Optimal pits and optimal transportation

Ivar Ekeland1 \quad Maurice Queyranne2

1CEREMADE, Université Paris-Dauphine

2CORE, U.C. Louvain, and Sauder School of Business at UBC

CESAME Seminar in Systems and Control, UCL
November 18, 2014
Table of Contents

- Introduction: Open Pit Mining
- A Continuous Space Model
- An Optimal Transportation Problem
- The Kantorovich Dual
- Elements of c-Convex Analysis
- Solving the Dual Problem
- Solving the Optimum Pit Problem
- Perspectives
Introduction: Open Pit Mining

A Continuous Space Model

An Optimal Transportation Problem

The Kantorovich Dual

Elements of c-Convex Analysis

Solving the Dual Problem

Solving the Optimum Pit Problem

Perspectives
Open Pit Mining

To dig a hole in the ground and excavate valuable minerals
Open Pit Mining

To dig a hole in the ground and excavate valuable minerals
Open Pit Mining

To dig a hole in the ground and excavate valuable minerals

Mir Diamond Mine, Sakha Republic, Russia

Diavik diamond mine, Canada
Open Pit Mining

To dig a hole in the ground and excavate valuable minerals

Mir Diamond Mine, Sakha Republic, Russia

Diavik diamond mine, Canada

Super Pit gold mine, Kalgoorli, Western Australia
Open Pit Mining

To dig a hole in the ground and excavate valuable minerals

- Mir Diamond Mine, Sakha Republic, Russia
- Diavik diamond mine, Canada
- Super Pit gold mine, Kalgoorli, Western Australia
- Chuquicamata copper mine, Chile
 \((4.3 \text{ km} \times 3 \text{ km} \times 900 \text{ m})\)
Mining Processes
Open Pit Mine Planning

1. Project evaluation: is it worth investing?
 ▶ Where to dig? How deep? What to process?
 Optimum open pit problem (determining ultimate pit limits)

2. Rough-cut planning: take time into account
 ▶ Where, when and what to excavate, to process subject to capacity and other resource constraints, and the time value of money (cash flows)
 ▶ Process choices, major equipment decisions
 Mine production planning problem (decisions over time)

3. Detailed operations planning
 ▶ Detailed mine design: benches, routes, facilities
 ▶ Operations scheduling, flows of materials, etc.

4. Execution...
Open Pit Mine Planning

1. Project evaluation: is it worth investing?
1. Project evaluation: is it worth investing?
 ▶ Where to dig? How deep? What to process?
1. Project evaluation: is it worth investing?
 ▶ Where to dig? How deep? What to process?
Open Pit Mine Planning

1. Project evaluation: is it worth investing?
 ▶ Where to dig? How deep? What to process?
 Optimum open pit problem (determining ultimate pit limits)
Open Pit Mine Planning

1. Project evaluation: is it worth investing?
 - Where to dig? How deep? What to process?
 Optimum open pit problem (determining ultimate pit limits)

2. Rough-cut planning: take time into account

 - Process choices, major equipment decisions

3. Detailed operations planning
 - Detailed mine design: benches, routes, facilities
 - Operations scheduling, flows of materials, etc.

4. Execution
1. Project evaluation: is it worth investing?
 ▶ Where to dig? How deep? What to process?
 Optimum open pit problem (determining **ultimate pit limits**)

2. Rough-cut planning: take time into account
 ▶ Where, *when* and what to excavate, to process
 subject to capacity and other resource constraints,
 and the time value of money (cash flows)
1. Project evaluation: is it worth investing?
 ▶ Where to dig? How deep? What to process?
 Optimum open pit problem (determining ultimate pit limits)

2. Rough-cut planning: take time into account
 ▶ Where, *when* and what to excavate, to process
 subject to capacity and other resource constraints,
 and the time value of money (cash flows)
 ▶ Process choices, major equipment decisions
Open Pit Mine Planning

1. Project evaluation: is it worth investing?
 - Where to dig? How deep? What to process?

 Optimum open pit problem (determining ultimate pit limits)

2. Rough-cut planning: take time into account
 - Where, \textit{when} and what to excavate, to process subject to capacity and other resource constraints, and the time value of money (cash flows)
 - Process choices, major equipment decisions
Open Pit Mine Planning

1. Project evaluation: is it worth investing?
 ▶ Where to dig? How deep? What to process?
 Optimum open pit problem (determining ultimate pit limits)

2. Rough-cut planning: take time into account
 ▶ Where, *when* and what to excavate, to process subject to capacity and other resource constraints, and the time value of money (cash flows)
 ▶ Process choices, major equipment decisions
 Mine production planning problem (decisions over time)
Open Pit Mine Planning

1. Project evaluation: is it worth investing?
 ▶ Where to dig? How deep? What to process?
 Optimum open pit problem (determining **ultimate pit limits**)

2. Rough-cut planning: take time into account
 ▶ Where, *when* and what to excavate, to process
 subject to capacity and other resource constraints,
 and the time value of money (cash flows)
 ▶ Process choices, major equipment decisions

 Mine production planning problem (decisions over time)

3. Detailed operations planning
1. Project evaluation: is it worth investing?
 ▶ Where to dig? How deep? What to process?
 Optimum open pit problem (determining **ultimate pit limits**)

2. Rough-cut planning: take time into account
 ▶ Where, *when* and what to excavate, to process
 subject to capacity and other resource constraints,
 and the time value of money (cash flows)
 ▶ Process choices, major equipment decisions
 Mine production planning problem (decisions over time)

3. Detailed operations planning
 ▶ Detailed mine design: benches, routes, facilities
Open Pit Mine Planning

1. Project evaluation: is it worth investing?
 ▶ Where to dig? How deep? What to process?
 Optimum open pit problem (determining **ultimate pit limits**)

2. Rough-cut planning: take time into account
 ▶ Where, *when* and what to excavate, to process
 subject to capacity and other resource constraints,
 and the time value of money (cash flows)
 ▶ Process choices, major equipment decisions
 Mine production planning problem (decisions over time)

3. Detailed operations planning
 ▶ Detailed mine design: benches, routes, facilities
 ▶ Operations scheduling, flows of materials, etc.
Open Pit Mine Planning

1. Project evaluation: is it worth investing?
 ▶ Where to dig? How deep? What to process?

 Optimum open pit problem (determining **ultimate pit limits**)

2. Rough-cut planning: take time into account
 ▶ Where, *when* and what to excavate, to process
 subject to capacity and other resource constraints,
 and the time value of money (cash flows)
 ▶ Process choices, major equipment decisions

 Mine production planning problem (decisions over time)

3. Detailed operations planning
 ▶ Detailed mine design: benches, routes, facilities
 ▶ Operations scheduling, flows of materials, etc.

4. Execution...
Optimum Open Pit: Slope Constraints

The pit walls cannot be too steep, else they may collapse
The pit walls cannot be too steep, else they may collapse.
Optimum Open Pit: Slope Constraints

The pit walls cannot be too steep, else they may collapse

West Angelas iron ore mine, Western Australia
Optimum Open Pit: Slope Constraints

The pit walls cannot be too steep, else they may collapse.

Angouran lead & zinc mine, Iran
(25 million tons rock slide, 2006)

West Angelas iron ore mine, Western Australia

Bingham Canyon copper mine, Utah
(massive landslide, 10 April 2013)
Optimum Open Pit: Slope Constraints

The pit walls cannot be too steep, else they may collapse

West Angelas iron ore mine, Western Australia

Angouran lead & zinc mine, Iran
(25 million tons rock slide, 2006)

Bingham Canyon copper mine, Utah
(massive landslide, 10 April 2013)
[Lerchs and Grossmann, 1965]
Discretization: Block Models

[Lerchs and Grossmann, 1965]

Divide the volume of interest into 3D blocks

- typically rectangular, with vertical sides
Discretization: Block Models

[Lerchs and Grossmann, 1965]

Divide the volume of interest into 3D blocks

- typically rectangular, with vertical sides
- the slope constraints are *approximated* by precedence constraints
Discretization: Block Models

[Lerchs and Grossmann, 1965]

Divide the volume of interest into 3D blocks

- typically rectangular, with vertical sides
- the slope constraints are \textit{approximated} by precedence constraints

- typically, 1:5 or 1:9 pattern
Discretization: Block Models

[Lerchs and Grossmann, 1965]

Divide the volume of interest into 3D blocks

- typically rectangular, with vertical sides
- the slope constraints are *approximated* by precedence constraints

- typically, 1:5 or 1:9 pattern
- it is easy to determine the *net profit* from excavating, and possibly processing, the block itself
Discretization: Block Models

[Lerchs and Grossmann, 1965]

Divide the volume of interest into 3D blocks

- typically rectangular, with vertical sides
- the slope constraints are *approximated* by precedence constraints

- typically, 1:5 or 1:9 pattern
- it is easy to determine the *net profit* from excavating, and possibly processing, the block itself
Discretization: Block Models

[Lerchs and Grossmann, 1965]

Divide the volume of interest into 3D blocks

- typically rectangular, with vertical sides
- the slope constraints are \textit{approximated} by precedence constraints

- typically, 1:5 or 1:9 pattern
- it is easy to determine the \textit{net profit} from excavating, and possibly processing, the block itself

Leads to a nicely structured (dual network flow, minimum cut) discrete optimization problem
Discretization: Block Models

[Lerchs and Grossmann, 1965]

Divide the volume of interest into 3D blocks

- typically rectangular, with vertical sides
- the slope constraints are *approximated* by precedence constraints

- typically, 1:5 or 1:9 pattern
- it is easy to determine the *net profit* from excavating, and possibly processing, the block itself

Leads to a nicely structured (dual network flow, minimum cut) discrete optimization problem

- implemented in commercial software (Whittle, Geovia)
Discretized vs Continuous Models?

Discretized (block) models:

- are very large (100,000s to millions of blocks)
- production planning models even larger (× number of periods)
- the real problem is, to a large extent, continuous:
 - ore density and rock properties tend to vary continuously
 - their distributions are estimated ("smoothed") from sample (drill hole) data and other geological information
- block precedences only roughly model the slope constraints

Earlier continuous space models:

- Matheron (1975) (focus on "cutoff grade" parametrization)
- determine optimum depth \(\phi (y) \) under each surface point
- s.t. bounds on the derivative of \(\phi \) (wall slope constraints)

All these continuous space approaches suffer from lack of convexity:

- how to deal with local optima?
Discretized vs Continuous Models?

Discretized (block) models:
▶ are very large (100,000s to millions of blocks)
Discretized (block) models:
- are very large (100,000s to millions of blocks)
 - production planning models even larger (× number of periods)

Earlier continuous space models:
- Matheron (1975) (focus on “cutoff grade” parametrization)
determine optimum depth \(\phi(y) \) under each surface point
s.t. bounds on the derivative of \(\phi \) (wall slope constraints)

All these continuous space approaches suffer from lack of convexity
- how to deal with local optima?
Discretized vs Continuous Models?

Discretized (block) models:
- are very large (100,000s to millions of blocks)
 - production planning models even larger (\times number of periods)
- the real problem is, to a large extent, continuous:

- earlier continuous space models:
 - Matheron (1975) (focus on "cutoff grade" parametrization)
determine optimum depth $\phi(y)$ under each surface point y
s.t. bounds on the derivative of ϕ (wall slope constraints)

All these continuous space approaches suffer from lack of convexity:
- how to deal with local optima?
Discretized vs Continuous Models?

Discretized (block) models:
- are very large (100,000s to millions of blocks)
 - production planning models even larger (\(\times\) number of periods)
- the real problem is, to a large extent, continuous:
 - ore density and rock properties tend to vary continuously

Earlier continuous space models:
- Matheron (1975) (focus on "cutoff grade" parametrization)
 - determine optimum depth \(\phi(y)\) under each surface point
 - s.t. bounds on the derivative of \(\phi\) (wall slope constraints)

All these continuous space approaches suffer from lack of convexity
- how to deal with local optima?
Discretized vs Continuous Models?

Discretized (block) models:

- are very large (100,000s to millions of blocks)
 - production planning models even larger (∝ number of periods)
- the real problem is, to a large extent, continuous:
 - ore density and rock properties tend to vary continuously
 - their distributions are estimated ("smoothed") from sample (drill hole) data and other geological information
Discretized vs Continuous Models?

Discretized (block) models:

- are very large (100,000s to millions of blocks)
 - production planning models even larger (\times number of periods)
- the real problem is, to a large extent, continuous:
 - ore density and rock properties tend to vary continuously
 - their distributions are estimated (“smoothed”) from sample (drill hole) data and other geological information
- block precedences only roughly model the slope constraints

Earlier continuous space models:

- Matheron (1975) (focus on “cutoff grade” parametrization)
 - determine optimum depth $\phi(y)$ under each surface point y
 - s.t. bounds on the derivative of ϕ (wall slope constraints)

All these continuous space approaches suffer from lack of convexity

- how to deal with local optima?
Discretized vs Continuous Models?

Discretized (block) models:
- are very large (100,000s to millions of blocks)
 - production planning models even larger (\times number of periods)
- the real problem is, to a large extent, continuous:
 - ore density and rock properties tend to vary continuously
 - their distributions are estimated ("smoothed") from sample (drill hole) data and other geological information
- block precedences only roughly model the slope constraints
Discretized vs Continuous Models?

