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A variational principle

Theorem (Ekeland, 1972)

Let (X , d) be a complete metric space, and f : X → R∪ {+∞} be a
lower semi-continuous map, bounded from below:

{(x , a) | a ≥ f (x)} is closed in X ×R

f (x) ≥ 0, ∀x

Suppose f (0) < ∞. Then for every A > 0, there exists some x̄ such that:

f (x̄) ≤ f (0)
d (x̄ , 0) ≤ A

f (x) ≥ f (x̄)− f (0)
A
d (x , x̄) ∀x

This is a Baire-type result: relies on completeness, no compactnes needed
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Gâteaux-differentiability

Definition
Let X and Y be Banach spaces. We shall say that F : X → Y is
Gâteaux-differentiable at x if there exists a continous linear map
DF (x) : X → Y such that

∀ξ ∈ X , lim
t

1
t
[F (x + tξ)− F (x)] = DF (x) ξ in Y

Example

Let Ω ⊂ Rn be a bounded domain. Define F : L1 (Ω)→ L1 (Ω) by
F (u) :=

∫
Ω f (u (x)) dx , where f is C

1 and f ′ is bounded: |f ′ (u)| ≤ a.
Then F is G-differentiable, with:

[DF (u) v ] (x) = f ′ (u (x)) v (x)

but it is NOT C 1 (unless f (u) = au + b). If f ′ (u) ≥ c > 0, then DF (u)
is invertible, and the inverse L (u) is uniformly bounded

[L (u) v ] (x) = f ′ (u (x))−1 v (x)

Note that a G-differentiable function need not be continuous.
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First-order version

Suppose X is a Banach space, and d (x1, x2) = ‖x1 − x2‖. Apply EVP to
x = x̄ + tu and let u → 0. We get:

f (x̄ + tu) ≥ f (x̄)− f (0)
A
t ‖u‖ ∀ (t, u)

lim
t→+0

1
t
(f (x̄ + tu)− f (x̄)) ≥ − f (0)

A
‖u‖ ∀u

〈Df (x) , u〉 ≥ − f (0)
A
‖u‖ ∀u, or ‖Df (x)‖∗ ≤ f (0)

A

Corollary
Suppose F is everywhere finite and Gâteaux-differentiable. Then there is a
sequence xn such that:

f (xn)→ inf f

‖Df (xn)‖∗ → 0
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A non-smooth inverse function theorem

Theorem
Let X and Y be Banach spaces. Let F : X → Y be continuous and
Gâteaux-differentiable, with F (0) = 0. Assume that the derivative DF (x)
has a right-inverse L (x), uniformly bounded in a neighbourhood of 0:

∀v ∈ Y , DF (x) L (x) v = v
sup {‖L (x)‖ | ‖x‖ ≤ R} < m

Then, for every ȳ such that

‖ȳ‖ ≤ R
m

there is some x̄ such that:

‖x̄‖ ≤ m ‖ȳ‖
F (x̄) = ȳ
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Proof

Consider the function f : X → R defined by:

f (x) = ‖F (x)− ȳ‖

It is continuous and bounded from below, so that we can apply EVP with
A = m ‖ȳ‖. We can find x̄ with:

f (x̄) ≤ f (0) = ‖ȳ‖
‖x̄‖ ≤ m ‖ȳ‖ ≤ R

∀x , f (x) ≥ f (x̄)− f (0)
m ‖ȳ‖ ‖x − x̄‖ = f (x̄)−

1
m
‖x − x̄‖

I claim F (x̄) = ȳ .
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Proof (ct’d)

Assume F (x̄) 6= ȳ . The last equation can be rewritten:

∀t ≥ 0, ∀u ∈ X , f (x̄ + tu)− f (x̄)
t

≥ − 1
m
‖u‖

Simplify matters by assuming X is Hilbert. Then:(
F (x̄)− ȳ
‖F (x̄)− ȳ‖ ,DF (x̄) u

)
= 〈Df (x̄) , u〉 ≥ − 1

m
‖u‖

We now take u = −L (x̄) (F (x̄)− ȳ), so that DF (x̄) u = − (F (x̄)− ȳ).
We get a contradiction:

‖F (x̄)− ȳ‖ ≤ ‖L (x̄)‖
m

‖F (x̄)− ȳ‖ < ‖F (x̄)− ȳ‖
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THE INVERSE FUNCTION THEOREM
IN FRÉCHET SPACES
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Fréchet spaces.

