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1 Motivation

The literature on portfolio management starts with the Markowitz portfolio
and the CAPM ([19], [20], [33]). It is a one-period model, where the infor-
mation on assets is minimal. Every asset is characterized by two numbers,
its expected return and its covariance with respect to the market portfolio.
With such poor information, one cannot hope to distinguish between stocks
and bonds, and indeed part of the beauty of the CAPM lies in its generality:
it applies to any type of financial assets.

On the other hand, as soon as one tries to make use of all the information
available on assets, important differences appear between stocks and bonds.
Bonds mature, that is they are eventually converted into cash, whereas stocks
do not. The price of bonds depends on interest rates, and the price of stocks,
at least in the academic literature, does not. The bond market is notoriously
incomplete, much more so than the stock market, as is observed in practice.
As a result, the classical results on portfolio management, such as Merton’s
([21], [22]), concern stock portfolios. This paper and the papers [10] and [34]
were born from a desire to extend them to bond portfolios.

More generally, we aim to construct a general framework for portfolio
management in continuous time, encompassing both stocks and bonds.

The first difficulty to overcome (and, in our opinion, the main financial
one) is the fact that such a theory should encompass two very different kinds
of financial assets: bonds, which have a finite life, and stocks, which are per-
manent. We do it by introducing a new type of financial asset, the rollovers.
A rollover of time to maturity x is a bank deposit and which can be cashed at
any time, with accrued interest, provided notice be given time x in advance.
Roll-overs have constant time to maturity (as opposed to zero-coupon bonds,
for instance), and are similar to stocks, in the sense that their main char-
acteristics do not change with time. By decomposing bonds into rollovers,
instead of decomposing them into zero-coupons, we can hope to incorporate
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bonds and stocks into a unified theory of portfolio management. Rollovers
were considered in [32] under the name “rolling-horizon bond”.

This implies that the time to maturity x, rather than the maturity date T,
becomes the relevant characteristic of bonds. Thus, we shall describe bonds
using a moving maturity-time frame, where at time t, the origin is the time
to maturity x = 0, corresponding to the maturity date T = t. As we shall
see very soon, there will be a mathematical price to pay for that.

At any time t, denote by pt(x) the price of a unit zero-coupon with time
to maturity x. The function x 7→ pt(x) will be called the zero-coupon (price)
curve at time t; note that the actual time when that zero-coupon matures
is T = t + x, and that T , is fixed while x changes with t. The zero-coupon
curve pt will be understood to move randomly, and the second difficulty we
face is to describe its motion in some reasonable way. One solution is to
decide that pt belongs to a fixed family of curves, depending on finitely many
parameters, so that

pt(x) = f(t, x; r1, ..., rd)

and the random motion of pt is the image of a random motion of the ri,
which could, as in spot-rates models, be modelled, for instance by diffusions.
This is the parametric approach, which exhibits the classical difficulty of all
parametric approaches, namely that there is no theoretical reason why the
pt should be written in that way, so that the choice of the function f has
to be dictated by observational fit. One then has to strike the right balance
between two evils: if the number of parameters is too small, the model will
be unrealistic, and if it his higher, it becomes very difficult to calibrate.

We will operate in a non-parametric framework: we will make no assump-
tion on pt, beyond some very rough ones, regarding smoothness and behavior
at infinity, nothing that would much constrain their shape. Mathematically
speaking, we will let the curve pt move freely in a linear space E, which will
typically be an infinite-dimensional Banach space, of functions from [0,∞[
to R.

In order to reflect adequately known financial facts, the correct definition
of E must incorporate some basic constraints:

1. At any time t, the zero-coupon prices pt(x) must depend continuously
on the time to maturity x. In order for forward interest rates to be
well-defineḋ, they must also have some degree of differentiability with
respect to x. So E must consist of continuous curves with some degree
of differentiability.

2. The degree of differentiability of functions in E will determine which
basic interest rates derivatives can be modelled. If pt is continuous,
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for instance, then we can introduce bonds. The price of a unit zero-
coupon bond with time to maturity x is pt(x); the bond itself, i.e. the
value of a portfolio including exactly one bond is represented by the
linear form pt 7→ pt(x). Mathematically speaking, this is just the Dirac
mass δx at x. Now other derivatives such as Call’s and Put’s on zero-
coupon bonds can be introduced, since the pay-off for each of them is a
continuous function of the zero-coupon bond price pT (x), with a given
time to maturity x. If pt is continuously differentiable, then the forward
interest rate with time to maturity x, − ∂

∂x
pt(x)/pt(x) is well-defined,

and further contingent claims can be defined, such as caps, floors and
swaps.

3. The curve pt will be understood to move randomly in E, the random-
ness being driven by a Brownian motion. We will therefore need to
define Brownian motions in the infinite-dimensional space E, which for
all practical purposes will require E to be a Hilbert space.

4. The accepted standard in mathematical modelling of zero-coupon prices
(the Heath-Jarrow-Morton model, henceforth HJM) is to decide that
the real-valued process t 7→ pt(T − t), the price at time t of a unit zero-
coupon maturing at a given time T , is a diffusion process satisfying
an stochastic ordinary differential equation (SODE). As is well-known,
for fixed x, the real-valued process t 7→ pt(x), which is also a diffusion
process, then no longer satisfies an SODE. Indeed, if f(t, T ) ≡ pt(T−t),
then we have pt(x) = f(t, t + x) so that for fixed x :

dtpt(x) = [dtf(t, T ) +
∂f(t, T )

∂T
dT ]T=t+x = [dtf(t, T )]T=t+x +

∂pt(x)

∂x
dt.

(1)
Here the right-hand side (r.h.s) depends, not only on pt(x), but also on
its partial derivative with respect to x. So, equation (1) for p is a SPDE,
stochastic partial differential equation, where the first term on the r.h.s
depends only on the un-known pt(x), since f(·, T ) satisfies an SODE.
This is the well-known difficulty of the Musiela parametrization (see
[25]), and the space E shall permit a simple mathematical formulation
of the SPDE (1).

5. At any time t, the zero-coupon prices pt(x) should go to zero as the
time to maturity x goes to ∞. To include also the trivial case, where all
interest rates vanish, and also cases where the forward rates converges
rapidly to zero as x → ∞, we only require that lim pt(x) exists as
x →∞. N.B. We will chose E such that the elements f ∈ E satisfying
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limx→∞ f(x) = 0 form a closed sub-space of E, in order to cover easily
the case where pt(x) → 0.

Formula (1) is really an infinite family of coupled equations, one for each
x ≥ 0, describing the motion of the random variable pt(x), which we write

dpt(x) = pt(x)mt(x)dt + pt(x)σt(x)dWt +
∂pt(x)

∂x
dt, (2)

where for the moment W is thought of as being a high dimensional Brownian
motion. Let us rewrite it as a single stochastic evolution equation for the
motion of the random curve pt in E, i.e. as a SODE in E :

dpt = ptmtdt + ptσtdWt + (∂pt)dt (3)

where ∂ is the differentiation operator with respect to time to maturity, i.e.
it is defined by (∂u)(x) = du(x)

dx
, for differentiable u ∈ E. Since the left-hand

side “belongs” to E, so must the right-hand side, and then ∂pt must belong to
E. There are ways to achieve that. One is to choose a framework where the
operator ∂ is continuous over all of E. Then so is its n-th iterate ∂n, so that
the space E must consist of functions which have infinitely many derivatives.
Unfortunately, the natural topology of such spaces cannot be defined by a
single norm, except for very particular cases, and the mathematics become
more demanding. A second more standard way to proceed is to consider ∂
as an unbounded operator in a Hilbert space E, so that ∂ is defined only on
a subspace D(∂) ⊂ E, called the domain of the operator. One would then
hope to define the solution of equation (3) in such a way that, if the initial
condition p0 lies in D(∂), then pt remains in D(∂) for every t, so that t 7→ pt

is a trajectory in D(∂). In other words, if p0(x) is differentiable with respect
to x, so should the functions x 7→ pt(x) be for all t > 0.

To summarize, the introduction of rollovers and a moving frame forces
us to complicate the equations for price dynamics, by incorporating an ad-
ditional term, ∂pt. To be able to solve the relevant equations, we have to
treat ∂ as an unbounded operator in Hilbert space. The definition of the
relevant Hilbert space has to incorporate basic properties which we expect
of zero-coupon curves.

This suits our purpose well, for it enables us to work in a non-parametric
framework, where no particular shape is assigned to the the zero-coupon
curves. On the other hand, we then have to use the theory of Brownian mo-
tion in infinite-dimensional Hilbert spaces and the corresponding stochastic
integrals, which creates some additional difficulties. We do not limit the num-
ber of sources of noise, indeed in our paper there can be infinitely many. This
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is natural, since the already mentioned experimental fact, that even using a
large number of bonds, not all interest rate derivatives can be hedged. The
third difficulty to overcome, is the mathematically significant fact that such
a market can not be complete in the usual sense, i.e. every (sufficiently inte-
grable) contingent claim being hedgeable. This has important implications
for the solution of the portfolio optimization problem. The now classical two-
step solution, so successfully applied to the case of a finite number of stocks
(cf. [17], [28]), consisting of first determining the optimal final wealth by
duality methods and then determining a hedging portfolio, does not (yet at
least) apply to the general infinite dimensional bond markets. In this paper
(see [10] and [34]) we give, within the considered general diffusion model, the
optimal final wealth for every case it exist (Proposition 43). The existence
of an optimal portfolio, is then established by the construction of a hedging
portfolio for two cases : The first is for deterministic E-valued drift m and
volatility operator σ, where we give a necessary and sufficient condition for
the existence of an optimal portfolio. Here there can exist several equivalent
martingale measures (e.m.m.), so the market can clearly be incomplete in
every sense of the word. The second is for certain stochastic m and σ, for
which there is a unique market price of risk process γ. There is then a unique
e.m.m. Q. Now, certain integrability conditions on the `2-valued Malliavin
derivative of the Radon-Nikodym density dQ/dP leads to the construction
of a hedging portfolio.

