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1 Introduction

These notes are based on a course I taught at the University of British Columbia.
They provide an introduction to the mathematical theory of optimal transportation for
students and researchers in economics. This theory has deep roots in the past, since
it originates with the French geometer Gaspard Monge (1746–1818), who asked the
following question: what is the most economical way of transferring mass from one
place to another? More precisely, given two shapes � and X with equal volume, find
a measure-preserving map ξ : � −→ X which minimizes the integral:∫

�

‖ξ (θ) − θ‖ dθ.

In fact, Monge’s problem is quite difficult (although it does have a solution) and will
not be solved in these notes. We will, however, be able to solve the same problem for
the integral:
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438 I. Ekeland

∫

�

‖ξ (θ) − θ‖α dθ

where α can take any positive value except, of course, α = 1. The original Monge
problem was stated in 1781 (Monge 1781), and had to wait over two hundred years
for a solution: the existence of a solution for α = 1 was first proved by Sudakov
(1979), using probability theory. Since then other proofs have been given by Evans
and Gangbo (1999) on one side, and Trudinger and Wang (2001) on the other.

Meanwhile the original problem of Monge had been revived by Kantorovich (1942):
he found a very interesting dual formulation of the problem, which enabled him to
prove the existence of a generalized solution: the Kantorovich solution is not a map,
that is it does not associated with every θ a point x in X , it is a conditional probability,
that is, it associates with every θ a probability Pθ on X . This idea, and notably the
dual formulation, turned out to be extremely fruitful. The breakthrough came with
the work of Brenier (1991) in 1991, who shifted attention to the case of non-linear
transport costs, of the type ‖x − θ‖α with 0 < α < 1 (concave case) or α > 1 (convex
case), and more generally u (θ, x), and proved some remarkable results: he showed
that instead of looking for a measure-preserving map ξ (θ), it was enough to look
for a function V (θ) with some special property related to convexity. V (θ) is usually
referred to as the potential, and once the potential has been found, the transportation
map can be derived from its gradient V ′. This was a considerable simplification: find-
ing a measure-preserving map from a d-dimensional domain to another means finding
d functions of d variables satisfying some very complicated conditions on their deriv-
atives (the Jacobian determinant should be equal to 1), while finding the potential
means finding a single function of d variables, satisfying some simple inequalities.

Remarkably, economic theory had been progressing on parallel lines. Theory had
moved away from the Arrow-Debreu paradigm of complete information, and explor-
ing the consequences of informational asymmetry. It is by now well-known that this
splits into two branches, moral hazard and adverse selection. Because of the mathe-
matical difficulties, work quickly focused on the case when there are finitely many
types (typically two, the high type θ̄ and the low type θ ), or when there is a one-dimen-
sional continuum of types, θ ∈ [

θ, θ̄
]

(see for instance Laffont and Tirole (1993) and
the references therein). A few pioneers, however, had made inroads on the case when
there is a d-dimensional continuum of types, notably J.C. Rochet (see Rochet and
Stole (2003) and the references therein). The connection between their work and the
mathematical theory of optimal transportation was first noticed by myself in the late
nineties, after listening to a series of lectures by Robert McCann in Paris. The purpose
of the present notes is to bring the two theories together in a readable way.

These notes are structured as follows. In the first section, we will explain the opti-
mal transportation problem and its connection with the adverse selection problem
in the discrete case: there are no mathematical difficulties, and the potential func-
tion V (θ) is conjured up relatively easily.1 The potential function satisfies a special

1 Once the idea is there, of course! I do not know where this idea originates: I first met it in the PhD thesis
of J.C. Rochet, who attributes it to R.T. Rockafellar.
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Notes on optimal transportation 439

property, call u-convexity, which boils down to standard convexity in the case when
u (θ, x) = ∑

θi x i , and the second section is devoted to the analysis of u-convex func-
tions. Finally, the third section studies the continuous case: we proves Brenier’s main
results for the optimal transportation problem, and we describe Rochet and Choné’s
model for a principal facing a d-dimensional continuum of agents.

These note lay no claim to be exhaustive. We refer to Villani (2003) for optimal
transportation and to Bolton and Dewatripont (2005) for contract theory, including
adverse selection, but there are many other books and papers.

2 The discrete case

2.1 Optimal transportation

We are given two finite sets � and X , with the same number of elements, and a func-
tion u : � × X −→ R. The elements θ ∈ � and x ∈ X are understood as locations.
On each θ ∈ � is stored one unit of a homogeneous good, which is to be transporte
to some new location x ∈ X at minimal cost. Each location in � and X can hold at
most one unit of the good (so that, in fact, the transportation map from � to X will be
a bijection) and u (θ, x).is the cost of transporting one unit from θ to x . The total cost
is the sum of the individual costs.

Denote by B. the set of all bijections from � to X . A bijections ξ ∈ B is optimal
if it minimize:

∑
θ∈�

u (θ, ξ (θ)) ≤
∑
θ∈�

u(θ, ξ ′ (θ)) for all ξ ′ ∈ B.

If ξ is optimal, it will often be called the transportation map. Since the set of bijections
is finite (albeit large), it is obvious that such an optimal map exists. We will now try
to characterize it.

An N-chain is a sequence {θ0, . . . , θN } ⊂ �. It is closed if θ0 = θN so that it folds
back upon itself. A closed N -chain is also called an N -cycle. A chain is an N -chain,
for some finite N .

Proposition 1 A bijection ξ : � → X is optimal iff, for every cycle {θ0, . . . , θN = θ0},
we have:

N−1∑
n=0

[
u (θn, ξ (θn)) − u (θn, ξ (θn+1))

] ≥ 0. (A)

Proof (Sufficiency) Let ξ be a bijection satisfying condition (A), and let ζ be another
bijection from � to X . Pick any point θ0 ∈ �, and define the θn, n ≥ 1, recursively
by ζ (θn) = ξ (θn+1). Since � is a finite set, the θn cannot all be different. Let m be
the lowest integer such that θm = θN for some N > m. If m �= 0, we have:

ζ (θm−1) = ξ (θm) = ξ (θN ) = ζ (θN−1) .
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440 I. Ekeland

By the definition of m, it follows that θm−1 �= θN−1, and the above equality
contradicts the fact that ζ is a bijection. So we must have m = 0, and�1 = {θ0, . . . , θN }
is a cycle. Because of condition (A), we have:

∑
θ∈�1

[u (θ, ξ (θ)) − u (θ, ζ (θ))] =
N−1∑
n=0

[
u (θn, ξ (θn)) − u (θn, ξ (θn+1))

] ≥ 0.

