Storers, processors and speculators

Ivar Ekeland, Delphine Lautier, Bertrand Villeneuve

Université Paris-Dauphine

Summer School, Villa Finaly, July 2015

• In Eugenio and Brian's presentation we have heard about storers (Deaton-Laroque) and processors (Scheinkman-Schechtman) trading a commodity on a spot market

- In Eugenio and Brian's presentation we have heard about storers (Deaton-Laroque) and processors (Scheinkman-Schechtman) trading a commodity on a spot market
- Everyone is risk-neutral

- In Eugenio and Brian's presentation we have heard about storers (Deaton-Laroque) and processors (Scheinkman-Schechtman) trading a commodity on a spot market
- Everyone is risk-neutral
- What happens if one introduces a financial market alongside the physical market ?

- In Eugenio and Brian's presentation we have heard about storers (Deaton-Laroque) and processors (Scheinkman-Schechtman) trading a commodity on a spot market
- Everyone is risk-neutral
- What happens if one introduces a financial market alongside the physical market ?
- What happens if speculators (money managers) are allowed into that new market ?

- In Eugenio and Brian's presentation we have heard about storers (Deaton-Laroque) and processors (Scheinkman-Schechtman) trading a commodity on a spot market
- Everyone is risk-neutral
- What happens if one introduces a financial market alongside the physical market ?
- What happens if speculators (money managers) are allowed into that new market ?
- What happens if agents are risk-averse ?

One commodity to be traded between dates t and t + 1. There is a physical market and a futures market open at each date.

- The physical market is a spot market:
 - corn trades at price p_t for immediate delivery
 - all positions are long
- The futures market is a financial market
 - each contract is bought at price f_t , and sold at price p_{t+1}
 - short positions are allowed

Interest rate is $r \ge 0$

Let z_t be the physical quantity available for trading at time t (once contracts from period t-1 have been settled) At time t,

- z_t, p_t, f_t are common knowledge
- agents make their decisions conditional on z_t , p_t , f_t
- denote $E_t[X_{t+1}] = E_t[X_{t+1}| z_t, p_t, f_t]$ and similarly for $\operatorname{Var}_t[X_{t+1}]$

At time t

- Storers buy quantity x_t at time t (at price p_t) and sell it at time t + 1 (at price p_{t+1}).
- Processors commit to buy y_t on the spot market at time t + 1, process it and sell the finished product at price Q
- Storers, processors and speculators buy quantities q_t^I , q_t^P and q_t^S of contracts at price f_t

Demand

Market demand:

- Storers, processors and speculators are all mean-variance.
- Type *i* maximises $E_t [X_{t+1}] \alpha_i Var_t [X_{t+1}]$ where X_{t+1} is the profit and i = I, P, S

Residual demand:

• There are other uses for the commodity, and traders coming from other markets will want to buy it. There is also free disposal, and if a threshold price at which there is an unlimited supply of a substitute commodity. We have z = D(p), with:

$$D(p) = \begin{cases} [M, \infty) & \text{if} \quad p = 0\\ M - mp & \text{if} \quad 0 \le p \le Mm^{-1}\\ (-\infty, 0] & \text{if} \quad p = Mm^{-1} \end{cases}$$

イロト イ理ト イヨト イヨト 二臣

Individual behaviour

Speculators

$$q_{S,t}^{\star} = (1+r) \frac{\mathrm{E}_t[p_{t+1}] - (1+r) f_t}{\alpha_S \mathrm{Var}_t[p_{t+1}]}$$

Storers (cost of storage is $\frac{\beta}{2}x^2$)

$$x_t^{\star} = \frac{1}{\beta} \max\{f_t - p_t, 0\}, \quad q_{l,t}^{\star} = (1+r) \frac{\mathrm{E}_t[p_{t+1}] - (1+r) f_t}{\alpha_l \mathrm{Var}_t[p_{t+1}]} - x_t^{\star}$$

Processors (cost of production is $\frac{\delta}{2}y^2$)

$$y_t^* = \frac{1}{\delta} \max\{Q - f_t, 0\}, \quad q_{P,t}^* = (1+r) \frac{\mathrm{E}_t[p_{t+1}] - (1+r) f_t}{\alpha_P \mathrm{Var}_t[p_{t+1}]} + y_t^*$$