We have tempted to make these notes self-contained, with exception of
the general hedging result in Theorem 38. The notes first recall some basic
facts concerning linear operators and semi-groups in Hilbert spaces, Sobolev
spaces and stochastic integration in Hilbert spaces. The theory of bond port-
folios and hedging of interest rate derivatives are then introduced. Once this
theory is explained, the paper proceeds to a short solution of the optimiza-
tion problem, leading to the results of [10] and [34]. In particular, under the
assumption that the market prices of risk are deterministic, some explicit
formulas are given, very similar in spirit to those who are known in the case
of stock portfolios, and a mutual fund theorem is formulated. We conclude
by stating an alternative formulation, of the optimization problem, within a
Hamilton-Jacobi-Bellman approach.
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2 Mathematical preliminaries

2.1 Hilbert spaces and bounded maps

We shall be working with separable infinite-dimensional real Hilbert spaces.
Let E be a Hilbert space with scalar product ( , )E and norm ‖ ‖E, simply
denoted ( , ) and ‖ ‖ if no risk for confusion. The topology and convergence
in E is w.r.t. this norm, if not otherwise stated, i.e. the strong topology and
convergence. By definition E is, separable if it has a countable dense subset.
One shows easily that E is separable iff it has a countable orthonormal basis
en, n ∈ N, i.e. (ei, ej) = 0 for i 6= j and ‖ei‖ = 1, so that every x ∈ E can be
written:

x =
∞∑

n=0

(x, en) en,

where the right-hand side converges in E. Since the en are orthonormal, we
have Parseval’s equality:

‖x‖2 =
∞∑

n=0

|(x, en)|2 .

A typical separable Hilbert space is `2, which is the space of all real sequences
an, n ∈ N, such that

∑
|an|2 < ∞. The scalar product in `2 is given by

(a, b) =
∑

anbn. In fact, every infinite dimensional separable Hilbert space
E is isomorphic to `2. The map

x 7→ an = (x, en)E, n ∈ N, (4)

of E into `2 is a linear bijection and it preserves norms on both sides.
A linear map L : E1 → E2 is continuous if and only if it is bounded, that

is if there exists a constant c such that ‖Lx‖E2
≤ c ‖x‖E1

for every x ∈ E1.
The (operator) norm of L is then defined to be the infinimum of all such c:

‖L‖ = inf
{
c | ‖Lx‖E2

≤ c ‖x‖E1
∀x
}

.

For example, the linear map in (4) of E onto `2 as well as its inverse has norm
1. The linear space of all continuous linear maps from E1 to E2, L(E1, E2),
is a Banach space when given this norm. One writes L(E) as a shorthand
for L(E, E). Linear maps are also called linear operators or just operators.
A bounded operator on E is a bounded linear map from E into itself. The
dual space E ′ of E, i.e. the space of all linear continuous functionals on E,
is given by E ′ = L(E, R). By the F. Riesz representation theorem,

F ∈ E ′ iff ∃f ∈ E such that F (x) = (f, x) ∀x ∈ E. (5)
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Also ‖F‖E′ = ‖f‖E, so E ′ and E are isomorphic. In this paper we will often
use, in the context of Sobolev spaces, other representations of the dual E ′.

By duality, every operator in L(E1, E2) corresponds to an operator in
L(E ′

2, E
′
1). Using the representation of the dual space given by (5), the adjoint

operator A∗ of A ∈ L(E1, E2) is defined by A∗y = y∗, where for y ∈ E2 the
element y∗ ∈ E1 is defined by

(y∗, x)E1 = (y, Ax)E2 ∀x ∈ E1. (6)

This defines an operator A∗ ∈ L(E2, E1). One easily checks that (A∗)∗ = A
and ‖A∗‖ = ‖A‖ . Let us consider a simple example, which will be relevant
in the sequel of this paper:

Example 1 (Left-translation in L2)
i) Let E = L2(R) and let a be a given real number. Define the operator A
on E by (Af)(x) = f(x + a). Then ‖A‖ = 1 and (A∗f)(x) = f(x − a). We
note that A has a bounded inverse A−1 given by (A−1f)(x) = f(x − a), so
AA∗ = A∗A = I.
ii) Let E = L2([0,∞[) and let a > 0 be a given real number. Define the
operator A on E by (Af)(x) = f(x + a). Here we find that ‖A‖ = 1, that
a.e. (A∗f)(x) = 0 if 0 ≤ x < a and that (A∗f)(x) = f(x−a) if a ≤ x. In this
case A∗ is one-to-one and AA∗ = I. But A∗A is the orthogonal projection on
the (non-trivial) closed subspace of E of functions with support in [a,∞[ .
So A∗A 6= I.

An operator S ∈ L(E1, E2) is called unitary if SS∗ = S∗S = I. This is the
case of A in (i) of Example 1. An operator S ∈ L(E1, E2) is called isometric
if S∗S = I. This is the case of A∗ in (ii) of Example 1.

We will be interested in a particular class of bounded operators on E. We
begin with an easy result

Lemma 2 Suppose L ∈ L(E1, E2) and that we have:

∞∑
n=0

‖Len‖2 < ∞

for an orthonormal basis en, n ∈ N in E1. Let fn, n ∈ N be another orthonor-
mal basis. Then:

∞∑
n=0

‖Len‖2 =
∞∑

n=0

‖Lfn‖2
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Definition 3 An operator L on E1 into E2 is Hilbert-Schmidt if
∑∞

n=0 ‖Len‖2 <
∞ for some orthonormal basis en, n ∈ N, in E1. Its Hilbert-Schmidt norm is
defined to be:

‖L‖HS =

(
∞∑

n=0

‖Len‖2

)1/2

.

It does not depend on the choice of the orthonormal basis en, n ∈ N, in E.
The linear space of Hilbert-Schmidt operators from E1 into E2 is denoted
HS(E1, E2).

Hilbert-Schmidt operators are bounded (in fact, ‖L‖ ≤ ‖L‖HS) and even
compact: they map bounded subsets of E1 into relatively compact subsets
of E2. In other words, if L is Hilbert-Schmidt and (xn)n∈N is a bounded se-
quence, then one can extract from (Lxn)n∈N a norm-convergent subsequence.
This property of a Hilbert-Schmidt operator L follows from the fact that L is
the limit in the operator norm of finite rank operators. The spaceHS(E1, E2)
endowed with the Hilbert-Schmidt norm defines a Hilbert space.

Some general references for this subsection are: [16], [18], [30], [31].

2.2 Linear semi-groups and unbounded operators.

Let L be a bounded linear operator on E. For every t ∈ R, define:

Φ (t) = etL =
∞∑
i=0

1

n!
tnLn,

which converges in the operator norm. Then Φ (t) is a bounded linear oper-
ator for every t, and we have the relation:

Φ (t + s) = Φ (t) Φ (s) ∀s, t ∈ R and Φ(0) = I, (7)

where I is the identity operator on E, from which it follows that Φ (t) and
Φ (s) commute and that Φ (t) is invertible for every t. Relation (7 ) states
that the map t 7→ Φ (t) is a group homomorphism. Note that it is continuous
in the norm topology for operators:

‖Φ (t)− I‖ → 0 when t → 0. (8)

The solution of the Cauchy problem:

dx

dt
= Lx, (9)

x (0) = x0 (10)
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is given by x (t) = Φ (t) x (0). In other words, Φ (t) is the flow associated
with the ordinary differential equation (9). We can recover L from Φ (t) by
writing:

Lx = lim
h→0

1

h
[Φ (h) x− x] (11)

The norm continuity of the mapping t 7→ Φ(t) is exceptional and has to be
replaced by a more useful weaker property (cf. Definition 1, Sect. 1, Chap.
IX of [35]):

Definition 4 A family Φ (t) , t ≥ 0, of bounded operators on E is called a
one parameter semi-group if Φ (0) = I, and for all t ≥ 0 and s ≥ 0 we have:

Φ (t + s) = Φ (t) Φ (s) = Φ (s) Φ (t) . (12)

It is said to be strongly continuous or to be of class (C0) if, for every x ∈ E,
we have:

lim
t→0

Φ (t) x = x. (13)

It is said to be a contraction semi-group if ‖Φ(t)‖ ≤ 1 for all t ≥ 0.

Note that, since equality (12) is supposed to hold only for positive s and
t, the operators Φ (t) are no longer necessarily invertible, as in the case of
a group. It can be proved easily that, if the semi-group Φ (t) is strongly
continuous, then lims→t Φ (s) x = Φ (t) x and there are constants c and C
such that ‖Φ (t)‖ ≤ C exp (ct) . We also note that if [0,∞[ 3 t 7→ Φ(t) is a
one parameter semi-group, so is the family of adjoint operators [0,∞[ 3 t 7→
Φ∗(t), where we define Φ∗(t) = (Φ(t))∗.

Example 5
In the situation of (i) (resp. of (ii)) of Example 1, for given a, let Φ1(a) = A
(resp. Φ2(a) = A). Then R 3 t 7→ Φ1(t) is a strongly continuous contraction
group. However [0,∞[ 3 t 7→ Φ2(t) is only a strongly continuous contraction
semi group, which can not be extended to a group. In fact, then Φ2(t) is not
invertible for t > 0.

We now try to extend formula (11). It turns out that when Φ is no longer
norm-continuous, but only strongly continuous, the right-hand side does not
converge for every x, and if the limit exists, it does not depend continuously
on x. The set of x for which the limit exists is obviously a linear subspace of
E and on this subspace the limit is a linear function, let’s say G of x. More
formally, let D(G) be the subset of E of all elements x ∈ E for which the
strong limit

Gx = lim
h→0

1

h
[Φ (h) x− x] (14)

exists.

9



Theorem 6 Assume Φ is a strongly continuous semi-group. The set D(G)
is then a dense linear subspace of E and G given by (14) defines is a linear
map G : D(G) → E. This map is closed, i.e. if xn is a sequence in D(G)
such that xn → x̄ ∈ E and Gxn → ȳ ∈ E then ȳ = Gx̄.

For every x ∈ D(G) and t ≥ 0 we have Φ (t) x ∈ D(G),

GΦ (t) x = Φ (t) Gx (15)

and
d

dt
Φ (t) x = GΦ (t) x. (16)

Proof. By definition D(G) is the set of x where the limit in formula (14)
exists (note that this is a strong limit, meaning that we should have norm-
convergence), and Gx then is the value of that limit. Clearly G : D(G) → E
is a linear map.

