Optimal pits and optimal transportation

Ivar Ekeland¹ Maurice Queyranne²

¹CEREMADE, Université Paris-Dauphine

²CORE, U.C. Louvain, and Sauder School of Business at UBC

CESAME Seminar in Systems and Control, UCL November 18, 2014

Introduction: Open Pit Mining

A Continuous Space Model

An Optimal Transportation Problem

The Kantorovich Dual

Elements of *c*-Convex Analysis

Solving the Dual Problem

Solving the Optimum Pit Problem

Perspectives

Introduction: Open Pit Mining

- A Continuous Space Model
- An Optimal Transportation Problem
- The Kantorovich Dual
- Elements of c-Convex Analysis
- Solving the Dual Problem
- Solving the Optimum Pit Problem

Perspectives

To dig a hole in the ground and excavate valuable minerals

To dig a hole in the ground and excavate valuable minerals

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

To dig a hole in the ground and excavate valuable minerals

Diavik diamond mine, Canada

(日)、(四)、(E)、(E)、(E)

To dig a hole in the ground and excavate valuable minerals

Super Pit gold mine, Kalgoorli, Western Australia

Diavik diamond mine, Canada

(日) (圖) (E) (E) (E)

To dig a hole in the ground and excavate valuable minerals

Diavik diamond mine, Canada

Super Pit gold mine, Kalgoorli, Western Australia

Chuquicamata copper mine, Chile (4.3 km \times 3 km \times 900 m)

Mining Processes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1. Project evaluation: is it worth investing?

1. Project evaluation: is it worth investing?

Where to dig? How deep? What to process?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1. Project evaluation: is it worth investing?

Where to dig? How deep? What to process?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1. Project evaluation: is it worth investing?

Where to dig? How deep? What to process?

Optimum open pit problem (determining ultimate pit limits)

1. Project evaluation: is it worth investing?

Where to dig? How deep? What to process?

Optimum open pit problem (determining ultimate pit limits)

2. Rough-cut planning: take time into account

- 1. Project evaluation: is it worth investing?
 - Where to dig? How deep? What to process?
 - Optimum open pit problem (determining ultimate pit limits)

- 2. Rough-cut planning: take time into account
 - Where, when and what to excavate, to process subject to capacity and other resource constraints, and the time value of money (cash flows)

- 1. Project evaluation: is it worth investing?
 - Where to dig? How deep? What to process?
 - Optimum open pit problem (determining ultimate pit limits)

- 2. Rough-cut planning: take time into account
 - Where, when and what to excavate, to process subject to capacity and other resource constraints, and the time value of money (cash flows)
 - Process choices, major equipment decisions

- 1. Project evaluation: is it worth investing?
 - Where to dig? How deep? What to process?
 - Optimum open pit problem (determining ultimate pit limits)

- 2. Rough-cut planning: take time into account
 - Where, when and what to excavate, to process subject to capacity and other resource constraints, and the time value of money (cash flows)
 - Process choices, major equipment decisions

- 1. Project evaluation: is it worth investing?
 - Where to dig? How deep? What to process?
 - Optimum open pit problem (determining ultimate pit limits)
- 2. Rough-cut planning: take time into account
 - Where, when and what to excavate, to process subject to capacity and other resource constraints, and the time value of money (cash flows)
 - Process choices, major equipment decisions

Mine production planning problem (decisions over time)

- 1. Project evaluation: is it worth investing?
 - Where to dig? How deep? What to process?
 - Optimum open pit problem (determining ultimate pit limits)
- 2. Rough-cut planning: take time into account
 - Where, when and what to excavate, to process subject to capacity and other resource constraints, and the time value of money (cash flows)
 - Process choices, major equipment decisions
 - Mine production planning problem (decisions over time)

3. Detailed operations planning

- 1. Project evaluation: is it worth investing?
 - Where to dig? How deep? What to process?
 - Optimum open pit problem (determining ultimate pit limits)
- 2. Rough-cut planning: take time into account
 - Where, when and what to excavate, to process subject to capacity and other resource constraints, and the time value of money (cash flows)
 - Process choices, major equipment decisions
 - Mine production planning problem (decisions over time)

- 3. Detailed operations planning
 - Detailed mine design: benches, routes, facilities

- 1. Project evaluation: is it worth investing?
 - Where to dig? How deep? What to process?
 - Optimum open pit problem (determining ultimate pit limits)
- 2. Rough-cut planning: take time into account
 - Where, when and what to excavate, to process subject to capacity and other resource constraints, and the time value of money (cash flows)
 - Process choices, major equipment decisions
 - Mine production planning problem (decisions over time)

- 3. Detailed operations planning
 - Detailed mine design: benches, routes, facilities
 - Operations scheduling, flows of materials, etc.

- 1. Project evaluation: is it worth investing?
 - Where to dig? How deep? What to process?
 - Optimum open pit problem (determining ultimate pit limits)
- 2. Rough-cut planning: take time into account
 - Where, when and what to excavate, to process subject to capacity and other resource constraints, and the time value of money (cash flows)
 - Process choices, major equipment decisions
 - Mine production planning problem (decisions over time)

- 3. Detailed operations planning
 - Detailed mine design: benches, routes, facilities
 - Operations scheduling, flows of materials, etc.
- 4. Execution...

The pit walls cannot be too steep, else they may collapse

The pit walls cannot be too steep, else they may collapse

- 日本 - 1 日本 - 日本 - 日本

The pit walls cannot be too steep, else they may collapse

West Angelas iron ore mine, Western Australia

- 日本 - 1 日本 - 日本 - 日本

The pit walls cannot be too steep, else they may collapse

West Angelas iron ore mine, Western Australia

Angouran lead & zinc mine, Iran (25 million tons rock slide, 2006)

The pit walls cannot be too steep, else they may collapse

Angouran lead & zinc mine, Iran (25 million tons rock slide, 2006)

West Angelas iron ore mine, Western Australia

Bingham Canyon copper mine, Utah (massive landslide, 10 April 2013)

Discretization: Block Models

[Lerchs and Grossmann, 1965]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Discretization: Block Models

[Lerchs and Grossmann, 1965]

Divide the volume of interest into 3D blocks

typically rectangular, with vertical sides

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Divide the volume of interest into 3D blocks

- typically rectangular, with vertical sides
- the slope constraints are *approximated* by precedence constraints

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Divide the volume of interest into 3D blocks

- typically rectangular, with vertical sides
- the slope constraints are *approximated* by precedence constraints

typically, 1:5 or 1:9 pattern

Divide the volume of interest into 3D blocks

- typically rectangular, with vertical sides
- the slope constraints are *approximated* by precedence constraints

- typically, 1:5 or 1:9 pattern
- it is easy to determine the *net profit* from excavating, and possibly processing, the block itself

Divide the volume of interest into 3D blocks

- typically rectangular, with vertical sides
- the slope constraints are *approximated* by precedence constraints

- typically, 1:5 or 1:9 pattern
- it is easy to determine the *net profit* from excavating, and possibly processing, the block itself

Divide the volume of interest into 3D blocks

- typically rectangular, with vertical sides
- the slope constraints are *approximated* by precedence constraints

- typically, 1:5 or 1:9 pattern
- it is easy to determine the *net profit* from excavating, and possibly processing, the block itself

Leads to a nicely structured (dual network flow, minimum cut) discrete optimization problem

Divide the volume of interest into 3D blocks

- typically rectangular, with vertical sides
- the slope constraints are *approximated* by precedence constraints

- typically, 1:5 or 1:9 pattern
- it is easy to determine the *net profit* from excavating, and possibly processing, the block itself

Leads to a nicely structured (dual network flow, minimum cut) discrete optimization problem

implemented in commercial software (Whittle, Geovia)
▲□▶ ▲圖▶ ▲≧▶ ▲≣▶ = 目 - のへで

Discretized (block) models:

▶ are very large (100,000s to millions of blocks)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Discretized (block) models:

- are very large (100,000s to millions of blocks)
 - ▶ production planning models even larger (× number of periods)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Discretized (block) models:

- are very large (100,000s to millions of blocks)
 - production planning models even larger (× number of periods)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

the real problem is, to a large extent, continuous:

Discretized (block) models:

- are very large (100,000s to millions of blocks)
 - production planning models even larger (× number of periods)

- ロ ト - 4 回 ト - 4 □ - 4

- the real problem is, to a large extent, continuous:
 - ore density and rock properties tend to vary continuously

Discretized (block) models:

- are very large (100,000s to millions of blocks)
 - production planning models even larger (× number of periods)
- the real problem is, to a large extent, continuous:
 - ore density and rock properties tend to vary continuously
 - their distributions are estimated ("smoothed") from sample (drill hole) data and other geological information

(日) (同) (三) (三) (三) (○) (○)

Discretized (block) models:

- are very large (100,000s to millions of blocks)
 - production planning models even larger (× number of periods)
- the real problem is, to a large extent, continuous:
 - ore density and rock properties tend to vary continuously
 - their distributions are estimated ("smoothed") from sample (drill hole) data and other geological information

(日) (同) (三) (三) (三) (○) (○)

block precedences only roughly model the slope constraints

Discretized (block) models:

- are very large (100,000s to millions of blocks)
 - production planning models even larger (× number of periods)
- the real problem is, to a large extent, continuous:
 - ore density and rock properties tend to vary continuously
 - their distributions are estimated ("smoothed") from sample (drill hole) data and other geological information

(日) (同) (三) (三) (三) (○) (○)

block precedences only roughly model the slope constraints

Discretized (block) models:

- are very large (100,000s to millions of blocks)
 - production planning models even larger (× number of periods)
- the real problem is, to a large extent, continuous:
 - ore density and rock properties tend to vary continuously
 - their distributions are estimated ("smoothed") from sample (drill hole) data and other geological information

block precedences only roughly model the slope constraints
 Earlier continuous space models:

Discretized (block) models:

- are very large (100,000s to millions of blocks)
 - production planning models even larger (× number of periods)
- the real problem is, to a large extent, continuous:
 - ore density and rock properties tend to vary continuously
 - their distributions are estimated ("smoothed") from sample (drill hole) data and other geological information

block precedences only roughly model the slope constraints
 Earlier continuous space models:

Matheron (1975) (focus on "cutoff grade" parametrization)

Discretized (block) models:

- are very large (100,000s to millions of blocks)
 - production planning models even larger (× number of periods)
- the real problem is, to a large extent, continuous:
 - ore density and rock properties tend to vary continuously
 - their distributions are estimated ("smoothed") from sample (drill hole) data and other geological information

- block precedences only roughly model the slope constraints
 Earlier continuous space models:
 - ▶ Matheron (1975) (focus on "cutoff grade" parametrization)
 - Morales (2002), Guzmán (2008)