Note that the physical position is fully hedged, and does not reflect the risk aversion ! Already noted by Anderson-Danthime

- 米田 ト 米田 ト 米田 ト 一田

Only storers and residual traders are active. We get, with $n_l := N_l \delta^{-1}$

$$z_t = n_I \max\{f_t - p_t, 0\} + M - mp_t \text{ if } 0 \le p_t \le Mm^{-1}$$

$$z_t \ge n_I \max\{f_t - p_t, 0\} + M \text{ if } p_t = 0$$

$$z_t \le n_I \max\{f_t - p_t, 0\} \text{ if } p_t = Mm^{-1}$$

Note that n_l is also the elasticity of total demand wrt f_t , which opens the way to callibration

イロト イ団ト イヨト イヨト 三臣

Futures market

Storers, processors and speculators are active. The hedging pressure is, with $n_P := (\beta Q)^{-1}$:

$$h_t := n_I \max\{f_t - p_t, 0\} - n_P \max\{Q - f_t, 0\}$$

It turns out that the bias $(1 + r)^{-1} E_t[p_{t+1}] - f_t$ is proportional to the hedging pressure:

$$\frac{\mathbf{E}_t[\mathbf{p}_{t+1}]}{1+r} - f_t = \frac{\alpha \operatorname{Var}_t[\mathbf{p}_{t+1}]}{(1+r)^2} h_t$$
$$\alpha := \left(\frac{n_l}{\alpha_l} + \frac{n_P}{\alpha_P} + \frac{n_S}{\alpha_S}\right)^{-1}$$

• $(n_P - n_I)$ is the elasticity of the hedging pressure wrt f_t and $-n_I$ its elasticity wrt p_t ,

• the presence of risk aversion creates a bias : $E_t[p_{t+1}] \neq (1+r) f_t$

Two dates t = 1, 2

12

イロン イ理 とくほと くほとう

There are three markets: spot at t = 1, spot at t = 2, and futures At t = 1, the only input is the crop $z_1 = \omega_1$. The equilibrium equation becomes:

$$\omega_1 = n_I \max\{f - p_1, 0\} + M - mp_1 \tag{1}$$

At t = 2, we have $z_2 = \tilde{\omega}_2 + n_I x_1$. and storers no longer are in operation. The equilibrium equation becomes:

$$\tilde{\omega}_2 + n_I \max\{f - p_1, 0\} = M - m\tilde{p}_2 \tag{2}$$

イロト イ理ト イヨト イヨト

In the futures market (take r = 0), the equilibrium equation is:

$$\frac{\mathrm{E}[\tilde{p}_2] - f}{\alpha \mathrm{Var}[\tilde{p}_2]} = n_I \max\{f - p_1, 0\} - n_P \max\{Q - f, 0\}$$
(3)

Three equations for p_1 , f and \tilde{p}_2

We can derive $E[p_2]$ and $Var[p_2]$ from the second equation. The other two become:

$$mp_{1} - n_{I} \max\{f - p_{1}, 0\} = M - \omega_{1}$$
$$mf + \gamma (n_{I} \max\{f - p_{1}, 0\} - n_{P} \max\{Q - f, 0\}) = M - \mathbb{E}[\tilde{\omega}_{2}]$$

with

$$\gamma = 1 + \frac{1}{m} \frac{\operatorname{Var}[\tilde{\omega}_2]}{\frac{n_P}{\alpha_P} + \frac{n_I}{\alpha_I} + \frac{n_S}{\alpha_S}}$$

We have two (nonlinear) equations for two unknown scalars p_1 and f

(日) (圖) (E) (E) (E)

The four regions

The right-hand side is always the same:

$$M - \omega_1 \\ M - \mathrm{E}[\tilde{\omega}_2]$$

The left-hand side is a piecewise linear function:

• The plane (p_1, f) is devided into four regions

$$f-p_1 \ge 0 \quad f-p_1 \le 0 \ Q-f \ge 0 \quad (1) \quad (3) \ Q-f \le 0 \quad (2) \quad (4)$$

• • = • • = •

The four regions

The right-hand side is always the same:

$$M - \omega_1 \\ M - \mathrm{E}[\tilde{\omega}_2]$$

The left-hand side is a piecewise linear function:

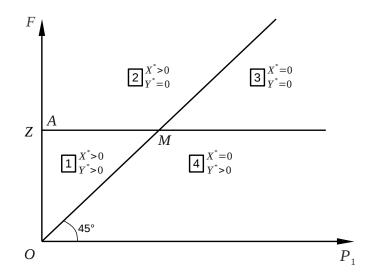
• The plane (p_1, f) is devided into four regions

$$\begin{array}{ccc} f-p_1 \geq 0 & f-p_1 \leq 0 \\ Q-f \geq 0 & (1) & (3) \\ Q-f \leq 0 & (2) & (4) \end{array}$$

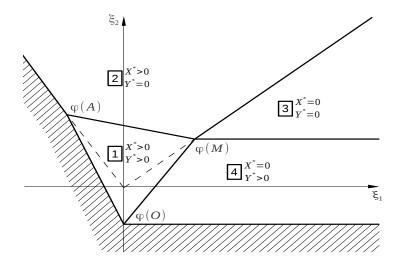
• In each of the region, the left-hand side is linear. In region 1 for instance, it is the linear map

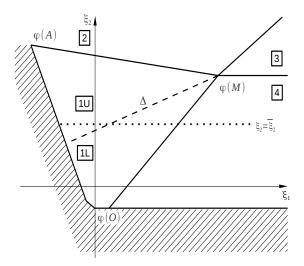
$$\left(\begin{array}{c} p_{1} \\ f \end{array}\right) \rightarrow \left(\begin{array}{c} mp_{1} - n_{I}\left(f - p_{1}\right) \\ mf + \gamma\left(n_{I}\left(f - p_{1}\right) - n_{P}\left(Q - f\right)\right) \end{array}\right)$$

個 と く ヨ と く ヨ と



◆□> ◆□> ◆注> ◆注> 二注





▲ロト ▲圖 ト ▲ ヨト ▲ ヨト ― ヨー 釣ん()~

2	$P_1 < F$	$F < E[\tilde{P}_2]$	F > Z
	$X^{\star}>0$	$f_S > 0$	$Y^{\star}=0$
1U	$P_1 < F$	$F < E[\tilde{P}_2]$	F < Z
	$X^{\star} > 0$	$f_S > 0$	$Y^{\star} > 0$
Δ	$P_1 < F$	$F = E[\tilde{P}_2]$	F < Z
	$X^{\star}>0$	$f_S = 0$	$Y^{\star}>0$
1L	$P_1 < F$	$F > E[\tilde{P}_2]$	F < Z
	$X^{\star}>0$	$f_S < 0$	$Y^{\star}>0$
4	$P_1 > F$	$F > E[\tilde{P}_2]$	F < Z
	$X^{\star}=0$	$f_S < 0$	$Y^{\star}>0$
3	$P_1 > F$	$F = E[\tilde{P}_2]$	F > Z
	$X^{\star}=0$	$f_S = 0$	$Y^{\star}=0$

Table 1: Relations between prices and physical and financial positions. In reference to figures, regions are listed counter-clockwise.

◆□ > ◆圖 > ◆臣 > ◆臣 > ─ 臣

	$ \mathbf{E}[\tilde{P}_2] - \tilde{F} $	\tilde{F}	\tilde{X}^{\star}	\tilde{Y}^{\star}	\tilde{P}_1	\tilde{P}_2	$\mathrm{Var}[\tilde{F}]$	$\operatorname{Var}[\tilde{P}_1]$	$\operatorname{Var}[\tilde{P}_2]$	
2	\searrow	7	7	0	7	\searrow	\searrow	\searrow	7	$\left. \begin{array}{c} \\ \end{array} \right\} \mathrm{E}[\tilde{P}_2] - \tilde{F} > 0 \end{array} \right. \label{eq:eq:product}$
1U	\searrow	\nearrow	\nearrow	\searrow	\nearrow	\searrow	\searrow	\searrow	\nearrow	$\int \mathbf{E}[\mathbf{r}_2] \mathbf{r} > 0$
1L	\searrow	\searrow	\searrow	\nearrow	\searrow	\nearrow	\searrow	\searrow	\nearrow	$\left. \begin{array}{l} \tilde{F} - \mathbf{E}[\tilde{P}_2] > 0 \end{array} \right.$
4	\searrow	\searrow	0	\nearrow	\longleftrightarrow	\nearrow	\longleftrightarrow	\longleftrightarrow	\longleftrightarrow	$\int I = \operatorname{E}[I_2] > 0$
3	\longleftrightarrow	\longleftrightarrow	0	0	\longleftrightarrow	\longleftrightarrow	\longleftrightarrow	\longleftrightarrow	\longleftrightarrow	$\tilde{F} = \mathbf{E}[\tilde{P}_2]$