Given any x ∈ E and t > 0, consider the integral:

X (t) =

∫ t

0

Φ (s) xds.

It is well-defined since the integrand is a continuous function from [0, t] into
E. Using the semi-group property, we have:

1

h
[Φ (h) X (t)−X (t)] =

1

h

[
Φ (h)

∫ t

0

Φ (s) xds−
∫ t

0

Φ (s) xds

]
=

1

h

[∫ t

0

Φ (s + h) xds−
∫ t

0

Φ (s) xds

]
=

1

h

∫ t+h

t

Φ (s + h) xds− 1

h

∫ h

0

Φ (s) xds

→ Φ (t) x− x.

This proves that X (t) belongs to D(G). Then so does 1
t
X (t), and when

t → 0, we have 1
t
X (t) → x, so D(G) is dense in H, as announced.

Now write:

1

h
[Φ (t + h)− Φ (t)] x = Φ (t)

Φ (h)− I

h
x =

Φ (h)− I

h
Φ (t) x.

If x ∈ D(G), the second term converges to Φ (t) Gx and the third one to
GΦ (t) x. So these two terms must be equal. Formulas (15) and (16) follow.

To prove the last condition, note that:

∀x ∈ D(G), Φ (t) x− x =

∫ t

0

Φ (s) Gxds. (17)
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Indeed, we have two functions of t, with values in E , which are zero for
t = 0 and which have the same derivative, namely Φ (t) Gx, for every t > 0.
So they must be equal. Now take a sequence xn → x̄, and assume that
Gxn = yn → ȳ in E. Writing x = xn in formula (17), we get:

Φ (t) x̄− x̄ =

∫ t

0

Φ (s) ȳds.

Dividing by t and letting t → 0, we find that x̄ ∈ D(G) and that ȳ = Gx̄.

Definition 7 In the situation of Theorem 6, G is called the infinitesimal
generator of the semi-group Φ.

A linear map L : D(L) → E2, where D (L) is a subspace of E1, is called an
operator from E1 to E2 with domain D (L) . That two operators are equal,
L1 = L2, means that they have the same domain D(L1) = D(L2) and that
L1x = L2x for all x in the domain. The operator L is densely defined if
D(L) is dense in E1. It is called a bounded operator if there exists a finite
constant C ≥ 0 such that for all x ∈ D(L) one has ‖Lx‖ ≤ C‖x‖ and it
is called an unbounded operator if such C does not exist. It is closed if its
graph {(x, Lx) |x ∈ D (L)} is a closed subset of E1 × E2, which extends the
definition in the preceding theorem. With these definitions, we can rephrase
part of the preceding theorem by saying that every strongly continuous semi-
group in E has a unique infinitesimal generator, which is a densely defined
closed operator in E. The problem to determine if a given densely defined
closed operator L in E is the infinitesimal generator of a strongly contin-
uous semi-group is more difficult and we refer the interested reader to the
references mentioned in the end of this subsection.

The definition of the adjoint of an operator can be extended to unbounded
operators. Let L be a densely defined operator from E1 to E2. We introduce
the adjoint operator L∗ to L. The domain of D(L∗) consists of all y ∈ E2 for
which the linear functional

x 7→ (y, Lx) (18)

is continuous on D(L), endowed with the strong topology of E1. For y ∈
D(L∗) we define L∗y by

(L∗y, x) = (y, Lx) ∀x ∈ D(L). (19)

This defines L∗y uniquely, since D(L) is dense in E1. One proves that D(L∗)
is dense in E2 if L is also closed.

An operator L in E is called selfadjoint if L∗ = L and skew-adjoint if
L∗ = −L. We have the following clear-cut result (Stone’s theorem): L is the
infinitesimal generator of a group of unitary operators iff L is skew-adjoint.
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Example 8
In the situation of Example 5, let L1 and L2 be the infinitesimal generators
of Φ1 and Φ2 respectively. L1 is given by

D(L1) = {f ∈ L2(R) | f ′ ∈ L2(R)},

and (L1f)(x) = f ′(x), where f ′ is the derivative of f. L2 is given by

D(L2) = {f ∈ L2([0,∞[ ) | f ′ ∈ L2([0,∞[ )},

and (L2f)(x) = f ′(x). Since Φ1 is a group of unitary operators, we have that
L∗1 = −L1. Φ2 is not a semi-group of unitary operators, so L∗2 6= −L2. A
simple calculation shows that

D(L∗2) = {f ∈ L2([0,∞[ ) | f(0) = 0 and f ′ ∈ L2([0,∞[ )}

and (L∗2f)(x) = −f ′(x). So here D(L∗2) ⊂ D(L2), with strict inclusion. One
checks that Φ∗2 is a strongly continuous semi-group in L2([0,∞[ ). It represents
right translations of functions. Its infinitesimal generator is L∗2.

Some general references for this subsection are: [16], [18], [31], [35].

2.3 Sobolev spaces

For any integer n ≥ 0, the Sobolev space Hn(R) is defined to be the set of
functions f which are square-integrable together with all their derivatives of
order up to n:

f ∈ Hn(R) ⇐⇒
∫ ∞

−∞

[
f 2 +

n∑
k=1

(
dkf

dxk

)2
]

dx ≤ ∞.

This is a linear space, and in fact a Hilbert space with norm given by:

‖f‖2
Hn =

∫ ∞

−∞

[
f 2 +

n∑
k=1

(
dkf

dxk

)2
]

dx.

It is a standard fact that this norm of f can be expressed in terms of the
Fourier transform f̂ (appropriately normalized) of f by:

‖f‖2
Hn =

∫ ∞

−∞

(
1 + y2

)n ∣∣∣f̂ (y)
∣∣∣2 dy.

The advantage of that new definition is that it can be extended to non-
integral and non-positive values. For any real number s, not necessarily an

12



integer nor positive, we define the Sobolev space Hs(R) to be the Hilbert
space of functions associated with the following norm:

‖f‖2
Hs =

∫ ∞

−∞

(
1 + y2

)s ∣∣∣f̂ (y)
∣∣∣2 dy. (20)

Clearly, H0(R) = L2(R) and Hs(R) ⊂ Hs′(R) for s ≥ s′ and in particular
Hs(R) ⊂ L2(R) ⊂ H−s(R), for s ≥ 0. Hs(R) is, for general s ∈ R, a space
of (tempered) distributions. For example δ(k), the k-th derivative of a delta
Dirac distribution, is in H−k−1/2−ε(R) for ε > 0.

In the case when s > 1/2, there are two classical results.

Theorem 9 (Continuity of multiplication) If s > 1/2, if f and g belong
to Hs(R), then fg belongs to Hs(R), and the map (f, g) → fg from Hs×Hs

to Hs is continuous.

Denote by Cn
b (R) the space of n times continuously differentiable real-valued

functions which are bounded together with all their n first derivatives. Let
Cn

b0(R) the closed subspace of Cn
b (R) of functions which converges to 0 at

±∞ together with all their n first derivatives. These are Banach spaces for
the norm:

‖f‖Cn
b

= max
0≤k≤n

sup
x

∣∣f (k) (x)
∣∣ = max

0≤k≤n

∥∥f (k)
∥∥ .

Theorem 10 (Sobolev embedding) If s > n + 1/2 and if f ∈ Hs(R),
then there is a function g in Cn

b0(R) which is equal to f almost everywhere.
In addition, there is a constant cs, depending only on s, such that:

‖g‖Cn
b
≤ cs‖f‖Hs .

From now on we shall no longer distinguish between f and g, that is, we
shall always take the continuous representative of any function in Hs(R).
As a consequence of the Sobolev embedding theorem, if s > 1/2, then any
function f in Hs(R) is continuous and bounded on the real line and converges
to zero at ±∞, so that its value is defined everywhere.

We define, for s ∈ R, a continuous bilinear form on H−s(R)×Hs(R) by:

< f , g >=

∫ ∞

−∞

(
f̂(y)

)
ĝ(y)dy, (21)

where z is the complex conjugate of z. Schwarz inequality and (20) give that

| < f , g > | ≤ ‖f‖H−s‖g‖Hs , (22)

13



which indeed shows that the bilinear form in (21) is continuous. We note
that formally the bilinear form (21) can be written

< f , g >=

∫ ∞

−∞
f(x)g(x)dx,

where, if s ≥ 0, f is in a space of distributions H−s(R) and g is in a space of
“test functions” Hs(R).

Any continuous linear form g → u (g) on Hs(R) is, due to (20), of the
form u(g) =< f , g > for some f ∈ H−s(R), with ‖f‖H−s = ‖u‖(Hs)′ , so

that henceforth we can identify the dual (Hs(R))
′
of Hs(R) with H−s(R). In

particular, if s > 1/2 then Hs(R) ⊂ C0
b0(R), so H−s(R) contains all bounded

Radon measures.
In the sequel, we will also be interested in functions defined only on the

half-line [0,∞[ . Let s ≥ 0. We define the space Hs([0,∞[ ) to be the set of
restrictions to [0,∞[ of functions in Hs(R). This is clearly a linear space. To
turn it into a Hilbert space, we have to use the following norm:

‖f‖Hs([0,∞)) = inf
{
‖g‖Hs(R) | g(x) = f(x) a.e. on [0,∞)

}
. (23)

This is a Hilbert space norm on Hs([0,∞[ ), which is the natural restriction
of the norm on Hs(R). For instance, if f is a function in Hs(R) such that
f (x) = 0 for x ≤ 0, then its restriction f0 to [0,∞[ belongs to Hs([0,∞[ ),
and we have:

‖f0‖Hs([0,∞[ ) = ‖f‖Hs(R)

If s = n is an integer, the norm on Hs([0,∞[ ) turns out to be equivalent to
the following one:

|||f |||2Hs =

∫ ∞

0

[
f 2 +

n∑
k=1

(
dkf

dxk

)2
]

dx.

