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A variational principle

Theorem (Ekeland, 1972)

Let (X, d) be a complete metric space, and f : X — R U {400} be a
lower semi-continuous map, bounded from below:

{(x,a) | a>f(x)} isclosed in X x R
f(x)>0, Vx

Suppose f (0) < oo. Then for every A > 0, there exists some X such that:

f(x) < f(0)
d(x,0) <A
f(x) > f(k)—]f(;)d( ) ¥

This is a Baire-type result: relies on completeness, no compactnes needed
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Gateaux-differentiability

Definition

Let X and Y be Banach spaces. We shall say that F: X — Y is
Gateaux-differentiable at x if there exists a continous linear map
DF (x) : X — Y such that

[y

Vée X, lim=[F(x+tl)—F(x)]=DF(x)¢ in Y

~

~
.

Example

Let Q C R" be a bounded domain. Define F: L1 () — L' (Q) by
— ) dx, where f is C! and f’ is bounded: |f’ (u)| < a.
Then F is G- dlfferentlable, with:

[DF (u) v] (x) = " (u (x)) v (%)

but it is NOT C! (unless f (u) = au+ b). If ' (u) > ¢ > 0, then DF (u)
is invertible, and the inverse L (u) is uniformly bounded
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First-order version

Suppose X is a Banach space, and d (x1,x2) = ||x1 — x2||. Apply EVP to
x = X+ tu and let u — 0. We get:

f(x+tu) >f(x)— Mt||u|| Y (t, u)

A
Jim (ot ) £(0) 2 D ) v
(0f ()0 > = ) v or 1F () < L

Corollary

Suppose F is everywhere finite and Gateaux-differentiable. Then there is a
sequence x,, such that:

f(x,) — inff
| DF (x2)]I" — 0
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A non-smooth inverse function theorem

Theorem

Let X and Y be Banach spaces. Let F : X — Y be continuous and
Gateaux-differentiable, with F (0) = 0. Assume that the derivative DF (x)
has a right-inverse L (x), uniformly bounded in a neighbourhood of 0:

YveY, DF(x)L(x)v=v
sup {I[LOI [ Xl < R} <'m

Then, for every y such that

there is some X such that:
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Consider the function f : X — R defined by:

f(x)=1IF () =7l

It is continuous and bounded from below, so that we can apply EVP with
A= m]|y||. We can find X with:

f(x) < £(0) =yl
X[ <mliyll <R
X —m X —X|| = X—l X —X
Vx, f(x)>f(x) el [ = x|l = £ (%) = — [lx = ]|
| claim F(X) =y
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Proof (ct'd)

Assume F (x) # y. The last equation can be rewritten:

f(x+tu) —f (X 1
YVt >0, Vu e X, (x+ ut) (X)Z—mHU“

Simplify matters by assuming X is Hilbert. Then:
F(x)—y ) - 1
DF (x)u ) = (Df (x),u) = —— ||uf
<||F( )=yl m

We now take u = —L (x) (F (x) —y), so that DF () u= — (F (x) — ).
We get a contradiction:

lvar Ekeland, (CEREMADE, Université Paris- Inverse function theorems: soft and hard



THE INVERSE FUNCTION THEOREM
IN FRECHET SPACES
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Fréchet spaces.

A Fréchet space X is graded if its topology is defined by an increasing
sequence of norms:

Vxe X, |xlly < lIxll4r. k=0
A point x € X is controlled if there is a constant ¢y (x) such that:
k
XNl < eo (%)

A graded Fréchet space is standard if, for every x € X, there is a constant
3 (x) and a sequence x, of controlled vectors such that:

Vk lim |z — x|, =0

Vi, |xall, < a3 (x) |Ix]l,

The graded Fréchet spaces C* (Q,Rd) =NCk (Q,]Rd) and
C* (O, RY) = NH* (0, RY) are both standard.
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Normal maps

We are given two Fréchet spaces X and Y, and a neighbourhood of zero
B={x] |Ixll,, <R} inX

A map F : X — Y is normal over B if there are two integers d;, d» and
two non-decreasing sequences my > 0, m| > 0 such that:

@ F(0) =0 and F is continuous on B
@ F is Gateaux-differentiable on B and for all x € B

Vk € N, [|DF (x) ullx < mic [|ull 44,
There exists a linear map L (x) : Y — X such that:
VveyY, DF(x)L(x)v=v

Yk € N, et L) vl < mic VIl g,
Xe
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An inverse function theorem

Theorem

Suppose Y is standard, and F : X — Y is normal over
B ={x | x|, < R}. Then, for every y with

R
[FZ{ P ’”_Lo

there is some x € B such that:

Il < mig 1Y 14y 10, and F (x) =y
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Corollary (Lipschitz inverse)

For every y1, y» with [|y;|l, 14, < m;(glR and every x; € B with
F (x1) = y1, there is some xp with:

Ix2 = X1l < M lly2 = yillipra, @nd F (x2) = y2

.