Discretized (block) models:

- are very large (100,000s to millions of blocks)
 - production planning models even larger (\times number of periods)
- the real problem is, to a large extent, continuous:
 - ore density and rock properties tend to vary continuously
 - their distributions are estimated ("smoothed") from sample (drill hole) data and other geological information
- block precedences only roughly model the slope constraints

Earlier continuous space models:

Matheron (1975)
- focus on "cutoff grade" parametrization

- calculus of variations model in functional space
- determine optimum depth $\phi(y)$ under each surface point y
 - s.t. bounds on the derivative of ϕ (wall slope constraints)

All these continuous space approaches suffer from lack of convexity
- how to deal with local optima?
Discretized vs Continuous Models?

Discretized (block) models:

- are very large (100,000s to millions of blocks)
 - production planning models even larger (\(\times\) number of periods)
- the real problem is, to a large extent, continuous:
 - ore density and rock properties tend to vary continuously
 - their distributions are estimated ("smoothed") from sample (drill hole) data and other geological information
- block precedences only roughly model the slope constraints

Earlier continuous space models:

- Matheron (1975) (focus on "cutoff grade" parametrization)
Discretized vs Continuous Models?

Discretized (block) models:

- are very large (100,000s to millions of blocks)
 - production planning models even larger (× number of periods)
- the real problem is, to a large extent, continuous:
 - ore density and rock properties tend to vary continuously
 - their distributions are estimated (“smoothed”) from sample (drill hole) data and other geological information
- block precedences only roughly model the slope constraints

Earlier continuous space models:

- Matheron (1975) (focus on “cutoff grade” parametrization)
Discretized vs Continuous Models?

Discretized (block) models:
- are very large (100,000s to millions of blocks)
 - production planning models even larger (× number of periods)
- the real problem is, to a large extent, continuous:
 - ore density and rock properties tend to vary continuously
 - their distributions are estimated ("smoothed") from sample (drill hole) data and other geological information
- block precedences only roughly model the slope constraints

Earlier continuous space models:
- Matheron (1975) (focus on "cutoff grade" parametrization)
Discretized vs Continuous Models?

Discretized (block) models:
- are very large (100,000s to millions of blocks)
 - production planning models even larger (\(\times \) number of periods)
- the real problem is, to a large extent, continuous:
 - ore density and rock properties tend to vary continuously
 - their distributions are estimated ("smoothed") from sample (drill hole) data and other geological information
- block precedences only roughly model the slope constraints

Earlier continuous space models:
- Matheron (1975) (focus on "cutoff grade" parametrization)
 - determine optimum depth \(\phi(y) \) under each surface point \(y \)
 s.t. bounds on the derivative of \(\phi \) (wall slope constraints)
Discretized vs Continuous Models?

Discretized (block) models:
- are very large (100,000s to millions of blocks)
 - production planning models even larger (\times number of periods)
- the real problem is, to a large extent, continuous:
 - ore density and rock properties tend to vary continuously
 - their distributions are estimated ("smoothed") from sample (drill hole) data and other geological information
- block precedences only roughly model the slope constraints

Earlier continuous space models:
- Matheron (1975) (focus on "cutoff grade" parametrization)
 - determine optimum depth $\phi(y)$ under each surface point y
 - s.t. bounds on the derivative of ϕ (wall slope constraints)
Discretized vs Continuous Models?

Discretized (block) models:
- are very large (100,000s to millions of blocks)
 - production planning models even larger (× number of periods)
- the real problem is, to a large extent, continuous:
 - ore density and rock properties tend to vary continuously
 - their distributions are estimated (“smoothed”) from sample (drill hole) data and other geological information
- block precedences only roughly model the slope constraints

Earlier continuous space models:
- Matheron (1975) (focus on “cutoff grade” parametrization)
 - determine optimum depth \(\phi(y) \) under each surface point \(y \)
 s.t. bounds on the derivative of \(\phi \) (wall slope constraints)

All these continuous space approaches suffer from lack of convexity
- how to deal with local optima?
Table of Contents

Introduction: Open Pit Mining

A Continuous Space Model

An Optimal Transportation Problem

The Kantorovich Dual

Elements of c-Convex Analysis

Solving the Dual Problem

Solving the Optimum Pit Problem

Perspectives
Open Pit Problem: a Continuous Space Model

A general model

[Matheron 1975]: Given

\(E \subset \mathbb{R}^3 \): the domain to be mined
e.g.,

\[E = A \times [h_1, h_2] \]

is the elevation or depth range

\(\Gamma : E \to E \): extracting \(x \) requires extracting all of \(\Gamma(x) \)

\(\Gamma \) is transitive:

\([\alpha \in \Gamma(x) \text{ and } \beta \in \Gamma(\alpha)] \Rightarrow \beta \in \Gamma(x)\)

\(\Gamma \) is reflexive:

\(x \in \Gamma(x) \)

\(\Gamma \) is closed:

\[\{ (x, y) : x \in E, y \in \Gamma(x) \} \text{ is closed} \]

A pit \(F \) is a measurable subset of \(E \) closed under \(\Gamma \):

\(\Gamma(F) = F \)

where \(\Gamma(F) := \bigcup_{x \in F} \Gamma(x) \)

\(\Gamma \) is a continuous function

\[g : E \to \mathbb{R} \]

\(g(x) \, dx \) net profit from volume element \(dx \)

\[= dx_1 \, dx_2 \, dx_3 \]
at \(x \)

\[g(F) := \int_F g(x) \, dx \]

total net profit from pit \(F \)

assume

\[\int_E \max\left\{ 0, g(x) \right\} \, dx > 0 \]

(there is some profit to be made)

Optimum pit problem:

find \(F^* \in \arg \max \{ g(F) : F \text{ is a pit} \} \)
A general model [Matheron 1975]: Given

- compact $E \subset \mathbb{R}^3$: the domain to be mined
 e.g., $E = A \times [h_1, h_2]$, where $A \subset \mathbb{R}^2$ is the claim
 $[h_1, h_2]$ is the elevation or depth range
A general model [Matheron 1975]: Given

- compact $E \subset \mathbb{R}^3$: the domain to be mined
 e.g., $E = A \times [h_1, h_2]$, where $A \subset \mathbb{R}^2$ is the claim
 $[h_1, h_2]$ is the elevation or depth range
- map $\Gamma : E \rightarrow E$: extracting x requires extracting all of $\Gamma(x)$
A general model [Matheron 1975]: Given

- compact $E \subset \mathbb{R}^3$: the domain to be mined
e.g., $E = A \times [h_1, h_2]$, where $A \subset \mathbb{R}^2$ is the claim
 $[h_1, h_2]$ is the elevation or depth range

- map $\Gamma : E \rightarrow E$: extracting x requires extracting all of $\Gamma(x)$
 - transitive: $[x' \in \Gamma(x) \text{ and } x'' \in \Gamma(x')] \implies x'' \in \Gamma(x)$

Optimum pit problem: find $F^* \in \arg\max \{g(F) : F \text{ is a pit}\}$
A general model [Matheron 1975]: Given

- compact $E \subset \mathbb{R}^3$: the domain to be mined
e.g., $E = A \times [h_1, h_2]$, where $A \subset \mathbb{R}^2$ is the claim
 $[h_1, h_2]$ is the elevation or depth range

- map $\Gamma : E \rightarrow E$: extracting x requires extracting all of $\Gamma(x)$
 - transitive: $[x' \in \Gamma(x) \text{ and } x'' \in \Gamma(x')] \implies x'' \in \Gamma(x)$
 - reflexive: $x \in \Gamma(x)$
A general model [Matheron 1975]: Given

- compact $E \subset \mathbb{R}^3$: the domain to be mined
e.g., $E = A \times [h_1, h_2]$, where $A \subset \mathbb{R}^2$ is the claim

$[h_1, h_2]$ is the elevation or depth range

- map $\Gamma : E \rightarrow E$: extracting x requires extracting all of $\Gamma(x)$

 - transitive: $[x' \in \Gamma(x) \text{ and } x'' \in \Gamma(x')] \implies x'' \in \Gamma(x)$
 - reflexive: $x \in \Gamma(x)$
 - closed graph: $\{(x, y) : x \in E, y \in \Gamma(x)\}$ is closed
A general model [Matheron 1975]: Given

- compact $E \subset \mathbb{R}^3$: the domain to be mined
e.g., $E = A \times [h_1, h_2]$, where $A \subset \mathbb{R}^2$ is the claim
 $[h_1, h_2]$ is the elevation or depth range

- map $\Gamma : E \rightarrow E$: extracting x requires extracting all of $\Gamma(x)$
 - transitive: $[x' \in \Gamma(x) \text{ and } x'' \in \Gamma(x')] \implies x'' \in \Gamma(x)$
 - reflexive: $x \in \Gamma(x)$
 - closed graph: $\{(x, y) : x \in E, \ y \in \Gamma(x)\}$ is closed

Optimum pit problem: find $F^\ast \in \text{arg max}\{g(F) : F$ is a pit $\}$
A general model [Matheron 1975]: Given

- compact $E \subset \mathbb{R}^3$: the domain to be mined
 e.g., $E = A \times [h_1, h_2]$, where $A \subset \mathbb{R}^2$ is the claim
 $[h_1, h_2]$ is the elevation or depth range

- map $\Gamma : E \to E$: extracting x requires extracting all of $\Gamma(x)$
 - transitive: $[x' \in \Gamma(x) \text{ and } x'' \in \Gamma(x')] \implies x'' \in \Gamma(x)$
 - reflexive: $x \in \Gamma(x)$
 - closed graph: $\{(x, y) : x \in E, y \in \Gamma(x)\}$ is closed

A pit F is a measurable subset of E closed under Γ:
$$\Gamma(F) = F \quad \text{where } \Gamma(F) := \bigcup_{x \in F} \Gamma(x)$$
A general model [Matheron 1975]: Given

- compact $E \subset \mathbb{R}^3$: the domain to be mined
 - e.g., $E = A \times [h_1, h_2]$, where $A \subset \mathbb{R}^2$ is the *claim*
 - $[h_1, h_2]$ is the elevation or depth range

- map $\Gamma : E \to E$: extracting x requires extracting all of $\Gamma(x)$
 - transitive: $[x' \in \Gamma(x) \text{ and } x'' \in \Gamma(x')] \implies x'' \in \Gamma(x)$
 - reflexive: $x \in \Gamma(x)$
 - closed graph: $\{(x, y) : x \in E, y \in \Gamma(x)\}$ is closed

a **pit** F is a measurable subset of E closed under Γ:

$$\Gamma(F) = F \quad \text{where} \quad \Gamma(F) := \bigcup_{x \in F} \Gamma(x)$$

- continuous function $g : E \to \mathbb{R}$
A general model [Matheron 1975]: Given

- compact \(E \subset \mathbb{R}^3 \): the domain to be mined
 e.g., \(E = A \times [h_1, h_2] \), where \(A \subset \mathbb{R}^2 \) is the claim
 \([h_1, h_2]\) is the elevation or depth range

- map \(\Gamma : E \to E \): extracting \(x \) requires extracting all of \(\Gamma(x) \)
 - transitive: \([x' \in \Gamma(x) \text{ and } x'' \in \Gamma(x')] \implies x'' \in \Gamma(x) \)
 - reflexive: \(x \in \Gamma(x) \)
 - closed graph: \(\{(x, y) : x \in E, y \in \Gamma(x)\} \) is closed

A pit \(F \) is a measurable subset of \(E \) closed under \(\Gamma \):

\[\Gamma(F) = F \quad \text{where} \quad \Gamma(F) := \bigcup_{x \in F} \Gamma(x) \]

- continuous function \(g : E \to \mathbb{R} \)
 - \(g(x)dx \) net profit from volume element \(dx = dx_1 dx_2 dx_3 \) at \(x \)
A general model [Matheron 1975]: Given

- compact \(E \subset \mathbb{R}^3 \): the domain to be mined
 - e.g., \(E = A \times [h_1, h_2] \), where \(A \subset \mathbb{R}^2 \) is the claim
 - \([h_1, h_2]\) is the elevation or depth range

- map \(\Gamma : E \rightarrow E \): extracting \(x \) requires extracting all of \(\Gamma(x) \)
 - transitive: \([x' \in \Gamma(x) \text{ and } x'' \in \Gamma(x')] \implies x'' \in \Gamma(x) \)
 - reflexive: \(x \in \Gamma(x) \)
 - closed graph: \(\{(x, y) : x \in E, y \in \Gamma(x)\} \) is closed

A pit \(F \) is a measurable subset of \(E \) closed under \(\Gamma \):
\[
\Gamma(F) = F \quad \text{where} \quad \Gamma(F) := \bigcup_{x \in F} \Gamma(x)
\]

- continuous function \(g : E \rightarrow \mathbb{R} \)
 - \(g(x)dx \) net profit from volume element \(dx = dx_1 \, dx_2 \, dx_3 \) at \(x \)
 - \(g(F) := \int_F g(x)dx \) total net profit from pit \(F \)
Open Pit Problem: a Continuous Space Model