To establish properties of translations in Hs([0,∞[ ), we need to know if there
is a continuous linear embedding of Hs([0,∞[ ) into Hs(R), i.e. to know if
the restriction operator has a continuous right-inverse. Fortunately, as we
are in a Hilbert space setting, this problem is easy to solve. Let s ≥ 0 and
let Hs

− be the subset of functions in Hs(R) with support in ]−∞, 0], so that
f ∈ Hs

− if and only if f ∈ Hs(R) and f(x) = 0 for all x > 0. Hs
− is a closed

subspace of Hs(R). Two functions f1, f2 ∈ Hs(R) have the same restriction
to [0,∞[ iff f1 − f2 ∈ Hs

−. This means exactly that Hs([0,∞[ ) is a quotient
space: Hs([0,∞[ ) = Hs(R)/Hs

−. Introducing the notation ⊕ for the Hilbert
space direct sum, we have the following result, which proof we omit since its
trivial:

14



Proposition 11 For s ≥ 0 we have:
i) Hs(R) = Hs([0,∞[ )⊕Hs

−.
ii) Let M be the orthogonal complement of Hs

− in Hs(R) w.r.t. the scalar
product in Hs(R), let κ be the canonical projection of Hs(R) on Hs([0,∞[ )
and let ι be the canonical bijection of Hs([0,∞[ ) onto M. Then κ is contin-
uous, ι is a Hilbert space isomorphism, κι is the identity map on Hs([0,∞[ )
and ικ is the orthogonal projection map in Hs(R) on M.

We note that ι is a continuous operator extending functions on [0,∞[ to
functions on R and that ‖f‖Hs([0,∞[ ) = ‖ιf‖Hs(R) .

The dual space of Hs([0,∞[ ) can easily be characterized in terms of
distributions. For s ≥ 0, Hs([0,∞[ ) = Hs(R)/Hs

−, so

(Hs([0,∞[ ))′ =
{
f ∈ H−s(R) | < f , g >= 0 ∀ g ∈ Hs

−
}

. (24)

For s ≥ 0, we define H−s([0,∞[ ) to be the closed subspace of all distributions
in H−s(R) with support in [0,∞[ . It then follows that (Hs([0,∞[ ))′ can
be identified with H−s([0,∞[ ). Since (Hs([0,∞[ ))′′ = Hs([0,∞[ ), it then
follows that

(Hs([0,∞[ ))′ = H−s([0,∞[ ) s ∈ R. (25)

If s ∈ R, then the constant function taking the value 1 is not in Hs([0,∞[ ).
If s > 1/2, then even every function in Hs([0,∞[ ) converges to zero at ∞.
For this reason, we will need a larger class of distributions containing the
constant functions. Let s ∈ R and let f be a distribution with support in
[0,∞[ such that it admits the decomposition f = g+a, where g ∈ Hs([0,∞[ )
and a ∈ R. This decomposition of f is then unique and the set of all such
distributions is naturally given the Hilbert space structure Hs([0,∞[ ) ⊕ R.
The norm of f = g + a is then given by

‖f‖2 = ‖g‖2
Hs([0,∞[ ) + a2.

This unique decomposition property leads us to the following

Definition 12 For s ∈ R, set Es([0,∞[ ) = Hs([0,∞[ )⊕ R with the corre-
sponding Hilbert space norm. If f ∈ Es([0,∞[ ) and if g ∈ Hs([0,∞[ ) and
a ∈ R are related by the unique decomposition f = g + a, then the norm of f
is given by

‖f‖2
Es = ‖g‖2

Hs + a2.

The dual (Es([0,∞[ ))′, of Es([0,∞[ ) is identified with (Hs([0,∞[ ))′ ⊕ R ≈
E−s([0,∞[ ) by extending the bi-linear form, defined in (21), to E−s([0,∞[ )×
Es([0,∞[ ) :

< F , G >= ab+ < f , g >, (26)

15



where F = a + f ∈ E−s([0,∞[ ), G = b + g ∈ Es([0,∞[ ), a, b ∈ R, f ∈
H−s([0,∞[ ) and g ∈ Hs([0,∞[ ).

For all the Sobolev spaces Hs we have introduced, and also for the spaces
Es, there are two natural realizations of the dual space. Let us consider only
the case of Es([0,∞[ ), the other being similar. One possibility, the canonical
one, is to identify (Es([0,∞[ ))′ with Es([0,∞[ ) by the scalar product in
Es([0,∞[ ). This gives the Riesz representation in (5). Another possibility, is,
as we have seen, to identify (Es([0,∞[ ))′ with E−s([0,∞[ ), by the bi-linear
form defined in (26). There is a linear continuous map S : Es([0,∞[ ) →
(Es([0,∞[ ))′ with continuous inverse, relating the two realizations. It is
defined by:

(f, g)Es([0,∞[ ) =< Sf , g >, ∀f, g ∈ Es([0,∞[ ). (27)

Now, different realizations of the dual space leads to different realizations of
adjoint operators. Let A be a closed and densely defined operator from a
Hilbert-space H to Es([0,∞[ ). We have already defined in (18) its adjoint
operator A∗ from Es([0,∞[ ) to H w.r.t. the duality defined by the scalar
product. Let the dual H ′ of H be realized by H1 and the continuous bi-linear
form < , >1: H1 × H → R. The adjoint A′, w.r.t. the duality realized by
< , >1 and < , > is the operator from E−s([0,∞[ ) to H1, defined by:
The domain of D(A

′
) consists of all y ∈ E−s([0,∞[ ) for which the linear

functional
x 7→ < y , Ax > (28)

is continuous on D(A). For y ∈ D(A
′
) we define A

′
y by

< A
′
y , x >1=< y , Ax > ∀x ∈ D(A). (29)

This defines A
′
y uniquely, since D(A) is dense in H.

We now study translation semi-groups in the different spaces we have
introduced. It follows directly from the definition (20) of the norm in Hs(R)
and by dominated convergence that that left-translations defines a strongly
continuous group of unitary operators L̃ in Hs(R) for s ∈ R (similarly as to
the case of Φ1 in Example 5):

(L̃tf)(x) = f(x + t), ∀f ∈ Hs(R) and t ∈ R. (30)

Since, for s ≥ 0, the closed subspace Hs
− of Hs(R) is invariant under the semi-

group L̃t, t ≥ 0, it defines a semi-group L in Hs([0,∞[ ). Defining L also on
constants a ∈ R by Lta = a we extend the semi-group L to Es([0,∞[ ),
s ≥ 0 :

(Ltf)(x) = f(x + t), ∀f ∈ Es([0,∞[ ) and t ≥ 0. (31)
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Proposition 13 If s ≥ 0, then L is a strongly continuous contraction semi-
group on Es([0,∞[ ). Its infinitesimal generator, denoted ∂, has domain D(∂) =
Es+1([0,∞[ ). If f ∈ Es+1([0,∞[ ) then ∂f = f ′, where f ′ is the derivative of
f.

Proof. We first observe that, in the canonical decomposition Es([0,∞[ ) =
Hs([0,∞[ )⊕R in Definition 12, La leaves the subspace Hs([0,∞[ ) invariant
and acts trivially on R. It is therefore sufficient to prove the statement with
Es([0,∞[ ) replaced by Hs([0,∞[ ).

We use the notations of Proposition 11 and let P = ικ be the orthogonal
projection on M. Since L̃tH

s
− ⊂ Hs

−, for t ≥ 0, it follows that P L̃t(I−P ) = 0.

The group composition law L̃tL̃u = L̃t+u, then gives for t, u ≥ 0 :

(P L̃tP )(P L̃uP ) = P L̃t+uP

So, [0,∞[3 t 7→ P L̃tP is a semi-group of bounded operators on M. It is a
strongly continuous contraction semi-group since this is the case for L̃ and
‖P‖ = 1.

We have that Lt = κL̃tι, for t ≥ 0. Using that Lt = κP L̃tPι it eas-
ily follows from the semi-group property of P L̃tP that L is a semi-group
on Hs([0,∞[ ). It is a strongly continuous contraction semi-group, since
this is the case for P L̃P and since ‖κ‖ = ‖ι‖ = 1. Let ∂ be the in-
finitesimal generator of L. By the definition of L it follows that D(∂) =
{f ∈ Hs([0,∞[ ) | f ′ ∈ Hs([0,∞[ )} and ∂f = f ′ for f ∈ D(∂). But
Hs+1([0,∞[ ) = {f ∈ Hs([0,∞[ ) | f ′ ∈ Hs([0,∞[ )}, which proves the propo-
sition.

Example 14
Let L′t : E−s([0,∞[ ) → E−s([0,∞[ ) be the adjoint of Lt, t ≥ 0 in Propo-
sition 13, w.r.t. duality defined by the bilinear form < , > . L′ is then a
semi-group of right-translations on the space of distributions E−s([0,∞[ ).
Loosely speaking (L′tf)(x) = f(x − t). Let s ≥ 1. hen the generator ∂′

has domain E−s+1([0,∞[ ) and −∂′ is the derivative of distributions, so
(∂′f)(x) = −df(x)/dx if f is a differentiable function. One is easily con-
vinced that the expressions for L∗t and ∂∗ are more complicated.

Some general references for this subsection are: [1], [5], [13].

2.4 Infinite-dimensional Brownian motion

In this sub-section we consider a separable Hilbert space E and an index-
set I with the cardinality equal to the dimension of E. The space E can be
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infinite-dimensional or finite-dimensional. There is given a family W i, i ∈ I of
standard independent Brownian motions on a complete filtered probability
space (Ω, P,F ,A). The filtration A = {Ft}0≤t≤T , is generated by the W i,
and F = FT .

Definition 15 A standard cylindrical Brownian motion Wt, 0 ≤ t ≤ T ,
on E is a sequence eiW

i
t , i ∈ I of E-valued processes, where the ei are

the elements of an orthonormal basis of E and the W i
t , i ∈ I, are indepen-

dent real-valued standard Brownian motions on a filtered probability space
(Ω, P,F ,A).

From now on, given a standard cylindrical Brownian motion W, we shall
write informally Wt =

∑
i∈I W i

t ei. If I is finite, we have:

‖Wt‖2 =
∑
i∈I

∥∥W i
t

∥∥2
< ∞ a.s.

and Wt is a stochastic process with values in E. If I is infinite, then for every
t the right-hand side is the sum of infinitely many i.i.d. positive random
variables, which does not converge in any reasonable way. In that case, the
formula Wt =

∑
i∈I W i

t ei cannot be understood as an equality in E, and must
be given another meaning.