If �1 is the whole of �, this concludes the proof. If not, pick another point θ ′
0 /∈ �1,

and go through the same procedure. We get another cycle �2, which has no common
point with �1. Proceeding in this way, we can partition � in a disjoint union of cycles
�k , 1 ≤ k ≤ K , and:

∑
θ∈�

[u (θ, ξ (θ)) − u (θ, ζ (θ))] =
K∑

k=1

∑
θ∈�k

[u (θ, ξ (θ)) − u (θ, ζ (θ))]

and the right-hand side is non-negative by condition (A). This means that ξ is
optimal. 	

Proof (Necessity) Assume a bijection ξ is optimal. Pick any cycle � = {θ0, . . . , θN }
in �. Define a new map ζ : � → X as follows:

ζ (θn) = ξ (θn+1) for 0 ≤ n ≤ N − 1

ζ (θ) = ξ (θ) if θ /∈ �.

Then ζ is still a bijection, and since ξ is optimal we must have:

∑
θ∈�

u (θ, ξ (θ)) ≥
∑
θ∈�

u (θ, ζ (θ)) .

Replacing ζ (θ) by its values, we get exactly condition (A). 	

Note for future reference that condition (A) can be rewritten as follows:

N∑
n=1

[
u (θn, ξ (θn)) − u (θn−1, ξ (θn))

] ≥ 0, θ0 = θN .

2.2 Potentials

In the following, we fix a point θ̄ ∈ �.

Proposition 2 Suppose a map ξ : � → � (not necessarily a permutation) satisfies
condition (A). Then the formula:
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f (θ)

:= inf

{
N∑

n=1

[
u (θn, ξ (θn)) −u (θn−1, ξ (θn))

] ∣∣{θ0, . . . , θN }∈�, θ0 = θ̄ , θN =θ

}

(1)

defines a real-valued function f on � with the following properties:

1. f (θ̄) = 0
2. f (θ ′) ≥ f (θ) + u(θ ′, x (θ)) − u (θ, x (θ)) ∀θ, θ ′.

Any such function f is called a potential associated with the map x.

Proof Since any chain starting and ending at θ̄ must be closed, we have:

f
(
θ̄
) ≥ inf

{
N∑

n=1

[
u (θn, x (θn)) − u (θn−1, x (θn))

] | {θ0, . . . , θN } ∈ �0

}
.

The right-hand side is non-negative by condition (A), so f
(
θ̄
) ≥ 0. On the other

hand, taking the trivial 1-path θ0 = θ̄ = θ1 yields f
(
θ̄
) ≤ 0, so we have f

(
θ̄
) = 0.

Formula (1) defines f as function with values in R∪{−∞}. Pick two points θ and θ ′.
We shall consider special chains connecting θ̄ to θ , those whose last leg is

{
θ ′, θ

}
.

From the definition of f , we have:

f (θ) ≤ inf

{
N∑

n=1

[
u (θn, x (θn)) − u (θn−1, x (θn))

] | θ0 = θ̄ , θN−1 = θ ′, θN = θ

}

= inf

{
N−1∑
n=1

[
u (θn, x (θn)) − u (θn−1, x (θn))

] + u (θ, x (θ))

−u
(
θ ′, x (θ)

) | θ0 = θ̄ , θN−1 = θ ′
}

= inf

{
N−1∑
n=1

[
u (θn, x (θn)) − u (θn−1, x (θn))

] | θ0 = θ̄ , θN−1 = θ ′
}

+ u (θ, x (θ)) − u
(
θ ′, x (θ)

)
= f (θ ′) + u (θ, x (θ)) − u

(
θ ′, x (θ)

)

and this inequality holds for every θ and θ ′. Applying it to θ = θ̄ , we get:

f (θ ′) ≥ u(θ ′, x(θ̄ )) − u(θ̄ , x(θ̄ )), ∀θ ′

≥ inf
{
u(θ ′, x(θ̄ )) − u(θ̄ , x(θ̄ )) | θ ∈ �

}

and since the set � is finite, the right-hand side is bounded. So the function f is real-
valued, and satisfies the desired inequality. 	
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442 I. Ekeland

Note for future use that equality is achieved if θ = θ ′, so that inequality (2) can be
rewritten:

f (θ ′) = sup
θ

{
u(θ ′, x (θ)) − u (θ, x (θ) + f (θ))

} = sup
θ

{
u(θ ′, x (θ)) + t (θ)

}
. (2)

Finally, note that the potential depends on the initial choice of θ̄ : different choices
lead to different potentials.

2.3 Adverse selection

Remarkably, there is another economic interpretation, not in terms of transporting
goods from one place to another, but in terms of contract theory and adverse selection.
We now see � as a set of types (note that a several individuals may belong to the same
type) and X as a set of tasks; however, we no longer require that � and X have the
same number of elements. An individual of type θ performing task x and getting paid
a sum t will have a total utility of

u (θ, x) + t

Tasks are being dispensed by a third party, the principal: he/she does so by pub-
lishing a list of tasks (also called a menu in the literature), each of which carries a
salary; any such pair (x, t), where x is a task and t is a salary, is called a contract.
Each agent then chooses in the list the contract he/she prefers: denote by (ξ (θ) , t (θ))

the contract chosen by agents of type θ (assuming they all choose the same contract).
We thereby get a map:

(ξ, t) : � → X × R

which is called a contract line (or menu). Such a contract line must satisfy the property:

u(θ, ξ(θ)) + t (θ) ≥ u(θ, ξ(θ ′)) + t (θ ′) ∀(θ, θ ′) (IC)

which simply expresses the fact that individuals of type θ do not prefer to their own
contract (ξ(θ), t (θ)) the contract (ξ(θ ′), t (θ ′)) that individuals of type θ ′ have chosen
[otherwise they have chosen (ξ(θ ′), t (θ ′)) in the first place].