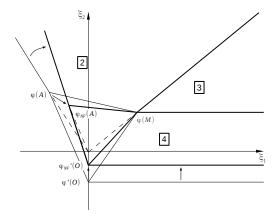
Table 2: Impact of speculators on prices and quantities. Legend: \nearrow variable increases; \searrow variable decreases; 0 variable is null; \longleftrightarrow no impact on variable.

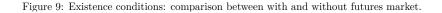
- if one or more of the participants is risk-neutral , so that $\alpha_i = 0$ for some i, then $\gamma = 1$
- if there is no storage cost , so that $\delta = 0$ and $n_I = \infty$, then $\gamma = 1$
- if there is no production cost , so that $\gamma = 0$ and $n_P = \infty$, then $\gamma = 1$
- if there is no financial market , the physical positions become:

$$\begin{aligned} x_{\rm NF}^{\star} &= \left(\delta + \alpha_I \frac{\operatorname{Var}[\tilde{\omega}_2]}{m^2}\right)^{-1} \max\{\mathrm{E}[\tilde{p}_2] - p_1, 0\} \\ y_{\rm NF}^{\star} &= \left(\beta Q + \alpha_P \frac{\operatorname{Var}[\tilde{\omega}_2]}{m^2}\right)^{-1} \max\{Q - \mathrm{E}[\tilde{p}_2], 0\}. \end{aligned}$$

Contrary to what happens in the presence of a financial market, the physical positions now reflect the risk aversion of the participants

• nevertheless, in all the preceding cases we still get the four regions





æ

イロン イヨン イヨン イヨン

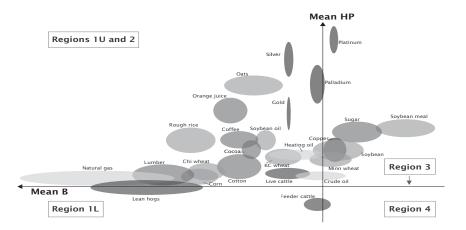


Figure 7: Map of commodity markets, according to Kang et al. (2014) and to our analysis.

(日) (圖) (E) (E) (E)

Two physical markets connected by a financial market.

- there is a complete (physical+financial) market for commodity *a* and a complete market for commodity *b*, with specialized storers, processors and speculators.
- speculators become unspecialized: they trades futures on both commodities

Speculator's optimal position becomes:

$$f_{\mathcal{S}}^{a*} = \left(\frac{1}{\left(1 - \operatorname{corr}^{2}\left(\tilde{P}_{2}^{a}, \tilde{P}_{2}^{b}\right)\right)}\right) \left[f_{SELV}^{a*} - \operatorname{corr}\left(\tilde{P}_{2}^{a}, \tilde{P}_{2}^{b}\right) \frac{\sigma_{2}^{b}}{\sigma_{2}^{a}} f_{SELV}^{b*}\right]$$

通 ト イヨト イヨト

High Frequency Trading The financial market opens at the intermediate time t = 1.5, and everyone can access it

- If the all agents share the same horizon, i.e. they want to optimize their profit at time t = 2, then no trade occurs at the intermediate time and the prices at time t = 1 are unaffected by the new possibility
- If the speculators have a shorter horizon, i.e. if the speculators present at t = 1 leave at t = 1.5 and are replaced by new ones, who will leave at t = 2, then physical positions and spot prices are unaffected, but financial positions and futures prices are affected

通 ト イヨ ト イヨ ト

Speculators are hedgers too.

