Correction of Assignment 1
 Friday May 27th

Step 1. Finding α
Anna is willing to pay up to $5,65 \$$ for a lottery ticket that gives her $100 \$$ one with probability 0,1 . This means that that getting $5,65 \$$ now and getting $100 \$$ in one month with probability 0,1 give her the same utility. Write this as an equation:

$$
u(5,65)=\frac{1}{10} u(100)
$$

We know that Anna's utility function is $u(m)^{\alpha}$. Writing this in the equation, we get

$$
\begin{aligned}
(5,65)^{\alpha} & =\frac{1}{10}(100)^{\alpha} \\
5,65 & =\frac{1}{10^{1 / \alpha}} 100 \\
10^{1 / \alpha} & =\frac{100}{5,65}
\end{aligned}
$$

Take the (decimal) logarithm of both sides:

$$
\begin{aligned}
& \frac{1}{\alpha}=2-\log 5,65=2-0,75=1,25 \\
& \alpha=0,8
\end{aligned}
$$

Step 2. Finding r
The same ticket in one month's time gives $\frac{1}{1+r}$ the utility of the same ticket today:

- utility of ticket today: $(5,65)^{\alpha}$
- utility of ticket in one month $\frac{1}{1+r}(5,65)^{\alpha}$

If Anna is willing to pay $5,09 \$$ for the last ticket, this means that it gives her the same utility as $5,09 \$$. Write the equation:

$$
\begin{aligned}
\frac{1}{1+r} u(5,65) & =u(5,09) \\
\frac{1}{1+r}(5,65)^{\alpha} & =(5,09)^{\alpha} \\
1+r & =\left(\frac{5,65}{5,09}\right)^{\alpha}=1,0871
\end{aligned}
$$

So the psychological discount rate for one month is 1,09
Now we answer the questions
Question 1. There are two outcomes to the lottery

- $50 \$$ with a probability 5% gives a utility $0,05 u(50)=0,05(50)^{0,8}$
- $200 \$$ with a probability 20% gives a utility $0,2 u(200)=0,2(200)^{0,8}$

The amount of money m that gives the same utility is:

$$
\begin{aligned}
u(m) & =0,05(50)^{0,8}+0,2(200)^{0,8} \\
& =1,143+13,863=15
\end{aligned}
$$

Replacing $u(m)$ by $m^{0,8}$, this becomes $m^{0,8}=15$, so

$$
m=15^{1 / 0,8}=15^{1,25}=29,51
$$

So Anna is willing to pay $29,51 \$$ for the ticket
Question 2 One year is twelve months. So for the same ticket in one year, Anna gets the utility

$$
\frac{15}{(1+r)^{12}}=\frac{15}{1,0871^{12}}=\frac{15}{2,72}=5,51
$$

The corresponding amount of money m is given by $m^{0,8}=5,51$, hence:

$$
m=5,51^{1,25}=8,44
$$

So Anna is willing to pay $8,44 \$$ for the same ticket in one year
Question 3 The utility of the bet to Anna is $\frac{p}{1+r} u(200)$ with p the probability of Real winning. If she pays $100 \$$ for it, it means that the utility of 100 $\$$ now is the same as the utility of the bet:

$$
\begin{aligned}
u(100) & =\frac{p}{1+r} u(200) \\
100^{0,8} & =p \frac{200^{0,8}}{1,0871} \\
p & =1,0871\left(\frac{1}{2}\right)^{0,8}=1,0871 \times 0,5743 \\
p & =0,624
\end{aligned}
$$

Her probability of Real winning is at least $62,4 \%$