A general model [Matheron 1975]: Given

- compact $E \subset \mathbb{R}^3$: the domain to be mined
 e.g., $E = A \times [h_1, h_2]$, where $A \subset \mathbb{R}^2$ is the *claim*
 $[h_1, h_2]$ is the elevation or depth range

- map $\Gamma : E \to E$: extracting x requires extracting all of $\Gamma(x)$
 - transitive: $[x' \in \Gamma(x) \text{ and } x'' \in \Gamma(x')] \implies x'' \in \Gamma(x)$
 - reflexive: $x \in \Gamma(x)$
 - closed graph: $\{(x, y) : x \in E, \ y \in \Gamma(x)\}$ is closed

A *pit* F is a measurable subset of E closed under Γ:

$$\Gamma(F) = F \quad \text{where } \Gamma(F) := \bigcup_{x \in F} \Gamma(x)$$

- continuous function $g : E \to \mathbb{R}$
 - $g(x)dx$ net profit from volume element $dx = dx_1 dx_2 dx_3$ at x
 - $g(F) := \int_F g(x)dx$ total net profit from pit F
 - assume $\int_E \max\{0, g(x)\} \, dx > 0$ (there is some profit to be made)
Open Pit Problem: a Continuous Space Model

A general model [Matheron 1975]: Given

- compact \(E \subset \mathbb{R}^3 \): the domain to be mined
 - e.g., \(E = A \times [h_1, h_2] \), where \(A \subset \mathbb{R}^2 \) is the *claim*
 - \([h_1, h_2]\) is the elevation or depth range

- map \(\Gamma : E \to E \): extracting \(x \) requires extracting all of \(\Gamma(x) \)
 - transitive: \([x' \in \Gamma(x) \text{ and } x'' \in \Gamma(x')] \implies x'' \in \Gamma(x)\)
 - reflexive: \(x \in \Gamma(x) \)
 - closed graph: \(\{(x, y) : x \in E, y \in \Gamma(x)\} \) is closed

A *pit* \(F \) is a measurable subset of \(E \) closed under \(\Gamma \):

\[
\Gamma(F) = F \quad \text{where } \Gamma(F) := \bigcup_{x \in F} \Gamma(x)
\]

- continuous function \(g : E \to \mathbb{R} \)
 - \(g(x) dx \) net profit from volume element \(dx = dx_1 dx_2 dx_3 \) at \(x \)
 - \(g(F) := \int_F g(x) dx \) total net profit from pit \(F \)
 - assume \(\int_E \max\{0, g(x)\} \, dx > 0 \) (there is some profit to be made)
A general model [Matheron 1975]: Given

- compact $E \subset \mathbb{R}^3$: the domain to be mined
e.g., $E = A \times [h_1, h_2]$, where $A \subset \mathbb{R}^2$ is the claim
 $[h_1, h_2]$ is the elevation or depth range

- map $\Gamma : E \rightarrow E$: extracting x requires extracting all of $\Gamma(x)$
 - transitive: $[x' \in \Gamma(x) \text{ and } x'' \in \Gamma(x')] \implies x'' \in \Gamma(x)$
 - reflexive: $x \in \Gamma(x)$
 - closed graph: $\{(x, y) : x \in E, y \in \Gamma(x)\}$ is closed

a pit F is a measurable subset of E closed under Γ:

$$\Gamma(F) = F \quad \text{where } \Gamma(F) := \bigcup_{x \in F} \Gamma(x)$$

- continuous function $g : E \rightarrow \mathbb{R}$
 - $g(x)dx$ net profit from volume element $dx = dx_1 dx_2 dx_3$ at x
 - $g(F) := \int_F g(x)dx$ total net profit from pit F
 - assume $\int_E \max\{0, g(x)\}dx > 0$ (there is some profit to be made)

Optimum pit problem: find $F^* \in \arg\max\{g(F) : F \text{ is a pit}\}$
Introduction: Open Pit Mining

A Continuous Space Model

An Optimal Transportation Problem

The Kantorovich Dual

Elements of c-Convex Analysis

Solving the Dual Problem

Solving the Optimum Pit Problem

Perspectives
A Profit Allocation Model

Let $E^+ := \{ g(x) > 0 \}$ and $E^- := \{ g(x) \leq 0 \}$ (compact sets)

Add a sink ω unallocated profits from excavated points will be sent to ω

and a source α unallocated costs of unexcavated points will be paid by α

Let $X := E^+ \cup \{ \alpha \}$ and $Y := E^- \cup \{ \omega \}$ (also compact)

endowed with non-negative measures μ and ν

\[
\mu(\{ \alpha \}) = \int_{E^-} |g(z)| \, dz, \quad \mu(E^+) = \int_{E^+} g(z) \, dz
\]

\[
\nu(\{ \omega \}) = \int_{E^+} g(z) \, dz, \quad \nu(E^-) = \int_{E^-} |g(z)| \, dz
\]

Profit allocations are allowed from every profitable $x \in E^+$ to every $y \in \Gamma(x) \cap E^-$

from source α to all $y \in E^-$ (unpaid costs)

from all $x \in E^+$ to sink ω (unallocated, or “excess” profits)

These restrictions will be modelled by a “transportation” (or allocation) cost function $c : X \times Y \to \mathbb{R}$
Let $E^+ := \{g(x) > 0\}$ and $E^- := \{g(x) \leq 0\}$ (compact sets)
A Profit Allocation Model

- Let $E^+ := \{g(x) > 0\}$ and $E^- := \{g(x) \leq 0\}$ (compact sets)
- Add a sink ω

and a source α
A Profit Allocation Model

- Let $E^+ := \{g(x) > 0\}$ and $E^- := \{g(x) \leq 0\}$ (compact sets)
- Add a sink ω
 - unallocated profits from excavated points will be sent to ω
- and a source α

These restrictions will be modelled by a "transportation" (or allocation) cost function $c: X \times Y \rightarrow \mathbb{R}$
A Profit Allocation Model

- Let $E^+ := \{g(x) > 0\}$ and $E^- := \{g(x) \leq 0\}$ (compact sets)
- Add a sink ω
 - unallocated profits from excavated points will be sent to ω
- Add a source α
 - unallocated costs of unexcavated points will be paid by α
A Profit Allocation Model

- Let $E^+ := \{g(x) > 0\}$ and $E^- := \{g(x) \leq 0\}$ (compact sets)
- Add a sink ω
 - unallocated profits from excavated points will be sent to ω
 and a source α
 - unallocated costs of unexcavated points will be paid by α
- Let $X := E^+ \cup \{\alpha\}$ and $Y := E^- \cup \{\omega\}$ (also compact)
A Profit Allocation Model

- Let $E^+ := \{g(x) > 0\}$ and $E^- := \{g(x) \leq 0\}$ (compact sets)
- Add a sink ω
 - unallocated profits from excavated points will be sent to ω
 - and a source α
 - unallocated costs of unexcavated points will be paid by α
- Let $X := E^+ \cup \{\alpha\}$ and $Y := E^- \cup \{\omega\}$ (also compact)
- endowed with non-negative measures μ and ν defined by
 $$\mu (\{\alpha\}) = \int_{E^-} |g(z)| \, dz \quad \mu |_{E^+} = g(z) \, dz$$
 $$\nu (\{\omega\}) = \int_{E^+} g(z) \, dz \quad \nu |_{E^-} = |g(z)| \, dz$$
A Profit Allocation Model

- Let $E^+ := \{ g(x) > 0 \}$ and $E^- := \{ g(x) \leq 0 \}$ (compact sets)
- Add a sink ω
 - unallocated profits from excavated points will be sent to ω
 - and a source α
 - unallocated costs of unexcavated points will be paid by α
- Let $X := E^+ \cup \{ \alpha \}$ and $Y := E^- \cup \{ \omega \}$ (also compact)
- endowed with non-negative measures μ and ν defined by
 \[
 \mu (\{ \alpha \}) = \int_{E^-} |g(z)| \, dz \quad \mu|_{E^+} = g(z) \, dz \\
 \nu (\{ \omega \}) = \int_{E^+} g(z) \, dz \quad \nu|_{E^-} = |g(z)| \, dz
 \]
- Profit allocations are allowed
A Profit Allocation Model

- Let $E^+ := \{g(x) > 0\}$ and $E^- := \{g(x) \leq 0\}$ (compact sets)
- Add a sink ω
 - unallocated profits from excavated points will be sent to ω
 and a source α
 - unallocated costs of unexcavated points will be paid by α
- Let $X := E^+ \cup \{\alpha\}$ and $Y := E^- \cup \{\omega\}$ (also compact)
- endowed with non-negative measures μ and ν defined by
 \[
 \mu (\{\alpha\}) = \int_{E^-} |g(z)| \, dz \quad \mu|_{E^+} = g(z) \, dz
 \]
 \[
 \nu (\{\omega\}) = \int_{E^+} g(z) \, dz \quad \nu|_{E^-} = |g(z)| \, dz
 \]
- Profit allocations are allowed
 - from every profitable $x \in E^+$ to every $y \in \Gamma(x) \cap E^-$
Let $E^+ := \{g(x) > 0\}$ and $E^- := \{g(x) \leq 0\}$ (compact sets).

Add a sink ω

- unallocated profits from excavated points will be sent to ω and a source α

- unallocated costs of unexcavated points will be paid by α

Let $X := E^+ \cup \{\alpha\}$ and $Y := E^- \cup \{\omega\}$ (also compact)

endowed with non-negative measures μ and ν defined by

$$
\mu(\{\alpha\}) = \int_{E^-} |g(z)| \, dz \quad \mu|_{E^+} = g(z) \, dz
$$

$$
\nu(\{\omega\}) = \int_{E^+} g(z) \, dz \quad \nu|_{E^-} = |g(z)| \, dz
$$

Profit allocations are allowed

- from every profitable $x \in E^+$ to every $y \in \Gamma(x) \cap E^-$
- from source α to all $y \in E^-$ (unpaid costs)
A Profit Allocation Model

Let $E^+ := \{g(x) > 0\}$ and $E^- := \{g(x) \leq 0\}$ (compact sets).

Add a sink ω

- unallocated profits from excavated points will be sent to ω

and a source α

- unallocated costs of unexcavated points will be paid by α

Let $X := E^+ \cup \{\alpha\}$ and $Y := E^- \cup \{\omega\}$ (also compact)

endowed with non-negative measures μ and ν defined by

\[
\begin{align*}
\mu(\{\alpha\}) &= \int_{E^-} |g(z)| \, dz \quad \mu|_{E^+} = g(z) \, dz \\
\nu(\{\omega\}) &= \int_{E^+} g(z) \, dz \quad \nu|_{E^-} = |g(z)| \, dz
\end{align*}
\]

Profit allocations are allowed

- from every profitable $x \in E^+$ to every $y \in \Gamma(x) \cap E^-$
- from source α to all $y \in E^-$ (unpaid costs)
- from all $x \in E^+$ to sink ω (unallocated, or “excess” profits)
A Profit Allocation Model

- Let $E^+ := \{ g(x) > 0 \}$ and $E^- := \{ g(x) \leq 0 \}$ (compact sets)
- Add a sink ω
 - unallocated profits from excavated points will be sent to ω
 - and a source α
 - unallocated costs of unexcavated points will be paid by α
- Let $X := E^+ \cup \{ \alpha \}$ and $Y := E^- \cup \{ \omega \}$ (also compact)
- endowed with non-negative measures μ and ν defined by
 \[
 \mu(\{\alpha\}) = \int_{E^-} |g(z)| \, dz \quad \mu|_{E^+} = g(z) \, dz \\
 \nu(\{\omega\}) = \int_{E^+} g(z) \, dz \quad \nu|_{E^-} = |g(z)| \, dz
 \]
- Profit allocations are allowed
 - from every profitable $x \in E^+$ to every $y \in \Gamma(x) \cap E^-$
 - from source α to all $y \in E^-$ (unpaid costs)
 - from all $x \in E^+$ to sink ω (unallocated, or “excess” profits)
A Profit Allocation Model

- Let $E^+ := \{g(x) > 0\}$ and $E^- := \{g(x) \leq 0\}$ (compact sets)
- Add a sink ω
 - unallocated profits from excavated points will be sent to ω
- and a source α
 - unallocated costs of unexcavated points will be paid by α
- Let $X := E^+ \cup \{\alpha\}$ and $Y := E^- \cup \{\omega\}$ (also compact)
- endowed with non-negative measures μ and ν defined by
 $$\mu(\{\alpha\}) = \int_{E^-} |g(z)| \, dz \quad \mu|_{E^+} = g(z) \, dz$$
 $$\nu(\{\omega\}) = \int_{E^+} g(z) \, dz \quad \nu|_{E^-} = |g(z)| \, dz$$
- Profit allocations are allowed
 - from every profitable $x \in E^+$ to every $y \in \Gamma(x) \cap E^-$
 - from source α to all $y \in E^-$ (unpaid costs)
 - from all $x \in E^+$ to sink ω (unallocated, or “excess” profits)

These restrictions will be modelled by a “transportation” (or allocation) cost function $c : X \times Y \rightarrow \mathbb{R}$
Allocation “Costs” and Optimum Profit Allocation

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>$c(x, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \in E^+$</td>
<td>$y \in \Gamma(x)$</td>
<td>0</td>
</tr>
<tr>
<td>$x \in E^+$</td>
<td>$y \notin \Gamma(x), y \in E^-$</td>
<td>$+\infty$</td>
</tr>
<tr>
<td>$x \in E^+$</td>
<td>$y = \omega$</td>
<td>1</td>
</tr>
<tr>
<td>$x = \alpha$</td>
<td>$y \in Y$</td>
<td>0</td>
</tr>
</tbody>
</table>
Allocation “Costs” and Optimum Profit Allocation

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>$c(x, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \in E^+$</td>
<td>$y \in \Gamma(x)$</td>
<td>0</td>
</tr>
<tr>
<td>$x \in E^+$</td>
<td>$y \notin \Gamma(x)$, $y \in E^-$</td>
<td>$+\infty$</td>
</tr>
<tr>
<td>$x \in E^+$</td>
<td>$y = \omega$</td>
<td>1</td>
</tr>
<tr>
<td>$x = \alpha$</td>
<td>$y \in Y$</td>
<td>0</td>
</tr>
</tbody>
</table>

- Minimizing total “costs” \iff minimizing total unallocated profits
 Allocation “Costs” and Optimum Profit Allocation

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>$c(x, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \in E^+$</td>
<td>$y \in \Gamma(x)$</td>
<td>0</td>
</tr>
<tr>
<td>$x \in E^+$</td>
<td>$y \notin \Gamma(x)$, $y \in E^-$</td>
<td>$+\infty$</td>
</tr>
<tr>
<td>$x \in E^+$</td>
<td>$y = \omega$</td>
<td>1</td>
</tr>
<tr>
<td>$x = \alpha$</td>
<td>$y \in Y$</td>
<td>0</td>
</tr>
</tbody>
</table>

- Minimizing total “costs” \iff minimizing total unallocated profits

Lemma: c is lower semi-continuous (l.s.c.)