Discretized (block) models:

- are very large (100,000s to millions of blocks)
 - production planning models even larger (× number of periods)
- the real problem is, to a large extent, continuous:
 - ore density and rock properties tend to vary continuously
 - their distributions are estimated ("smoothed") from sample (drill hole) data and other geological information
- block precedences only roughly model the slope constraints

Earlier continuous space models:

- ▶ Matheron (1975) (focus on "cutoff grade" parametrization)
- Morales (2002), Guzmán (2008)
- Alvarez & al. (2011) (also, Griewank & Strogies, 2011, 2013): calculus of variations model in functional space

Discretized (block) models:

- are very large (100,000s to millions of blocks)
 - production planning models even larger (× number of periods)
- the real problem is, to a large extent, continuous:
 - ore density and rock properties tend to vary continuously
 - their distributions are estimated ("smoothed") from sample (drill hole) data and other geological information
- block precedences only roughly model the slope constraints Earlier continuous space models:
 - Matheron (1975) (focus on "cutoff grade" parametrization)
 - Morales (2002), Guzmán (2008)
 - Alvarez & al. (2011) (also, Griewank & Strogies, 2011, 2013): calculus of variations model in functional space
 - ► determine optimum depth φ(y) under each surface point y s.t. bounds on the derivative of φ (wall slope constraints)

Discretized (block) models:

- are very large (100,000s to millions of blocks)
 - production planning models even larger (× number of periods)
- the real problem is, to a large extent, continuous:
 - ore density and rock properties tend to vary continuously
 - their distributions are estimated ("smoothed") from sample (drill hole) data and other geological information
- block precedences only roughly model the slope constraints Earlier continuous space models:
 - Matheron (1975) (focus on "cutoff grade" parametrization)
 - Morales (2002), Guzmán (2008)
 - Alvarez & al. (2011) (also, Griewank & Strogies, 2011, 2013): calculus of variations model in functional space
 - ► determine optimum depth φ(y) under each surface point y s.t. bounds on the derivative of φ (wall slope constraints)

Discretized (block) models:

- are very large (100,000s to millions of blocks)
 - production planning models even larger (× number of periods)
- the real problem is, to a large extent, continuous:
 - ore density and rock properties tend to vary continuously
 - their distributions are estimated ("smoothed") from sample (drill hole) data and other geological information
- block precedences only roughly model the slope constraints Earlier continuous space models:
 - Matheron (1975) (focus on "cutoff grade" parametrization)
 - Morales (2002), Guzmán (2008)
 - Alvarez & al. (2011) (also, Griewank & Strogies, 2011, 2013): calculus of variations model in functional space
 - ► determine optimum depth φ(y) under each surface point y s.t. bounds on the derivative of φ (wall slope constraints)

All these continuous space approaches suffer from lack of convexity

how to deal with *local optima?*

Introduction: Open Pit Mining

- A Continuous Space Model
- An Optimal Transportation Problem
- The Kantorovich Dual
- Elements of c-Convex Analysis
- Solving the Dual Problem
- Solving the Optimum Pit Problem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Perspectives

<ロ> <@> < E> < E> E のQの

A general model [Matheron 1975]: Given

compact E ⊂ R³: the domain to be mined
 e.g., E = A × [h₁, h₂], where A ⊂ R² is the claim
 [h₁, h₂] is the elevation or depth range

A general model [Matheron 1975]: Given

compact E ⊂ R³: the domain to be mined e.g., E = A × [h₁, h₂], where A ⊂ R² is the claim [h₁, h₂] is the elevation or depth range

• map $\Gamma: E \twoheadrightarrow E$: extracting x requires extracting all of $\Gamma(x)$

A general model [Matheron 1975]: Given

compact E ⊂ R³: the domain to be mined e.g., E = A × [h₁, h₂], where A ⊂ R² is the *claim* [h₁, h₂] is the elevation or depth range

- map $\Gamma: E \twoheadrightarrow E$: extracting x requires extracting all of $\Gamma(x)$
 - transitive: $[x' \in \Gamma(x) \text{ and } x'' \in \Gamma(x')] \implies x'' \in \Gamma(x)$

A general model [Matheron 1975]: Given

compact E ⊂ R³: the domain to be mined e.g., E = A × [h₁, h₂], where A ⊂ R² is the *claim* [h₁, h₂] is the elevation or depth range

- map $\Gamma: E \twoheadrightarrow E$: extracting x requires extracting all of $\Gamma(x)$
 - ▶ transitive: $[x' \in \Gamma(x) \text{ and } x'' \in \Gamma(x')] \implies x'' \in \Gamma(x)$

• reflexive: $x \in \Gamma(x)$

A general model [Matheron 1975]: Given

compact E ⊂ R³: the domain to be mined e.g., E = A × [h₁, h₂], where A ⊂ R² is the claim [h₁, h₂] is the elevation or depth range

• map $\Gamma: E \twoheadrightarrow E$: extracting x requires extracting all of $\Gamma(x)$

▶ transitive: $[x' \in \Gamma(x) \text{ and } x'' \in \Gamma(x')] \implies x'' \in \Gamma(x)$

- reflexive: $x \in \Gamma(x)$
- closed graph: $\{(x, y) : x \in E, y \in \Gamma(x)\}$ is closed

A general model [Matheron 1975]: Given

compact E ⊂ R³: the domain to be mined e.g., E = A × [h₁, h₂], where A ⊂ R² is the claim [h₁, h₂] is the elevation or depth range

• map $\Gamma: E \twoheadrightarrow E$: extracting x requires extracting all of $\Gamma(x)$

▶ transitive: $[x' \in \Gamma(x) \text{ and } x'' \in \Gamma(x')] \implies x'' \in \Gamma(x)$

- reflexive: $x \in \Gamma(x)$
- closed graph: $\{(x, y) : x \in E, y \in \Gamma(x)\}$ is closed

A general model [Matheron 1975]: Given

compact E ⊂ R³: the domain to be mined e.g., E = A × [h₁, h₂], where A ⊂ R² is the claim [h₁, h₂] is the elevation or depth range

• map $\Gamma : E \twoheadrightarrow E$: extracting x requires extracting all of $\Gamma(x)$

- ▶ transitive: $[x' \in \Gamma(x) \text{ and } x'' \in \Gamma(x')] \implies x'' \in \Gamma(x)$
- reflexive: $x \in \Gamma(x)$
- closed graph: $\{(x,y): x \in E, y \in \Gamma(x)\}$ is closed

a pit F is a measurable subset of E closed under Γ :

 $\Gamma(F) = F$ where $\Gamma(F) := \bigcup_{x \in F} \Gamma(x)$

A general model [Matheron 1975]: Given

compact E ⊂ R³: the domain to be mined e.g., E = A × [h₁, h₂], where A ⊂ R² is the claim [h₁, h₂] is the elevation or depth range

• map $\Gamma : E \twoheadrightarrow E$: extracting x requires extracting all of $\Gamma(x)$

- ▶ transitive: $[x' \in \Gamma(x) \text{ and } x'' \in \Gamma(x')] \implies x'' \in \Gamma(x)$
- reflexive: $x \in \Gamma(x)$
- closed graph: $\{(x, y) : x \in E, y \in \Gamma(x)\}$ is closed
- a pit F is a measurable subset of E closed under Γ :

 $\Gamma(F) = F$ where $\Gamma(F) := \bigcup_{x \in F} \Gamma(x)$

• continuous function $g: E \to \mathbb{R}$

A general model [Matheron 1975]: Given

compact E ⊂ R³: the domain to be mined
 e.g., E = A × [h₁, h₂], where A ⊂ R² is the claim
 [h₁, h₂] is the elevation or depth range

• map $\Gamma : E \twoheadrightarrow E$: extracting x requires extracting all of $\Gamma(x)$

- ▶ transitive: $[x' \in \Gamma(x) \text{ and } x'' \in \Gamma(x')] \implies x'' \in \Gamma(x)$
- reflexive: $x \in \Gamma(x)$
- closed graph: $\{(x,y): x \in E, y \in \Gamma(x)\}$ is closed
- a pit F is a measurable subset of E closed under $\Gamma :$

 $\Gamma(F) = F$ where $\Gamma(F) := \bigcup_{x \in F} \Gamma(x)$

• continuous function $g: E \to \mathbb{R}$

▶ g(x)dx net profit from volume element $dx = dx_1 dx_2 dx_3$ at x

(日) (同) (三) (三) (三) (○) (○)

A general model [Matheron 1975]: Given

compact E ⊂ R³: the domain to be mined
 e.g., E = A × [h₁, h₂], where A ⊂ R² is the claim
 [h₁, h₂] is the elevation or depth range

• map $\Gamma: E \twoheadrightarrow E$: extracting x requires extracting all of $\Gamma(x)$

- ▶ transitive: $[x' \in \Gamma(x) \text{ and } x'' \in \Gamma(x')] \implies x'' \in \Gamma(x)$
- reflexive: $x \in \Gamma(x)$
- closed graph: $\{(x,y): x \in E, y \in \Gamma(x)\}$ is closed
- a pit F is a measurable subset of E closed under Γ :

 $\Gamma(F) = F$ where $\Gamma(F) := \cup_{x \in F} \Gamma(x)$

- continuous function $g: E \to \mathbb{R}$
 - ▶ g(x)dx net profit from volume element $dx = dx_1 dx_2 dx_3$ at x

(日) (同) (三) (三) (三) (○) (○)

• $g(F) := \int_F g(x) dx$ total net profit from pit F

A general model [Matheron 1975]: Given

compact E ⊂ R³: the domain to be mined
 e.g., E = A × [h₁, h₂], where A ⊂ R² is the claim
 [h₁, h₂] is the elevation or depth range

• map $\Gamma : E \twoheadrightarrow E$: extracting x requires extracting all of $\Gamma(x)$

- ▶ transitive: $[x' \in \Gamma(x) \text{ and } x'' \in \Gamma(x')] \implies x'' \in \Gamma(x)$
- reflexive: $x \in \Gamma(x)$
- closed graph: $\{(x, y) : x \in E, y \in \Gamma(x)\}$ is closed
- a pit F is a measurable subset of E closed under Γ :

 $\Gamma(F) = F$ where $\Gamma(F) := \bigcup_{x \in F} \Gamma(x)$

- continuous function $g: E \to \mathbb{R}$
 - ▶ g(x)dx net profit from volume element $dx = dx_1 dx_2 dx_3$ at x
 - $g(F) := \int_F g(x) dx$ total net profit from pit F
 - assume $\int_E \max\{0, g(x)\} dx > 0$ (there is some profit to be made)