The futures contracts speculators hold are part of a larger portfolio. Their total profit from investing k in a financial index and f in the commodity futures is:

$$k(V_2 - V_1) + f(P_2 - P_1)$$

The optimal position of the speculator on the futures market becomes:

$$f_{\mathcal{S}}^* = \frac{E(\tilde{P}_2) - F}{\alpha_{\mathcal{S}}\sigma_P^2} \left(\frac{1}{1 - \rho^2}\right) - \rho \frac{E(\tilde{V}_2) - V_1}{\sigma_P \sigma_V \alpha_{\mathcal{S}} (1 - \rho^2)} \tag{4}$$

副下 《唐下 《唐下

Markov strategies t = 1, 2, ...(with E. JAECK)

-2

▲圖▶ ▲ 国▶ ▲ 国▶ …

The markets are open for all $t \ge 1$, so that available quantity is:

$$z_t = \omega_t + h_{t-1}$$

and the operators optimize their short-term profit (from t to t + 1). The equations are:

$$z_{t} = n_{I} \max\{f_{t} - p_{t}, 0\} + M - mp_{t}$$
$$\frac{E_{t}[p_{t+1}] - f_{t}}{\alpha \operatorname{Var}_{t}[p_{t+1}]} = n_{I} \max\{f_{t} - p_{t}, 0\} - n_{P} \max\{Q - f_{t}, 0\}$$

Note the presence of the expectations $E_t[p_{t+1}]$ and $Var_t[p_{t+1}]$. Agents have short-term objectives but are sophisticated: they have to factor in their own behaviour at time t + 1. To decide what to do today I need to know what I will do tomorrow

イロト イ理ト イヨト イヨト 二臣

Equilibrium equations

Replace $E_t[p_{t+1}]$ by *e* and $Var_t[p_{t+1}] \ge 0$. Replace also f_t by *f* and p_t by *p*. The equations become:

$$z = n_I \max\{f - p, 0\} + M - mp_t$$

e - f = $\alpha v [n_I \max\{f - p, 0\} - n_P \max\{Q - f, 0\}]$

There is a single solution for p and f, given in terms of the coefficients (z, e, v) by functions P and F which can be computed explicitly. The hedging pressure can be computed from P and F:

$$p = P(z, e, v), \quad f = F(z, e, v)$$

$$h = n_I \max\{f - p, 0\} - n_P \max\{Q - f, 0\} = H(z, e, v)$$

By definition, we have:

$$p_t = P(z_t, \operatorname{E}[p_{t+1}], \operatorname{Var}[p_{t+1}])$$

Price today is a (known) function of the (unknown) anticipations

• As in the two-dates case, we find there are four regions

≣▶ ∢ ≣≯

Finding the functions P and H

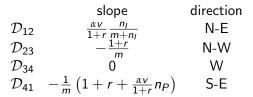
- As in the two-dates case, we find there are four regions
- They are separated by four half-lines emanating from the point $\left(\begin{array}{c} M-mQ\\ (1+r)\ Q \end{array}\right)$

	slope	direction
\mathcal{D}_{12}	$\frac{\alpha v}{1+r} \frac{n_l}{m+n_l}$	N-E
\mathcal{D}_{23}	$\frac{1+r}{m}$	N-W
\mathcal{D}_{34}	0	W
\mathcal{D}_{41}	$-\frac{1}{m}\left(1+r+\frac{\alpha v}{1+r}n_P\right)$	S-E

▶ ▲ 혼 ▶ ▲ 혼 ▶

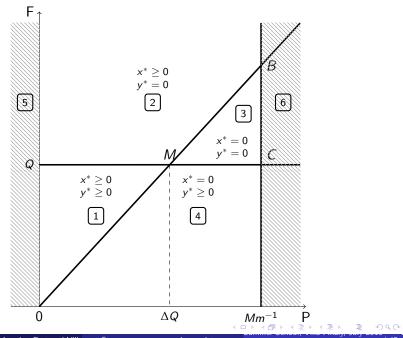
Finding the functions P and H

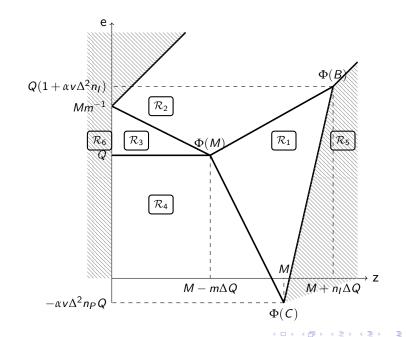
- As in the two-dates case, we find there are four regions
- They are separated by four half-lines emanating from the point $\left(\begin{array}{c} M-mQ\\ (1+r)\ Q \end{array}\right)$