A Fréchet space X is graded if its topology is defined by an increasing
sequence of norms:

∀x ∈ X , ‖x‖k ≤ ‖x‖k+1 , k ≥ 0
A point x ∈ X is controlled if there is a constant c0 (x) such that:

‖x‖k ≤ c0 (x)
k

Definitions
A graded Fréchet space is standard if, for every x ∈ X , there is a constant
c3 (x) and a sequence xn of controlled vectors such that:

∀k lim
n→∞
‖xn − x‖k = 0

∀n, ‖xn‖k ≤ c3 (x) ‖x‖k

The graded Fréchet spaces C∞ (Ω̄,Rd
)
= ∩C k

(
Ω̄,Rd

)
and

C∞ (Ω̄,Rd
)
= ∩Hk

(
Ω,Rd

)
are both standard.
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Normal maps

We are given two Fréchet spaces X and Y , and a neighbourhood of zero
B =

{
x | ‖x‖k0 ≤ R

}
in X

Definition
A map F : X → Y is normal over B if there are two integers d1, d2 and
two non-decreasing sequences mk > 0, m′k > 0 such that:

1 F (0) = 0 and F is continuous on B
2 F is Gâteaux-differentiable on B and for all x ∈ B

∀k ∈N, ‖DF (x) u‖k ≤ mk ‖u‖k+d1
There exists a linear map L (x) : Y −→ X such that:

∀v ∈ Y , DF (x) L (x) v = v
∀k ∈N, sup

x∈B
‖L (x) v‖k < m′k ‖v‖k+d2
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An inverse function theorem

Theorem
Suppose Y is standard, and F : X → Y is normal over
B =

{
x | ‖x‖k0 ≤ R

}
. Then, for every y with

‖y‖k0+d2 ≤
R
m′k0

there is some x ∈ B such that:

‖x‖k0 ≤ m
′
k0 ‖y‖k0+d2 and F (x) = y
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Corollary (Lipschitz inverse)

For every y1, y2 with ‖yi‖k0+d2 ≤ m
′−1
k0
R and every x1 ∈ B with

F (x1) = y1, there is some x2 with:

‖x2 − x1‖k0 ≤ m
′
k0 ‖y2 − y1‖k0+d2 and F (x2) = y2

Corollary (Finite regularity)

Suppose F extends to a continuous map F̄ : Xk0 → Yk0−d1 . Take some
y ∈ Yk0+d2 with ‖y‖k0+d2 < Rm

′−1
k0
. Then there is some x ∈ Xk0 such

that ‖x‖k0 < R and F̄ (x) = y .
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Proof: step 1

Let ȳ be given, with ‖ȳ‖k0+d2 ≤
R
m ′k0
. Let βk ≥ 0 be a sequence with

unbounded support satisfying:

∞

∑
k=0

βkmkm
′
k+d1n

k < ∞, ∀n ∈N,

1
βk0+d2

∞

∑
k=0

βk ‖ȳ‖k ≤
R
m′k0

Set αk := m′−1k0
βk+d2 and define:

‖x‖α :=
∞

∑
k=0

αk ‖x‖k , Xα = {x ∈ X | ‖x‖α < ∞}

Then Xα  X is a linear subspace, Xα is a Banach space and the identity
map Xα → X is continuous: So the restriction F : Xα → Y is continuous.
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Step 1 (ct’d)

Now consider the function f : Xα −→ R∪ {+∞} (the value +∞ is
allowed) defined by:

f (x) =
∞

∑
k=0

βk ‖F (x)− ȳ‖k

f is lower semi-continuous, and 0 ≤ inf f ≤ f (0) = ∑∞
k=0 βk ‖ȳ‖k < ∞.