An allocation ξ : � → X will be called incentive-compatible if there is a map
t : � → R such that the contract (x, t) satisfies (IC). It turns out that ξ is incentive-
compatible if and only if it satisfies condition (A).

Proposition 3 A map ξ : � → X is an incentive-compatible allocation iff it satisfies
condition (A).
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Proof (Necessity) Assume ξ is incentive-compatible, and let t be the corresponding
payment. Pick any cycle (θ0, . . . , θN ), so that θ0 = θN . We have:

u (θ0, ξ (θ0)) + t (θ0) ≥ u (θ0, ξ (θ1)) + t (θ1)

u (θ1, ξ (θ1)) + t (θ1) ≥ u (θ1, ξ (θ2)) + t (θ2)

. . .

u (θN−1, ξ (θN−1)) + t (θN−1) ≥ u (θN−1, ξ (θN )) + t (θN ).

Summing up, and remembering that t (θ0) = t (θN ), we find that all the terms in t
cancel out, and we are left with condition (A). 	

Proof (Sufficiency) Assume ξ satisfies condition (A). Let f be the potential associated
with x . Set:

t (θ) = f (θ) − u (θ, ξ (θ)).

Writing this into inequality (2) in Proposition 2 we get exactly condition (A). 	

Corollary 4 If � and X have the same number of elements, then any incentive-com-
patible allocation solves the optimal transportation problem.

2.4 An informal approach to the continuous case

The continuous version of the optimal transportation problem reads as follows. Given
two subsets � and X of R

d , endowed with the Borelian tribe and positive measures µ

and ν satisfying µ (�) = ν (X), find, among all measure-preserving maps ξ : � →
X, the one(s) which minimize the integral:

∫

�

u (θ, ξ (θ)) dθ.

Replacing the sum in condition (A) by an integral, we obtain that an optimal map
x must be such that:

∮
uθ (θ, ξ (θ)) dθi ≥ 0

along every closed loop. Running the loop in the other direction, we see that the
inequality is in fact an equality. By the Poincaré lemma, this means that uθ (θ, ξ (θ))

is a gradient: there is a function f : � → R such that:

∂u

∂θi
(θ, ξ (θ)) = ∂ f

∂θi
.

So we find the potential again ! Note that if the map x → uθ (θ, x) can be inverted,
then the map ξ (θ) can be deduced from the function f (θ). In other words, instead
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444 I. Ekeland

of looking for a map ξ from R
d into itself, that is, d functions of d variables, we are

looking for a single function f of d variables. In the sequel, we will find it as the
solution of a bizarre optimization problem. Note that f has very special properties,
which follow from formula (2), and which be useful. We describe them in the next
section.

3 u-Convex analysis

We are given sets � and X (no longer finite) and a map u : � × X → R. Points in �

will be denoted by θ , and points in X by x .

3.1 u-Convex functions

We will be dealing with function taking values in R∪ {+∞}. Such a function will be
called proper if it is not identically {+∞}.

A function f : � → R∪ {+∞} will be called u-convex iff there exists a non-empty
subset A ⊂ X × R such that:

f (θ) = sup
(x,t)∈A

{u (θ.x) + t}. (3)

A function g : x → R∪ {+∞} will be called u-convex iff there exists a non-empty
subset B ⊂ � × R such that:

g (x) = sup
(θ,t)∈B

{u (θ.x) + s}.

3.2 u-Conjugates

Let f : � → R∪ {+∞} be a proper function (not necessarily u-convex). We define
its u-conjugate f ∗ by:

f ∗ (x) = sup
θ

{u (θ, x) − f (θ)}. (4)

Let g : X → R∪ {+∞} be a proper function (not necessarily u-convex). We define
its u-conjugate g∗ by:

g∗ (θ) = sup
x

{u (θ.x) − g (x)}.

If f is proper, then f ∗ takes values in R∪ {+∞} and is a u-convex function on X .
If g is proper, then g∗ takes values in R∪ {+∞} and is a u-convex function on �.

Example 5 Set ϕ (θ) = u (θ, x̄) + t̄ . Then

ϕ∗ (x̄) = sup
θ

{
u (θ, x̄) − u (θ, x̄) − t̄

} = − t̄ .
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Example 6 Let θ → x (θ) be a map satisfying condition (A). The associated potential
f is u-convex: this follows from condition (2)

Conjugation reverses ordering: if f1 ≤ f2, then f ∗
1 ≥ f ∗

2 . As a consequence, if f
is u-convex, then f ∗ is proper. Indeed, since f is u-convex, we have f ≥ ϕ for some
function ϕ of this type, and then f ∗ (x̄) ≤ −t̄ < ∞.

Proposition 7 (The Fenchel inequality) For any proper functions f : � → R∪ {+∞}
and g : X → R∪ {+∞}, we have:

f (θ) + f ∗ (x) ≥ u (θ, x) ∀ (θ, x)

g (x) + g∗ (θ) ≥ u (θ, x) ∀ (θ, x).

3.3 u-Subgradients

Let f : � → R∪ {+∞} be a proper u-convex function. Take some point θ ∈ �. We
shall say that a point x ∈ X is a u-subgradient of f at θ if:

f (θ) + f ∗ (x) = u (θ, x). (5)

The set of subgradients of f at θ will be called the subdifferential of f at θ and
denoted by ∂u f (θ).

Similarly, let g : X → R∪ {+∞} be a proper convex function. Take some point
x ∈ X . We shall say that a point θ ∈ � is a u-subgradient of g at θ if:

g∗ (θ) + g (x) = u (θ, x) ∀ (θ, x).

Proposition 8 x ∈ ∂u f (θ) iff

f (θ ′) ≥ f (θ) + u(θ ′, x) − u(θ, x) ∀(θ, x). (6)

Proof (Necessity) Assume x ∈ ∂u f (θ). Then, by (5), we have:

f (θ ′) ≥ u(θ ′, x) − f ∗(x) = u(θ ′, x) − [u(θ, x) − f (θ)].