Proposition 16 If Wt =
∑

i∈I W i
t ei is a standard cylindrical Brownian mo-

tion, then, for every f ∈ E with ‖f‖ = 1, the real-valued stochastic process
W f

t defined by

W f
t =

∑
i∈I

(ei, f) W i
t (32)

is a standard Brownian motion on the real line.

Proof. If I is finite, the result is obvious. Let us then consider the case
when I = N. We first have to check if the right-hand side is well-defined. By
Doob’s inequality for martingales:

E

 sup
0≤t≤T

∣∣∣∣∣
n+p∑
i=n

(ei, f) W i
t

∣∣∣∣∣
2
 ≤ 4E

∣∣∣∣∣
n+p∑
i=n

(ei, f) W i
T

∣∣∣∣∣
2


≤ 4T

n+p∑
i=n

(ei, f)2 → 0.

This implies that the right-hand side of (32) converges in probability to a
continuous process. Since each finite sum is Gaussian, so is the limit, and
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the result follows.

So, in the case when I is infinite, the r.h.s. of Wt =
∑

i∈I W i
t ei makes no

sense in E, but every projection does. Equation (32) can be rewritten as:

∀f ∈ E, (Wt, f) =
∑
i∈I

(ei, f) W i
t .

We will now show that the stochastic integrals with respect to cylindri-
cal Brownian motion make sense, provided the integrand satisfies a strong
integrability condition. Consider the space HS(E, F ) of all Hilbert-Schmidt
operators from E into a Hilbert space F. Let the space L2 (HS(E, F )) consist
of all progressively measurable processes A with values in the Hilbert space
HS(E, F ), such that:

E

[∫ T

0

‖At‖2
HS dt

]
< ∞.

Recall that we have, according to Definition 3:

‖At‖2
HS =

∞∑
n=0

‖Aten‖2 ,

where (en)n∈N is any orthonormal basis of E.

Theorem 17 The stochastic integral:∫ T

0

AtdWt

is well-defined for every process A ∈ L2 (HS(E, F )) . It is a continuous mar-
tingale with values in E, and we have the usual isometry:∥∥∥∥∫ T

0

AtdWt

∥∥∥∥2

L2

=

∫ T

0

E
[
‖At‖2

HS
]
dt.

In other words, the random variable
∫ T

0
AtdWt has mean 0 and its variance is∑∞

n=0

∫ T

0
E
[
‖Aten‖2] dt, the sum of the variances of the independent sources

of Gaussian noise.
As usual, by localization the stochastic integral can be extended to a

wider class of processes. Denote by L2
loc (HS) the set of all progressively

measurable processes with values in HS, such that:

P

[∫ T

0

‖Φ‖2
HS dt < ∞

]
= 1.

Then the stochastic integral defines a continuous local martingale.
Some general references for this subsection are: [7], [14], [23], [24], [26].
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3 The dynamics of bond prices

3.1 The non-parametric framework

From now on, and for the rest of the paper, we are given a finite time interval
of possible trading times T = [0, T̄ ] and we are given a family W i, i ∈ I of
standard independent Brownian motions on a complete filtered probability
space (Ω, P,F ,A), the filtration A = {Ft}0≤t≤T̄ , is generated by the W i, and
F = FT̄ . The family I itself can be finite or infinite, in which case we take
I = N. Let `2(I), be the Hilbert space of all real sequences x = (xi)i∈I, such
that ‖x‖`2(I) = (

∑
i∈I(an)2)1/2 < ∞. So, when I has a finite number m̄ of

elements, then `2(I) = Rm̄. Often we write just `2 for `2(I).
Heath, Jarrow and Morton (henceforth HJM) were the first to study the

term structure of interest rates in a non-parametric framework. Their basic
idea (see [12]) consists of writing one equation for the price of every zero-
coupon at time t. Denoting by B̂t(T ) the price at time t of a zero-coupon
bond maturing at time T ≥ t, the HJB equation has the following form:

B̂t(T ) = B̂0(T ) +

∫ t

0

B̂s(T )as(T )ds +

∫ t

0

∑
i∈I

B̂s(T )vi
s(T )dW i

s , 0 ≤ t ≤ T

(33)
There are infinitely many such equations, one for each maturity T ≥ t.

The trend at (T ) and the volatilities vi
t(T ) are supposed to be progressively

measurable processes, which means, for instance, that they could be functions
of all the B̂s(S), S ≥ s and s ≤ t. In due course, we will make further
assumptions so as to ensure that equations such as (33) make mathematical
sense.

Let us discount all prices to t = 0, by the spot interest rate rt, which in
terms of the zero-coupon bond price is given by

rt = −∂B̂t(T )

∂T

∣∣∣
T=t

. (34)

The discounted prices of zero-coupons are now:

Bt(T ) = B̂t(T ) exp(−
∫ t

0

rsds) (35)

and the equations (33) become:

Bt(T ) = B0(T )+

∫ t

0

Bs(T )(as(T )−rs)ds+

∫ t

0

∑
i∈I

Bs(T )vi
s(T )dW i

s , 0 ≤ t ≤ T

(36)
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and, again, there is one such equation for every maturity T ≥ t. Note the
boundary condition B̂T (T ) = 1, and hence, from (35):

Bt(t) = exp(−
∫ t

0

rsds). (37)

3.2 The bond dynamics in the moving frame

For every x ≥ 0, we denote by p̂t(x) the price and by pt(x) the discounted
price at time t of a zero-coupon maturing at time t + x. The stochastic
processes Bt(T ) and pt(x) are related by:

pt(x) = Bt(t + x).

In other words, as explained in the introduction, instead of dating events by
their distance from a fixed origin, defined to be t = 0, we are dating them by
their distance from today: we are using a time frame which moves with the
observer. The equation for pt in the moving frame, is easily obtained from
(36). For every x ≥ 0, we have:

pt(x) = p0(t+x)+

∫ t

0

ps(t−s+x)ms(t−s+x)ds+

∫ t

0

∑
i∈I

ps(t−s+x)σi
s(t−s+x)dW i

s ,

(38)
where

mt(x) = a(t, t + x)− rt and σi
t(x) = vi(t, t + x), (39)

for all 0 ≤ t ≤ T̄ and x ≥ 0. Here, again, the trends t 7→ mt(x) and the
volatilities t 7→ σi

t(x) are progressively measurable processes.
Instead of looking at (38) as an infinite family of coupled equations, one

for each x ≥ 0, we shall interpret it as a single equation describing the
dynamics of an infinite-dimensional object, the curve x 7→ pt(x), which will
be seen as a vector pt in the Hilbert space Es([0,∞[ ), for some fixed s > 1/2,
chosen so that the functions mt and σi

t belong to Es([0,∞[ ).
Let L be the semi-group left translations on Es([0,∞[ ) (see formula

(31) and Proposition 13). From now on we shall just wright Es instead
of Es([0,∞[ ), when there is no risk of confusion. The equations in (38) can
be rewritten as one equation in Es:

pt = Ltp0 +

∫ t

0

(Lt−s(psms))ds +

∫ t

0

∑
i∈I

(Lt−s(psσ
i
s))dW i

s . (40)
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Theorem 18 Let s > 1/2. Assume that p0 ∈ Es and assume that mt and
the σi

t, i ∈ I, are progressively measurable processes in Es satisfying:∫ T̄

0

(‖mt‖Es +
∑
i∈I

‖σi
t‖2

Es)dt < ∞ a.s. (41)

Then equation (40) defines a unique process p in Es satisfying:∫ T̄

0

(‖pt‖Es + ‖ptmt‖Es +
∑
i∈I

‖ptσ
i
t‖2

Es)dt < ∞ a.s. (42)

The process p has continuous trajectories in Es,

pt = exp

{∫ t

0

Lt−s(ms −
1

2

∑
i∈I

(σi
s)

2)ds +
∑
i∈I

σi
sdW i

s)

}
Ltp0. (43)

and if p0 ∈ Hs then the process p takes its values in Hs. If p0 ∈ Es satisfies
p0 ≥ 0 (resp. p0 > 0), i.e. p0(x) ≥ 0 (resp. p0(x) > 0) for all x ≥ 0, then so
does pt.

For a proof of this theorem see Lemma A.1 of [10], which is reproduced in
the appendix of this article (Lemma 48). Note that equation (40) implies
that p0 is the value of pt for t = 0.

A word here about the choice of function spaces. Assuming that pt belongs
to Hs for some s > 1/2 is minimal: it is basically saying that the zero-coupon
prices depend continuously on time to maturity and go to zero at infinity.
This, however, is too strong a requirement for mt and the σi

t: we cannot
expect the trend and the volatilities to go to zero when the time to maturity
increases to infinity. This is why we are assuming that mt and the σi

t belong
to Es. To simplify the mathematical formalism and also to include interest
rate models, with vanishing long term rates, we have permitted that pt ∈ Es.
Now according to Theorem 18, pt is in-fact in Hs if p0 ∈ Hs.

Condition (41) implies that
∑

i∈I ‖σi
t‖2

Es is finite for almost every (t, ω) ∈
T×Ω. This means, when I = N, that the operator σt from `2(I) to Es defined
by:

σtei = σi
t, i ∈ I, (44)

where ei are the elements of the standard basis of `2(I), is Hilbert-Schmidt
a.e. (t, ω). We have

‖σt‖2
HS(`2,Es) =

∑
i∈I

‖σi
t‖2

Es .
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We shall refer to σ as the volatility operator process. It takes its values in
HS(`2, Es) and when we say that it is progressively measurable, it is meant
that all the σi are progressively measurable.

We can now, using the stochastic integral introduced in Theorem 17,
rewrite equation (40) on a more compact form in Es, where s > 1/2 :

pt = Ltp0 +

∫ t

0

Lt−s(psms)ds +

∫ t

0

Lt−s(psσs)dWs. (45)

This makes sens in Es. Indeed, the only difference with equation (40) is the
last term on the r.h.s. When condition (41) is satisfied then the volatility
operator σu, defined by (44), from `2 to Es, is Hilbert-Schmidt a.e. (u, ω).
Since pointwise multiplication of functions in Es is a continuous operation
for s > 1/2 it follows that the linear operator x 7→ puσux, from `2 to Es, is
Hilbert-Schmidt a.e. (u, ω). Lv is bonded for every v ≥ 0, so the integrand is a
progressively measurable HS(`2, Es)-valued process satisfying the conditions
of Theorem 17.