Set $\Pi(\mu, \nu)$ of nonnegative Radon measures (profit allocations) π with marginals $\pi_X = \mu$ and $\pi_Y = \nu$

Optimal transportation problem in Kantorovich form:

$$\min_{\pi} \mathbb{E}_\pi [c] := \int_{X \times Y} c(x, y) \, d\pi$$

s.t. $\pi \in \Pi(\mu, \nu)$

Proposition 1: Problem (K) has a solution

Proof: The set of positive Radon measures on compact space $X \times Y$ is weak-* compact, and the map $\pi \mapsto \mathbb{E}_\pi [c]$ is weak-* l.s.c.
Minimizing total “costs” \iff minimizing total unallocated profits

Lemma: c is lower semi-continuous (l.s.c.)
Allocated allocates “Costs” and Optimum Profit Allocation

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>$c(x, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \in E^+$</td>
<td>$y \in \Gamma(x)$</td>
<td>0</td>
</tr>
<tr>
<td>$x \in E^+$</td>
<td>$y \notin \Gamma(x)$, $y \in E^-$</td>
<td>$+\infty$</td>
</tr>
<tr>
<td>$x \in E^+$</td>
<td>$y = \omega$</td>
<td>1</td>
</tr>
<tr>
<td>$x = \alpha$</td>
<td>$y \in Y$</td>
<td>0</td>
</tr>
</tbody>
</table>

- Minimizing total “costs” \iff minimizing total unallocated profits

Lemma: c is lower semi-continuous (l.s.c.)

Set $\Pi(\mu, \nu)$ of nonnegative Radon measures (profit allocations) π with marginals $\pi_X = \mu$ and $\pi_Y = \nu$
Allocation “Costs” and Optimum Profit Allocation

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>$c(x, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \in E^+$</td>
<td>$y \in \Gamma(x)$</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$x \in E^+$</td>
<td>$y \notin \Gamma(x)$, $y \in E^-$</td>
<td>$+\infty$</td>
<td></td>
</tr>
<tr>
<td>$x \in E^+$</td>
<td>$y = \omega$</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$x = \alpha$</td>
<td>$y \in Y$</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

- Minimizing total “costs” \iff minimizing total unallocated profits

Lemma: c is lower semi-continuous (l.s.c.)

Set $\Pi(\mu, \nu)$ of nonnegative Radon measures (profit allocations) π with marginals $\pi_X = \mu$ and $\pi_Y = \nu$

Optimal transportation problem in Kantorovich form:
Allocation “Costs” and Optimum Profit Allocation

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>$c(x, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \in E^+$</td>
<td>$y \in \Gamma(x)$</td>
<td>0</td>
</tr>
<tr>
<td>$x \in E^+$</td>
<td>$y \notin \Gamma(x), y \in E^-$</td>
<td>$+\infty$</td>
</tr>
<tr>
<td>$x \in E^+$</td>
<td>$y = \omega$</td>
<td>1</td>
</tr>
<tr>
<td>$x = \alpha$</td>
<td>$y \in Y$</td>
<td>0</td>
</tr>
</tbody>
</table>

- Minimizing total “costs” \iff minimizing total unallocated profits

Lemma: c is lower semi-continuous (l.s.c.)

Set $\Pi(\mu, \nu)$ of nonnegative Radon measures (profit allocations) π with marginals $\pi_X = \mu$ and $\pi_Y = \nu$

Optimal transportation problem in Kantorovich form:

$$\min_{\pi} E^\pi[c] := \int_{X \times Y} c(x, y) d\pi \quad \text{s.t. } \pi \in \Pi(\mu, \nu) \quad (K)$$
Allocation “Costs” and Optimum Profit Allocation

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
<td>$c(x, y)$</td>
</tr>
<tr>
<td>$x \in E^+$</td>
<td>$y \in \Gamma(x)$</td>
<td>0</td>
</tr>
<tr>
<td>$x \in E^+$</td>
<td>$y \notin \Gamma(x)$, $y \in E^-$</td>
<td>$+\infty$</td>
</tr>
<tr>
<td>$x \in E^+$</td>
<td>$y = \omega$</td>
<td>1</td>
</tr>
<tr>
<td>$x = \alpha$</td>
<td>$y \in Y$</td>
<td>0</td>
</tr>
</tbody>
</table>

Minimizing total “costs” \iff minimizing total unallocated profits

Lemma: c is lower semi-continuous (l.s.c.)

Set $\Pi(\mu, \nu)$ of nonnegative Radon measures (profit allocations) π with marginals $\pi_X = \mu$ and $\pi_Y = \nu$

Optimal transportation problem in Kantorovich form:

$$\min_{\pi} \mathbb{E}^\pi[c] := \int_{X \times Y} c(x, y) d\pi \quad \text{s.t.} \quad \pi \in \Pi(\mu, \nu) \quad (K)$$

Proposition 1: Problem (K) has a solution
 Allocation “Costs” and Optimum Profit Allocation

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>$c(x, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \in E^+$</td>
<td>$y \in \Gamma(x)$</td>
<td>0</td>
</tr>
<tr>
<td>$x \in E^+$</td>
<td>$y \notin \Gamma(x)$, $y \in E^-$</td>
<td>$+\infty$</td>
</tr>
<tr>
<td>$x \in E^+$</td>
<td>$y = \omega$</td>
<td>1</td>
</tr>
<tr>
<td>$x = \alpha$</td>
<td>$y \in Y$</td>
<td>0</td>
</tr>
</tbody>
</table>

- Minimizing total “costs” \iff minimizing total unallocated profits

Lemma: c is lower semi-continuous (l.s.c.)

Set $\Pi(\mu, \nu)$ of nonnegative Radon measures (profit allocations) π with marginals $\pi_X = \mu$ and $\pi_Y = \nu$

Optimal transportation problem in Kantorovich form:

$$
\min_{\pi} E^\pi[c] := \int_{X \times Y} c(x, y) d\pi \quad \text{s.t.} \quad \pi \in \Pi(\mu, \nu) \quad (K)
$$

Proposition 1: Problem (K) has a solution

Proof: The set of positive Radon measures on compact space $X \times Y$ is weak-* compact, and the map $\pi \to E^\pi[c]$ is weak-* l.s.c.
The Kantorovich Dual

\[p \in L^1(X,\mu) \text{ associated with } \pi_X = \mu \]
\[q \in L^1(Y,\nu) \text{ associated with } \pi_Y = \nu \]

Dual admissible set:
\[
A := \{ (p,q) : p(x) - q(y) \leq c(x,y) \, (\mu,\nu) \text{-a.s.} \}
\]

Dual objective:
\[
J(p,q) := \int_X p \, d\mu - \int_Y q \, d\nu = \int E^+ (p(z) - q(\omega)) \, d\mu - \int E^- (q(z) - p(\alpha)) \, d\nu
\]

Kantorovich dual:
\[
\sup_{J(p,q)} \text{ s.t. } (p,q) \in A(D)
\]

Theorem [Kantorovich, 1942]: When the cost function \(c \) is l.s.c.,
\[
\inf(K) = \sup(D)
\]

\(\therefore \) there is no duality gap (in continuous variables).
The Kantorovich Dual

Potentials (duals, Lagrange multipliers)

- \(p \in L^1(X, \mu) \) associated with \(\pi_X = \mu \)
- \(q \in L^1(Y, \nu) \) associated with \(\pi_Y = \nu \)
The Kantorovich Dual

Potentials (duals, Lagrange multipliers)

\[p \in L^1(X, \mu) \text{ associated with } \pi_X = \mu \]
\[q \in L^1(Y, \nu) \text{ associated with } \pi_Y = \nu \]

Dual admissible set:
\[\mathcal{A} := \{(p, q) : p(x) - q(y) \leq c(x, y) \text{ (}\mu, \nu\text{)-a.s.}\} \]
The Kantorovich Dual

Potentials (duals, Lagrange multipliers)

- $p \in L^1(X, \mu)$ associated with $\pi_X = \mu$
- $q \in L^1(Y, \nu)$ associated with $\pi_Y = \nu$

Dual admissible set:

$$A := \{(p, q) : p(x) - q(y) \leq c(x, y) \text{ (} \mu, \nu \text{)-a.s.}\}$$

Dual objective:

$$J(p, q) := \int_X p \, d\mu - \int_Y q \, d\nu$$
$$= \int_{E^+} (p(z) - q(\omega)) \, d\mu - \int_{E^-} (q(z) - p(\alpha)) \, d\nu$$

Theorem [Kantorovich, 1942]: When the cost function c is l.s.c.,
$$\inf(\mathcal{D}) = \sup(\mathcal{D})$$
there is no duality gap (in continuous variables).
The Kantorovich Dual

Potentials (duals, Lagrange multipliers)

- \(p \in L^1(X, \mu) \) associated with \(\pi_X = \mu \)
- \(q \in L^1(Y, \nu) \) associated with \(\pi_Y = \nu \)

Dual admissible set:

\[\mathcal{A} := \{(p, q) : p(x) - q(y) \leq c(x, y) \ (\mu, \nu)-\text{a.s.}\} \]

Dual objective:

\[J(p, q) := \int_X p \ d\mu - \int_Y q \ d\nu \]

\[= \int_{E^+} (p(z) - q(\omega)) \ d\mu - \int_{E^-} (q(z) - p(\alpha)) \ d\nu \]

Kantorovich dual:

\[\sup J(p, q) \ \text{s.t.} \ (p, q) \in \mathcal{A} \] \hspace{1cm} (D)
The Kantorovich Dual

Potentials (duals, Lagrange multipliers)
- \(p \in L^1(X, \mu) \) associated with \(\pi_X = \mu \)
- \(q \in L^1(Y, \nu) \) associated with \(\pi_Y = \nu \)

Dual admissible set:
\[
\mathcal{A} := \{ (p, q) : p(x) - q(y) \leq c(x, y) \, (\mu, \nu)\text{-a.s.} \}
\]

Dual objective:
\[
J(p, q) := \int_X p \, d\mu - \int_Y q \, d\nu
\]
\[
= \int_{E^+} (p(z) - q(\omega)) \, d\mu - \int_{E^-} (q(z) - p(\alpha)) \, d\nu
\]

Kantorovich dual:
\[
\sup J(p, q) \quad \text{s.t.} \quad (p, q) \in \mathcal{A}
\] \hspace{1cm} (D)

Theorem [Kantorovich, 1942]: When the cost function \(c \) is l.s.c.,
\[
\inf(K) = \sup(D)
\]
The Kantorovich Dual

Potentials (duals, Lagrange multipliers)
- \(p \in L^1(X, \mu) \) associated with \(\pi_X = \mu \)
- \(q \in L^1(Y, \nu) \) associated with \(\pi_Y = \nu \)

Dual admissible set:

\[
\mathcal{A} := \{ (p, q) : p(x) - q(y) \leq c(x, y) \ (\mu, \nu)\text{-a.s.} \}
\]

Dual objective:

\[
J(p, q) := \int_X p \, d\mu - \int_Y q \, d\nu
\]

\[
= \int_{E^+} (p(z) - q(\omega)) \, d\mu - \int_{E^-} (q(z) - p(\alpha)) \, d\nu
\]

Kantorovich dual:

\[
\sup J(p, q) \text{ s.t. } (p, q) \in \mathcal{A} \quad (D)
\]

Theorem [Kantorovich, 1942]: *When the cost function \(c \) is l.s.c.,*

\[
\inf(K) = \sup(D)
\]

- there is no *duality gap* (in continuous variables)
Connection to the Optimum Pit Problem

Let F be a pit, $F^+ := F \cap E^+$ and $F^- := F \cap E^-$. Define $p_F : X \to \mathbb{R}$ and $q_F : Y \to \mathbb{R}$ by:

\[
p_F(\alpha) = 0, \quad p_F(x) = \begin{cases} 1 & \text{if } x \in F^+ \\ 0 & \text{otherwise} \end{cases}
\]

\[
q_F(\omega) = 0, \quad q_F(y) = \begin{cases} 1 & \text{if } y \in F^- \\ 0 & \text{otherwise} \end{cases}
\]

Then (p_F, q_F) is admissible (i.e., in A) and $J(p_F, q_F) = g(F)$.