	

Proof (Sufficiency) We have:

f ∗(x) = sup
θ ′

{
u(θ ′, x) − f (θ ′)

}

≤ sup
θ ′

{
u(θ ′, x) − f (θ) − u(θ ′, x) + u(θ, x)

}

= u(θ, x) − f (θ)

so f (θ)+ f ∗(x) ≤ u(θ, x). We have the converse by the Fenchel inequality, so equal-
ity holds. 	
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Example 9 Consider a map θ → x (θ). Then it satisfies condition (A) iff there is a
u-convex function f such that x (θ) is a subgradient of f at θ .

3.4 u-Biconjugates

It follows from the Fenchel inequality that:

f ∗∗ (θ) = sup
x

{
u (θ, x) − f ∗ (x)

} ≤ f (θ).

Example 10 Set ϕ (θ) = u (θ, x̄) + t̄ . Then

ϕ∗∗ (θ) = sup
x

{
u (θ, x) − ϕ∗ (x)

} ≥ u (θ, x̄) + t̄ = ϕ (θ)

and hence ϕ∗∗ (θ) = ϕ (θ).

Proposition 11 For every proper function f : � → R, we have

f ∗∗ (θ) = sup
ϕ

{ϕ (θ) | ϕ ≤ f, ϕ u-convex}.

Proof Denote by f̄ the right-hand side of the above formula. We want to show that
f ∗∗ = f̄ .

Since f ∗∗ ≤ f and f ∗∗ is u-convex, we must have f ∗∗ ≤ f̄ .
To show that f ∗∗ ≥ f̄ , since f̄ is u-convex, it is enough to show that every

u-affine function which is less than f̄ is also less that f ∗∗. Let (x̄, t̄) be such that
u (θ, x̄) + t̄ ≤ f̄ (θ). Since f̄ ≤ f , we also have u (θ, x̄) + t̄ ≤ f (θ). Taking bicon-
jugates, we get u (θ, x̄) + t̄ ≤ f ∗∗ (θ) as well. 	

Corollary 12 If f is convex, then f ∗∗ = f . and we have:

f (θ) = sup
x

{
u (θ, x) − f ∗ (x)

}
. (7)

Corollary 13 The following are equivalent:

1. x ∈ ∂u f (θ)

2. θ ∈ ∂u f ∗ (x)

3. f (θ) + f ∗ (x) = u (θ, x).

3.5 Smoothness

In the following, and for the sake of commodity, we shall denote by uθ the partial
derivative of u with respect to the variables θ :

uθ (θ, x) :=
(

∂u

∂θ1
(θ, x) , . . . ,

∂u

∂θd
(θ, x)

)

and we shall assume the following:
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Condition (C) � is an open bounded subset of R
n and X is a compact subset of R

m.
The functions u and uθ are well-defined and continuous, and they extend continuously
to �̄ × X.

The family
{
u (θ, •)

∣∣ θ ∈ �̄
}

is equicontinuous on X . So all u-convex functions
on X are continuous on X . Because of the compactness of X , the supremum is attained
in condition (7), so that they all u-convex functions on � are subdifferentiable every-
where on �.

The function uθ (θ, x) is uniformly bounded on �̄ × X . It follows that the family
{u (•, x) | x ∈ X } is uniformly Lipschitz, and therefore all u-convex functions on
�̄ are Lipschitz on �. By a theorem of Rademacher, they are differentiable almost
everywhere with respect to the Lebesgue measure.

Proposition 14 Let f be a u-convex function f , and θ a point where it is Frechet-
differentiable with derivative ∇ f (θ̄). If x̄ ∈ ∂u f (θ̄), we have:

∇ f (θ̄) = uθ (θ̄ , x̄).

Proof By Proposition 8, we have f (θ) ≥ f (θ̄) + u(θ, x) − u(θ̄ , x) for all θ . Differ-
entiating at θ = θ̄ , we get the result. 	


3.6 Generalized Spence-Mirrlees

Definition 15 We shall say that u satisfies the generalized Spence-Mirrlees condition
(henceforth GSM) if it satisfies condition (C), and for Lebesgue-a.e. θ ∈ �, the map
uθ (θ, •) is one-to-one:

uθ (θ, x1) = uθ (θ, x2) �⇒ x1 = x2.

Example 16 If � = X = R
n , then u (θ, x) = ‖θ − x‖α satisfies (GSM) for α �= 0

and α �= 1.

Definition 17 Assume u satisfies GSM. Then, for every u-convex function f , there
is a unique map θ → ξ (θ) such that

∇ f (θ) = uθ (θ, ξ (θ)) Lebesgue-a.e.

We shall refer to ξ as the u-subgradient map of f .

The original condition formulated by Spence and Mirrlees was for a function u of
two real variables θ and x . It required that:

∂2u

∂θ∂x
< 0

so that the function x → uθ (θ, x) is decreasing, and hence one-to-one. Condition
(GSM) is an extension, which I learned from Guillaume Carlier.
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4 The continuous case

We now treat the optimal transportation problem in the continuous case. In contrast
with the discrete case, the existence of a solution now becomes highly non-trivial. We
solve it by finding the potential f (θ) associated with the optimal transportation map:
it is found by solving an optimization problem which we now state.

4.1 A bizarre optimization problem

We are given two Borel subsets � ⊂ R
d1 and X ⊂ R

d2 , endowed with positive and
finite measures µ and ν. We posit the following optimization problem:

inf

⎡
⎣

∫

�

f (θ) dµ +
∫

X
g (x) dν

⎤
⎦ (8)

f (θ) + g (x) ≥ u (θ, x) ∀ (θ, x) . (9)

Changing f to f +a and g to g−a, for any constant a, does not affect the constraint,
but changes the criterion by [µ (�) − ν (X)] a. It follows that, for the problem to be
meaningful, we must require that:

µ (�) = ν (X)

and that, even then, optimal solutions, if they exist, are not unique. If ( f, g) is optimal,
so is ( f + a, g − a).