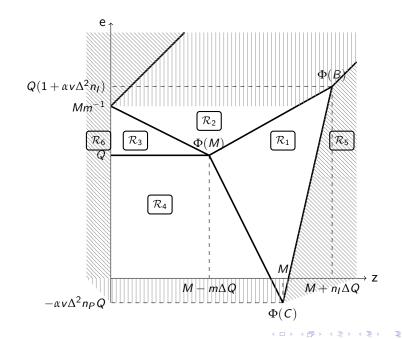


• Two more regions are added to take into account the constraints $P \ge 0$ and $P \le Mm^{-1}$

▲圖▶ ▲ 国▶ ▲ 国▶ …







In Region 1, where everyone is active, we have:

$$P(z, e, v) = \frac{\left[1 + (n_{I} + n_{P}) \frac{\alpha v}{(1+r)^{2}}\right] (M - z) + n_{I} \left[\frac{e}{1+r} + \frac{\alpha v}{(1+r)^{2}} n_{P}Q\right]}{m + n_{I} + \frac{\alpha v}{(1+r)^{2}} (mn_{I} + n_{I}n_{P} + mn_{P})}$$
$$H(z, e, v) = \frac{(mn_{I} + mn_{P} + n_{I}n_{P}) \frac{e}{1+r} - n_{P} (m + n_{I}) Q - n_{I} (M - z)}{(m + n_{I}) + \frac{\alpha v}{(1+r)^{2}} (n_{P}m + n_{P}n_{I} + n_{I}m)}$$

(本部) (本語) (本語)

If one of the participants is risk-neutral, if there is no cost of storage or if there is no cost of production, then $\alpha = 0$ and the equations simplify:

$$\begin{array}{c} \mathcal{R}_{1} & \frac{(mn_{l}+mn_{P}+n_{l}n_{P})\frac{e}{1+r}-n_{P}(m+n_{l})Q-n_{l}(M-z)}{m+n_{l}} & \frac{P\left(z,e,v\right)}{(M-z)+n_{l}\frac{e}{1+r}} \\ \mathcal{R}_{2} & \frac{2n_{l}+\frac{e}{1+r}mn_{l}-Mn_{l}}{m+n_{l}} & \frac{(M-z)+n_{l}\frac{e}{1+r}}{(M-z)+n_{l}\frac{e}{1+r}} \\ \mathcal{R}_{3} & 0 & \frac{M-z}{m} \\ \mathcal{R}_{4} & n_{P}\left(\frac{e}{1+r}-Q\right) & \frac{M-z}{m} \end{array}$$

・ロト ・聞 と ・ 臣 と ・ 臣 と … 臣

We are interested in solving

$$p_{t} = P(z_{t}, \mathbb{E}[p_{t+1}], \operatorname{Var}[p_{t+1}])$$
$$z_{t+1} = \omega_{t+1} + H(z_{t}, \mathbb{E}[p_{t+1}], \operatorname{Var}[p_{t+1}])$$

To do that, we will seek the anticipations as Markovian functions of the available supply

$$E[p_{t+1}] = E(z_t)$$
 and $Var[p_{t+1}] = V(z_t)$

Note that we then get a Markovian strategy for p_t :

$$p_{t} = P(z_{t}, E(z_{t}), V(z_{t})) = \sigma(z_{t})$$

- 本間 と 本語 と 本語 と

We need the expectations to be coherent with the strategy:

$$E(z) = E[P(z', E(z'), V(z'))]$$
$$V(z) = Var[P(z', E(z'), V(z'))]$$
$$z' = H(z, E(z), V(z)) + \omega$$

This defines the functions E(z) and V(z) as the solutions of a fixed-point problem

イロン イ理 とく ヨン ト ヨン・

- For every $r \ge 0$ there is a fixed point with E(z) and V(z) measurable and bounded
- For $r \ge 0$ small enough, there is a unique fixed point with E(z) and V(z) continuous and bounded
- Numerically, we have yet to find a case when E(z) and V(z) are not continuous

イロン イ理 とく ヨン ト ヨン・

The algorithm is as follows:

$$E_{n+1}(z) = E \left[P \left(z', E_n \left(z' \right), V_n \left(z' \right) \right) \right]$$