By the EVP there is a point x̄ ∈ Xα such that:

f (x̄) ≤ f (0) =
∞

∑
k=0

βk ‖ȳ‖k , ‖x̄‖α ≤ αk0R

f (x) ≥ f (x̄)− f (0)
αk0R

‖x − x̄‖α , ∀x ∈ Xα

It follows that:
∞

∑
k=0

αk ‖x̄‖k ≤ αk0R, so ‖x̄‖k0 ≤ R

∞

∑
k=0

βk ‖ȳ‖k < ∞,
∞

∑
k=0

βk ‖F (x̄)− ȳ‖k < ∞,
∞

∑
k=0

βk ‖F (x̄)‖k < ∞
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Proof: step 2

Assume then F (x̄) 6= ȳ . If u ∈ Xα, we can set x = x̄ + tu, replace f by its
value and divide by t.

− lim
t−→0
t>0

1
t

[
∞

∑
k=0

βk ‖ȳ − F (x̄ + tu)‖k −
∞

∑
k=0

βk ‖ȳ − F (x̄)‖k

]
≤ A ∑

k≥0
αk ‖u‖k

with A = ∑ βk ‖ȳ‖k (αk0R)
−1 < 1. We would like to go one step further:

−
∞

∑
k=0

βk

(
F (x̄)− ȳ
‖F (x̄)− ȳk‖k

,DF (x̄) u
)
k
≤ A ∑

k≥0
αk ‖u‖k

This program can be carried through (by repeated use of Lebesgue’s
dominated convergence theorem) if we take u = un, where un = L (x̄) vn
and:

vn → F (x̄)− ȳ , vn controlled,
‖vn‖k ≤ c3 (F (x̄)− ȳ) ‖F (x̄)− ȳ‖k
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Proof: step 3

Plugging in un = L (x̄) vn, we get:

−
∞

∑
k=0

βk

(
F (x̄)− ȳ
‖F (x̄)− ȳk‖k

,DF (x̄) L (x̄) vn

)
k
≤ A ∑

k≥0
αk ‖L (x̄) vn‖k

−
∞

∑
k=0

βk

(
F (x̄)− ȳ
‖F (x̄)− ȳk‖k

, vn

)
k
≤ A ∑

k≥0
αk ‖L (x̄) vn‖k

Letting n→ ∞, so vn → F (x̄)− ȳ , this becomes:

−
∞

∑
k=0

βk ‖F (x̄)− ȳk‖k ≤ A ∑
k≥0

αkmk ‖F (x̄)− ȳk‖k+d2

= A ∑
k≥d2

βk ‖F (x̄)− ȳk‖k

which is a contradiction since A < 1
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THE HARD INVERSE FUNCTION THEOREM:
NASH-MOSER FOR NON-SMOOTH FUNCTION
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Let (Xs , ‖ · ‖s ), 0 ≤ s ≤ S , be a scale of Banach spaces:

0 ≤ s1 ≤ s2 ≤ S =⇒ (Xs2 ⊂ Xs1 and ‖ · ‖s1 ≤ ‖ · ‖s2)

We shall assume that there exists a sequence of projectors ΠN : X0 → EN
(smoothing operators) where EN ⊂

⋂
s≥0 Xs is the range of ΠN , with

Π0 = 0, EN ⊂ EN+1 and
⋃
N≥1 EN is dense in each space Xs for the norm

‖ · ‖s . We assume that:

‖ΠNu‖s+d ≤ CNd‖u‖s
‖(1−ΠN )u‖s ≤ CN−d‖u‖s+d

Note that these properties imply some interpolation inequalities, for
0 ≤ t ≤ 1 and 0 ≤ s1 , s2 ≤ A

‖x‖ts1+(1−t)s2 ≤ C
A
2 ‖x‖ts1‖x‖

1−t
s2 .