Proposition 18 Assume �, X and u satisfy condition (C) and that µ (�) = ν (X).
Then the problem (8), (9) has an optimal solution ( f, g). If ( f, g) is an optimal solution,
then there is a u-convex function f̄ such that f = f̄ µ-a.e. and g = f̄ ∗ν − a.e.

Proof Let ( fn, gn) be a minimizing sequence:

∫

�

f (θ) dµ +
∫

X
g (x) dν → inf. (10)

Then f ∗
n ≤ gn and ( f, f ∗

n ) still satisfies the constraints, so ( f, f ∗
n ) still is a min-

imizing sequence. Then f ∗∗
n ≤ fn and ( f ∗∗

n , fn) still satisfies the constraints, so
( f ∗∗

n , f ∗
n ) is a minimizing sequence. The sequences f ∗∗

n and f ∗
n both are equicontinu-

ous, and they will have uniformly convergent subsequences provided they are bounded
(Ascoli’s theorem).

Set an = min� f ∗∗
n , and consider the functions hn (θ) = f ∗∗

n (θ) − an , so that the
hn are u-convex and hn ≥ 0. Since � is compact, there is a point θn where hn (θn) = 0.
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We have:

h∗
n (x) = sup

θ

{u (θ, x) − hn (θ)} ≥ u (θn .x) ≥ inf
�×X

{u (θ, x)}
hn (x) = sup

x

{
u (θ, x) − h∗

n (x)
} ≤ sup

�×X
{u (θ, x)} − inf

�×X
{u (θ, x)} .

So the sequence hn is uniformly bounded. A similar argument shows that the
sequence h∗

n is uniformly bounded. By Ascoli’s theorem, we can extract subsequences
which converge uniformly to u-convex functions f̄ and f̄ ∗. Taking limits in (10), we
get the result. 	

Theorem 19 Assume moreover that µ is absolutely continuous with respect to the
Lebesgue measure and that u satisfies GSM. Then the subgradient map ξ of f , defined
by:

∇ f (θ) = ∂u

∂θ
(θ, ξ (θ))

is a measure-preserving map from � to X :

ξ (µ) = ν

and if ( f1, g1) and ( f2, g2) are two optimal solutions, then ξ (θ) = ξ2 (θ) µ-a.e.

Proof Let ( f = g∗, g) be an optimal solution of problem (8), (9). Take any continuous
function ϕ on X . For any h > 0, we have:

∫

�

(g + hϕ)∗ dµ +
∫

X

(g + hϕ) dν ≥
∫

�

g∗dµ +
∫

X

gdν

which yields immediately:

1

h

∫

�

[
(g + hϕ)∗ − g∗] dµ +

∫

X

ϕdν ≥ 0. (11)

Now, let ξ (θ) and ξh (θ) be measurable selections of ∂u g and ∂u (g + hϕ), that is,
maps θ → ξ (θ) and θ → ξh (θ) such that

uθ (θ, ξ (θ)) = ∂g∗

∂θ
(θ) µ-a.e.

uθ (θ, ξh (θ)) = ∂

∂θ
(g + hϕ)∗ (θ) µ-a.e.

From the definition of g∗, we have:

u (θ, ξh (θ)) − g (ξh (θ)) ≤ g∗ (θ) = u (θ, ξ (θ)) − g (ξ (θ))
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so that:

u (θ, ξh (θ)) − g (ξh (θ)) − u (θ, ξ (θ)) + g (ξ (θ)) ≤ 0. (12)

From the definition of (g + hϕ)∗, we have:

u (θ, ξ (θ)) − g (ξ (θ)) − hϕ (ξ (θ)) ≤ (g + hϕ)∗ (θ)

= u (θ, ξh (θ)) − g (ξh (θ)) − hϕ (ξh (θ))

from which we deduce, taking into account the fact that ξ (θ) ∈ ∂u g∗ (θ):

hϕ (ξh (θ))−hϕ (ξ (θ)) ≤ u (θ, ξh (θ)) −g (ξh (θ))−u (θ, ξ (θ))+g (ξ (θ)) (13)

= (g+hϕ)∗ (θ)+hϕ (ξh (θ))−g∗ (θ). (14)

Finally, comparing (12), (13), and (14), we have:

− hϕ (ξ (θ)) ≤ (g + hϕ)∗ (θ) − g∗ (θ) ≤ −hϕ (ξh (θ)). (15)

Let us now use the assumptions. By Rademacher’s theorem and GSM, the maps
ξ (θ) and ξh (θ) are uniquely defined, up to a.e. equivalence. Letting h → 0, and
fixing θ, we find that, because of the compactness of X, the sequence ξh (θ) must
have cluster points. Any cluster point ξ (θ) of ξh (θ) must satisfy:

uθ (θ, ξ (θ)) = g∗
θ (θ)

which defines ξ (θ) uniquely, by GSM. So, ξh (θ) converges to ξ (θ) almost every-
where.2

Dividing by h, taking the limit as h → 0 and using the continuity of ϕ yields:

lim
h→0

1

h

[
(g + hϕ)∗ (θ) − g∗ (θ)

] = −ϕ (ξ (θ)). (16)

Taking limits in equation (11) yields:

−
∫

�

ϕ (ξ (θ)) dµ +
∫

X

ϕdν ≥ 0

and since this inequality holds both for ϕ and −ϕ, it must be an equality. So ξ sends
µ on ν, as announced.

2 There is a nicety here. We are applying Rademacher’s theorem to each (g + hϕ)∗, leaving aside a neg-
ligible set Nh which depends on h. We should take h = 1/k, with k → ∞ an integer, so that the union
∪h Nh =: N is still negligible.
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As for uniqueness, assume that ( f1, g1) and ( f2, g2) both are optimal solutions to
problem (8), (9), with ξ1 and ξ2 being the corresponding subgradient maps. Then:

f1 (θ) + g1 (ξ2 (θ)) ≥ u (θ, ξ2 (θ)) µ-a.e. (17)

Integrating, and remembering that ξ2 sends µ to ν, we get:

∫

�

f1dµ +
∫

X

(g1 ◦ ξ2) dµ =
∫

�

f1dµ +
∫

X

g1dν

≥
∫

�

u (θ, ξ2 (θ)) dµ (θ).