A process p with values in Es satisfying (45) (or equivalently (40)) and
(42) will be called a mild solution of the bonds dynamics.

Note that we are not worrying about the boundary condition (37) at this
time, because it does not make mathematical sense: how do we define rt ?
This will be taken care of in the next section.

3.3 Smoothness of the zero-coupon curve.

Another way to proceed is to write (38) in differentiated form. For fixed
x ≥ 0, a formal calculation using Itô’s lemma and which can be rigorously
justified gives:

dpt(x)−pt (x) mt (x) dt−
∑
i∈I

pt(x)σi
t(x)dW i

t

=
∂

∂t
p0(t + x) +

∫ t

0

∂

∂t
(ps(t− s + x)ms(t− s + x)) ds

+

∫ t

0

∂

∂t

∑
i∈I

ps(t− s + x)σi
s(t− s + x)dW i

s .

In the expression on r.h.s. we can replace ∂/∂t by ∂/∂x, since p0 and the
integrands on the r.h.s. are functions of t + x. Derivation w.r.t. x under the
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integral then gives:

dpt(x)− pt (x) mt (x) dt−
∑
i∈I

pt(x)σi
t(x)dW i

t

=
∂

∂x

(
p0(t + x) +

∫ t

0

ps(t− s + x)ms(t− s + x) ds +

∫ t

0

∑
i∈I

ps(t− s + x)σi
s(t− s + x)dW i

s

)
.

The l.h.s. is equal to (∂/∂x)pt(x), according to (38), so

dpt(x)− pt (x) mt (x) dt−
∑
i∈I

pt(x)σi
t(x)dW i

t =
∂

∂x
pt(x), (46)

for all x ≥ 0 and t ∈ T.
Introducing the infinitesimal generator ∂ of the semi-group L (see Propo-

sition 13), this can be understood as an equation in Es :

dpt = ∂pt + pt(mtdt +
∑
i∈I

σi
tdW i

t ) (47)

or equivalently:

pt = p0 +

∫ t

0

(∂ps + psms)ds +

∫ t

0

∑
i∈I

psσ
i
sdW i

s . (48)

Equation (40) is the integrated version of (48), w.r.t. the semi-group L.
The connection between formulas (48) and (40) is similar to the variations
of constants formula for ODE’s in finite dimension.

We now have to give some mathematical meaning to equation (48). This
will require beefing up the existence conditions given in Theorem 18. The
following corollary follows from applying Theorem 18 with s + 1 instead of
s :

Corollary 19 Let s > 1/2. Assume that p0 ∈ D(∂) = Es+1 and assume that
mt and the σi

t, i ∈ I are progressively measurable processes with values in
Es+1 satisfying ∫ T̄

0

(‖mt‖Es+1 +
∑
i∈I

‖σi
t‖2

Es+1)dt < ∞ a.s. (49)

Then the mild solution p, in Theorem 18, of the bonds dynamics satisfies the
following condition:

pt ∈ Es+1 and

∫ T̄

0

(‖pt‖Es+1 + ‖ptmt‖Es +
∑
i∈I

‖ptσ
i
t‖2

Es) dt < ∞ a.s. (50)
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Equation (48) holds for every t. In addition p has continuous paths in Es+1

and pt ∈ Hs+1 if p0 ∈ Hs+1.

By definition a solution of equation (40) is called a strong solution of the
equation (48), when condition (50) is satisfied. Here we shall say that p is a
strong solution of the bonds dynamics.

As a consequence, in the situation of Corollary 19, the term structure x 7→
pt(x) is C1 for every t, and interest rates are well defined. The instantaneous
forward rate Rt(x) contracted at t ∈ T for time to maturity x and the spot
rate rt at time t, for instance, are defined by:

Rt(x) = −∂ log pt(x)

∂x
= −(∂pt)(x)

pt(x)
and rt = Rt(0) = −(∂pt) (0)

pt (0)
. (51)

By Corollary 19, p is a strong solution and the maps t 7→ pt and t 7→ ∂pt

are continuous from T into Es, and hence into C0([0,∞[ ) endowed with the
topology of uniform convergence. So ps(0) and (∂ps) (0) converge to pt(0)
and (∂pt) (0) , when s → t. In other words, rt is a continuous function of t,
when pt(0) > 0 for all t ∈ R.

We are now able to make sense of the boundary condition (37), which we
rewrite in terms of p :

pt(0) = exp(

∫ t

0

(∂ps)(0)

ps(0)
ds), (52)

for every t ∈ T.

Proposition 20 Let s > 1/2. Assume that mt and the σi
t are progressively

measurable processes with values in Es+1 satisfying (49) and

mt(0) = 0, σi
t(0) = 0 ∀i ∈ I (53)

and assume that p0 satisfies

p0 ∈ Es+1, p0(0) = 1, p0(x) > 0 ∀x ≥ 0. (54)

Then the solution of the bond dynamics, given by Corollary 19, satisfies the
boundary condition (52).

Proof. Since mt and the σi
t take values in Es+1, they are continuous func-

tion on [0,∞[ , and condition (53) makes sense. As p0 > 0 it follows from
Proposition 18 that pt > 0. We have shown that, if pt is a strong and strictly
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positive solution of the bond dynamics, then rt given by (51) is a continuous
function of t. Writing conditions (53) into equation (48), we get:

pt(0) = p0(0) +

∫ t

0

((∂ps)(0) + ps(0)ms(0))ds +

∫ t

0

∑
i∈I

ps(0)σ
i
s(0)dW i

s

= 1 +

∫ t

0

(∂ps)(0)ds = 1−
∫ t

0

rsps(0)ds.

In other words, ϕ(t) = pt(0) must satisfy the differential equation ϕ′(t) =
−rtϕ(t), with the initial condition ϕ(0) = 1. The result follows.

When we get to optimizing portfolios, we will need Lp estimates on the
solutions of the bond dynamics. They are provided by the following result:

Theorem 21 Let q(t) = pt/Ltp0 and q̂(t) = p̂t/Ltp̂0. If p0, σ and m in
Proposition 20 also satisfy the following additional conditions:

E((

∫ T̄

0

‖σt‖2
HS(`2,Es+1)dt)a + exp(a

∫ T̄

0

‖σt‖2
HS(`2,Es)dt)) < ∞, ∀a ∈ [1,∞[

(55)
and

E((

∫ T̄

0

‖mt‖Es+1dt)a + exp(a

∫ T̄

0

‖mt‖Esdt)) < ∞,∀a ∈ [1,∞[ , (56)

then the solution p in Proposition 20 has the following property:

p, p̂, q, q̂, 1/q, 1/q̂ ∈ Lu(Ω, P, L∞(T, Es+1)),∀u ∈ [1,∞[ . (57)

Proof. We use the notation

Ẽt(L) = exp(

∫ t

0

Lt−s((ms −
1

2

∑
i∈I

(σi
s)

2)ds + σsdWs)), (58)

for

Lt =

∫ t

0

(msds + σsdWs), if 0 ≤ t ≤ T̄ . (59)

Conditions (i)−(iv) of Lemma 49 are satisfied for p. Estimate (142) of Lemma
49 then shows that p ∈ Lu(Ω, P, L∞(T, Es+1)) ∀u ∈ [1,∞[ . By the explicit
expression (43), q = Ẽ(L), so it follows from Lemma 49 that the conclusion
holds true also for q.

Let Nt =
∫ t

0
((−ms +

∑
i∈I(σ

i
s)

2)ds −
∑

i∈I σi
sdW i

s). Then 1/q = Ẽ(N).
According to conditions (55), (56), the conditions (i) − (iv) of Lemma 49
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(with N instead of L) are satisfied. We now apply estimate (142) to 1/q,
which proves that 1/q ∈ Lu(Ω, P, L∞(T, Es+1)), for all u ≥ 1.

To prove the cases of q̂α, α = 1 or α = −1, we note that q(t) =
q̂(t)pt(0). Using that the case of qα is already proved and Hölders inequality,
it is enough to prove that g ∈ Lu(Ω, P, L∞(T, R)), where g(t) = (pt(0))

−α.
Since pt(0) = (Ltp0)(0)(q(t))(0) = p0(t)(q(t))(0), it follows that 0 ≤ g(t) =
(p0(t))

−α((q(t))(0))−α. By Sobolev embedding, p0 is a continuous real val-
ued function on [0,∞[ and it is also strictly positive, so the function t 7→
(p0(t))

−α is bounded on T. Once more by Sobolev embedding, ((q(t))(0))−α ≤
C‖(q(t))−α‖Es . The result now follows, since we have already proved the case
of qα. The case of p̂ is so similar to the previous cases that we omit it.

Under the hypotheses of Proposition 20, pt(0) satisfies (52), so it is the
discount factor (37). It has nice properties, as follows from the second part
of the proof of Theorem 21

Corollary 22 Under the hypotheses of Theorem 21, if α ∈ R, then the dis-
count factor pt(0) satisfies

E(sup
t∈T

(pt(0))
α) < ∞.

Remark 23 It follows from Theorem 21 that for all t ∈ T, pt and p0 have
similar asymptotic behavior. In fact for some r.v. A > 0, A−1p0(t + x) ≤
pt(x) ≤ Ap0(t+x), for all t ∈ T and x ≥ 0, where A is independent of x and
t and A ∈ Lu(Ω, P ) for all u ≥ 1.

In a different context, Hilbert spaces of forward rate curves were consid-
ered in [4] and [11]. The space Es, with s > 1/2 sufficiently small, contains
the image of these spaces, under the nonlinear map of forward rates to zero-
coupons prices. Or more precisely, it contains the image of subsets of forward
rate curves f with positive long term interest rate, i.e. f(x) ≥ 0 for all x
sufficiently big.

4 Portfolio theory

In this section s > 1/2, Es = Es[0,∞)[ ) and T = [0, T̄ ], where T̄ is the
time horizon of the model. We also write E for Es = Es[0,∞)[ ) and E ′ for
E−s[0,∞)[ ).
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4.1 Basic definitions.