A general model [Matheron 1975]: Given

compact E ⊂ R³: the domain to be mined
 e.g., E = A × [h₁, h₂], where A ⊂ R² is the claim
 [h₁, h₂] is the elevation or depth range

• map $\Gamma : E \twoheadrightarrow E$: extracting x requires extracting all of $\Gamma(x)$

- ▶ transitive: $[x' \in \Gamma(x) \text{ and } x'' \in \Gamma(x')] \implies x'' \in \Gamma(x)$
- reflexive: $x \in \Gamma(x)$
- closed graph: $\{(x, y) : x \in E, y \in \Gamma(x)\}$ is closed
- a pit F is a measurable subset of E closed under Γ :

 $\Gamma(F) = F$ where $\Gamma(F) := \bigcup_{x \in F} \Gamma(x)$

- continuous function $g: E \to \mathbb{R}$
 - ▶ g(x)dx net profit from volume element $dx = dx_1 dx_2 dx_3$ at x
 - $g(F) := \int_F g(x) dx$ total net profit from pit F
 - assume $\int_E \max\{0, g(x)\} dx > 0$ (there is some profit to be made)

A general model [Matheron 1975]: Given

compact E ⊂ R³: the domain to be mined
 e.g., E = A × [h₁, h₂], where A ⊂ R² is the claim
 [h₁, h₂] is the elevation or depth range

• map $\Gamma : E \twoheadrightarrow E$: extracting x requires extracting all of $\Gamma(x)$

- ▶ transitive: $[x' \in \Gamma(x) \text{ and } x'' \in \Gamma(x')] \implies x'' \in \Gamma(x)$
- reflexive: $x \in \Gamma(x)$
- closed graph: $\{(x,y): x \in E, y \in \Gamma(x)\}$ is closed
- a pit F is a measurable subset of E closed under Γ :

 $\Gamma(F) = F$ where $\Gamma(F) := \bigcup_{x \in F} \Gamma(x)$

- continuous function $g: E \to \mathbb{R}$
 - ▶ g(x)dx net profit from volume element $dx = dx_1 dx_2 dx_3$ at x
 - $g(F) := \int_F g(x) dx$ total net profit from pit F
 - ▶ assume $\int_E \max\{0, g(x)\} dx > 0$ (there is some profit to be made)

Optimum pit problem: find $F^* \in \arg \max\{g(F) : F \text{ is a pit}\}$

Introduction: Open Pit Mining

A Continuous Space Model

An Optimal Transportation Problem

- The Kantorovich Dual
- Elements of *c*-Convex Analysis
- Solving the Dual Problem
- Solving the Optimum Pit Problem

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Perspectives

• Let
$$E^+ := \overline{\{g(x) > 0\}}$$
 and $E^- := \overline{\{g(x) \le 0\}}$ (compact sets)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- ▶ Let $E^+ := \overline{\{g(x) > 0\}}$ and $E^- := \overline{\{g(x) \le 0\}}$ (compact sets)
- Add a sink ω

and a source α

- ▶ Let $E^+ := \overline{\{g(x) > 0\}}$ and $E^- := \overline{\{g(x) \le 0\}}$ (compact sets)
- Add a sink ω

 \blacktriangleright unallocated profits from excavated points will be sent to ω and a source α

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ▶ Let $E^+ := \overline{\{g(x) > 0\}}$ and $E^- := \overline{\{g(x) \le 0\}}$ (compact sets)
- Add a sink ω
 - \blacktriangleright unallocated profits from excavated points will be sent to ω
 - and a source α
 - \blacktriangleright unallocated costs of unexcavated points will be paid by α

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ
- ▶ Let $E^+ := \overline{\{g(x) > 0\}}$ and $E^- := \overline{\{g(x) \le 0\}}$ (compact sets)
- Add a sink ω

 \blacktriangleright unallocated profits from excavated points will be sent to ω and a source α

 \blacktriangleright unallocated costs of unexcavated points will be paid by α

• Let $X := E^+ \cup \{\alpha\}$ and $Y := E^- \cup \{\omega\}$ (also compact)

- ▶ Let $E^+ := \overline{\{g(x) > 0\}}$ and $E^- := \overline{\{g(x) \le 0\}}$ (compact sets)
- Add a sink ω

 \blacktriangleright unallocated profits from excavated points will be sent to ω and a source α

- \blacktriangleright unallocated costs of unexcavated points will be paid by α
- Let $X := E^+ \cup \{\alpha\}$ and $Y := E^- \cup \{\omega\}$ (also compact)
- \blacktriangleright endowed with non-negative measures μ and ν defined by

$$\begin{array}{ll} \mu\left(\{\alpha\}\right) = \int_{E^{-}} |g(z)| \, dz & \quad \mu|_{E^{+}} = g(z) dz \\ \nu\left(\{\omega\}\right) = \int_{E^{+}} g(z) dz & \quad \nu|_{E^{-}} = |g(z)| \, dz \end{array}$$

- ▶ Let $E^+ := \overline{\{g(x) > 0\}}$ and $E^- := \overline{\{g(x) \le 0\}}$ (compact sets)
- Add a sink ω

 \blacktriangleright unallocated profits from excavated points will be sent to ω and a source α

- \blacktriangleright unallocated costs of unexcavated points will be paid by α
- Let $X := E^+ \cup \{\alpha\}$ and $Y := E^- \cup \{\omega\}$ (also compact)
- \blacktriangleright endowed with non-negative measures μ and ν defined by

$$\begin{array}{ll} \mu\left(\{\alpha\}\right) = \int_{E^{-}} |g(z)| \, dz & \quad \mu|_{E^{+}} = g(z) dz \\ \nu\left(\{\omega\}\right) = \int_{E^{+}} g(z) dz & \quad \nu|_{E^{-}} = |g(z)| \, dz \end{array}$$

Profit allocations are allowed

- ▶ Let $E^+ := \overline{\{g(x) > 0\}}$ and $E^- := \overline{\{g(x) \le 0\}}$ (compact sets)
- Add a sink ω

 \blacktriangleright unallocated profits from excavated points will be sent to ω and a source α

- \blacktriangleright unallocated costs of unexcavated points will be paid by α
- Let $X := E^+ \cup \{\alpha\}$ and $Y := E^- \cup \{\omega\}$ (also compact)
- \blacktriangleright endowed with non-negative measures μ and ν defined by

$$\begin{array}{ll} \mu \left(\{ \alpha \} \right) = \int_{E^{-}} |g(z)| \, dz & \mu|_{E^{+}} = g(z) dz \\ \nu \left(\{ \omega \} \right) = \int_{E^{+}} g(z) dz & \nu|_{E^{-}} = |g(z)| \, dz \end{array}$$

- Profit allocations are allowed
 - from every profitable $x \in E^+$ to every $y \in \Gamma(x) \cap E^-$

- ▶ Let $E^+ := \overline{\{g(x) > 0\}}$ and $E^- := \overline{\{g(x) \le 0\}}$ (compact sets)
- Add a sink ω

 \blacktriangleright unallocated profits from excavated points will be sent to ω and a source α

- \blacktriangleright unallocated costs of unexcavated points will be paid by α
- Let $X := E^+ \cup \{\alpha\}$ and $Y := E^- \cup \{\omega\}$ (also compact)
- \blacktriangleright endowed with non-negative measures μ and ν defined by

$$\begin{array}{ll} \mu\left(\{\alpha\}\right) = \int_{E^{-}} |g(z)| \, dz & \quad \mu|_{E^{+}} = g(z) dz \\ \nu\left(\{\omega\}\right) = \int_{E^{+}} g(z) dz & \quad \nu|_{E^{-}} = |g(z)| \, dz \end{array}$$

- Profit allocations are allowed
 - from every profitable $x \in E^+$ to every $y \in \Gamma(x) \cap E^-$
 - from source α to all $y \in E^-$ (unpaid costs)

- ▶ Let $E^+ := \overline{\{g(x) > 0\}}$ and $E^- := \overline{\{g(x) \le 0\}}$ (compact sets)
- Add a sink ω

 \blacktriangleright unallocated profits from excavated points will be sent to ω and a source α

- \blacktriangleright unallocated costs of unexcavated points will be paid by α
- Let $X := E^+ \cup \{\alpha\}$ and $Y := E^- \cup \{\omega\}$ (also compact)
- \blacktriangleright endowed with non-negative measures μ and ν defined by

$$\begin{array}{ll} \mu\left(\{\alpha\}\right) = \int_{E^{-}} |g(z)| \, dz & \quad \mu|_{E^{+}} = g(z) dz \\ \nu\left(\{\omega\}\right) = \int_{E^{+}} g(z) dz & \quad \nu|_{E^{-}} = |g(z)| \, dz \end{array}$$

- Profit allocations are allowed
 - from every profitable $x \in E^+$ to every $y \in \Gamma(x) \cap E^-$
 - from source α to all $y \in E^-$ (unpaid costs)
 - from all $x \in E^+$ to sink ω (unallocated, or "excess" profits)

- ▶ Let $E^+ := \overline{\{g(x) > 0\}}$ and $E^- := \overline{\{g(x) \le 0\}}$ (compact sets)
- Add a sink ω

 \blacktriangleright unallocated profits from excavated points will be sent to ω and a source α

- \blacktriangleright unallocated costs of unexcavated points will be paid by α
- Let $X := E^+ \cup \{\alpha\}$ and $Y := E^- \cup \{\omega\}$ (also compact)
- \blacktriangleright endowed with non-negative measures μ and ν defined by

$$\begin{array}{ll} \mu\left(\{\alpha\}\right) = \int_{E^{-}} |g(z)| \, dz & \quad \mu|_{E^{+}} = g(z) dz \\ \nu\left(\{\omega\}\right) = \int_{E^{+}} g(z) dz & \quad \nu|_{E^{-}} = |g(z)| \, dz \end{array}$$

- Profit allocations are allowed
 - from every profitable $x \in E^+$ to every $y \in \Gamma(x) \cap E^-$
 - from source α to all $y \in E^-$ (unpaid costs)
 - from all $x \in E^+$ to sink ω (unallocated, or "excess" profits)

- ▶ Let $E^+ := \overline{\{g(x) > 0\}}$ and $E^- := \overline{\{g(x) \le 0\}}$ (compact sets)
- Add a sink ω

 \blacktriangleright unallocated profits from excavated points will be sent to ω and a source α

- \blacktriangleright unallocated costs of unexcavated points will be paid by α
- Let $X := E^+ \cup \{\alpha\}$ and $Y := E^- \cup \{\omega\}$ (also compact)
- \blacktriangleright endowed with non-negative measures μ and ν defined by

$$\begin{array}{ll} \mu\left(\{\alpha\}\right) = \int_{E^{-}} |g(z)| \, dz & \quad \mu|_{E^{+}} = g(z) dz \\ \nu\left(\{\omega\}\right) = \int_{E^{+}} g(z) dz & \quad \nu|_{E^{-}} = |g(z)| \, dz \end{array}$$