Since ( f2, g2) is another optimal solution, we also have:

∫

�

f1dµ +
∫

X

g1dν =
∫

�

f2dµ +
∫

X

g2dν

=
∫

�

u (θ, ξ2 (θ)) dµ (θ).

Comparing this with (17) we find that f1 (θ) + g1 (ξ2 (θ)) = u (θ, ξ2 (θ)) µ-a.e.
So ξ1 (θ) = ξ2 (θ) µ-a.e. 	

Corollary 20 If � is connected, if ( f1, g1) and ( f2, g2) are two solutions of problem
(8), (9) then there is a constant a such that f2 = f1 + a and g2 = g1 − a.

Note that, if GSM does not hold, then Theorem 19 does not apply. The proof carries
over up to equation (15). But now there is no reason why the functions ξh (θ) should
converge a.e., and no good way to pick ξ (θ). In fact, as we stated in the Introduction,
the original Monge problem, with u (θ, x) = ‖θ − x‖, does have an optimal solu-
tion, although u does not satisfy GSM, but there is great difficulty in proving it. Only
recently did we get a satisfactory proof.

On the other hand, if GSM does not hold, and/or µ is not continuous with respect
to the Lebesgue measure, problem (8), and (9) still has a solution ( f, g), which cor-
responds to generalized solutions of the optimal transportation problem (these are the
solutions that were discovered by Kantorovich). To see this, note that (16) becomes:

lim
h→0

sup
[
(g + hϕ)∗ (θ) − g∗ (θ)

] ≤ − min {ϕ (x) | x ∈ ∂u g (θ)}

and hence:

∫

�

max {ϕ (x) | x ∈ ∂u g (θ)} dµ ≥
∫

X

ϕdν ≥
∫

�

min {ϕ (x) | x ∈ ∂u g (θ)} dµ.
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It follows that the measure µ can be disintegrated as:

µ =
∫

X

πx dν

where πx is a probability measure on �. The interpretation is that all individuals of
the same type do not do the same thing: πx (θ) is the proportion of individuals of type
θ which choose ξ . When GSM is satisfied, all individuals of type θ choose the same
x = ξ (θ), so that πx (θ) is the Dirac mass at ξ (θ).

4.2 Optimal transportation

Theorem 21 Assume that �, X and u satisfy condition (C), that � is endowed with a
positive measure µ, absolutely continuous with respect to the Lebesgue measure, that
X is endowed with a positive measure ν such that:

µ (�) = ν (X) < ∞

and that u satisfies GSM. Then the problem:

max
∫

�

u (θ, ξ (θ)) dµ (θ) (18)

ξ : � → X, ξ (µ) = ν (19)

has a solution, and any two solutions are equal µ-a.e..

Proof We just consider the problem (8), (9) and apply Theorem 19. Let ( f, g) be an
optimal solution, and ξ̄ be the subgradient map of f . Then ξ̄ preserves measure, and if
ξ : � → X is another measure-preserving map, we have, by the Fenchel inequality:

∫

�

u (θ, ξ (θ)) dµ (θ) ≤
∫

�

f (θ) dµ (θ) +
∫

X

g (ξ (θ)) dµ (θ)

=
∫

�

f (θ) dµ (θ) +
∫

X

g (x) dν

=
∫

�

f (θ) dµ (θ) +
∫

�

g
(
ξ̄ (θ)

)
dν (ξ)

=
∫

�

u
(
θ, ξ̄ (θ)

)
dµ (θ)

the latter equality expressing the fact that ξ (θ) ∈ ∂u f (θ), and the intermediate equal-
ities using the fact that ξ and ξ̄ are measure-preserving. 	
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We shall now give a theorem where θ and x play fully symmetric roles: GSM will
be satisfied, not only with respect to θ , but also with respect to x . In that case the
mapping x can be inverted (up to a.e. equivalence).

Theorem 22 Let � be an open bounded subset of R
d1 and X be an open bounded sub-

set of R
d2 . Let µ and ν be positive measures on � and X respectively, both absolutely

continuous with respect to the Lebesgue measure, and such that:

µ (�) = ν (X) < ∞

Let u : � × X → R be continuously differentiable, and assume that all derivatives
extend continuously to the closure �̄ × X̄ . Assume finally that u satisfies GSM with
respect to the variables θ and x:

uθ (θ, x1) = uθ (θ, x2) �⇒ x1 = x2

ux (θ1, x) = ux (θ2, x) �⇒ θ1 = θ2

Then the problem

max
ξ

∫

�

u (θ, s (θ)) dµ (θ)

ξ : � → X, ξ (µ) = ν

(P1)

has a solution ξ̄ , and the problem

max
ζ

∫

X

u (ζ (x) , x) dν (x)

ζ : X → �, ζ (ν) = µ

(P2)

has a solution ζ̄ . These solutions are given by the formulas:

f (ξ (θ)) = max
x

{u (θ, x) − g (x)} a.e.

g (ζ (x)) = max
θ

{u (θ, x) − f (θ)} a.e.

where f = g∗ and g = f ∗ are a suitable pair of u-convex functions. If ξ1 and ξ2
are two solutions of (P1), then ξ1 = ξ2 a.e. If ζ1 = ζ2 are two solutions of (P2), then
ζ1 = ζ2 a.e. If ξ is a solution of (P1), and ζ is a solution of (P2), then

(ξ ◦ ζ ) (x) = x a.e.

(ζ ◦ ξ) (θ) = θ a.e.

Proof The existence and uniqueness of ξ and ζ follow from the preceding theorem.
For the same reason, we have{ξ (θ)} = ∂u f (θ) a.e. and {ζ (x)} = ∂u g (x) a.e. (the
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brackets mean that the sets are singletons), with g = f ∗. By corollary 13, it follows
that ξ and ζ are inverse of each other. 	