Corollary (Finite regularity)

Suppose F extends to a continuous map F : Xy, — Yk,—4,. Take some
Y € Yigtdy with ||yl g, < Rmi_*. Then there is some x € Xy, such

that ||x||,, < R and F (x) = y.

v
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Proof: step 1

Let y be given, with [|7||, 4, < ;7. Let Bx > 0 be a sequence with

R
7
my

unbounded support satisfying:

o0
Z [Skmkmf(erlnk < oo, VneN,

[B ZkX:OIBk ||.y||k— m/

ko

Set ay := mj(glﬁkerQ and define:
(0]
Il == 2 e llxlle X = {x € X | [Ix]|, < eo}
k=0

Then X, & X is a linear subspace, X, is a Banach space and the identity
map X, — X is continuous: So the restriction F : X, — Y is continuous.
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Step 1 (ct'd)

Now consider the function f : X, — RU {400} (the value +c0 is
allowed) defined by:

F0) =Y BllF () = 7l
k=0

f is lower semi-continuous, and 0 <'inff < f(0) = Y37 B« ||7|l, < o°.
By the EVP there is a point x € X, such that:

FR)<F0)=) Blylli. 1%l < anR
k=0

f (0)
L% R

0

f(x) 2> f(x)—

It follows that:

Ix = x,, Vxe&X;

[ee]
> ailIxll < aRoso |2, < R
k=0
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Proof: step 2

Assume then F (x) # y. If u € X, we can set x = X + tu, replace f by its
value and divide by t.

— lim 1[2 Billy — F (x+tu)|l, — Z,BkHy F(x Hk] SAZ“k [[ull

k= k>0

with A=Y Bi |7, (a4, R) ™" < 1. We would like to go one step further:
L ([ PP ) AT w i,
IF (%) = 7ell” kK kS0

This program can be carried through (by repeated use of Lebesgue's
dominated convergence theorem) if we take u = up,, where u, = L (X) v,
and:

va — F(X) —y, v, controlled,
[Vally < c3(F (%) =y)IIF (%)=l
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Plugging in u, = L (X) v,, we get:

# X X))V ® X))V
LA ([P DF L %) <AL mlL®) v,

Yka k>0

3 —(')—)7 v (14 X) v
~ L (Fm ), S AG I

k>0
Letting n — oo, so v, — F (X) — y, this becomes:

=2 BillF ) =il < A Y wemic |F (%) = Fellirq,
k=0 k=0

=AY BellF (%) =l

k>dy

which is a contradiction since A < 1
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THE HARD INVERSE FUNCTION THEOREM:
NASH-MOSER FOR NON-SMOOTH FUNCTION
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Let (X, || ]|s), 0 < s <S, be a scale of Banach spaces:
0<s <5 <S= (X, C Xy and |- [[s; < - ls)

We shall assume that there exists a sequence of projectors Iy : Xo — Ep
(smoothing operators) where Ey C ()s>0 Xs is the range of Iy, with

Ilp =0, Ey C Eny41 and Up>1 En is dense in each space X for the norm
Il - ||s. We assume that: -

My ullssq < CN|Julls
(1 = Tw)ulls < CN"ulls1q

Note that these properties imply some interpolation inequalities, for
0<t<land0<g,5<A

Ixll s 41— < G lIxIIg, xS

Let (Ys, || - ||2)s>0 be another regular scale of Banach spaces, with
smoothing operators IT), : Yo — Ep C Ns>o Ys
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In the following, R > 0 and S > 0 are prescribed, with possibly S = oo

We shall say that F : By(R) — Yj is roughly tame with loss of regularity
uif:

(a) F is continuous and Gateaux-differentiable from By(R) N X;
to Ys for any s € [0, S).

(b) There is a constant K such that, for all s < S and
x € By (R):

Vhe X, [DF(x)hlls < K(|[Alls + Ix]ls]l Allo)
(c) For x € By(R) N Ep, the linear
maps IT) DF (x) |g, : Ey — Ej have a right-inverse,

denoted by Ly(x). There are constants # > 0 and ¢ > 0,
such that, for all s < S and x € By (R) we have:

1
Vk € Ey, [Ln(x)klls < ;N”(HkHé + [Ix1lsIllo)
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A hard inverse function theorem.

o Note the nonlinear estimates in H*: if ||u||, and ||v||, are finite, then:

||f(“v V)HHS < C(HUHHO HVHHS + HUHHS ”VHHU)

@ The loss of derivatives for F and DF is normalized to 0.

