶2
t

= lnx+
µ− r

σ2
ln

St
S0
+

µ− r

2σ2
¡
µ− r + σ2

¢
t

The final answer is Xt = ϕ (t, St) with:

ϕ (t, s) = exp

·
lnx+

µ− r

σ2

µ
ln

s

S0
+
1

2

¡
µ− r + σ2

¢
t

¶¸
= x

µ
s

S0

¶µ−r
σ2

exp

·
µ− r

2σ2
¡
µ− r + σ2

¢
t

¸
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The hedging portfolio We now get the hedging portfolio, that is the optimal
quantity ht of risky asset that must be held at time t if the price is St :

ht =
∂ϕ

∂s
=

µ− r

σ2
1

St
ϕ (St) =

µ− r

σ2
Xt

St

Note that:

ξt :=
htSt
Xt

=
µ− r

σ2

This is known as Merton’s rule: in the optimal portfolio, the proportion
of wealth held in the risky asset (and hence, the proportion of wealth held in
the non-risky asset) must be constant. This rule holds, not only for logarithmic
utility, but also for all utilities of the form u (x) = 1

px
p, x > 0, p ∈]−∞,+1[
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