Corollary: $\sup(P) \leq \inf(K)$, i.e., transportation problem (K) is a weak dual to the optimum pit problem (P).
Let F be a pit, $F^+ := F \cap E^+$ and $F^- := F \cap E^-$
Let F be a pit, $F^+ := F \cap E^+$ and $F^- := F \cap E^-$.

Define $p_F : X \to \mathbb{R}$ and $q_F : Y \to \mathbb{R}$ by:

$$p_F(\alpha) = 0, \quad p_F(x) = \begin{cases} 1 & \text{if } x \in F^+ \\ 0 & \text{otherwise} \end{cases}$$

$$q_F(\omega) = 0, \quad q_F(y) = \begin{cases} 1 & \text{if } y \in F^- \\ 0 & \text{otherwise} \end{cases}$$

Then (p_F, q_F) is admissible (i.e., in A) and $J(p_F, q_F) = g(F)$.

Corollary: $\sup(P) \leq \inf(K)$ — i.e., transportation problem (K) is a weak dual to the optimum pit problem (P).

Let F be a pit, $F^+ := F \cap E^+$ and $F^- := F \cap E^-$

Define $p_F : X \to \mathbb{R}$ and $q_F : Y \to \mathbb{R}$ by:

\[
p_F(\alpha) = 0, \quad p_F(x) = \begin{cases}
1 & \text{if } x \in F^+ \\
0 & \text{otherwise}
\end{cases}
\]

\[
q_F(\omega) = 0, \quad q_F(y) = \begin{cases}
1 & \text{if } y \in F^- \\
0 & \text{otherwise}
\end{cases}
\]

Then (p_F, q_F) is admissible (i.e., in \mathcal{A}) and $J(p_F, q_F) = g(F)$
Let F be a pit, $F^+ := F \cap E^+$ and $F^- := F \cap E^-

Define $p_F : X \to \mathbb{R}$ and $q_F : Y \to \mathbb{R}$ by:

$$p_F(\alpha) = 0, \quad p_F(x) = \begin{cases} 1 & \text{if } x \in F^+ \\ 0 & \text{otherwise} \end{cases}$$

$$q_F(\omega) = 0, \quad q_F(y) = \begin{cases} 1 & \text{if } y \in F^- \\ 0 & \text{otherwise} \end{cases}$$

Then (p_F, q_F) is admissible (i.e., in \mathcal{A}) and $J(p_F, q_F) = g(F)$

Corollary: $\sup(P) \leq \inf(K)$
Let F be a pit, $F^+ := F \cap E^+$ and $F^- := F \cap E^-$

Define $p_F : X \rightarrow \mathbb{R}$ and $q_F : Y \rightarrow \mathbb{R}$ by:

\[
p_F(\alpha) = 0, \quad p_F(x) = \begin{cases}
1 & \text{if } x \in F^+ \\
0 & \text{otherwise}
\end{cases}
\]

\[
q_F(\omega) = 0, \quad q_F(y) = \begin{cases}
1 & \text{if } y \in F^- \\
0 & \text{otherwise}
\end{cases}
\]

Then (p_F, q_F) is admissible (i.e., in A) and $J(p_F, q_F) = g(F)$

Corollary: $\sup(P) \leq \inf(K)$

- i.e., transportation problem (K) is a *weak dual* to the optimum pit problem (P)
Table of Contents

Introduction: Open Pit Mining

A Continuous Space Model

An Optimal Transportation Problem

The Kantorovich Dual

Elements of c-Convex Analysis

Solving the Dual Problem

Solving the Optimum Pit Problem

Perspectives
Given $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, define the c-Fenchel conjugates (or c-Fenchel-Legendre transforms) $p^{\#}: \mathcal{Y} \to \mathbb{R}$ of any function $p \in L^1(\mathcal{X}, \mu)$ by

$$p^{\#}(y) := \inf_{x \in \mathcal{X}} (p(x) - c(x,y))$$

and $q^{\#}: \mathcal{X} \to \mathbb{R}$ of any function $q \in L^1(\mathcal{Y}, \nu)$ by

$$q^{\#}(x) := \inf_{y \in \mathcal{Y}} (q(y) + c(x,y))$$

where $\text{ess sup}_f(x) = \inf_{N \in \mathbb{N}} \sup_{x \in \mathcal{X} \setminus N} f(x)$, where N is the set of measurable subsets $N \subset \mathcal{X}$ with $\mu(N) = 0$.

To simplify, we'll write \sup and \inf instead of ess sup and ess inf.

Similarly, all equalities and inequalities will be μ-a.e. in \mathcal{X} and ν-a.e. in \mathcal{Y}.

c-Fenchel Conjugates
Given $c : X \times Y \to \mathbb{R}$, define the c-Fenchel conjugates (or c-Fenchel-Legendre transforms)

1. $p^\# : Y \to \mathbb{R}$ of any function $p \in L^1(X, \mu)$ by

 $$p^\#(y) := \text{ess sup}_{x \in X} (p(x) - c(x, y))$$

2. $q^\flat : X \to \mathbb{R}$ of any function $q \in L^1(Y, \nu)$ by

 $$q^\flat(x) := \text{ess inf}_{y \in Y} (q(y) + c(x, y))$$

where $\text{ess sup} f(x) = \inf_{N \in \mathcal{N}} \sup_{x \in X \setminus N} f(x)$, where \mathcal{N} is the set of measurable subsets $N \subset X$ with $\mu(N) = 0$.

To simplify, we'll write \sup and \inf instead of ess sup and ess inf.
Given \(c : X \times Y \to \mathbb{R} \), define the \(c\)-Fenchel conjugates (or \(c\)-Fenchel-Legendre transforms)

- \(p^\# : Y \to \mathbb{R} \) of any function \(p \in L^1(X, \mu) \) by
 \[
 p^\#(y) := \esssup_{x \in X} (p(x) - c(x, y))
 \]

- \(q^\flat : X \to \mathbb{R} \) of any function \(q \in L^1(Y, \nu) \) by
 \[
 q^\flat(x) := \essinf_{y \in Y} (q(y) + c(x, y))
 \]

where \(\esssup f(x) = \inf_{N \in \mathcal{N}} \sup_{x \in X \setminus N} f(x) \), where \(\mathcal{N} \) is the set of measurable subsets \(N \subset X \) with \(\mu(N) = 0 \)

- To simplify, we’ll write \(\sup \) and \(\inf \) instead of \(\esssup \) and \(\essinf \)

- Similarly, all equalities and inequalities will be \(\mu\)-a.e. in \(X \) and \(\nu\)-a.e. in \(Y \)
Properties of c-Fenchel Conjugates

[Carlier, 2003; Ekeland, 2010]
Properties of c-Fenchel Conjugates

[Carlier, 2003; Ekeland, 2010]

For all $x \in X$, $y \in Y$,

\[p(x) \leq c(x, y) + p^{\#}(y) \leq p^{\#\#}(x) \]
\[q(y) \geq q^{\flat}(x) - c(x, y) \geq q^{\flat\#}(y) \]
Properties of c-Fenchel Conjugates

[Carlier, 2003; Ekeland, 2010]

For all $x \in X$, $y \in Y$,

$$p(x) \leq c(x, y) + p^\#(y) \leq p^{\#\#}(x)$$

$$q(y) \geq q^b(x) - c(x, y) \geq q^{\#\#}(y)$$

c-Fenchel duality:

$$p^{\#\#} = p^\# \quad \text{and} \quad q^{\#\#} = q^b$$
Properties of c-Fenchel Conjugates

[Carlier, 2003; Ekeland, 2010]

For all $x \in X$, $y \in Y$,

$$p(x) \leq c(x, y) + p^\#(y) \leq p^{\#\#}(x)$$
$$q(y) \geq q^b(x) - c(x, y) \geq q^{\#\#}(y)$$

c-Fenchel duality:

$$p^{\#\#} = p^\# \text{ and } q^{b\#\#} = q^b$$

Monotonicity:

$$p_1 \leq p_2 \implies p_1^\# \leq p_2^\#$$
$$q_1 \leq q_2 \implies q_1^b \leq q_2^b$$
c-Fenchel Transforms for the Open Pit Dual Problem

\[p^\#(y) := \max \{ p(\alpha), \sup_{x \in \Gamma(x)} p(x) \} \quad \text{for} \quad y \in E^ - \]

\[q^\♭(x) := \min \{ 1 + q(\omega), \inf_{y \in \Gamma(x)} q(y) \} \quad \text{for} \quad x \in E^ + \]

\[p^\# \text{ and } q^\♭ \text{ are increasing with respect to } \Gamma : \]

\[x' \in \Gamma(x) \implies q^\♭(x') \geq q^\♭(x) \]

\[y' \in \Gamma(y) \implies p^\#(y') \geq p^\#(y) \]

For a pit \(F \),

\[p^F = q^\♭ F \quad \text{and} \quad q^F = p^\# F \]
$p^\#(y) := \max \left\{ p(\alpha), \sup_{x : y \in \Gamma(x)} p(x) \right\}$

for $y \in E^-$

$p^\#(\omega) := \max \left\{ p(\alpha), \sup_{x \in E^+} p(x) - 1 \right\}$

$q^\flat(x) := \min \left\{ 1 + q(\omega), \inf_{y \in \Gamma(x)} q(y) \right\}$

for $x \in E^+$

$q^\flat(\alpha) := \min \left\{ q(\omega), \inf_{y \in E^-} q(y) \right\}$
$p^\#(y) := \max \left\{ p(\alpha), \sup_{x : y \in \Gamma(x)} p(x) \right\}$ for $y \in E^-$

$p^\#(\omega) := \max \left\{ p(\alpha), \sup_{x \in E^+} p(x) - 1 \right\}$

$q^\flat(x) := \min \left\{ 1 + q(\omega), \inf_{y \in \Gamma(x)} q(y) \right\}$ for $x \in E^+$

$q^\flat(\alpha) := \min \left\{ q(\omega), \inf_{y \in E^-} q(y) \right\}$

$p^\#$ and q^\flat are increasing with respect to Γ:

$x' \in \Gamma(x) \implies q^\flat(x') \geq q^\flat(x)$

$y' \in \Gamma(y) \implies p^\#(y') \geq p^\#(y)$
\(p^\#(y) := \max \left\{ p(\alpha), \sup_{x : y \in \Gamma(x)} p(x) \right\} \) for \(y \in E^- \)

\(p^\#(\omega) := \max \left\{ p(\alpha), \sup_{x \in E^+} p(x) - 1 \right\} \)

\(q^\flat(x) := \min \left\{ 1 + q(\omega), \inf_{y \in \Gamma(x)} q(y) \right\} \) for \(x \in E^+ \)

\(q^\flat(\alpha) := \min \left\{ q(\omega), \inf_{y \in E^-} q(y) \right\} \)

\(p^\# \) and \(q^\flat \) are increasing with respect to \(\Gamma \):

\[x' \in \Gamma(x) \implies q^\flat(x') \geq q^\flat(x) \]

\[y' \in \Gamma(y) \implies p^\#(y') \geq p^\#(y) \]

For a pit \(F \), \(p_F = q^\flat_F \) and \(q_F = p^\#_F \).
Introduction: Open Pit Mining

A Continuous Space Model

An Optimal Transportation Problem

The Kantorovich Dual

Elements of c-Convex Analysis

Solving the Dual Problem

Solving the Optimum Pit Problem

Perspectives
Translation Invariance

Given \((p, q) \in A\) and constants \(p_0, p_1, q_0, q_1\) satisfying:

\[
\mu \left(E + (q_0 - p_1) - \nu \left(E - (p_0 - q_1) \right) = 0 \right.
\]

define \(\tilde{p}\) and \(\tilde{q}\) by:

\[
\tilde{p}(\alpha) = p(\alpha) - p_0
\]

\[
\tilde{p}(x) = p(x) - p_1 \quad \text{for} \quad x \in E^+
\]

\[
\tilde{q}(\omega) = q(\omega) - q_0
\]

\[
\tilde{q}(y) = q(y) - q_1 \quad \text{for} \quad y \in E^-
\]