Let (Ys , ‖ · ‖′s )s≥0 be another regular scale of Banach spaces, with
smoothing operators Π′N : Y0 → E ′N ⊂

⋂
s≥0 Ys
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In the following, R > 0 and S > 0 are prescribed, with possibly S = ∞

Definition
We shall say that F : B0(R)→ Y0 is roughly tame with loss of regularity
µ if:

(a) F is continuous and Gâteaux-differentiable from B0(R) ∩ Xs
to Ys for any s ∈ [0, S).

(b) There is a constant K such that, for all s ≤ S and
x ∈ B0 (R):

∀h ∈ X , ‖DF (x)h‖′s ≤ K (‖h‖s + ‖x‖s‖h‖0)

(c) For x ∈ B0(R) ∩ EN , the linear
maps Π′NDF (x) |EN : EN → E ′N have a right-inverse,
denoted by LN (x). There are constants µ > 0 and γ > 0,
such that, for all s ≤ S and x ∈ B0 (R) we have:

∀k ∈ E ′N , ‖LN (x)k‖s ≤
1
γ
Nµ(‖k‖′s + ‖x‖s‖k‖′0)
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A hard inverse function theorem.

Note the nonlinear estimates in Hs : if ‖u‖∞ and ‖v‖∞ are finite, then:

‖f (u, v)‖H s ≤ C (‖u‖H 0 ‖v‖H s + ‖u‖H s ‖v‖H 0)

The loss of derivatives for F and DF is normalized to 0.

The loss of derivatives for DF−1 is µ, and we cannot expect any
better for F−1

Define a real function ϕ on [4, ∞[ by:

ϕ (x) =


1
2x
(
1−

√
1− 4

x

)
+ 1 if 4 < x ≤ 3+

√
5√

5−1
x 2
4

(
1−

√
1− 4

x

)2
if x ≥ 3+

√
5√

5−1
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The authorized region is above the graph
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Theorem (IE, Eric Séré)

Assume F (0) = 0 and F : B0 (R) ∩ Xs → Ys , 0 ≤ s < S, is roughly tame
with loss of regularity µ. If δ/µ is in the authorized region, then, for any α
with

α

µ
< min

{
δ

µ
− ϕ

(
S
µ

)
,
S
µ
− ϕ−1

(
δ

µ

)}
one can solve F (x) = y with y ∈ Yδ and x ∈ Xα. More precisely, we can
find ρ > 0 and C > 0 such that, whenever ‖y‖′δ ≤ ρ , there is some
x ∈ Xα with:

F (x) = y

‖x‖0 ≤ 1
‖x‖α ≤ C ‖y‖δ
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Comments

S > 4µ (you need some room upstairs)
3µ > δ− α > µ (the loss of derivatives for F is larger than the one
for DF )
if S/µ→ ∞ (lots of room upstairs), δ− α→ µ (lowest possible
value)
If S/µ→ 4 (little room upstairs), δ− α→ 3µ (large loss of
regularity)

Corollary

Assume F (x) sends Xs into Ys and is roughly tame at x̄ with loss of
regularity µ. Suppose x̄ ∈ XS , ȳ ∈ YS and F (x̄) = ȳ . Then one can solve
F (x) = y , with ‖x − x̄‖α ≤ C‖y − ȳ‖′δ .

Proof.
Consider the map Φ (x , y) := F (x)− y + ȳ from Xs × Ys into Ys . It is
roughly tame, with F (0, 0) = 0, and we can apply the preceding
Theorem
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The proof: constructing approximate solutions

Theorem

Consider an integer N0 ≥ 2 and define Nn ' (N0)κ
n
, where

κ = κ (δ, µ) > 1 is appropriately chosen. Then one can find ρ > 0 and
c > 0 such that, for any y with ‖y‖δ < ρ , there is a sequence (xn)n≥1
with ‖xn‖0 ≤ 1 satisfying:

(case 1) Π′NnF (xn) = Π′Nn−1y and xn ∈ ENn
(case 2) Π′NnF (xn) = Π′Nny and xn ∈ ENn

and in both cases, for appropriate σ and β with κβ < σ < S :