- Profit allocations are allowed
 - from every profitable $x \in E^+$ to every $y \in \Gamma(x) \cap E^-$
 - from source α to all $y \in E^-$ (unpaid costs)
 - from all $x \in E^+$ to sink ω (unallocated, or "excess" profits)

These restrictions will be modelled by a "transportation" (or allocation) cost function $c: X \times Y \longrightarrow \mathbb{R}$

X	Y	c(x,y)
$x \in E^+$	$y \in \Gamma(x)$	0
$x \in E^+$	$y \notin \Gamma(x), \ y \in E^-$	$+\infty$
$x \in E^+$	$y = \omega$	1
$x = \alpha$	$y \in Y$	0

<□ > < @ > < E > < E > E のQ @

X	Y	c(x,y)
$x \in E^+$	$y \in \Gamma(x)$	0
$x \in E^+$	$y \notin \Gamma(x), \ y \in E^-$	$+\infty$
$x \in E^+$	$y = \omega$	1
$x = \alpha$	$y \in Y$	0

▶ Minimizing total "costs" ⇔ minimizing total unallocated profits

・ロト・日本・モト・モート ヨー うへで

X	Y	c(x,y)
$x \in E^+$	$y \in \Gamma(x)$	0
$x \in E^+$	$y \notin \Gamma(x), \ y \in E^-$	$+\infty$
$x \in E^+$	$y = \omega$	1
$x = \alpha$	$y \in Y$	0

▶ Minimizing total "costs" ⇔ minimizing total unallocated profits

・ロト・日本・モト・モート ヨー うへで

X	Y	c(x,y)
$x \in E^+$	$y \in \Gamma(x)$	0
$x \in E^+$	$y \notin \Gamma(x), \ y \in E^-$	$+\infty$
$x \in E^+$	$y = \omega$	1
$x = \alpha$	$y \in Y$	0

► Minimizing total "costs" ⇐⇒ minimizing total unallocated profits
Lemma: c is lower semi-continuous (l.s.c.)

X	Y	c(x,y)
$x \in E^+$	$y \in \Gamma(x)$	0
$x \in E^+$	$y \notin \Gamma(x), y \in E^-$	$+\infty$
$x \in E^+$	$y = \omega$	1
$x = \alpha$	$y \in Y$	0

• Minimizing total "costs" \iff minimizing total unallocated profits **Lemma:** c is lower semi-continuous (l.s.c.) Set $\Pi(\mu, \nu)$ of nonnegative Radon measures (profit allocations) π with marginals $\pi_X = \mu$ and $\pi_Y = \nu$

X	Y	c(x,y)
$x \in E^+$	$y \in \Gamma(x)$	0
$x \in E^+$	$y \notin \Gamma(x), y \in E^-$	$+\infty$
$x \in E^+$	$y = \omega$	1
$x = \alpha$	$y \in Y$	0

• Minimizing total "costs" \iff minimizing total unallocated profits **Lemma:** c is lower semi-continuous (l.s.c.) Set $\Pi(\mu, \nu)$ of nonnegative Radon measures (profit allocations) π with marginals $\pi_X = \mu$ and $\pi_Y = \nu$

Optimal transportation problem in Kantorovich form:

X	Y	c(x,y)
$x \in E^+$	$y \in \Gamma(x)$	0
$x \in E^+$	$y \notin \Gamma(x), y \in E^-$	$+\infty$
$x \in E^+$	$y = \omega$	1
$x = \alpha$	$y \in Y$	0

• Minimizing total "costs" \iff minimizing total unallocated profits **Lemma:** c is lower semi-continuous (l.s.c.) Set $\Pi(\mu, \nu)$ of nonnegative Radon measures (profit allocations) π with marginals $\pi_X = \mu$ and $\pi_Y = \nu$

Optimal transportation problem in Kantorovich form:

$$\min_{\pi} \mathbf{E}^{\pi}[c] := \int_{X \times Y} c(x, y) d\pi \quad \text{s.t. } \pi \in \Pi(\mu, \nu) \tag{K}$$

X	Y	c(x,y)
$x \in E^+$	$y \in \Gamma(x)$	0
$x \in E^+$	$y \notin \Gamma(x), \ y \in E^-$	$+\infty$
$x \in E^+$	$y = \omega$	1
$x = \alpha$	$y \in Y$	0

• Minimizing total "costs" \iff minimizing total unallocated profits **Lemma:** c is lower semi-continuous (l.s.c.) Set $\Pi(\mu, \nu)$ of nonnegative Radon measures (profit allocations) π

with marginals
$$\pi_X = \mu$$
 and $\pi_Y = \nu$

Optimal transportation problem in Kantorovich form:

$$\min_{\pi} \mathbf{E}^{\pi}[c] := \int_{X \times Y} c(x, y) d\pi \quad \text{s.t. } \pi \in \Pi(\mu, \nu)$$
 (K)

Proposition 1: Problem (K) has a solution

X	Y	c(x,y)
$x \in E^+$	$y \in \Gamma(x)$	0
$x \in E^+$	$y \notin \Gamma(x), \ y \in E^-$	$+\infty$
$x \in E^+$	$y = \omega$	1
$x = \alpha$	$y \in Y$	0

► Minimizing total "costs" ↔ minimizing total unallocated profits
Lemma: c is lower semi-continuous (l.s.c.)
Set U (u.u.) of nonnecessition Declar processing (numfit allocations) of nonnecessition.

Set $\Pi(\mu, \nu)$ of nonnegative Radon measures (profit allocations) π with marginals $\pi_X = \mu$ and $\pi_Y = \nu$

Optimal transportation problem in Kantorovich form:

$$\min_{\pi} \mathbf{E}^{\pi}[c] := \int_{X \times Y} c(x, y) d\pi \quad \text{s.t. } \pi \in \Pi(\mu, \nu)$$
 (K)

Proposition 1: Problem (K) has a solution

Proof: The set of positive Radon measures on compact space $X \times Y$ is weak-* compact, and the map $\pi \to E^{\pi}[c]$ is weak-* l.s.c.

Introduction: Open Pit Mining

A Continuous Space Model

An Optimal Transportation Problem

The Kantorovich Dual

Elements of *c*-Convex Analysis

Solving the Dual Problem

Solving the Optimum Pit Problem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Perspectives

Potentials (duals, Lagrange multipliers)

- $p \in L^1(X,\mu)$ associated with $\pi_X = \mu$
- $q \in L^1(Y, \nu)$ associated with $\pi_Y = \nu$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Potentials (duals, Lagrange multipliers)

- $p \in L^1(X, \mu)$ associated with $\pi_X = \mu$
- $q \in L^1(Y, \nu)$ associated with $\pi_Y = \nu$

Dual admissible set:

$$\mathcal{A} := \{ (p,q) \ : \ p(x) - q(y) \leq c(x,y) \ \ (\mu,\nu) \text{-a.s.} \}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Potentials (duals, Lagrange multipliers)

- $p \in L^1(X, \mu)$ associated with $\pi_X = \mu$
- $q \in L^1(Y, \nu)$ associated with $\pi_Y = \nu$

Dual admissible set:

$${\cal A}:=\{(p,q) \ : \ p(x)-q(y) \le c(x,y) \ \ (\mu,\nu)\text{-a.s.}\}$$

Dual objective:

$$J(p,q) := \int_X p \, d\mu - \int_Y q \, d\nu$$

=
$$\int_{E^+} (p(z) - q(\omega)) \, d\mu - \int_{E^-} (q(z) - p(\alpha)) \, d\nu$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Potentials (duals, Lagrange multipliers)

- $p \in L^1(X, \mu)$ associated with $\pi_X = \mu$
- $q \in L^1(Y, \nu)$ associated with $\pi_Y = \nu$

Dual admissible set:

$${\cal A}:=\{(p,q) \ : \ p(x)-q(y) \le c(x,y) \ \ (\mu,\nu)\text{-a.s.}\}$$

Dual objective:

$$J(p,q) := \int_X p \, d\mu - \int_Y q \, d\nu$$

=
$$\int_{E^+} (p(z) - q(\omega)) \, d\mu - \int_{E^-} (q(z) - p(\alpha)) \, d\nu$$

Kantorovich dual: $\sup J(p,q)$ s.t. $(p,q) \in \mathcal{A}$ (D)

Potentials (duals, Lagrange multipliers)

- $p \in L^1(X, \mu)$ associated with $\pi_X = \mu$
- $q \in L^1(Y, \nu)$ associated with $\pi_Y = \nu$

Dual admissible set:

$${\cal A}:=\{(p,q) \ : \ p(x)-q(y) \le c(x,y) \ \ (\mu,\nu)\text{-a.s.}\}$$

Dual objective:

$$J(p,q) := \int_X p \, d\mu - \int_Y q \, d\nu$$

=
$$\int_{E^+} \left(p(z) - q(\omega) \right) d\mu - \int_{E^-} \left(q(z) - p(\alpha) \right) d\nu$$

Kantorovich dual: $\sup J(p,q)$ s.t. $(p,q) \in \mathcal{A}$ (D)

Theorem [Kantorovich, 1942]: When the cost function c is l.s.c.,

 $\inf(\mathsf{K}) = \sup(\mathsf{D})$

Potentials (duals, Lagrange multipliers)

- $p \in L^1(X, \mu)$ associated with $\pi_X = \mu$
- $q \in L^1(Y, \nu)$ associated with $\pi_Y = \nu$

Dual admissible set:

$${\cal A}:=\{(p,q) \ : \ p(x)-q(y) \le c(x,y) \ \ (\mu,\nu)\text{-a.s.}\}$$

Dual objective:

$$J(p,q) := \int_X p \, d\mu - \int_Y q \, d\nu$$

=
$$\int_{E^+} \left(p(z) - q(\omega) \right) d\mu - \int_{E^-} \left(q(z) - p(\alpha) \right) d\nu$$

Kantorovich dual: $\sup J(p,q)$ s.t. $(p,q) \in \mathcal{A}$ (D)

Theorem [Kantorovich, 1942]: When the cost function c is l.s.c.,

$$\inf(\mathsf{K}) = \sup(\mathsf{D})$$

there is no duality gap (in continuous variables)