We recall that, by the bilinear form < , >, the space E−s is identified with
the dual of Es, that is, the space of continuous linear functionals on Es.
It is important to note that, since s > 1/2, the space Es is contained in
C0

b ([0,∞)[ ), the space of bounded continuous functions on [0,∞[ , so that
H−s contains the dual of C0

b ([0,∞[ ), which is the space of bounded Radon
measure on [0,∞). In particular, all Dirac masses δx, for x ≥ 0, belong to
H−s.

Definition 24 A portfolio is progressively measurable process on the time
interval T, with values in E−s. If θ is a portfolio, then its discounted value
at time t ∈ T is

Vt(θ) =< θt , pt > . (60)

The basic example is a portfolio of one zero-coupon:

Example 25
Consider a portfolio containing exactly one zero-coupon bond with maturity
date T, i.e. time of maturity T :
1) Let T ≥ T̄ and let T be fixed. The portfolio θ is then defined by

θt = δT−t, ∀t ≤ T̄ . (61)

Since T ≥ T̄ , we have indeed that the support of the distribution θt is
contained in [0,∞[ , so θt ∈ E−s. With this definition, the value of the zero-
coupon is:

< δT−t, pt > = pt (T − t)

which is precisely what we had in mind.
2) Let T < T̄ and let T fixed. In this case we note that the process in (61)
does not continue after time T : the zero-coupon is converted into cash. So
the buy-and-hold strategy is not possible for zero-coupon bonds, unless the
horizon T̄ is less than the maturity T.
3) Let T = t + x and x ≥ 0 a fixed time to maturity. Then the portfolio is
defined by

θt = δx, for t ≤ T̄ . (62)

We note that the higher we choose s, the more portfolios can be incor-
porated into the model. For instance, if s > 3/2, all curves in Es are C1, so
that the derivative δ′x of the Dirac mass belongs to E−s. The value of δ′T−t

is:
< δ′T−t, pt > = p′t(T − t) = −Rt(T − t)pt(T − t), (63)
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where p′t(x) = ∂pt(x)/∂x and where Rt(x), defined in (51), is the instanta-
neous forward rate with time to maturity x, contracted at time t. This also
implies that the higher we choose s, the more interest rates derivatives can
be incorporated into the model. If s > 1/2, then we can contract directly on
the values of zero-coupon bond prices, and if s > 3/2, then we can contract
directly on the values of interest rates.

We next introduce the notion of self-financing portfolio. We state a defi-
nition such that it will makes sense for mild solutions of the bonds dynamics:

Definition 26 A portfolio is called self-financing if, for every t ∈ T

Vt(θ) = V0(θ) +

∫ t

0

< θs , psms ds +
∑
i∈I

psσ
i
sdW i

s > . (64)

Given a strong solution p of the bonds dynamics, we have for a self-financing
portfolio:

dVt(θ) = < θt , dpt − ∂pt dt > . (65)

Note that this is not the standard definition: this is because we are in the
moving frame. Changes in portfolio value are due to two causes: changes in
prices, as in the fixed frame, and also to changes in time to maturity.

For the right-hand side of (64) to make mathematical sense and to intro-
duce later arbitrage free markets, we need a further definition.

Definition 27 A portfolio θ is an admissible portfolio if ‖θ‖P < ∞, where

‖θ‖2
P = E

[
(

∫ T̄

0

| < θt , ptmt > |dt)2 +

∫ T̄

0

∑
i∈I

(< θt , ptσ
i
t >)2dt

]
.

P is the linear space of all admissible portfolios and Psf the subspace of self-
financing portfolios.

The discounted gains process G, defined by

G(t, θ) =

∫ t

0

(< θs , psms > ds+ < θs , psσsdWs >), (66)

is well-defined for admissible portfolios:

Proposition 28 Assume that p0, m and σ are as in Proposition 20. If
θ ∈ P, then G(·, θ) is continuous a.s. and E(supt∈T(G(t, θ))2) < ∞.
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Proof. Let θ ∈ P and introduce X = supt∈T |G(t, θ)|, Y (t) =
∫ t

0
< θs , psms >

ds and Z(t) =
∫ t

0
< θs , psσsdWs > . Then G(t, θ) = Y (t) + Z(t), according

to formula (66). Let p be given by Proposition 20, of which the hypotheses
are satisfied.

We shall give estimates for Y and Z. By the definition of P :

E((sup
t∈T

(Y (t))2) ≤ E((

∫ T̄

0

| < θs , psms > |ds)2) ≤ ‖θ‖2
P. (67)

By isometry we obtain

E(Z(t)2) =E(

∫ t

0

< θs , ps

∑
i∈I

σi
sdW i

s >)2

= E(

∫ t

0

∑
i∈I

(< θs , psσ
i
s >)2ds) ≤ ‖θ‖2

P.

(68)

Doob’s L2 inequality and inequality (68) give E(supt∈T Z(t)2) ≤ 4‖θ‖2
P. In-

equality (67) then gives E(X2) ≤ 10‖θ‖2
P, which proves the proposition.

Example 29
1) The portfolio in 1) of Example 29 is self-financing and the portfolios in 2)
and 3) of Example 29 are not self-financing.
2) The interest rate portfolio in formula (63) is self-financing.

4.2 Rollovers

Definition 30 Let S ≥ 0. A S-rollover is a self-financing portfolio θ of
a number of zero-coupon bonds with constant time to maturity S and with
initial price V0(θ) = p0(S).

It follows directly from the definition that a S-rollover have the same initial
price as a zero-coupon with maturity date S. It also follows that, if xt is the
number of zero-coupon bonds in the portfolio at t, then we must have:

θt = xtδS,

where the real-valued process x makes the portfolio self-financing.

Proposition 31 If θt is a S- rollover, then:

xt = p0(S) exp(

∫ t

0

Rs(S) ds). (69)
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Proof. The portfolio θt only contains zero-coupons with time to maturity S,
so that Vt(θ) = xtpt(S). Assuming the process x to be of bounded variation
it follows that:

dVt(θ) = pt(S)dxt + xtdpt(S).

Substituting the expression for dpt(S) this becomes:

dVt(θ) = pt(S)
dxt

dt
dt + xt∂xpt(S)dt + xtpt(S)(mt(S)dt +

∑
i∈I

σi
t(S)dW i

t )

= (pt(S)
dxt

dt
+ xt∂xpt(S) + xtpt(S)mt(S))dt + xtpt(S)

∑
i∈I

σi
t(S)dW i

t .

According to (64) the portfolio is then self-financing if and only if:

pt(S)
dxt

dt
+ xt∂xpt(S) = 0.

This means that:

1

xt

dxt

dt
= − 1

pt(S)

∂pt(S)

∂S
= Rs(S).

and the formula (69) follows by integration. This proves the proposition since
x then is of bounded variation.

In particular, if S = 0, then we get the usual bank account with spot rate rt.
Henceforth, we will denote by qt(S) the value (discounted to t = 0) at

time t of a S-rollover. In the preceding notation, qt(S) = Vt(θ).
Introducing the price curve of the roll-over at time t, qt : [0,∞[→ R, we

find that the price dynamics of roll-overs is given by:

qt = p0 +

∫ t

0

qsmsds +

∫ t

0

qs

∑
i∈I

σi
sdW i

s , (70)

Note that, compared to the same formula for bond prices, the term in ∂ has
disappeared from the right-hand side.

A S-rollover is a bank account which needs advance notice to be cashed:
if notice is given at time t, the rollover will then pay xt units of account
at time t + S. In other words, at time t, when notice is given, the rollover
is exchanged for qt(S)/pt(S) = xt units of a unit zero-coupon with time of
maturity t + S.

As we noted earlier, zero-coupons do not in general allow buy-and-hold
strategies. However rollovers do: a constant portfolio of rollovers is always
self-financing. A general bond portfolio θt can be expressed in terms of a
portfolio of rollovers ηt and vice versa.
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4.3 Absence of arbitrage opportunities.

Let p be a mild solution of the price dynamics. Suppose that θt is a self-
financing portfolio such that, for almost every (t, ω) ∈ T× Ω, we have:

∀i ∈ I, < θt (ω), pt(ω)σi
t(ω) >= 0. (71)

(We note that pt(ω) ∈ Es is a function of time to maturity, x 7→ pt(ω, x),
and similarly for θt etc.) Then (64) gives dVt(θ) =< θt , mtpt > dt, so that
θt is risk-free. Since the spot rate is zero (after discounting values to t = 0),
in an arbitrage free market it must follow that for almost every (t, ω):

< θt(ω) , mt(ω)pt(ω) >= 0. (72)

Comparing (71) and (72), we find that pt(ω)mt(ω) must belong to the closure
of the linear span of {pt(ω)σi

t(ω) | i ∈ I}. In fact this follows rigorously using
Lemma 34, proved independently of this subsection. There are now two
cases:

• I is finite. Then the linear span is finite-dimensional, and it coin-
cides with its closure. So there are numbers γi

t(ω), i ∈ I such that
pt(ω)mt(ω) = pt(ω)

∑
i∈I γi

t(ω)σi
t(ω) (finite sum). Since pt(ω) > 0 for

almost every (t, ω), this leads to:

mt(ω) =
∑
i∈I

γi
t(ω)σi

t(ω)

and since the processes m and σi are progressively measurable, so can
one choose the processes γi. Note that the preceding equation holds in
Es, and that it translates into a family of equations in [0,∞[ :

mt(ω, x) =
∑
i∈I

γi
t(ω)σi

t(ω, x) ∀x ≥ 0

or, as usual, omitting to mention the ω variable:

mt(x) =
∑
i∈I

γi
tσ

i
t(x) ∀x ≥ 0.

The γi
t are the components of a market price of risk, and they do not

depend on the time to maturity x. Using the volatility operator process
σ the last equality reads

mt = σtγt ∀t ∈ T (73)

and any γ, progressively measurable with values in `2(I), satisfying this
equation is called a market price of risk process.
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• I = N. Then the linear span is not closed in general; in fact, it is closed
if and only if it is finite-dimensional. In that case, we shall impose a
stronger condition. To prove that the market is arbitrage-free, we shall
use that mt(ω) is in the range of the volatility operator σt(ω) which is
a subset of the above closed linear span. So, once more we impose that
the condition (73) should be satisfied, but for γ with values in `2(I). If
the range of σt(ω) is infinite dimensional, then this condition is indeed
stronger, since σt(ω) is a.e. a compact operator.