Then:

\[
J(\tilde{p}, \tilde{q}) = J(p, q)
\]
Translation Invariance

Given \((p, q) \in \mathcal{A}\) and constants \(p_0, p_1, q_0, q_1\) satisfying:

\[
\mu (E^+) (q_0 - p_1) - \nu (E^-) (p_0 - q_1) = 0
\]

define \(\tilde{p}\) and \(\tilde{q}\) by:

\[
\tilde{p}(\alpha) = p(\alpha) - p_0
\]
\[
\tilde{p}(x) = p(x) - p_1 \quad \text{for} \quad x \in E^+
\]
\[
\tilde{q}(\omega) = q(\omega) - q_0
\]
\[
\tilde{q}(y) = q(y) - q_1 \quad \text{for} \quad y \in E^-
\]

Then:

\[
J(\tilde{p}, \tilde{q}) = J(p, q)
\]
c-Fenchel Transforms Give Local Improvements
If \((p, q) \in A\), then \(p(x) - q(y) \leq c(x, y)\) for all \((x, y)\), so that:

\[
p(x) \leq \inf_{y} \{c(x, y) + q(y)\} = q^b(x)
\]

\[
q(y) \geq \sup_{x} \{p(x) - c(x, y)\} = p^\#(y)
\]
If \((p, q) \in A\), then \(p(x) - q(y) \leq c(x, y)\) for all \((x, y)\), so that:

\[
p(x) \leq \inf_y \{ c(x, y) + q(y) \} = q^b(x)
\]

\[
q(y) \geq \sup_x \{ p(x) - c(x, y) \} = p^\#(y)
\]

Therefore

\[
(p, p^\#) \in A \quad \text{and} \quad J(p, p^\#) \geq J(p, q)
\]

\[
(q^b, q) \in A \quad \text{and} \quad J(q^b, q) \geq J(p, q)
\]
If $(p, q) \in \mathcal{A}$, then $p(x) - q(y) \leq c(x, y)$ for all (x, y), so that:

\[
p(x) \leq \inf_y \{ c(x, y) + q(y) \} = q^b(x)
\]

\[
q(y) \geq \sup_x \{ p(x) - c(x, y) \} = p^#(y)
\]

Therefore

\[
(p, p^#) \in \mathcal{A} \quad \text{and} \quad J(p, p^#) \geq J(p, q)
\]

\[
(q^b, q) \in \mathcal{A} \quad \text{and} \quad J(q^b, q) \geq J(p, q)
\]

This implies

\[
J(p, q) \leq J(p, p^#) \leq J(p^{#b}, p^#)
\]
If \((p, q) \in A\), then \(p(x) - q(y) \leq c(x, y)\) for all \((x, y)\), so that:

\[
p(x) \leq \inf_y \{c(x, y) + q(y)\} = q^b(x)
\]

\[
q(y) \geq \sup_x \{p(x) - c(x, y)\} = p^\#(y)
\]

Therefore

\[(p, p^\#) \in A \quad \text{and} \quad J(p, p^\#) \geq J(p, q)\]

\[(q^b, q) \in A \quad \text{and} \quad J(q^b, q) \geq J(p, q)\]

This implies

\[J(p, q) \leq J(p, p^\#) \leq J(p^b, p^\#)\]

Letting \(\bar{p} := p^b\) and \(\bar{q} := p^\#\), we get:

\[J(p, q) \leq J(\bar{p}, \bar{q})\]

\[\bar{p} = q^b \quad \text{and} \quad \bar{q} = p^\#\]
A Dual Solution

Proposition 2: Problem (D) has a solution (\bar{p}, \bar{q}) with

$\bar{p} = \bar{q} \leq \bar{p} \leq 1$ $\alpha(p) = 0$,

$\bar{q} = \bar{p} \geq \bar{q} \leq 1$ $\omega(q) = 0$.

Proof: Take a maximizing sequence $(p_n, q_n) \in A$.

By preceding results, we may assume $p_n = q_n$ and $q_n = p_n$.

$p_n(\alpha) = 0$, $q_n(\omega) = 0$, and $\inf y \in E - q_n(y) = 0$.

Then, for all $x \in E^+$, $p_n(x) = \min \{1, \inf y \in \Gamma(x) \cap E - q_n(y)\}$.

This implies $0 \leq p_n(x) \leq 1$. Similarly, we get

$0 \leq q_n(x) \leq 1$.

So the family (p_n, q_n) is equi-integrable in $L^1(\mu) \times L^1(\nu)$.

By the Dunford-Pettis Theorem, we can extract a subsequence which converges weakly to some (\bar{p}, \bar{q}).

A convex closed in $L^1(\mu) \times L^1(\nu)$ is weakly closed, so $(\bar{p}, \bar{q}) \in A$.

Since J is linear and continuous on $L^1(\mu) \times L^1(\nu)$, we get:

$J(\bar{p}, \bar{q}) = \lim n J(p_n, q_n) = \sup(D)$.
Proposition 2: **Problem (D) has a solution** \((\bar{p}, \bar{q})\) with

\[
\bar{p} = \bar{q}^\downarrow \quad 0 \leq \bar{p} \leq 1 \quad \bar{p}(\alpha) = 0 \\
\bar{q} = \bar{p}^\uparrow \quad 0 \leq \bar{q} \leq 1 \quad \bar{q}(\omega) = 0
\]
Proposition 2: Problem (D) has a solution \((\bar{p}, \bar{q})\) with
\[
\begin{align*}
\bar{p} &= \bar{q}^\flat \quad 0 \leq \bar{p} \leq 1 \quad \bar{p}(\alpha) = 0 \\
\bar{q} &= \bar{p}^\sharp \quad 0 \leq \bar{q} \leq 1 \quad \bar{q}(\omega) = 0
\end{align*}
\]

Proof: Take a maximizing sequence \((p_n, q_n) \in A\)
Proposition 2: Problem (D) has a solution \((\bar{p}, \bar{q})\) with
\[
\bar{p} = \bar{q}^\ast \quad 0 \leq \bar{p} \leq 1 \quad \bar{p}(\alpha) = 0
\]
\[
\bar{q} = \bar{p}^\dagger \quad 0 \leq \bar{q} \leq 1 \quad \bar{q}(\omega) = 0
\]

Proof: Take a maximizing sequence \((p_n, q_n) \in A\)

- By preceding results, we may assume \(p_n = q_n^\ast\) and \(q_n = p_n^\dagger\)

- \(p_n(\alpha) = 0\), \(q_n(\omega) = 0\), and \(\inf_{y \in E^-} q_n(y) = 0\)
Proposition 2: *Problem (D) has a solution* \((\bar{p}, \bar{q})\) *with*

\[
\begin{align*}
\bar{p} &= \bar{q}^\flat & 0 \leq \bar{p} \leq 1 & \bar{p}(\alpha) = 0 \\
\bar{q} &= \bar{p}^\sharp & 0 \leq \bar{q} \leq 1 & \bar{q}(\omega) = 0
\end{align*}
\]

Proof: Take a maximizing sequence \((p_n, q_n) \in A\)

- By preceding results, we may assume \(p_n = q_n^\flat\) and \(q_n = p_n^\sharp\)

 \[p_n(\alpha) = 0, \quad q_n(\omega) = 0, \quad \text{and} \quad \inf_{y \in E^-} q_n(y) = 0\]

- Then, for all \(x \in E^+\), \(p_n(x) = \min \{1, \inf_{y \in \Gamma(x) \cap E^-} q_n(y)\}\)
Proposition 2: Problem (D) has a solution \((\bar{p}, \bar{q})\) with
\[
\bar{p} = \bar{q}^\flat \quad 0 \leq \bar{p} \leq 1 \quad \bar{p}(\alpha) = 0 \\
\bar{q} = \bar{p}^\sharp \quad 0 \leq \bar{q} \leq 1 \quad \bar{q}(\omega) = 0
\]

Proof: Take a maximizing sequence \((p_n, q_n) \in A\)

- By preceding results, we may assume \(p_n = q_n^\flat\) and \(q_n = p_n^\sharp\)
 \(p_n(\alpha) = 0, \ q_n(\omega) = 0,\) and \(\inf_{y \in E^-} q_n(y) = 0\)

- Then, for all \(x \in E^+\), \(p_n(x) = \min\{1, \inf_{y \in \Gamma(x) \cap E^-} q_n(y)\}\)

- This implies \(0 \leq p_n(x) \leq 1\). Similarly, we get \(0 \leq q_n(x) \leq 1\)
Proposition 2: Problem (D) has a solution \((\bar{p}, \bar{q})\) with
\[
\begin{align*}
\bar{p} &= \bar{q}^\flat \\
0 &\leq \bar{p} \leq 1 \\
\bar{p}(\alpha) &= 0 \\
\bar{q} &= \bar{p}^\sharp \\
0 &\leq \bar{q} \leq 1 \\
\bar{q}(\omega) &= 0
\end{align*}
\]

Proof: Take a maximizing sequence \((p_n, q_n) \in A\)

- By preceding results, we may assume \(p_n = q_n^\flat\) and \(q_n = p_n^\sharp\)
 \(p_n(\alpha) = 0,\ q_n(\omega) = 0,\) and \(\inf_{y \in E^-} q_n(y) = 0\)
- Then, for all \(x \in E^+,\ p_n(x) = \min \{1, \inf_{y \in \Gamma(x) \cap E^-} q_n(y)\}\)
- This implies \(0 \leq p_n(x) \leq 1.\) Similarly, we get \(0 \leq q_n(x) \leq 1\)
- So the family \((p_n, q_n)\) is equi-integrable in \(L^1(\mu) \times L^1(\nu)\)
Proposition 2: Problem (D) has a solution (\bar{p}, \bar{q}) with

\[
\bar{p} = \bar{q}^♭ \quad 0 \leq \bar{p} \leq 1 \quad \bar{p}(\alpha) = 0
\]

\[
\bar{q} = \bar{p}^♯ \quad 0 \leq \bar{q} \leq 1 \quad \bar{q}(\omega) = 0
\]

Proof: Take a maximizing sequence $(p_n, q_n) \in A$

- By preceding results, we may assume $p_n = q_n^♭$ and $q_n = p_n^♯$

\[
p_n(\alpha) = 0, \quad q_n(\omega) = 0, \quad \text{and} \quad \inf_{y \in E^-} q_n(y) = 0
\]

- Then, for all $x \in E^+$, $p_n(x) = \min \{1, \inf_{y \in \Gamma(x) \cap E^-} q_n(y)\}$

- This implies $0 \leq p_n(x) \leq 1$. Similarly, we get $0 \leq q_n(x) \leq 1$

- So the family (p_n, q_n) is equi-integrable in $L^1(\mu) \times L^1(\nu)$

- By the Dunford-Pettis Theorem, we can extract a subsequence which converges weakly to some (\bar{p}, \bar{q})
Proposition 2: Problem (D) has a solution \((\bar{p}, \bar{q})\) with
\[
\begin{align*}
\bar{p} &= \bar{q}^\sharp, & 0 \leq \bar{p} \leq 1 & \bar{p}(\alpha) = 0 \\
\bar{q} &= \bar{p}^\flat, & 0 \leq \bar{q} \leq 1 & \bar{q}(\omega) = 0
\end{align*}
\]

Proof: Take a maximizing sequence \((p_n, q_n) \in A\)

- By preceding results, we may assume \(p_n = q_n^\flat\) and \(q_n = p_n^\sharp\)
 \(p_n(\alpha) = 0, \ q_n(\omega) = 0, \) and \(\inf_{y \in E^-} q_n(y) = 0\)

- Then, for all \(x \in E^+, \ p_n(x) = \min\{1, \ inf_{y \in \Gamma(x) \cap E^-} q_n(y)\}\)

- This implies \(0 \leq p_n(x) \leq 1\). Similarly, we get \(0 \leq q_n(x) \leq 1\)

- So the family \((p_n, q_n)\) is equi-integrable in \(L^1(\mu) \times L^1(\nu)\)

- By the Dunford-Pettis Theorem, we can extract a subsequence which converges weakly to some \((\bar{p}, \bar{q})\)

- \(A\) convex closed in \(L^1(\mu) \times L^1(\nu)\) is weakly closed, so \((\bar{p}, \bar{q}) \in A\)
Proposition 2: Problem (D) has a solution \((\bar{p}, \bar{q})\) with

\[
\bar{p} = \bar{q}^\flat \quad 0 \leq \bar{p} \leq 1 \quad \bar{p}(\alpha) = 0 \\
\bar{q} = \bar{p}^\sharp \quad 0 \leq \bar{q} \leq 1 \quad \bar{q}(\omega) = 0
\]

Proof: Take a maximizing sequence \((p_n, q_n) \in A\)

- By preceding results, we may assume \(p_n = q_n^\flat\) and \(q_n = p_n^\sharp\)

 \[p_n(\alpha) = 0, \quad q_n(\omega) = 0, \quad \text{and} \quad \inf_{y \in E^-} q_n(y) = 0\]

- Then, for all \(x \in E^+\), \(p_n(x) = \min \{1, \inf_{y \in \Gamma(x) \cap E^-} q_n(y)\}\)

- This implies \(0 \leq p_n(x) \leq 1\). Similarly, we get \(0 \leq q_n(x) \leq 1\)