Let F be a pit, $F^+ := F \cap E^+$ and $F^- := F \cap E^-$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let F be a pit, $F^+ := F \cap E^+$ and $F^- := F \cap E^-$ Define $p_F : X \to \mathbb{R}$ and $q_F : Y \to \mathbb{R}$ by:

$$p_F(\alpha) = 0, \quad p_F(x) = \begin{cases} 1 \text{ if } x \in F^+\\ 0 \text{ otherwise} \end{cases}$$
$$q_F(\omega) = 0, \quad q_F(y) = \begin{cases} 1 \text{ if } y \in F^-\\ 0 \text{ otherwise} \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let F be a pit, $F^+ := F \cap E^+$ and $F^- := F \cap E^-$ Define $p_F : X \to \mathbb{R}$ and $q_F : Y \to \mathbb{R}$ by:

$$p_F(\alpha) = 0, \quad p_F(x) = \begin{cases} 1 \text{ if } x \in F^+\\ 0 \text{ otherwise} \end{cases}$$
$$q_F(\omega) = 0, \quad q_F(y) = \begin{cases} 1 \text{ if } y \in F^-\\ 0 \text{ otherwise} \end{cases}$$

Then (p_F, q_F) is admissible (i.e., in \mathcal{A}) and $J(p_F, q_F) = g(F)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let F be a pit, $F^+ := F \cap E^+$ and $F^- := F \cap E^-$ Define $p_F : X \to \mathbb{R}$ and $q_F : Y \to \mathbb{R}$ by:

$$p_F(\alpha) = 0, \quad p_F(x) = \begin{cases} 1 \text{ if } x \in F^+ \\ 0 \text{ otherwise} \end{cases}$$
$$q_F(\omega) = 0, \quad q_F(y) = \begin{cases} 1 \text{ if } y \in F^- \\ 0 \text{ otherwise} \end{cases}$$

Then (p_F, q_F) is admissible (i.e., in \mathcal{A}) and $J(p_F, q_F) = g(F)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Corollary: $\sup(\mathsf{P}) \leq \inf(\mathsf{K})$

Let F be a pit, $F^+ := F \cap E^+$ and $F^- := F \cap E^-$ Define $p_F : X \to \mathbb{R}$ and $q_F : Y \to \mathbb{R}$ by:

$$p_F(\alpha) = 0, \quad p_F(x) = \begin{cases} 1 \text{ if } x \in F^+ \\ 0 \text{ otherwise} \end{cases}$$
$$q_F(\omega) = 0, \quad q_F(y) = \begin{cases} 1 \text{ if } y \in F^- \\ 0 \text{ otherwise} \end{cases}$$

Then (p_F, q_F) is admissible (i.e., in \mathcal{A}) and $J(p_F, q_F) = g(F)$

Corollary: $sup(P) \le inf(K)$

 i.e., transportation problem (K) is a *weak dual* to the optimum pit problem (P)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction: Open Pit Mining

A Continuous Space Model

An Optimal Transportation Problem

The Kantorovich Dual

Elements of *c*-Convex Analysis

Solving the Dual Problem

Solving the Optimum Pit Problem

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Perspectives

c-Fenchel Conjugates

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

c-Fenchel Conjugates

Given $c: X \times Y \to \mathbb{R}$, define the *c*-Fenchel conjugates (or *c*-Fenchel-Legendre transforms)

• $p^{\sharp}: Y \to \mathbb{R}$ of any function $p \in L^1(X, \mu)$ by

$$p^{\sharp}(y) := \operatorname{ess\,sup}_{x \in X} \left(p(x) - c(x, y) \right)$$

• $q^{\flat}: X \to \mathbb{R}$ of any function $q \in L^1(Y, \nu)$ by

$$q^{\flat}(x) := \operatorname{ess\,inf}_{y \in Y} \left(q(y) + c(x, y) \right)$$

where $\operatorname{ess\,sup} f(x) = \inf_{N \in \mathcal{N}} \sup_{x \in X \setminus N} f(x)$, where \mathcal{N} is the set of measurable subsets $N \subset X$ with $\mu(N) = 0$

c-Fenchel Conjugates

Given $c: X \times Y \to \mathbb{R}$, define the *c*-Fenchel conjugates (or *c*-Fenchel-Legendre transforms)

• $p^{\sharp}: Y \to \mathbb{R}$ of any function $p \in L^1(X, \mu)$ by

$$p^{\sharp}(y) := \operatorname{ess\,sup}_{x \in X} \left(p(x) - c(x, y) \right)$$

• $q^{\flat}:X \to \mathbb{R}$ of any function $q \in L^1(Y,\nu)$ by

$$q^{\flat}(x) := \operatorname{ess\,inf}_{y \in Y} \left(q(y) + c(x, y) \right)$$

where $\operatorname{ess\,sup} f(x) = \inf_{N \in \mathcal{N}} \sup_{x \in X \setminus N} f(x)$, where \mathcal{N} is the set of measurable subsets $N \subset X$ with $\mu(N) = 0$

- ▶ To simplify, we'll write sup and inf instead of ess sup and ess inf
- Similarly, all equalities and inequalities will be μ -a.e. in X and ν -a.e. in Y

Properties of *c*-Fenchel Conjugates

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

[Carlier, 2003; Ekeland, 2010]
Properties of *c*-Fenchel Conjugates

[Carlier, 2003; Ekeland, 2010]

```
For all x \in X, y \in Y,
```

$$p(x) \le c(x, y) + p^{\sharp}(y) \le p^{\sharp\flat}(x)$$
$$q(y) \ge q^{\flat}(x) - c(x, y) \ge q^{\flat\sharp}(y)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Properties of *c*-Fenchel Conjugates

[Carlier, 2003; Ekeland, 2010]

```
For all x \in X, y \in Y,
```

$$p(x) \le c(x, y) + p^{\sharp}(y) \le p^{\sharp\flat}(x)$$
$$q(y) \ge q^{\flat}(x) - c(x, y) \ge q^{\flat\sharp}(y)$$

c-Fenchel duality:

$$p^{\sharp\flat\sharp}=p^\sharp$$
 and $q^{\flat\sharp\flat}=q^\flat$

Properties of *c*-Fenchel Conjugates

[Carlier, 2003; Ekeland, 2010]

For all $x \in X$, $y \in Y$,

$$p(x) \le c(x, y) + p^{\sharp}(y) \le p^{\sharp\flat}(x)$$
$$q(y) \ge q^{\flat}(x) - c(x, y) \ge q^{\flat\sharp}(y)$$

c-Fenchel duality:

$$p^{\sharp \flat \sharp} = p^{\sharp}$$
 and $q^{\flat \sharp \flat} = q^{\flat}$

Monotonicity:

$$p_1 \le p_2 \implies p_1^{\sharp} \le p_2^{\sharp}$$
$$q_1 \le q_2 \implies q_1^{\flat} \le q_2^{\flat}$$

$$\begin{split} p^{\sharp}(y) &:= \max \left\{ p(\alpha), \sup_{x \,:\, y \in \Gamma(x)} p(x) \right\} & \text{for } y \in E^{-} \\ p^{\sharp}(\omega) &:= \max \left\{ p(\alpha), \sup_{x \in E^{+}} p(x) - 1 \right\} \\ q^{\flat}(x) &:= \min \left\{ 1 + q(\omega), \inf_{y \in \Gamma(x)} q(y) \right\} & \text{for } x \in E^{+} \\ q^{\flat}(\alpha) &:= \min \left\{ q(\omega), \inf_{y \in E^{-}} q(y) \right\} \end{split}$$

$$p^{\sharp}(y) := \max\left\{p(\alpha), \sup_{x : y \in \Gamma(x)} p(x)\right\} \quad \text{for } y \in E^{-1}$$

$$p^{\sharp}(\omega) := \max\left\{p(\alpha), \sup_{x \in E^{+}} p(x) - 1\right\}$$

$$q^{\flat}(x) := \min\left\{1 + q(\omega), \inf_{y \in \Gamma(x)} q(y)\right\} \quad \text{for } x \in E^{+1}$$

$$q^{\flat}(\alpha) := \min\left\{q(\omega), \inf_{y \in E^{-}} q(y)\right\}$$

 p^{\sharp} and q^{\flat} are increasing with respect to Γ :

$$\begin{aligned} x' \in \Gamma(x) &\Longrightarrow q^{\flat} \left(x' \right) \geq q^{\flat}(x) \\ y' \in \Gamma(y) &\Longrightarrow p^{\sharp} \left(y' \right) \geq p^{\sharp}(y) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$p^{\sharp}(y) := \max\left\{p(\alpha), \sup_{x : y \in \Gamma(x)} p(x)\right\} \quad \text{for } y \in E^{-1}$$

$$p^{\sharp}(\omega) := \max\left\{p(\alpha), \sup_{x \in E^{+}} p(x) - 1\right\} \quad q^{\flat}(x) := \min\left\{1 + q(\omega), \inf_{y \in \Gamma(x)} q(y)\right\} \quad \text{for } x \in E^{+1}$$

$$q^{\flat}(\alpha) := \min\left\{q(\omega), \inf_{y \in E^{-}} q(y)\right\}$$

 p^{\sharp} and q^{\flat} are increasing with respect to $\Gamma {:}$

$$\begin{aligned} x' \in \Gamma(x) &\Longrightarrow q^{\flat} (x') \ge q^{\flat}(x) \\ y' \in \Gamma(y) &\Longrightarrow p^{\sharp} (y') \ge p^{\sharp}(y) \end{aligned}$$

For a pit $F, \quad p_F = q_F^\flat \;\; \text{and} \;\; q_F = p_F^\sharp$

Table of Contents

Introduction: Open Pit Mining

- A Continuous Space Model
- An Optimal Transportation Problem
- The Kantorovich Dual
- Elements of c-Convex Analysis
- Solving the Dual Problem
- Solving the Optimum Pit Problem

Perspectives

Translation Invariance

< ロ > < 聞 > < 言 > < 言 > 、 言 > 、 言 > のへの

Translation Invariance

Given $(p,q) \in \mathcal{A}$ and constants p_0 , p_1 , q_0 , q_1 satisfying:

$$\mu(E^{+})(q_{0}-p_{1})-\nu(E^{-})(p_{0}-q_{1})=0$$

define \tilde{p} and \tilde{q} by:

$$\begin{split} \tilde{p}(\alpha) &= p(\alpha) - p_0 \\ \tilde{p}(x) &= p(x) - p_1 \quad \text{for} \quad x \in E^+ \\ \tilde{q}(\omega) &= q(\omega) - q_0 \\ \tilde{q}(y) &= q(y) - q_1 \quad \text{for} \quad y \in E^- \end{split}$$