‖x1‖σ ≤ cNβ
1 ‖y‖′δ and ‖xn+1 − xn‖σ ≤ c Nκβ

n ‖y‖′δ
‖x1‖0 ≤ cNµ

1 ‖y‖′δ and ‖xn+1 − xn‖0 ≤ c Nκβ−σ
n ‖y‖′δ
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Auxiliary constants

(S , δ, µ) are given.
We first choose κ :

1 < κ < 2 and
κ2

κ − 1 <
S
µ
and min{κ2, κ + 1} < µ

δ

µ

This gives two possibilities: 1 < κ ≤ 1+
√
5

2 and 1+
√
5

2 ≤ κ < 2. Then we
choose σ and β :

κ2

κ − 1 <
κ

µ
β <

1
µ

σ <
S
µ

κβ > σ+ κµ− δ

κ
for 1 < κ ≤ 1+

√
5

2

β > µ+ σ− δ for
1+
√
5

2
≤ κ < 2
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Passing to the limit

The sequence (xn) has a limit x in X0, with ‖x‖0 ≤ C‖y‖′δ , for
C := c(Nµ

1 +∑n≥1 N
κβ−σ
n ) . Then F (xn) converges to F (x) in Y0 , by the

continuity of F : X0 → Y .0. On the other hand:

F (xn) = (1−Π′Nn )F (xn) +Π′Nn−1y .

One proves by induction an estimate of the form

‖(1−Π′N )F (xn)‖′0 ≤ C N
β−σ
n ‖y‖′δ → 0

because the exponent (β− σ) is negative. So (1−Π′N )F (xn) converges to
zero in Y0. On the other hand, by the definition of a smoothing operator,

‖(1−Π′Nn−1)y‖
′
0 ≤ CN−δ

n−1‖y‖′δ → 0

Passing to the limit we get F (x) = y .
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Checking the induction.

Here we assume that we have chosen ρ and c , and found x1, · · · , xn. We
are going to construct xn+1 = xn + u. Using the induction hypothesis
Π′NnF (xn) = Π′Nn−1y , the equation to be solved by ∆xn may be written in
the following form:

fn (u) = en + ∆yn−1

fn(u) := ΠNn+1 (F (xn + u)− F (xn)) ∈ E ′Nn+1
ek := ΠNk+1(ΠNk − 1)F (xk )

∆yk := ΠNk+1(1−ΠNk )y

The function fn is continuous and Gâteaux-differentiable with f (0) = 0.
So this is an inverse problem for u
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Choosing the right norms

We choose the norm

Nn(u) = ‖u‖0 +N−σ
n ‖u‖σ on ENn+1

N ′n(v) = ‖v‖′0 +N−σ
n ‖v‖′σ on E ′Nn+1

Set Rn := cNκβ−σ
n ‖y‖δ. For Nn (u) ≤ Rn we have:

∥∥ [Dfn(u)]−1k∥∥0 ≤ 2Nµ
n+1

γ
‖k‖0

∥∥ [Dfn(u)]−1k∥∥σ
≤
Nµ
n+1

γ
(‖k‖σ + B (2) Rn Nσ

n ‖k‖0)

Hence:

Nn([Df (u)]−1k) ≤
B (2) + 2

γ
Nµ
n+1N ′n(k)
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Applying the soft IVT

The IVT gives the existence of ūn ∈ Bn(Rn) such that fn(ūn) = en + ∆yn
provided:

N ′n(en + ∆yn−1) <
Rn(

B (2) + 2
)

γ−1Nµ
n+1

. The condition on en + ∆yn−1 is fulfilled provided

N ′n(en) +N ′n(∆yn−1) <
2c

B (2) + 2
N−µ
n+1N

κβ−σ
n ‖y‖δ .

This is satisfied if:

2B (3) c Nβ
n +C (1)

g δ
κN

σ− δ
κ

n +

(
g
Nn

) (δ−σ)+
κ

N (σ−δ)+
n

 <
2c g−µ

B (2) + 2
Nκ(β−µ)
n

holds. We find that the exponents of Nn in the left-hand side of are
strictly smaller than the one in the right-hand side. So, for N0 chosen large
enough, is satisfied for all n
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