The assumptions will be satisfied if, for instance, � and X are open bounded subsets
of R

d , endowed with positive measures µ and ν, absolutely continuous with respect
to the Lebesgue measure, and if u (θ, x) = c (θ − x) satisfying one of the following:

• u (θ, x) = c (θ − x) where c : R
d → R is C1and c′ : R

d → R is one-to-one.
• � and X are disjoint, and u (θ, x) = c (‖θ − x‖) , where c′ : (0,∞) → R is

one-to-one.

For instance, if u (θ, x) := ‖θ − x‖α , the case α > 1 (convex cost) falls into the
first category, and the case α < 1 (concave cost) falls into the second (and so requires
� and X to be disjoint for the optimal transportation problem to have a solution). As
mentioned above, the case α = 1 does not satisfy GSM, and a special treatment is
required.

4.3 Brenier’s theorems

All these results originate with Yann Brenier, who investigated the optimal transpor-
tation problem for the special case when u (θ, x) = ‖θ − x‖2and � and X are subsets
of R

d , yielding the problem:

min
s

∫

�

1

2
‖θ − s (θ)‖2 dµ (θ)

s : � → X, s (µ) = ν.

Note that this is equivalent to the seemingly different problem:

max
s

∫

�

d∑
i=1

θ i si (θ) dµ (θ)

s : � → X, s (µ) = ν

corresponding to u (θ, x) = θ ′x . Indeed, we have:

∫

�

1

2
‖θ−s (θ)‖2 dµ (θ) =

∫

�

1

2
‖θ‖2 dµ (θ) +

∫

�

1

2
‖s (θ)‖2 dµ (θ)

−
∫

�

1

2
θ ′s (θ) dµ (θ)

=
∫

�

1

2
‖θ‖2 dµ (θ) +

∫

�

1

2
‖x‖2 dν (x)

−
∫

�

1

2
θ ′s (θ) dµ (θ)
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because s preserves measure. The first two terms on the right-hand side are constants,
and we are left with the third one to optimize.

As above, we assume that condition (C) is satisfied, and that µ is a positive
measure on �,absolutely continuous with respect to the Lebesgue measure and finite:
µ (�) < ∞. Applying theorem 21, we get a series of results.

Proposition 23 Let ν be a positive measure on X, such that µ (�) = ν (X). Then
there is a standard convex function f on R

d , and a µ-negligible subset N ⊂ �, such
that f is differentiable on �\N, and the gradient f ′ maps �\N into X and µ on ν:

f ′ (µ) = ν.

If g is another standard convex function with the same property, then f ′ = g′ a.e.

This is a remarkable theorem, because the set � and X are not required to be con-
vex.In fact, they can have any shape at all. Note that the definition of a standard convex
function as a supremum of affine functions over � implies that it is defined, not only
over �, but over R

d .

Proposition 24 Given any Borel map ξ : � → X, there is a standard convex function
f on R

d , and a µ-negligible subset N ⊂ �, such that f is differentiable on �\N,
and the gradient f ′ has the same distribution as x:

f ′ (µ) = ξ (µ).

If g is another standard convex function with the same property, then f ′ = g′ a.e. on
�.

This follows from the preceding proposition by taking ν := ξ (µ). The map f ′ :
�\N → X is called the increasing rearrangement of ξ (see the one-dimensional
case). It satisfies the following inequalities:

∫

�

∥∥θ − f ′ (θ)
∥∥2 dµ ≤

∫

�

‖θ − ξ (θ)‖2 dµ

∫

�

∑
θi

∂ f

∂θi
dµ ≥

∫

�

∑
θiξ

i (θ) dµ.

The next result states that we go from x : � −→X to its increasing rearrangement by
a measure-preserving transformation of the base �:

Proposition 25 Let X ⊂ Rd be an open bounded set and ξ : � → X be a Borel map
such that ξ (µ) is absolutely continuous with respect to the Lebesgue measure. Then
we have ξ = f ′ ◦ϕ a.e., where f is a standard convex function on � and ϕ : � → �

satisfies ϕ (µ) = µ.

Proof There is a standard convex function f such that f ′ (µ) = ξ (µ) . There is an
inverse g′ : X → �, which also preserves measure. Setting g′ ◦ ξ := ϕ and writing
ξ = f ′ ◦ g′ ◦ ξ gives the desired result. 	
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This is reminiscent of (but different from) the standard polar decomposition
theorem for matrices.

Proposition 26 Any invertible real matrix M can be written as M = U A, where U
is orthogonal and A is symmetric and positive definite.

Proof Take M an n ×n matrix with det M �= 0. Then A := (M∗M)1/2 is a symmetric
matrix, positive definite. Set M = U A. Then U = M A−1 and U∗ = A−1 M∗, so that
UU∗ = M A−2 M∗ = I. 	


4.4 Adverse selection

Let � ⊂ R
d1 be the space of types characterizing agents, and X ⊂ R

d2 be the space
of actions which the principal wishes the agents to undertake. Let us think of the
principal as a monopolist manufacturing cars; cars of quality x are priced at p (x) and
cost c (x) to produce. Each agent buys 0 or 1 car, and the principal has to decide what
qualities of cars to manufacture and at what prices to sell them in order to maximize
his/her profit.

The distribution µ of types is known to the principal. An agent with type θ buying
a car of quality x and paying p for it derives utility u (θ, x) − p. If this is less than a
certain quantity ū (θ) (his reservation utility), he will not undertake the action. A price
menu is a map θ → (ξ (θ) , p (ξ (θ))). This menu will be individually rational if:

u(θ, ξ(θ)) − p(ξ(θ)) ≥ ū(θ) ∀θ (IR)

and incentive-compatible if:

u(θ, ξ(θ)) − p(ξ(θ)) ≥ u(θ, ξ(θ ′)) − p(ξ(θ ′)) ∀(θ, θ ′). (IC)

The expected utility which the principal derives from this price menu is:

∫

A

[p (ξ (θ)) − c (ξ (θ))] dµ (θ) (20)

where A ⊂ � is the set of agents which actually buy. The principal’s problem consists
in maximizing this integral over all individually rational and incentive-compatible
contracts, that is, over all maps ξ : � → X satisfying (IR) and (IC).