Then:

$$J\left(\tilde{p},\tilde{q}\right) = J(p,q)$$

・ロト・日本・モト・モート ヨー うへで

<ロト (個) (目) (目) (目) (0) (0)</p>

If
$$(p,q) \in \mathcal{A}$$
, then $p(x) - q(y) \le c(x,y)$ for all (x,y) , so that:

$$\begin{aligned} p(x) \le \inf_{y} \left\{ c(x,y) + q(y) \right\} &= q^{\flat}(x) \\ q(y) \ge \sup_{x} \left\{ p(x) - c(x,y) \right\} &= p^{\sharp}(y) \end{aligned}$$

<□ > < @ > < E > < E > E のQ @

If
$$(p,q) \in \mathcal{A}$$
, then $p(x) - q(y) \le c(x,y)$ for all (x,y) , so that:

$$\begin{aligned} p(x) \le \inf_{y} \left\{ c(x,y) + q(y) \right\} &= q^{\flat}(x) \\ q(y) \ge \sup_{x} \left\{ p(x) - c(x,y) \right\} &= p^{\sharp}(y) \end{aligned}$$

Therefore

$$\begin{split} & \left(p, p^{\sharp}\right) \in \mathcal{A} \quad \text{and} \quad J\left(p, p^{\sharp}\right) \geq J(p, q) \\ & \left(q^{\flat}, q\right) \in \mathcal{A} \quad \text{and} \quad J\left(q^{\flat}, q\right) \geq J(p, q) \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

If
$$(p,q) \in \mathcal{A}$$
, then $p(x) - q(y) \le c(x,y)$ for all (x,y) , so that:

$$\begin{aligned} p(x) \le \inf_{y} \left\{ c(x,y) + q(y) \right\} &= q^{\flat}(x) \\ q(y) \ge \sup_{x} \left\{ p(x) - c(x,y) \right\} &= p^{\sharp}(y) \end{aligned}$$

Therefore

$$egin{aligned} & \left(p,p^{\sharp}
ight)\in\mathcal{A} \quad \text{and} \quad J\left(p,p^{\sharp}
ight)\geq J(p,q) \\ & \left(q^{\flat},q
ight)\in\mathcal{A} \quad \text{and} \quad J\left(q^{\flat},q
ight)\geq J(p,q) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This implies $J(p,q) \leq J\left(p,p^{\sharp}\right) \leq J\left(p^{\sharp\flat},p^{\sharp}\right)$

If
$$(p,q) \in \mathcal{A}$$
, then $p(x) - q(y) \leq c(x,y)$ for all (x,y) , so that:

$$\begin{aligned} p(x) \leq \inf_{y} \left\{ c(x,y) + q(y) \right\} &= q^{\flat}(x) \\ q(y) \geq \sup_{x} \left\{ p(x) - c(x,y) \right\} &= p^{\sharp}(y) \end{aligned}$$

Therefore

$$\begin{split} & \left(p, p^{\sharp}\right) \in \mathcal{A} \quad \text{and} \quad J\left(p, p^{\sharp}\right) \geq J(p, q) \\ & \left(q^{\flat}, q\right) \in \mathcal{A} \quad \text{and} \quad J\left(q^{\flat}, q\right) \geq J(p, q) \end{split}$$

This implies $J(p,q) \leq J(p,p^{\sharp}) \leq J(p^{\sharp\flat},p^{\sharp})$ Letting $\overline{p} := p^{\sharp\flat}$ and $\overline{q} := p^{\sharp}$, we get: $J(p,q) \leq J(\overline{p},\overline{q})$

 $ar{p}=ar{q}^{lat}$ and $ar{q}=ar{p}^{\sharp}$

Proposition 2: Problem (D) has a solution (\bar{p}, \bar{q}) with $\bar{p} = \bar{q}^{\flat}$ $0 \le \bar{p} \le 1$ $\bar{p}(\alpha) = 0$ $\bar{q} = \bar{p}^{\sharp}$ $0 \le \bar{q} \le 1$ $\bar{q}(\omega) = 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proposition 2: Problem (D) has a solution (\bar{p}, \bar{q}) with $\bar{p} = \bar{q}^{\flat}$ $0 \le \bar{p} \le 1$ $\bar{p}(\alpha) = 0$ $\bar{q} = \bar{p}^{\sharp}$ $0 \le \bar{q} \le 1$ $\bar{q}(\omega) = 0$

・ロト・日本・モート モー うへぐ

Proof: Take a maximizing sequence $(p_n, q_n) \in \mathcal{A}$

Proposition 2: Problem (D) has a solution (\bar{p}, \bar{q}) with $\bar{p} = \bar{q}^{\flat}$ $0 \le \bar{p} \le 1$ $\bar{p}(\alpha) = 0$ $\bar{q} = \bar{p}^{\sharp}$ $0 \le \bar{q} \le 1$ $\bar{q}(\omega) = 0$

Proof: Take a maximizing sequence $(p_n, q_n) \in \mathcal{A}$

▶ By preceding results, we may assume $p_n = q_n^\flat$ and $q_n = p_n^\sharp$ $p_n(\alpha) = 0$, $q_n(\omega) = 0$, and $\inf_{y \in E^-} q_n(y) = 0$

Proposition 2: Problem (D) has a solution (\bar{p}, \bar{q}) with $\bar{p} = \bar{q}^{\flat}$ $0 \le \bar{p} \le 1$ $\bar{p}(\alpha) = 0$ $\bar{q} = \bar{p}^{\sharp}$ $0 \le \bar{q} \le 1$ $\bar{q}(\omega) = 0$

Proof: Take a maximizing sequence $(p_n, q_n) \in \mathcal{A}$

- ▶ By preceding results, we may assume $p_n = q_n^\flat$ and $q_n = p_n^\sharp$ $p_n(\alpha) = 0$, $q_n(\omega) = 0$, and $\inf_{y \in E^-} q_n(y) = 0$
- ▶ Then, for all $x \in E^+$, $p_n(x) = \min \{1, \inf_{y \in \Gamma(x) \cap E^-} q_n(y)\}$

Proposition 2: Problem (D) has a solution (\bar{p}, \bar{q}) with $\bar{p} = \bar{q}^{\flat}$ $0 \le \bar{p} \le 1$ $\bar{p}(\alpha) = 0$ $\bar{q} = \bar{p}^{\sharp}$ $0 \le \bar{q} \le 1$ $\bar{q}(\omega) = 0$

Proof: Take a maximizing sequence $(p_n, q_n) \in \mathcal{A}$

- ▶ By preceding results, we may assume $p_n = q_n^\flat$ and $q_n = p_n^\sharp$ $p_n(\alpha) = 0$, $q_n(\omega) = 0$, and $\inf_{y \in E^-} q_n(y) = 0$
- ▶ Then, for all $x \in E^+$, $p_n(x) = \min \{1, \inf_{y \in \Gamma(x) \cap E^-} q_n(y)\}$
- ▶ This implies $0 \le p_n(x) \le 1$. Similarly, we get $0 \le q_n(x) \le 1$

Proposition 2: Problem (D) has a solution (\bar{p}, \bar{q}) with $\bar{p} = \bar{q}^{\flat}$ $0 \le \bar{p} \le 1$ $\bar{p}(\alpha) = 0$ $\bar{q} = \bar{p}^{\sharp}$ $0 \le \bar{q} \le 1$ $\bar{q}(\omega) = 0$

Proof: Take a maximizing sequence $(p_n, q_n) \in \mathcal{A}$

- ▶ By preceding results, we may assume $p_n = q_n^\flat$ and $q_n = p_n^\sharp$ $p_n(\alpha) = 0$, $q_n(\omega) = 0$, and $\inf_{y \in E^-} q_n(y) = 0$
- ► Then, for all $x \in E^+$, $p_n(x) = \min \left\{ 1, \inf_{y \in \Gamma(x) \cap E^-} q_n(y) \right\}$
- This implies $0 \le p_n(x) \le 1$. Similarly, we get $0 \le q_n(x) \le 1$

▶ So the family (p_n, q_n) is equi-integrable in $L^1(\mu) \times L^1(\nu)$

Proposition 2: Problem (D) has a solution (\bar{p}, \bar{q}) with $\bar{p} = \bar{q}^{\flat}$ $0 \le \bar{p} \le 1$ $\bar{p}(\alpha) = 0$ $\bar{q} = \bar{p}^{\sharp}$ $0 \le \bar{q} \le 1$ $\bar{q}(\omega) = 0$

Proof: Take a maximizing sequence $(p_n, q_n) \in \mathcal{A}$

- ▶ By preceding results, we may assume $p_n = q_n^\flat$ and $q_n = p_n^\sharp$ $p_n(\alpha) = 0$, $q_n(\omega) = 0$, and $\inf_{y \in E^-} q_n(y) = 0$
- ► Then, for all $x \in E^+$, $p_n(x) = \min \{1, \inf_{y \in \Gamma(x) \cap E^-} q_n(y)\}$
- ▶ This implies $0 \le p_n(x) \le 1$. Similarly, we get $0 \le q_n(x) \le 1$
- ▶ So the family (p_n, q_n) is equi-integrable in $L^1(\mu) \times L^1(\nu)$
- \blacktriangleright By the Dunford-Pettis Theorem, we can extract a subsequence which converges weakly to some (\bar{p},\bar{q})

Proposition 2: Problem (D) has a solution (\bar{p}, \bar{q}) with $\bar{p} = \bar{q}^{\flat}$ $0 \le \bar{p} \le 1$ $\bar{p}(\alpha) = 0$ $\bar{q} = \bar{p}^{\sharp}$ $0 \le \bar{q} \le 1$ $\bar{q}(\omega) = 0$

Proof: Take a maximizing sequence $(p_n, q_n) \in \mathcal{A}$

- ▶ By preceding results, we may assume $p_n = q_n^\flat$ and $q_n = p_n^\sharp$ $p_n(\alpha) = 0$, $q_n(\omega) = 0$, and $\inf_{y \in E^-} q_n(y) = 0$
- ► Then, for all $x \in E^+$, $p_n(x) = \min \left\{ 1, \inf_{y \in \Gamma(x) \cap E^-} q_n(y) \right\}$
- ▶ This implies $0 \le p_n(x) \le 1$. Similarly, we get $0 \le q_n(x) \le 1$
- ► So the family (p_n, q_n) is equi-integrable in $L^1(\mu) \times L^1(\nu)$
- \blacktriangleright By the Dunford-Pettis Theorem, we can extract a subsequence which converges weakly to some (\bar{p},\bar{q})
- A convex closed in $L^1(\mu) \times L^1(\nu)$ is weakly closed, so $(\bar{p}, \bar{q}) \in \mathcal{A}$

Proposition 2: Problem (D) has a solution (\bar{p}, \bar{q}) with $\bar{p} = \bar{q}^{\flat}$ $0 \le \bar{p} \le 1$ $\bar{p}(\alpha) = 0$ $\bar{q} = \bar{p}^{\sharp}$ $0 \le \bar{q} \le 1$ $\bar{q}(\omega) = 0$