@ The loss of derivatives for DF ! is , and we cannot expect any
better for F~1

Define a real function ¢ on [4, o[ by:

lX(l—\/ %)—1—1 if 4<x§\/§‘_/§
3+V5

POl s ind) o ane
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delta/mu >°]

257

2.0

1.5

1.0
Smu

The authorized region is above the graph
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Theorem (IE, Eric Séré)

Assume F (0) =0 and F: By (R)NXs — Ys, 0 < s < S, is roughly tame
with loss of regularity y. If 5/u is in the authorized region, then, for any a
with

<onfio(3) £+ ()

one can solve F (x) =y with y € Y5 and x € X,. More precisely, we can
find o > 0 and C > 0 such that, whenever ||y||s < p , there is some
x € X, with:

F(x)=y
Ixllo <1
X/l < Cliylls
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Comments

@ S > 4y (you need some room upstairs)
@ 3y > 6 —a > p (the loss of derivatives for F is larger than the one

for DF)

e if S/u — oo (lots of room upstairs), 6 —a — p (lowest possible
value)

o If S/u — 4 (little room upstairs), 6 —a — 3p (large loss of
regularity)

Corollary

Assume F (x) sends Xs into Ys and is roughly tame at X with loss of
regularity y. Suppose x € Xs, y € Ys and F (x) = y. Then one can solve
F(x) =y, with ||x = %[l < Clly = [}

Consider the map @ (x,y) := F (x) —y +y from X; x Y into Y;. It is
roughly tame, with F (0,0) = 0, and we can apply the precedlng
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The proof: constructing approximate solutions

Theorem

Consider an integer No > 2 and define N, ~ (Np)*", where
k =« (6,u) > 1 is appropriately chosen. Then one can find p > 0 and

¢ > 0 such that, for any y with ||ly||; < p , there is a sequence (xp)n>1
with ||xp||, < 1 satisfying:

(case 1) ITy F(x,) =II), |y and x, € Ey,
(case 2) Ty F(x,) =1II) y and x, € Ey,

and in both cases, for appropriate o and B with kp < o < S :

Ixtlle < NPy |5 and [|xns1 — xalle < € NPl ][5

Ixallo < Ny lls and [|xes1 — xallo < € NPl l}
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Auxiliary constants

(S,6,u) are given.
We first choose « :

2

1 <x<2 and K_1<iand min{K2,K+1}<yf‘

This gives two possibilities: 1 < x < 1+\f and 1+2\/§ < x < 2. Then we
choose ¢ and B :

< <E/3<la<E
k—1 u 1 u

o 1 5

KIB>0'+K‘M—Ef0r1<K§ +2\[
1

B>pu+o—9 for +2\/§§K<2
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Passing to the limit

The sequence (x,) has a limit x in Xp, with ||x|lo < C||y|l5, for

C:=c(N + ¥, N,{fﬁ_g) . Then F(x,) converges to F(x) in Yy, by the
continuity of F : Xo — Yj. On the other hand:

F(xn) = (1 =TIy, ) F(xa) + I,y .
One proves by induction an estimate of the form
(1 = TI) F(xa) llo < € N7yl — 0

because the exponent (f — ) is negative. So (1 —1IT),)F(x,) converges to
zero in Yy. On the other hand, by the definition of a smoothing operator,

11 =TTy, yllo < CN2y llylls — 0
Passing to the limit we get F(x) =y.
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Checking the induction.

Here we assume that we have chosen p and ¢, and found xq, - - -, x,. We
are going to construct x,+1 = X, + u. Using the induction hypothesis
[Ty F(xs) =)y, the equation to be solved by Ax, may be written in
the following form:

fo(u) = en+ Ayn—1

fo(u) := Hpy,., (F(xo+u) — F(xa)) € E//V
€k 1= H/Vk+1 (HNk - I)F(Xk)
Ayy = HNk+1(1 - ]'—‘[Nk).y

The function f, is continuous and Gateaux-differentiable with f (0) = 0.
So this is an inverse problem for u

n+1
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Choosing the right norms

We choose the norm

Na(u) = llullo + N, *llulls on En,.,
Ny (v) = [Ivlio + Ny %llvlle on Eg,,

Set R, := cN,’fﬁ_UHyH(;. For NV, (u) < R, we have:

2NV
|| [Dfa(u)] k|, < =2 k]lo

N.“
|| [Dfa (u)] k]|, < "7+1(||k||o+3(2) R Ny [l klo)

Hence:

(2)
No(IDF ()] k) < 2N (k)
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Applying the soft IVT

The IVT gives the existence of @, € B,(R,) such that f,(z,) = e, + Ay,

provided:
Ry

(8(2) +2) 771Nﬁ+1
. The condition on e, + Ay,_1 is fulfilled provided

N,;(en + A}/nfl) <

2c _ _
Ni(en) +Na(Byn1) < g Mals Nyl
This is satisfied if:
, (6—0)+ 5 —u
3) B (1) ST R £ N (0—=0)+ ccg m o r(Bn)
2B eN, +C gxNp, —i—(Nn N, <B(2)+2Nn

holds. We find that the exponents of N, in the left-hand side of are
strictly smaller than the one in the right-hand side. So, for Ny chosen large
enough, is satisfied for all n
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