- So the family \((p_n, q_n)\) is equi-integrable in \(L^1(\mu) \times L^1(\nu)\)

- By the Dunford-Pettis Theorem, we can extract a subsequence which converges weakly to some \((\bar{p}, \bar{q})\)

- \(A\) convex closed in \(L^1(\mu) \times L^1(\nu)\) is weakly closed, so \((\bar{p}, \bar{q}) \in A\)

- Since \(J\) is linear and continuous on \(L^1(\mu) \times L^1(\nu)\), we get:

 \[J(\bar{p}, \bar{q}) = \lim_n J(p_n, q_n) = \sup(D)\]
Table of Contents

Introduction: Open Pit Mining
A Continuous Space Model
An Optimal Transportation Problem
The Kantorovich Dual
Elements of c-Convex Analysis
Solving the Dual Problem
Solving the Optimum Pit Problem
Perspectives
If \(\pi \) is optimal to problem (K) and \((p,q)\) to its dual (D), then
\[
0 = J(p,q) - \int_{X \times Y} c(x,y) \, d\pi = \int_{X \times Y} (p(x) - q(y) - c(x,y)) \, d\pi
\]
implying the CS conditions:
\[
p(x) - q(y) - c(x,y) = 0, \quad \pi \text{-a.e.}
\]
Denote \(y \in \Gamma(x) \) by:
\[
y \succsim x \quad (\text{the preorder on } E \text{ defined by } \Gamma)
\]
Monotonicity Lemma:
If \((\bar{p}, \bar{q})\) is an optimal solution to (D) satisfying the properties in Proposition 2, then
\[
y'' \succsim y' \succsim x'' \succsim x' = \Rightarrow \bar{q}(y'') \geq \bar{q}(y') \geq \bar{p}(x'') \geq \bar{p}(x')
\]
Proof: The first and last inequalities follow from \(\bar{q} = \bar{p} ^\# \), \(\bar{p} = \bar{q} ^\flat \), and \(c\)-Fenchel conjugates increasing w.r.t. the middle inequality follows from \(\bar{p} ^\# (y) = \max \{ \bar{p}(\alpha), \sup_x y \in \Gamma(x) \bar{p}(x) \} \) for all \(y \in E \).
Complementary Slackness, and Monotonicity

If \(\pi \) is optimal to problem (K) and \((p, q)\) to its dual (D), then

\[
0 = J(p, q) - \int_{X \times Y} c(x, y) d\pi = \int_{X \times Y} (p(x) - q(y) - c(x, y)) d\pi
\]

implying the **CS conditions**: \(p(x) - q(y) - c(x, y) = 0, \ \pi\text{-a.e.} \)
If \(\pi \) is optimal to problem (K) and \((p, q)\) to its dual (D), then

\[
0 = J(p, q) - \int_{X \times Y} c(x, y) d\pi = \int_{X \times Y} (p(x) - q(y) - c(x, y)) d\pi
\]

implying the **CS conditions**: \(p(x) - q(y) - c(x, y) = 0, \ \pi\text{-a.e.} \)

Denote \(y \in \Gamma(x) \) by: \(y \succsim x \) (the preorder on \(E \) defined by \(\Gamma \))
Complementary Slackness, and Monotonicity

If π is optimal to problem (K) and (p, q) to its dual (D), then

$$0 = J(p, q) - \int_{X \times Y} c(x, y) d\pi = \int_{X \times Y} (p(x) - q(y) - c(x, y)) d\pi$$

implying the **CS conditions**: $p(x) - q(y) - c(x, y) = 0, \ \pi$–a.e.

Denote $y \in \Gamma(x)$ by: $y \succsim x$ (the preorder on E defined by Γ)

Monotonicity Lemma: If (\bar{p}, \bar{q}) is an optimal solution to (D)

satisfying the properties in Proposition 2, then

$$y'' \succsim y' \succsim x'' \succsim x' \implies \bar{q}(y'') \geq \bar{q}(y') \geq \bar{p}(x'') \geq \bar{p}(x')$$
If π is optimal to problem (K) and (p, q) to its dual (D), then

$$0 = J(p, q) - \int_{X \times Y} c(x, y) \, d\pi = \int_{X \times Y} (p(x) - q(y) - c(x, y)) \, d\pi$$

implying the **CS conditions**: $p(x) - q(y) - c(x, y) = 0$, π-a.e.

Denote $y \in \Gamma(x)$ by: $y \succsim x$ (the preorder on E defined by Γ)

Monotonicity Lemma: If (\bar{p}, \bar{q}) is an optimal solution to (D) satisfying the properties in Proposition 2, then

$$y'' \succsim y' \succsim x'' \succsim x' \implies \bar{q}(y'') \geq \bar{q}(y') \geq \bar{p}(x'') \geq \bar{p}(x')$$

Proof: The first and last inequalities follow from $\bar{q} = \bar{p}^\#$, $\bar{p} = \bar{q}^\flat$, and c-Fenchel conjugates increasing w.r.t. Γ

- the middle inequality follows from

$$\bar{p}^\#(y) = \max \left\{ \bar{p}(\alpha), \sup_{x : y \in \Gamma(x)} \bar{p}(x) \right\} \text{ for all } y \in E^-$$
Proposition 3: Let (\bar{p}, \bar{q}) be an optimal solution to problem (D) satisfying the properties in Proposition 2. Then $F := \{ x | \bar{p}(x) = 1 \} \cup \{ y | \bar{q}(y) = 1 \}$ defines an optimum pit.

Proof: F is measurable, hence by the Monotonicity Lemma, a pit.

Letting $F^+ := F \cap E^+$ and $F^- := F \cap E^-$, we have $g(F) = \int F^+ d\mu - \int F^- d\nu \leq \sup P$.

Let $G^+ := E^+ \setminus F^+$ and $G^- := E^- \setminus F^-$ since $\bar{p} = 1$ on F^+, $\bar{q} = 1$ on F^-, and $\bar{p}(\alpha) = \bar{q}(\omega) = 0$,

$J(\bar{p}, \bar{q}) = \int F^+ d\mu - \int F^- d\nu + \int G^+ \bar{p} d\mu - \int G^- \bar{q} d\nu$.
Proposition 3: Let \((\bar{p}, \bar{q})\) be an optimal solution to problem \((D)\) satisfying the properties in Proposition 2. Then

\[
F := \{ x \mid \bar{p}(x) = 1 \} \cup \{ y \mid \bar{q}(y) = 1 \}
\]

defines an optimum pit.
Proposition 3: Let \((\bar{p}, \bar{q})\) be an optimal solution to problem \((D)\) satisfying the properties in Proposition 2. Then

\[
F := \{ x \mid \bar{p}(x) = 1 \} \cup \{ y \mid \bar{q}(y) = 1 \}
\]

defines an optimum pit.

Proof: \(F\) is measurable, hence by the Monotonicity Lemma, a pit
Proposition 3: Let \((\bar{p}, \bar{q})\) be an optimal solution to problem (D) satisfying the properties in Proposition 2. Then

\[F := \{x \mid \bar{p}(x) = 1\} \cup \{y \mid \bar{q}(y) = 1\} \]

defines an optimum pit.

Proof: \(F\) is measurable, hence by the Monotonicity Lemma, a pit

- Letting \(F^+ := F \cap E^+\) and \(F^- := F \cap E^-\), we have

\[
g(F) = \int_{F^+} d\mu - \int_{F^-} d\nu \leq \sup(P)
\]
Proposition 3: Let (\bar{p}, \bar{q}) be an optimal solution to problem (D) satisfying the properties in Proposition 2. Then

$$F := \{x \mid \bar{p}(x) = 1\} \cup \{y \mid \bar{q}(y) = 1\}$$

defines an optimum pit.

Proof: F is measurable, hence by the Monotonicity Lemma, a pit

- Letting $F^+ := F \cap E^+$ and $F^- := F \cap E^-$, we have

$$g(F) = \int_{F^+} d\mu - \int_{F^-} d\nu \leq \sup(P)$$

- Let $G^+ := E^+ \setminus F^+$ and $G^- := E^- \setminus F^-$.

\[\]
Proposition 3: Let \((\bar{p}, \bar{q})\) be an optimal solution to problem \((D)\) satisfying the properties in Proposition 2. Then

\[F := \{x \mid \bar{p}(x) = 1\} \cup \{y \mid \bar{q}(y) = 1\} \]

defines an optimum pit.

Proof: \(F\) is measurable, hence by the Monotonicity Lemma, a pit

- Letting \(F^+ := F \cap E^+\) and \(F^- := F \cap E^-\), we have
 \[g(F) = \int_{F^+} d\mu - \int_{F^-} d\nu \leq \sup(P) \]

- Let \(G^+ := E^+ \setminus F^+\) and \(G^- := E^- \setminus F^-\):
Proposition 3: Let \((\bar{p}, \bar{q})\) be an optimal solution to problem (D) satisfying the properties in Proposition 2. Then

\[F := \{ x \mid \bar{p}(x) = 1 \} \cup \{ y \mid \bar{q}(y) = 1 \} \]

defines an optimum pit.

Proof: \(F\) is measurable, hence by the Monotonicity Lemma, a pit

- Letting \(F^+ := F \cap E^+\) and \(F^- := F \cap E^-\), we have
 \[
g(F) = \int_{F^+} d\mu - \int_{F^-} d\nu \leq \sup(P) \]

- Let \(G^+ := E^+ \setminus F^+\) and \(G^- := E^- \setminus F^-\):
 since \(\bar{p} = 1\) on \(F^+\), \(\bar{q} = 1\) on \(F^-\), and \(\bar{p}(\alpha) = \bar{q}(\omega) = 0\),
 \[
 J(\bar{p}, \bar{q}) = \int_{F^+} d\mu - \int_{F^-} d\nu + \int_{G^+} \bar{p} d\mu - \int_{G^-} \bar{q} d\nu
 \]
Since ν is a marginal of π,
\[
\int G - \bar{q}(y) \, d\nu(y) = \int E + \times G - \bar{q}(y) \, d\pi(x,y)
\]
$c(x,y) = 0$ or $+\infty$ for $(x,y) \in E^+ \times E^-$,
CS conditions,
$0 \leq \bar{p} \leq 1$ and $0 \leq \bar{q} \leq 1$ imply that $\bar{p}(x) = \bar{q}(y)$ π-a.e. on $E^+ \times E^-$. Thus:
\[
\pi(F^+ \times G - \bar{q})(y) = 0 = \pi(G^+ \times F - \bar{p})(x)
\]
(zero allocations between excavated and unexcavated points), and
\[
\int E^+ \times G - \bar{q}(y) \, d\pi(x,y) = \int G^+ \times G - \bar{q}(y) \, d\pi(x,y) = \int G^+ \times \bar{p}(x) \, d\pi(x,y)
\]
$\Rightarrow J(\bar{p},\bar{q}) = g(F) = \sup(D) = \inf(K) \geq \sup(P) \geq g(F)$.
Since ν is a marginal of π, $\int_{G^-} \bar{q}(y) d\nu(y) = \int_{E^+ \times G^-} \bar{q}(y) d\pi(x, y)$
Since \(\nu \) is a marginal of \(\pi \),
\[
\int_{G^-} \bar{q}(y) d\nu(y) = \int_{E^+ \times G^-} \bar{q}(y) d\pi(x, y)
\]
\(\Rightarrow \)
\[
\int_{E^+ \times G^-} \bar{q}(y) d\pi(x, y) = \int_{E^+} \bar{p}(x) d\mu(x)
\]

\[\Rightarrow \]
\[
J(\bar{p}, \bar{q}) = \int F^+ d\mu - \int F^- d\nu = g(F)
\]

Hence
\[
g(F) = J(\bar{p}, \bar{q}) = \sup(D) = \inf(K) \geq \sup(P) \geq g(F)
\]

\(\text{c}(x, y) = 0 \text{ or } +\infty \) for \((x, y) \in E^+ \times E^-\), CS conditions, \(0 \leq \bar{p} \leq 1\) and \(0 \leq \bar{q} \leq 1\) imply that \(\bar{p}(x) = \bar{q}(y)\) \(\pi\)-a.e. on \(E^+ \times E^-\). Thus:
Since \(\nu \) is a marginal of \(\pi \),
\[
\int_{G^-} \bar{q}(y) d\nu(y) = \int_{E^+ \times G^-} \bar{q}(y) d\pi(x, y)
\]

\(c(x, y) = 0 \) or \(+\infty\) for \((x, y) \in E^+ \times E^-\), CS conditions, \(0 \leq \bar{p} \leq 1\) and \(0 \leq \bar{q} \leq 1\) imply that \(\bar{p}(x) = \bar{q}(y) \) \(\pi\)-a.e. on \(E^+ \times E^-\). Thus:

\[
\int E^+ \times G^- \bar{q}(y) d\pi(x, y) = \int G^+ \times G^- \bar{q}(y) d\pi(x, y) = \int G^+ \times E^- \bar{p}(x) d\pi(x, y) = \int G^+ \times E^- \bar{p}(x) d\mu(x) = \Rightarrow J(\bar{p}, \bar{q}) = \int F^+ d\mu - \int F^- d\nu = g(F) \]
Proof, continued