Proof: Take a maximizing sequence $(p_n, q_n) \in \mathcal{A}$

- ▶ By preceding results, we may assume $p_n = q_n^\flat$ and $q_n = p_n^\sharp$ $p_n(\alpha) = 0$, $q_n(\omega) = 0$, and $\inf_{y \in E^-} q_n(y) = 0$
- ► Then, for all $x \in E^+$, $p_n(x) = \min \left\{ 1, \inf_{y \in \Gamma(x) \cap E^-} q_n(y) \right\}$
- ▶ This implies $0 \le p_n(x) \le 1$. Similarly, we get $0 \le q_n(x) \le 1$
- ► So the family (p_n, q_n) is equi-integrable in $L^1(\mu) \times L^1(\nu)$
- \blacktriangleright By the Dunford-Pettis Theorem, we can extract a subsequence which converges weakly to some (\bar{p},\bar{q})
- ▶ \mathcal{A} convex closed in $L^1(\mu) \times L^1(\nu)$ is weakly closed, so $(\bar{p}, \bar{q}) \in \mathcal{A}$

• Since
$$J$$
 is linear and continuous on $L^1(\mu)\times L^1(\nu)$, we get:
$$J(\bar{p},\bar{q})=\lim_n J(p_n,q_n)=\sup(\mathsf{D})$$

Table of Contents

Introduction: Open Pit Mining

- A Continuous Space Model
- An Optimal Transportation Problem
- The Kantorovich Dual
- Elements of c-Convex Analysis
- Solving the Dual Problem
- Solving the Optimum Pit Problem

Perspectives

<ロト (個) (目) (目) (目) (0) (0)</p>

If π is optimal to problem (K) and (p,q) to its dual (D), then

$$0 = J(p,q) - \int_{X \times Y} c(x,y) d\pi = \int_{X \times Y} \left(p(x) - q(y) - c(x,y) \right) d\pi$$

implying the CS conditions: p(x) - q(y) - c(x,y) = 0, π -a.e.

If π is optimal to problem (K) and (p,q) to its dual (D), then

$$0 = J(p,q) - \int_{X \times Y} c(x,y) d\pi = \int_{X \times Y} \left(p(x) - q(y) - c(x,y) \right) d\pi$$

implying the CS conditions: p(x) - q(y) - c(x,y) = 0, π -a.e.

Denote $y \in \Gamma(x)$ by: $y \succeq x$ (the *preorder* on E defined by Γ)

If π is optimal to problem (K) and (p,q) to its dual (D), then

$$0 = J(p,q) - \int_{X \times Y} c(x,y) d\pi = \int_{X \times Y} \left(p(x) - q(y) - c(x,y) \right) d\pi$$

implying the CS conditions: p(x) - q(y) - c(x,y) = 0, π -a.e.

Denote $y \in \Gamma(x)$ by: $y \succeq x$ (the preorder on E defined by Γ) **Monotonicity Lemma:** If (\bar{p}, \bar{q}) is an optimal solution to (D) satisfying the properties in Proposition 2, then

$$y'' \succsim y' \succsim x'' \succeq x' \implies \bar{q}(y'') \ge \bar{q}(y') \ge \bar{p}(x'') \ge \bar{p}(x')$$

If π is optimal to problem (K) and (p,q) to its dual (D), then

$$0 = J(p,q) - \int_{X \times Y} c(x,y) d\pi = \int_{X \times Y} \left(p(x) - q(y) - c(x,y) \right) d\pi$$

implying the CS conditions: p(x) - q(y) - c(x,y) = 0, π -a.e.

Denote $y \in \Gamma(x)$ by: $y \succeq x$ (the preorder on E defined by Γ) Monotonicity Lemma: If (\bar{p}, \bar{q}) is an optimal solution to (D) satisfying the properties in Proposition 2, then

$$y'' \succsim y' \succsim x'' \succsim x' \implies \bar{q}(y'') \ge \bar{q}(y') \ge \bar{p}(x'') \ge \bar{p}(x')$$

Proof: The first and last inequalities follow from $\bar{q} = \bar{p}^{\sharp}$, $\bar{p} = \bar{q}^{\flat}$, and *c*-Fenchel conjugates increasing w.r.t. Γ

the middle inequality follows from

$$\bar{p}^{\sharp}(y) = \max\left\{ \bar{p}(\alpha), \sup_{x \,:\, y \in \Gamma(x)} \bar{p}(x)
ight\}$$
 for all $y \in E^{-}$

Proposition 3: Let (\bar{p}, \bar{q}) be an optimal solution to problem (D) satisfying the properties in Proposition 2. Then

$$F := \{x \mid \bar{p}(x) = 1\} \cup \{y \mid \bar{q}(y) = 1\}$$

defines an optimum pit.

Proposition 3: Let (\bar{p}, \bar{q}) be an optimal solution to problem (D) satisfying the properties in Proposition 2. Then

$$F := \{x \mid \bar{p}(x) = 1\} \cup \{y \mid \bar{q}(y) = 1\}$$

defines an optimum pit.

Proof: F is measurable, hence by the Monotonicity Lemma, a pit

Proposition 3: Let (\bar{p}, \bar{q}) be an optimal solution to problem (D) satisfying the properties in Proposition 2. Then

$$F := \{x \mid \bar{p}(x) = 1\} \cup \{y \mid \bar{q}(y) = 1\}$$

defines an optimum pit.

Proof: F is measurable, hence by the Monotonicity Lemma, a pit

 \blacktriangleright Letting $F^+:=F\cap E^+$ and $F^-:=F\cap E^-,$ we have

$$g(F) = \int_{F^+} d\mu - \int_{F^-} d\nu \leq \sup(\mathsf{P})$$

Proposition 3: Let (\bar{p}, \bar{q}) be an optimal solution to problem (D) satisfying the properties in Proposition 2. Then

$$F := \{x \mid \bar{p}(x) = 1\} \cup \{y \mid \bar{q}(y) = 1\}$$

defines an optimum pit.

Proof: F is measurable, hence by the Monotonicity Lemma, a pit

▶ Letting $F^+ := F \cap E^+$ and $F^- := F \cap E^-$, we have

$$g(F) = \int_{F^+} d\mu - \int_{F^-} d\nu \le \sup(\mathsf{P})$$

• Let $G^+ := E^+ \setminus F^+$ and $G^- := E^- \setminus F^-$:
Back to Optimum Pits

Proposition 3: Let (\bar{p}, \bar{q}) be an optimal solution to problem (D) satisfying the properties in Proposition 2. Then

$$F := \{x \mid \bar{p}(x) = 1\} \cup \{y \mid \bar{q}(y) = 1\}$$

defines an optimum pit.

Proof: F is measurable, hence by the Monotonicity Lemma, a pit

▶ Letting $F^+ := F \cap E^+$ and $F^- := F \cap E^-$, we have

$$g(F) = \int_{F^+} d\mu - \int_{F^-} d\nu \le \sup(\mathsf{P})$$

• Let $G^+ := E^+ \setminus F^+$ and $G^- := E^- \setminus F^-$:

Back to Optimum Pits

Proposition 3: Let (\bar{p}, \bar{q}) be an optimal solution to problem (D) satisfying the properties in Proposition 2. Then

$$F := \{x \mid \bar{p}(x) = 1\} \cup \{y \mid \bar{q}(y) = 1\}$$

defines an optimum pit.

Proof: F is measurable, hence by the Monotonicity Lemma, a pit

▶ Letting $F^+ := F \cap E^+$ and $F^- := F \cap E^-$, we have

$$g(F) = \int_{F^+} d\mu - \int_{F^-} d\nu \le \sup(\mathsf{P})$$

► Let $G^+ := E^+ \setminus F^+$ and $G^- := E^- \setminus F^-$: since $\bar{p} = 1$ on F^+ , $\bar{q} = 1$ on F^- , and $\bar{p}(\alpha) = \bar{q}(\omega) = 0$,

$$J(\bar{p},\bar{q}) = \int_{F^+} d\mu - \int_{F^-} d\nu + \int_{G^+} \bar{p} \, d\mu - \int_{G^-} \bar{q} \, d\nu$$

◆□ → < 個 → < Ξ → < Ξ → < Ξ → の < ⊙</p>

• Since ν is a marginal of π , $\int_{G^-} \bar{q}(y) d\nu(y) = \int_{E^+ \times G^-} \bar{q}(y) d\pi(x,y)$

- ▶ Since ν is a marginal of π , $\int_{G^-} \bar{q}(y) d\nu(y) = \int_{E^+ \times G^-} \bar{q}(y) d\pi(x, y)$
- ► c(x,y) = 0 or $+\infty$ for $(x,y) \in E^+ \times E^-$, CS conditions, $0 \le \overline{p} \le 1$ and $0 \le \overline{q} \le 1$ imply that $\overline{p}(x) = \overline{q}(y) \pi$ -a.e. on $E^+ \times E^-$. Thus:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶ Since ν is a marginal of π , $\int_{G^-} \bar{q}(y) d\nu(y) = \int_{E^+ \times G^-} \bar{q}(y) d\pi(x, y)$
- ► c(x,y) = 0 or $+\infty$ for $(x,y) \in E^+ \times E^-$, CS conditions, $0 \le \overline{p} \le 1$ and $0 \le \overline{q} \le 1$ imply that $\overline{p}(x) = \overline{q}(y) \pi$ -a.e. on $E^+ \times E^-$. Thus:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶ Since ν is a marginal of π , $\int_{G^-} \bar{q}(y) d\nu(y) = \int_{E^+ \times G^-} \bar{q}(y) d\pi(x, y)$
- ► c(x,y) = 0 or $+\infty$ for $(x,y) \in E^+ \times E^-$, CS conditions, $0 \le \overline{p} \le 1$ and $0 \le \overline{q} \le 1$ imply that $\overline{p}(x) = \overline{q}(y)$ π -a.e. on $E^+ \times E^-$. Thus:

$$\pi(F^+ \times G^-) = 0 = \pi(G^+ \times F^-)$$

(zero allocations between excavated and unexcavated points), and

- Since ν is a marginal of π , $\int_{G^-} \bar{q}(y) d\nu(y) = \int_{E^+ \times G^-} \bar{q}(y) d\pi(x,y)$
- ► c(x,y) = 0 or $+\infty$ for $(x,y) \in E^+ \times E^-$, CS conditions, $0 \le \overline{p} \le 1$ and $0 \le \overline{q} \le 1$ imply that $\overline{p}(x) = \overline{q}(y) \pi$ -a.e. on $E^+ \times E^-$. Thus:

$$\pi(F^+ \times G^-) = 0 = \pi(G^+ \times F^-)$$

(zero allocations between excavated and unexcavated points), and

$$\begin{split} \int_{E^+ \times G^-} \bar{q}(y) d\pi(x,y) &= \int_{G^+ \times G^-} \bar{q}(y) d\pi(x,y) = \int_{G^+ \times G^-} \bar{p}(x) d\pi(x,y) \\ &= \int_{G^+ \times E^-} \bar{p}(x) d\pi(x,y) = \int_{G^+} \bar{p}(x) d\mu(x) \end{split}$$