The key to solving this problem consists of introducing the function:

f (θ) := max
x

{u (θ, x) − p (x)}.

From the point of view of mathematics, this is the potential function associated with
an optimal transportation problem where the cost is u (θ, x). From the point of view of
economics, this is the indirect utility which consumer θ derives from the contract p. We
know that f is u-convex; if GSM holds, and µ is absolutely continuous with respect
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to the Lebesgue measure, the u-subgradient map ξ , given by ∇ f (θ) = u (θ, ξ (θ)), is
well-defined a.e., and finding an incentive-compatible map ξ : � → X is equivalent
to finding its potential f : � → R, which is a u-convex function. This is the basic
simplification that connects optimal transportation and adverse selection.

Writing the integral (20) in terms of the potential f , we get:

∫

A

[p (ξ (θ)) − c (ξ (θ))] dµ (θ) =
∫

A

[u (θ, ξ (θ)) − f (θ) − c (ξ (θ))] dµ (θ).

Condition (IC) is equivalent to f being u-convex. Condition (IR) is equivalent to
f (θ) ≥ ū (θ). If f (θ) > ū (θ), type θ will buy. If f (θ) < ū (θ), type θ will not
buy from the principal. If f (θ) = ū (θ), type θ is indifferent; if this occurs on a set
of measure 0, it is unimportant, if it occurs on a set of positive measure, the modeler
will break the tie. We end up with the following reformulation of the principal-agent
problem:

sup
f

∫

�

[u (θ, ξ (θ)) − f (θ) − c (ξ (θ))] dµ

f (θ) ≥ ū (θ) , f u-convex (P)

∇ f (θ) = u (θ, ξ (θ)) a.e.

There is an existence theory for such problems, which was developed by Guillaume
Carlier (2001). We will not give it here, and we will concentrate instead on the standard
convex case, where u is linear with respect to θ . Note, however, the following general
result, which is an economic version of the rearrangement theorem.

Proposition 27 Let ξ : � → X be an allocation such that u (θ, ξ (θ)) − p (ξ (θ)) ≥
ū (θ) ∀θ . Assume µ is absolutely continuous with respect to the Lebesgue measure,
and u satisfies GSM. Then there is an incentive-compatible allocation y with the same
distribution.

Proof Just take for ν the image of µ by ξ , so that ν := ξ (µ), and apply the results in
the preceding subsection. 	


We will now take a linear specification for u in problem (P). Then u-convex func-
tions are convex in the standard sense. This model was studied by Rochet and Chone
(1998), and to this day is the only truly multidimensional model of adverse selection
which has been fully analyzed and understood.

Set � = [a, a + 1]2, with a > 0. Assume the distribution of types is uniform so
that µ is the Lebesgue measure. Set X = R

2+ and:

u (θ, x) = θ1x1 + θ2x2

c (x) = c

2

(
x2

1 + x2
2

)
.
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GSM is satisfied. Note that, since x1 and x2 are positive, utility is increasing in the
parameters θ . The higher θ1 and θ2, the more interested the agent is in the action θ .
Let all agents have the same reservation utility 0. Problem (P) then becomes:

sup
∫

a≤θ1≤a+1
a≤θ2≤a+1

[
− c

2

(
∂ f

∂θ1

2

+ ∂ f

∂θ2

2)
+ θ1

∂ f

∂θ1
+ θ2

∂ f

∂θ2
− f (θ)

]
dθ1dθ2

f convex, f (θ) ≥ 0 a.e.

The quality bought by agents of type θ is:

ξ (θ) = ∇ f (θ).

This problem was solved explicitly by Rochet and Chone. They find that the square
� is partitioned into three separate regions �i , i = 1, 2, 3; the boundaries are parallel
straight lines of slopes −1, and the three regions are ordered from the lower left corner
�1 to the upper right corner �3, the middle region �2 being sandwiched between
them. More precisely:

�1 = {θ ∈ � | θ1 + θ2 ≤ m1}
�2 = {θ ∈ � | m1 ≤ θ1 + θ2 ≤ m2}
�1 = {θ ∈ � | m2 ≤ θ1 + θ2}

with:

m1 := 4a + √
4a2 + 6

3
,

m2 := 2a +
√

2

3
.

Problem (P) has a unique solution f , which is described as follows. On �1, we
have f = 0: the individual rationality constraint is binding. On �2, the incentive com-
patibility constraint is binding: f is constant along all lines with slope −1. In other
words, there is a convex function ϕ (t) of a single variable t such that, in the region
�2, we have f (θ1, θ2) = ϕ (θ1 + θ2). In the third region, �3, neither (IR) nor (IC)
are binding, so that the function f is strictly convex and satisfies the Euler-Lagrange
equation associated with the integral, namely:

c

(
∂2 f

∂θ2
1

+ ∂2 f

∂θ2
2

)
= 3.

From the economic point of view, �1 is the no-buy region: all types θ ∈ �1 stay
out of the market. �2 is the bunching region: types θ = (θ1, θ2) and θ ′ = (θ ′

1, θ
′
2)

such that θ1 + θ2 = θ ′
1 + θ ′

2 buy the same quality
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∇ f (θ) = (ϕ′(θ1 + θ2), ϕ
′(θ1 + θ2)).

Finally, �3 is the screening region: in that region, individuals of different types buy
different qualities, so that they reveal their type by buying (this is why it is called the
screening region).

One can also figure out the set of qualities which are actually bought. It consists of

the square Q := [ a
c , b

c

]2
, together with the straight segment L joining its lower left

corner
( a

c , a
c

)
to (0, 0). Qualities in Q are bought by types in the screening region,

qualities in L by individuals in the bunching region.
How robust is the Rochet-Chone solution? Unfortunately, we do not know: their

method of proof is heavily dependent on the particular form of the integral and the
shape of the domain �. We refer to Carlier and Lachand-Robert (2001) for more
mathematics (they prove that the optimal f is C1 in general situations), and to Carlier
et al. (2007) for more examples of adverse selection with multidimensional types. But
it is fair to say that this area will be a topic of research for many year to come.
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