Assignment 5: correction

Question 1

Question 1.1 If the price is \(p \), and the baker is a price-taker, he seeks to maximise profit, that is, the function \(q \rightarrow pq - \frac{1}{2}q^2 \). To maximise this function you annul the derivative, which is \(p - q \). Writing \(p - q = 0 \) yields \(q = p \): this is the quantity each baker produces. All bakers together produce 100 times more, so the demand is 100\(p \).

Question 1.2 Equilibrium price is obtained by writing that supply equals demand:
\[
S(p) = D(p)
\]
Supply is 100\(p \), as we saw, and demand is 1000 \(\left(1 - \frac{1}{10}p \right) \). Equating, we get:
\[
100p = 1000 \left(1 - \frac{1}{10}p \right)
\]
\[
p = 10 - p
\]
\[
p = 5
\]

Question 1.3.a If the market price is \(p \), the price to the consumer is \(p - 1 \), so the demand function is \(D(p - 1) \). The equilibrium equation \(S(p) = D(p - 1) \) becomes:
\[
100p = 1000 \left(1 - \frac{1}{10} (p - 1) \right)
\]
\[
p = 10 - p + 1
\]
\[
p = 5, 5
\]
So the consumer pays 5, 5 for each loaf. Taking account of the government subsidy, the true price for her is 4, 5.

Question 1.3.b If the market price is \(p \), the profit of the baker, taking account of the government subsidy, is \(p + 1 \). So the supply function is \(S(p + 1) \). The equilibrium equation \(S(p + 1) = D(p) \) becomes:
\[
100(p + 1) = 1000 \left(1 - \frac{1}{10} \right)
\]
\[
p + 1 = 10 - p
\]
\[
p = 4, 5
\]
So the consumer pays 4, 5 for each loaf. The two procedures give the same result. Note that in either case, only 50% of the subsidy is reflected in the price of bread. The rest is captured by the bakers.
Question 2

Question 2.a This equation expresses that the monopolist captures the whole demand

Question 2.b This expresses that the monopolist maximises profit

Question 2.c Substituting in the equation \(D(p) = 1000 \left(1 - \frac{1}{10} p \right) \) and \(D'(p) = -100 \), we get:

\[
-100p + 1000 \left(1 - \frac{1}{10} p \right) - \frac{1}{100} 1000 \left(1 - \frac{1}{10} p \right) = 0
\]

\[
-100p + 990 \left(1 - \frac{1}{10} p \right) = 0
\]

\[
-p + 9,9 \left(1 - \frac{1}{10} p \right) = 0
\]

\[
1,99p = 9,9
\]

The new market price for bread is \(p = 4.97 \)