- Since ν is a marginal of π , $\int_{G^-} \bar{q}(y) d\nu(y) = \int_{E^+ \times G^-} \bar{q}(y) d\pi(x, y)$
- ► c(x,y) = 0 or $+\infty$ for $(x,y) \in E^+ \times E^-$, CS conditions, $0 \le \overline{p} \le 1$ and $0 \le \overline{q} \le 1$ imply that $\overline{p}(x) = \overline{q}(y) \pi$ -a.e. on $E^+ \times E^-$. Thus:

$$\pi(F^+ \times G^-) = 0 = \pi(G^+ \times F^-)$$

(zero allocations between excavated and unexcavated points), and

$$\begin{split} \int_{E^+ \times G^-} \bar{q}(y) d\pi(x,y) &= \int_{G^+ \times G^-} \bar{q}(y) d\pi(x,y) = \int_{G^+ \times G^-} \bar{p}(x) d\pi(x,y) \\ &= \int_{G^+ \times E^-} \bar{p}(x) d\pi(x,y) = \int_{G^+} \bar{p}(x) d\mu(x) \\ &\implies \quad J(\bar{p},\bar{q}) = \int_{F^+} d\mu - \int_{F^-} d\nu = g(F) \end{split}$$

- Since ν is a marginal of π , $\int_{G^-} \bar{q}(y) d\nu(y) = \int_{E^+ \times G^-} \bar{q}(y) d\pi(x, y)$
- ► c(x,y) = 0 or $+\infty$ for $(x,y) \in E^+ \times E^-$, CS conditions, $0 \le \overline{p} \le 1$ and $0 \le \overline{q} \le 1$ imply that $\overline{p}(x) = \overline{q}(y)$ π -a.e. on $E^+ \times E^-$. Thus:

$$\pi(F^+ \times G^-) = 0 = \pi(G^+ \times F^-)$$

(zero allocations between excavated and unexcavated points), and

$$\begin{split} \int_{E^+\times G^-} \bar{q}(y) d\pi(x,y) &= \int_{G^+\times G^-} \bar{q}(y) d\pi(x,y) = \int_{G^+\times G^-} \bar{p}(x) d\pi(x,y) \\ &= \int_{G^+\times E^-} \bar{p}(x) d\pi(x,y) = \int_{G^+} \bar{p}(x) d\mu(x) \\ &\implies \quad J(\bar{p},\bar{q}) = \int_{F^+} d\mu - \int_{F^-} d\nu = g(F) \end{split}$$

► Hence $g(F) = J(\bar{p}, \bar{q}) = \sup(\mathsf{D}) = \inf(\mathsf{K}) \ge \sup(\mathsf{P}) \ge g(F)$

Theorem: If

E is compact,

• Γ is reflexive, transitive and has a closed graph, and

• g(x) is continuous with $\int_E \max\{0, g(x)\} dx > 0$,

then:

- 1. Problem (P) has an optimum solution, i.e., an optimal pit F
- 2. Its indicator functions (p_F, q_F) define optimum potentials, *i.e.*, optimal solutions to (D)
- Problem (K) has an optimum solution (profit allocation) and is a strong dual to (P), i.e., min(K) = max(P)
- 4. A pit F is optimal iff there exists a feasible solution π to (K) such that (p_F, q_F) satisfies the CS conditions

1. The family \mathcal{F} of all pits is closed under arbitrary unions and intersections:

$$\bigcup_{F \in \mathcal{G}} F \in \mathcal{F} \quad \text{and} \quad \bigcap_{F \in \mathcal{G}} F \in \mathcal{F} \quad \text{for all } \mathcal{G} \subseteq \mathcal{F}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1. The family \mathcal{F} of all pits is closed under arbitrary unions and intersections:

$$\bigcup_{F\in\mathcal{G}}F\in\mathcal{F}\quad\text{and}\quad\bigcap_{F\in\mathcal{G}}F\in\mathcal{F}\quad\text{for all }\mathcal{G}\subseteq\mathcal{F}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ *F* is a complete Boolean lattice (ring of sets)

1. The family \mathcal{F} of all pits is closed under arbitrary unions and intersections:

$$\bigcup_{F\in\mathcal{G}}F\in\mathcal{F}\quad\text{and}\quad\bigcap_{F\in\mathcal{G}}F\in\mathcal{F}\quad\text{for all }\mathcal{G}\subseteq\mathcal{F}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ *F* is a complete Boolean lattice (ring of sets)

1. The family \mathcal{F} of all pits is closed under arbitrary unions and intersections:

$$igcup_{F\in\mathcal{G}}F\in\mathcal{F}$$
 and $igcup_{F\in\mathcal{G}}F\in\mathcal{F}$ for all $\mathcal{G}\subseteq\mathcal{F}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• \mathcal{F} is a complete Boolean lattice (ring of sets)

2. The family of all optimum pits is also closed under arbitrary unions and intersections

1. The family \mathcal{F} of all pits is closed under arbitrary unions and intersections:

$$igcup_{F\in\mathcal{G}}F\in\mathcal{F}$$
 and $igcup_{F\in\mathcal{G}}F\in\mathcal{F}$ for all $\mathcal{G}\subseteq\mathcal{F}$

▶ *F* is a complete Boolean lattice (ring of sets)

- 2. The family of all optimum pits is also closed under arbitrary unions and intersections
- 3. There exist a unique smallest optimum pit and a unique largest optimum pit

1. The family \mathcal{F} of all pits is closed under arbitrary unions and intersections:

$$igcup_{F\in\mathcal{G}}F\in\mathcal{F}$$
 and $igcup_{F\in\mathcal{G}}F\in\mathcal{F}$ for all $\mathcal{G}\subseteq\mathcal{F}$

▶ *F* is a complete Boolean lattice (ring of sets)

- 2. The family of all optimum pits is also closed under arbitrary unions and intersections
- 3. There exist a unique smallest optimum pit and a unique largest optimum pit
 - The smallest optimum pit minimizes environmental impact without sacrificing total profit

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Table of Contents

Introduction: Open Pit Mining

- A Continuous Space Model
- An Optimal Transportation Problem
- The Kantorovich Dual
- Elements of c-Convex Analysis
- Solving the Dual Problem
- Solving the Optimum Pit Problem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Perspectives

 Dynamic version: profits in the distant future should be discounted

.

- Dynamic version: profits in the distant future should be discounted
 - Recall: production planning models include excavating and processing decisions over time, subject to capacity constraints, and with discounted cash flows

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Dynamic version: profits in the distant future should be discounted
 - Recall: production planning models include excavating and processing decisions over time, subject to capacity constraints, and with discounted cash flows

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Taking uncertainties into account:

- Dynamic version: profits in the distant future should be discounted
 - Recall: production planning models include excavating and processing decisions over time, subject to capacity constraints, and with discounted cash flows

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Taking uncertainties into account:
 - geological uncertainties on rock properties, amounts and location of ore, etc.

- Dynamic version: profits in the distant future should be discounted
 - Recall: production planning models include excavating and processing decisions over time, subject to capacity constraints, and with discounted cash flows

- Taking uncertainties into account:
 - geological uncertainties on rock properties, amounts and location of ore, etc.
 - operational uncertainties (disruptions)

- Dynamic version: profits in the distant future should be discounted
 - Recall: production planning models include excavating and processing decisions over time, subject to capacity constraints, and with discounted cash flows
- Taking uncertainties into account:
 - geological uncertainties on rock properties, amounts and location of ore, etc.
 - operational uncertainties (disruptions)
 - economic uncertainties, in particular, market prices of the minerals

- Dynamic version: profits in the distant future should be discounted
 - Recall: production planning models include excavating and processing decisions over time, subject to capacity constraints, and with discounted cash flows
- Taking uncertainties into account:
 - geological uncertainties on rock properties, amounts and location of ore, etc.
 - operational uncertainties (disruptions)
 - economic uncertainties, in particular, market prices of the minerals

 Formulating a local maximum-flow, minimum-cut model (instead of the "global" transportation model)

- Dynamic version: profits in the distant future should be discounted
 - Recall: production planning models include excavating and processing decisions over time, subject to capacity constraints, and with discounted cash flows
- Taking uncertainties into account:
 - geological uncertainties on rock properties, amounts and location of ore, etc.
 - operational uncertainties (disruptions)
 - economic uncertainties, in particular, market prices of the minerals

- Formulating a local maximum-flow, minimum-cut model (instead of the "global" transportation model)
 - as is done for image segmentation and processing?

- Dynamic version: profits in the distant future should be discounted
 - Recall: production planning models include excavating and processing decisions over time, subject to capacity constraints, and with discounted cash flows
- Taking uncertainties into account:
 - geological uncertainties on rock properties, amounts and location of ore, etc.
 - operational uncertainties (disruptions)
 - economic uncertainties, in particular, market prices of the minerals

- Formulating a local maximum-flow, minimum-cut model (instead of the "global" transportation model)
 - as is done for image segmentation and processing?
 - a fluid dynamics model?

- Dynamic version: profits in the distant future should be discounted
 - Recall: production planning models include excavating and processing decisions over time, subject to capacity constraints, and with discounted cash flows
- Taking uncertainties into account:
 - geological uncertainties on rock properties, amounts and location of ore, etc.
 - operational uncertainties (disruptions)
 - economic uncertainties, in particular, market prices of the minerals

- Formulating a local maximum-flow, minimum-cut model (instead of the "global" transportation model)
 - as is done for image segmentation and processing?
 - a fluid dynamics model?
- Numerical implementation

- Dynamic version: profits in the distant future should be discounted
 - Recall: production planning models include excavating and processing decisions over time, subject to capacity constraints, and with discounted cash flows
- Taking uncertainties into account:
 - geological uncertainties on rock properties, amounts and location of ore, etc.
 - operational uncertainties (disruptions)
 - economic uncertainties, in particular, market prices of the minerals

- Formulating a local maximum-flow, minimum-cut model (instead of the "global" transportation model)
 - as is done for image segmentation and processing?
 - a fluid dynamics model?
- Numerical implementation
 - different from a blocks model...

That's it, folks.

Any questions?

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