Since ν is a marginal of π, $\int_{G^-} \bar{q}(y) d\nu(y) = \int_{E^+ \times G^-} \bar{q}(y) d\pi(x, y)$

$c(x, y) = 0$ or $+\infty$ for $(x, y) \in E^+ \times E^-$, CS conditions, $0 \leq \bar{p} \leq 1$ and $0 \leq \bar{q} \leq 1$ imply that $\bar{p}(x) = \bar{q}(y)$ π-a.e. on $E^+ \times E^-$. Thus:

$$\pi(F^+ \times G^-) = 0 = \pi(G^+ \times F^-)$$

(zero allocations between excavated and unexcavated points), and

$\Rightarrow \quad J(\bar{p}, \bar{q}) = \int_{F^+} d\mu - \int_{F^-} d\nu = g(F)$
Since \(\nu \) is a marginal of \(\pi \),
\[
\int_{G^-} \bar{q}(y) d\nu(y) = \int_{E^+ \times G^-} \bar{q}(y) d\pi(x,y)
\]
\[
c(x, y) = 0 \text{ or } +\infty \text{ for } (x, y) \in E^+ \times E^-\text{, CS conditions, } 0 \leq \bar{p} \leq 1 \text{ and } 0 \leq \bar{q} \leq 1 \text{ imply that } \bar{p}(x) = \bar{q}(y) \text{ } \pi\text{-a.e. on } E^+ \times E^-.
\]
Thus:
\[
\pi(F^+ \times G^-) = 0 = \pi(G^+ \times F^-)
\]
(zero allocations between excavated and unexcavated points), and
\[
\int_{E^+ \times G^-} \bar{q}(y) d\pi(x,y) = \int_{G^+ \times G^-} \bar{q}(y) d\pi(x,y) = \int_{G^+ \times G^-} \bar{p}(x) d\pi(x,y)
\]
\[
= \int_{G^+ \times E^-} \bar{p}(x) d\pi(x,y) = \int_{G^+} \bar{p}(x) d\mu(x)
\]
Since ν is a marginal of π, $\int_{G^-} \bar{q}(y) d\nu(y) = \int_{E^+ \times G^-} \bar{q}(y) d\pi(x, y)$

$c(x, y) = 0$ or $+\infty$ for $(x, y) \in E^+ \times E^-$, CS conditions, $0 \leq \bar{p} \leq 1$ and $0 \leq \bar{q} \leq 1$ imply that $\bar{p}(x) = \bar{q}(y)$ π-a.e. on $E^+ \times E^-$. Thus:

$\pi(F^+ \times G^-) = 0 = \pi(G^+ \times F^-)$

(zero allocations between excavated and unexcavated points), and

$$\int_{E^+ \times G^-} \bar{q}(y) d\pi(x, y) = \int_{G^+ \times G^-} \bar{q}(y) d\pi(x, y) = \int_{G^+ \times G^-} \bar{p}(x) d\pi(x, y)$$

$$= \int_{G^+ \times E^-} \bar{p}(x) d\pi(x, y) = \int_{G^+} \bar{p}(x) d\mu(x)$$

$$\Rightarrow \quad J(\bar{p}, \bar{q}) = \int_{F^+} d\mu - \int_{F^-} d\nu = g(F)$$
Proof, continued

- Since ν is a marginal of π, $\int_{G^-} \bar{q}(y) d\nu(y) = \int_{E^+ \times G^-} \bar{q}(y) d\pi(x, y)$

- $c(x, y) = 0$ or $+\infty$ for $(x, y) \in E^+ \times E^-$, CS conditions, $0 \leq \bar{p} \leq 1$ and $0 \leq \bar{q} \leq 1$ imply that $\bar{p}(x) = \bar{q}(y)$ π-a.e. on $E^+ \times E^-$. Thus:

$$\pi(F^+ \times G^-) = 0 = \pi(G^+ \times F^-)$$

(Zero allocations between excavated and unexcavated points), and

$$\int_{E^+ \times G^-} \bar{q}(y) d\pi(x, y) = \int_{G^+ \times G^-} \bar{q}(y) d\pi(x, y) = \int_{G^+ \times G^-} \bar{p}(x) d\pi(x, y)$$

$$= \int_{G^+ \times G^-} \bar{p}(x) d\pi(x, y) = \int_{G^+} \bar{p}(x) d\mu(x)$$

$$\implies J(\bar{p}, \bar{q}) = \int_{F^+} d\mu - \int_{F^-} d\nu = g(F)$$

- Hence $g(F) = J(\bar{p}, \bar{q}) = \sup(D) = \inf(K) \geq \sup(P) \geq g(F)$
Main Result

Theorem: If

- E is compact,
- Γ is reflexive, transitive and has a closed graph, and
- $g(x)$ is continuous with $\int_E \max\{0, g(x)\} \, dx > 0$,

then:

1. Problem (P) has an optimum solution, i.e., an optimal pit F
2. Its indicator functions (p_F, q_F) define optimum potentials, i.e., optimal solutions to (D)
3. Problem (K) has an optimum solution (profit allocation) and is a strong dual to (P), i.e., $\min(K) = \max(P)$
4. A pit F is optimal iff there exists a feasible solution π to (K) such that (p_F, q_F) satisfies the CS conditions
Uniqueness?

Theorem [Matheron, 1975; also Topkis, 1976]:

1. The family \mathcal{F} of all pits is closed under arbitrary unions and intersections:
\[
\bigcup_{F \in \mathcal{G}} F \in \mathcal{F} \quad \text{and} \quad \bigcap_{F \in \mathcal{G}} F \in \mathcal{F} \quad \text{for all } \mathcal{G} \subseteq \mathcal{F}
\]

2. The family of all optimum pits is also closed under arbitrary unions and intersections.

3. There exist a unique smallest optimum pit and a unique largest optimum pit.

The smallest optimum pit minimizes environmental impact without sacrificing total profit.
Theorem [Matheron, 1975; also Topkis, 1976]:

1. The family \mathcal{F} of all pits is closed under arbitrary unions and intersections:

$$\bigcup_{F \in \mathcal{G}} F \in \mathcal{F} \quad \text{and} \quad \bigcap_{F \in \mathcal{G}} F \in \mathcal{F} \quad \text{for all } \mathcal{G} \subseteq \mathcal{F}$$

- \mathcal{F} is a complete Boolean lattice (ring of sets)

There exist a unique smallest optimum pit and a unique largest optimum pit

- The smallest optimum pit minimizes environmental impact without sacrificing total profit
Theorem [Matheron, 1975; also Topkis, 1976]:

1. The family \mathcal{F} of all pits is closed under arbitrary unions and intersections:

$$\bigcup_{F \in \mathcal{G}} F \in \mathcal{F} \quad \text{and} \quad \bigcap_{F \in \mathcal{G}} F \in \mathcal{F} \quad \text{for all } \mathcal{G} \subseteq \mathcal{F}$$

- \mathcal{F} is a complete Boolean lattice (ring of sets)
Theorem [Matheron, 1975; also Topkis, 1976]:

1. The family \mathcal{F} of all pits is closed under arbitrary unions and intersections:

$$\bigcup_{F \in G} F \in \mathcal{F} \quad \text{and} \quad \bigcap_{F \in G} F \in \mathcal{F} \quad \text{for all } G \subseteq \mathcal{F}$$

 ▶ \mathcal{F} is a complete Boolean lattice (ring of sets)

2. The family of all optimum pits is also closed under arbitrary unions and intersections
Uniqueness?

Theorem [Matheron, 1975; also Topkis, 1976]:

1. *The family \(\mathcal{F} \) of all pits is closed under arbitrary unions and intersections:*

 \[
 \bigcup_{F \in \mathcal{G}} F \in \mathcal{F} \quad \text{and} \quad \bigcap_{F \in \mathcal{G}} F \in \mathcal{F} \quad \text{for all} \ \mathcal{G} \subseteq \mathcal{F}
 \]

 \(\mathcal{F} \) is a complete Boolean lattice (ring of sets)

2. *The family of all optimum pits is also closed under arbitrary unions and intersections*

3. *There exist a unique smallest optimum pit and a unique largest optimum pit*
Theorem [Matheron, 1975; also Topkis, 1976]:

1. The family \mathcal{F} of all pits is closed under arbitrary unions and intersections:

$$\bigcup_{F \in \mathcal{G}} F \in \mathcal{F} \quad \text{and} \quad \bigcap_{F \in \mathcal{G}} F \in \mathcal{F} \quad \text{for all} \ \mathcal{G} \subset \mathcal{F}$$

 ▶ \mathcal{F} is a complete Boolean lattice (ring of sets)

2. The family of all optimum pits is also closed under arbitrary unions and intersections

3. There exist a unique smallest optimum pit and a unique largest optimum pit

 ▶ The smallest optimum pit minimizes environmental impact without sacrificing total profit
Table of Contents

Introduction: Open Pit Mining

A Continuous Space Model

An Optimal Transportation Problem

The Kantorovich Dual

Elements of c-Convex Analysis

Solving the Dual Problem

Solving the Optimum Pit Problem

Perspectives
Perspectives...

- **Dynamic version**: profits in the distant future should be discounted
Perspectives...

- **Dynamic version**: profits in the distant future should be discounted
 - Recall: *production planning* models include excavating and processing decisions over time, subject to capacity constraints, and with discounted cash flows
Perspectives...

- **Dynamic version**: profits in the distant future should be discounted
 - Recall: *production planning* models include excavating and processing decisions over time, subject to capacity constraints, and with discounted cash flows
- Taking *uncertainties* into account:
● Dynamic version: profits in the distant future should be discounted
 ▶ Recall: production planning models include excavating and processing decisions over time, subject to capacity constraints, and with discounted cash flows

● Taking uncertainties into account:
 ▶ geological uncertainties on rock properties, amounts and location of ore, etc.
Perspectives...

- **Dynamic version**: profits in the distant future should be discounted
 - Recall: production planning models include excavating and processing decisions over time, subject to capacity constraints, and with discounted cash flows

- Taking **uncertainties** into account:
 - geological uncertainties on rock properties, amounts and location of ore, etc.
 - operational uncertainties (disruptions)
Perspectives...

- **Dynamic version**: profits in the distant future should be discounted
 - Recall: production planning models include excavating and processing decisions over time, subject to capacity constraints, and with discounted cash flows
- Taking **uncertainties** into account:
 - geological uncertainties on rock properties, amounts and location of ore, etc.
 - operational uncertainties (disruptions)
 - economic uncertainties, in particular, market prices of the minerals

...
Perspectives...

- **Dynamic version**: profits in the distant future should be discounted
 - Recall: *production planning* models include excavating and processing decisions over time, subject to capacity constraints, and with discounted cash flows
- Taking **uncertainties** into account:
 - **geological** uncertainties on rock properties, amounts and location of ore, etc.
 - **operational** uncertainties (disruptions)
 - **economic** uncertainties, in particular, market prices of the minerals
- Formulating a **local** maximum-flow, minimum-cut model (instead of the “global” transportation model)
Perspectives...

- **Dynamic version**: profits in the distant future should be discounted
 - Recall: production planning models include excavating and processing decisions over time, subject to capacity constraints, and with discounted cash flows
- **Taking uncertainties** into account:
 - **geological** uncertainties on rock properties, amounts and location of ore, etc.
 - **operational** uncertainties (disruptions)
 - **economic** uncertainties, in particular, market prices of the minerals
- **Formulating a local** maximum-flow, minimum-cut model (instead of the “global” transportation model)
 - as is done for image segmentation and processing?
Perspectives...

- **Dynamic version**: profits in the distant future should be discounted
 - Recall: *production planning* models include excavating and processing decisions over time, subject to capacity constraints, and with discounted cash flows

- **Taking uncertainties into account**:
 - *geological* uncertainties on rock properties, amounts and location of ore, etc.
 - *operational* uncertainties (disruptions)
 - *economic* uncertainties, in particular, market prices of the minerals

- Formulating a *local* maximum-flow, minimum-cut model (instead of the “global” transportation model)
 - as is done for image segmentation and processing?
 - a fluid dynamics model?
Dynamic version: profits in the distant future should be discounted
 Recall: production planning models include excavating and processing decisions over time, subject to capacity constraints, and with discounted cash flows
Taking uncertainties into account:
 geological uncertainties on rock properties, amounts and location of ore, etc.
 operational uncertainties (disruptions)
 economic uncertainties, in particular, market prices of the minerals
Formulating a local maximum-flow, minimum-cut model (instead of the “global” transportation model)
 as is done for image segmentation and processing?
 a fluid dynamics model?
Numerical implementation
Perspectives...

- **Dynamic version**: profits in the distant future should be discounted
 - Recall: production planning models include excavating and processing decisions over time, subject to capacity constraints, and with discounted cash flows

- **Taking uncertainties into account**:
 - geological uncertainties on rock properties, amounts and location of ore, etc.
 - operational uncertainties (disruptions)
 - economic uncertainties, in particular, market prices of the minerals

- Formulating a **local** maximum-flow, minimum-cut model (instead of the “global” transportation model)
 - as is done for image segmentation and processing?
 - a fluid dynamics model?

- **Numerical implementation**
 - different from a blocks model...
That’s it, folks.

Any questions?