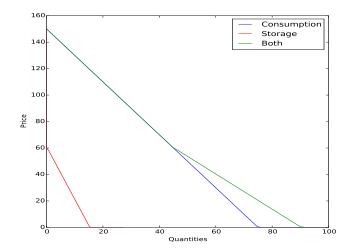
$$V_{n+1}(z) = Var \left[P \left(z', E_n \left(z' \right), V_n \left(z' \right) \right) \right]$$

$$z' = H \left(z, E_n \left(z \right), V_n \left(z \right) \right) + \omega$$

The law of ω is Gaussian. The law of z' is then a translate of the law of ω , and the expectation and variance of the random variable $P(z', E_n(z'), V_n(z'))$ is easily computed. The algorithm turns out to be very stable and to converge for all $r \ge 0$

・ロト ・聞 と ・ 臣 と ・ 臣 と … 臣

Demand for consumption and for storage

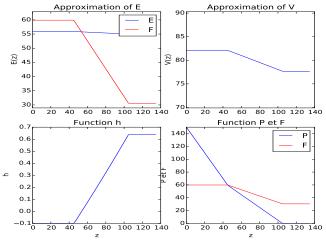


- (A 🖓

3 🕨 🖌 3

Functions at the equilibrium

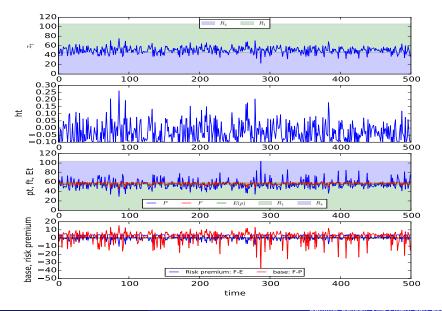
M=75, m=0.5, r=0.01, Q=60, alph_p=2, alph_i=2, alph_s=2, N_p=1, N_i=1, N_s=2, tol=0.2, NbMc=500000, N(50,50) Zones: [7 4 1 6]



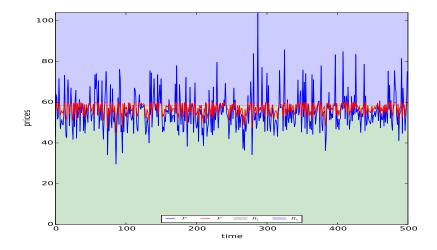
3

(日) (周) (三) (三)

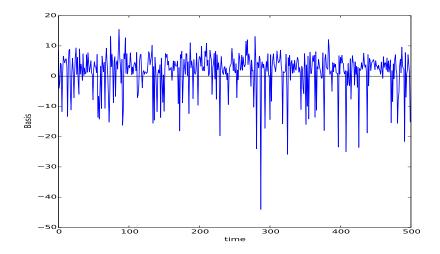
One simulated path



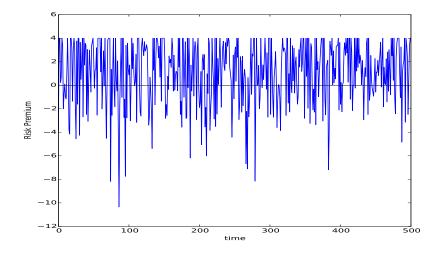
One simulated path: Prices



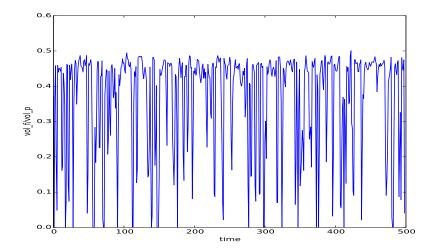
One simulated path: Basis



One simulated path: Risk premium



One simulated path: Ratio of volatilities



Conclusion

- We have a simple model which reproduces certain stylised facts
 - the Samuelson effect: futures prices are less volatile than spot prices
 - the presence of stocks dampens price movements
- It leads to certain conclusions:
 - there is a bias $f_t E[p_{t+1}]$ which is proportional to the hedging pressure
 - in the presence of a financial market, the physical positions do not reflect the risk aversion of participants
 - the presence of speculators is beneficial to the dominant positions in the physical markets and detrimental to the others
- It contains as a particular case the Deaton-Laroque, Scheinkman-Schechtman and de Roon models
- It is versatile enough to accomodate more complex situations, where markets influence each other
- It is open to calibration

<ロ> (四) (四) (三) (三) (三) (三)