In both cases, we also need that γ satisfy some integrability condition in
(ω, t). This leads us to the following

Definition 32 We shall say that the market is strongly arbitrage-free if there
exists a progressively measurable process γ with values in `2(I), such that

mt = σtγt, ∀t ∈ T (74)

and

E

[
exp(a

∫ T̄

0

‖γt‖2
`2dt)

]
< ∞, ∀a ≥ 0. (75)

If the market is strongly arbitrage-free then, by the Girsanov theorem, a
martingale measure is given by dQ = ξT̄ dP , with:

ξt = exp

(
−1

2

∫ t

0

‖γs‖2
`2ds−

∑
i∈I

γi
sdW i

s

)
. (76)

The W̃ i, i ∈ I, where

W̃ i
t = W i

t +

∫ t

0

γi
sds, (77)

are independent Wiener process with respect to Q. The expected value of a
random variable X with respect to Q is given by:

EQ(X) = E(ξT̄ X).

Under a martingale measure, the discounted zero-coupon price process p
satisfies the equation

pt = Ltp0 +

∫ t

0

Lt−s(psσs)dW̃s (78)

and also the equation

pt = p0 +

∫ t

0

∂psds +

∫ t

0

psσs dW̃s. (79)
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The discounted roll-over price process qt is given by:

qt = p0 +

∫ t

0

qsσsdW̃s. (80)

Lemma 33 A portfolio θ is self-financing if and only if:

Vt(θ) = V0(θ) +

∫ t

0

∑
i∈I

< θt , ptσ
i
t > dW̃ i

s . (81)

We note that the integrand is in fact the adjoint operator of the operator
bt(ω) = pt(ω)σt(ω) from `2(I) to Es([0,∞[ ) :

(bt(ω)′θt)
i =< θt , ptσ

i
t >, ∀i ∈ I. (82)

To see this, with xi
t(ω) =< θt , ptσ

i
t >, rewrite it as follows:

for all (t, ω) and all z ∈ `2(I)

(z, xt(ω))`2 =
∑
i∈I

zi < θt (ω) , pt (ω) σi
t (ω) >

=< θt (ω) , pt (ω)
∑
i∈I

σi
t (ω) zi >

=< θt (ω) , bt (ω) z >=< bt (ω)
′
θt (ω) , z > .

If the market is strongly arbitrage-free and if condition (55) of Theorem 21
is satisfied, then also condition (56) is satisfied and the Theorem 21 applies.

5 Hedging of interest derivatives

From now on, it will be a standing assumption that p0 satisfies condition
(54), that σ satisfy conditions (53) and (55) and that the market is strongly
arbitrage-free according to Definition 32.

Before we solve the optimal portfolio problem, we shall study the problem
of hedging a European interest rates derivative with payoff X at maturity
T̄ . X is said to be an attainable contingent claim or derivative if VT̄ (θ) = X
for some admissible self-financing portfolio θ. Here we are only interested
in of payoffs, relevant for the optimal portfolio problem considered in these
notes, i.e. X ∈ Lp(Ω,F , P ) for every p ≥ 1 (see Lemma 41). We first
introduce the hedging equation, the Malliavin derivative and the Clark-Ocone
representation formula, which then permits the reader, if he wish, to proceed
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directly to the study of the optimization problem in the case of deterministic
σ and γ in §6.2.1

Assume that X ∈ L2(Ω,F , Q), where Q is one equivalent martingale
measure given by (76). Then, by the martingale representation theorem, X
can be written as a stochastic integral:

X = EQ[X] +

∫ T̄

0

∑
i∈I

xi
tdW̃ i

t , (83)

with:

EQ[

∫ T̄

0

‖xt‖2
`2dt] < ∞. (84)

Comparing with equations (81) and (82) for a self-financing portfolio, we
obtain the hedging equation

bt(ω)′θt(ω) = xt(ω), a.e. (t, ω), (85)

where the operator bt(ω) = pt(ω)σt(ω) from `2(I) to Es([0,∞[ ) was intro-
duced in (82). Equivalently: for almost every (t, ω),

xi
t(ω) = < θt (ω) , pt (ω) σi

t (ω) >, ∀i ∈ I .

We next introduce the Malliavin derivative (c.f. [26]), DtX, with respect
to W̃ , at time t ∈ T of certain F = FT̄ measurable real random variables X
by:

D1) DtX = 0, if X is a constant,

D2) DtX = ht, if h ∈ L2(T, `2(I)) and X =
∫ T̄

0

∑
i∈I hi

tdW̃ i
t ,

D3) Dt(XY ) = XDtY + Y DtX.

The algebra of such random variables is dense in L2(Ω,F , Q), which can be
used to extend the definition to larger sets. DtX takes its values in `2(I).
The partial derivative, with respect to W̃ i, Di,tX, is the i-th component of
DtX.

We will use the following expression for the Malliavin derivative of an Itô
stochastic integral:

Dt

∫ T̄

0

∑
i∈I

xi
sdW̃ i

s = xt +

∫ T̄

t

∑
i∈I

(Dtx
i
s)dW̃ i

s , (86)

when almost all the xi
s are Malliavin differentiable and sufficiently integrable.
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In the case when X is Malliavin differentiable, the Clark-Ocone represen-
tation formula states that the integrand xt in (83) is given by

xt = EQ [DtX | Ft] . (87)

We now come back to the hedging equation (85). The fact that θt = δ0

is a solution to the homogeneous equation (85) permits us to construct self-
financed solutions of the in-homogeneous equation (85), from solutions, which
are not self-financed:

Lemma 34 If θ̄ is an admissible portfolio (not necessarily self-financed)
which satisfies (85), then there is a unique self-financing admissible portfolio
θt such that the difference θt − θ̄t is risk-free. It is given by:

θt = atδ0 + θ̄t, (88)

at =
1

pt(0)

[
EQ[X | Ft]− Vt(θ̄)

]
. (89)

Proof. We here omit the argument ω. Since the portfolio θt− θ̄t is risk-free,
it must have time to maturity 0, and the first of the formulas in (88) is true
by definition. Substituting into equation (85), and bearing in mind that
σi

t(0) = 0:

((ptσt)
′θt)

i =< θt, pt σ
i
t > = < atδ0 + θ̄t, pt σ

i
t >

= at pt(0) σi
t(0)+ < θ̄t, pt σ

i
t >

= xi
t ∀i ∈ I.

So θt satisfies (85). It is then a hedging portfolio of X if Vt(θ) = EQ[X | Ft].
Substituting again (88) and then (89), we get:

Vt(θ) = atVt(δ0) + Vt(θ̄) = atpt(0) + Vt(θ̄) = EQ[X | Ft].

If θ̄ is an admissible portfolio, then θ is also admissible, since ‖θ‖P = ‖θ̄‖P.

By the lemma, the construction of a hedging portfolio for X is reduced
to solve equation (85) in θt (ω) for every (t, ω) , in such a way that θ ∈ P, i.e.
θ is admissible. Any such solution θ of this equation contains the risky part
of the portfolio.

To solve equation (85), for given (t, ω), we have to know if xt(ω) is in the
range of the operator bt(ω)′. The closure of the range of bt(ω)′ is equal to the
orthogonal complement (K(bt(ω)))⊥ of the kernel K(bt(ω)) of bt(ω).
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Consider the cases of I finite: Then the range R((bt(ω))′) is closed. The
kernel is trivial, so (bt(ω))′ is surjective and and there is a (non-unique)
solution, for every xt(ω), iff the pt (ω) σi

t (ω) are linearly independent.
Consider the cases of I infinite: The map (bt(ω))′ from E−s([0,∞[ ) to

`2(I), is then never surjective. In fact, bt(ω) is a Hilbert-Schmidt operator,
so it is compact. The adjoint is then also compact and since `2(I) is infinite
dimensional, its range must be a proper subspace of `2(I). This is the basic
reason why there are always non-attainable contingent claims, when I is
infinite.

We have the following result (see Th.4.1 and Th.4.2 of [34] for the case
I = N):

Theorem 35 Let D0 = ∩p≥1L
p(Ω, P,F).

i) If I = N, then there exists X ∈ D0 such that VT̄ (θ) 6= X for all θ ∈ Psf .
ii) D0 has a dense subspace of attainable contingent claims if and only if the
operator σt(ω) has a trivial kernel a.e. (t, ω) ∈ T× Ω.

Statement ii) says by definition that the bond market is approximately com-
plete (notion introduced in [2] and [3]) if and only if σt(ω) has a trivial kernel
a.e.

In the sequel of this section, we are interested in the hedging problem
for approximately complete markets, so we only consider the solution of
the hedging equation (85) in the case when σt(ω) has a trivial kernel a.e.
(t, ω) ∈ T× Ω.

Consider the case when I = N is an infinite and let `2 = `2(I). To derive
a condition under which (85) has a solution and to derive a closed formula
for one of the solutions, we rewrite the l.h.s. of (85) using the notations

lt = Ltp0, Bt(ω) = ltσt(ω) and ηt(ω) = S−1(pt(ω)/lt)θt(ω). (90)

Then

(σt(ω))′pt(ω)θt(ω) = (σt(ω))′lt(pt(ω)/lt)θt(ω) = (ltσt(ω))′(pt(ω)/lt)θt(ω)

= (ltσt(ω))∗S−1(pt(ω)/lt)θt(ω) = (Bt(ω))∗ηt(ω).

The linear operator Bt(ω) is given, since p0 and σt(ω) are supposed given.
Applying Theorem 21 to the factor p/l, it follows that equation (85) is equiv-
alent to find a progressive Es-valued process η satisfying the equation

(Bt(ω))∗ηt(ω) = xt(ω), a.e. (t, ω) ∈ T× Ω. (91)

We define the self-adjoint operator At(ω) in `2 by

At(ω) = (Bt(ω))∗Bt(ω). (92)
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It is a fact of basic Hilbert space operator theory (cf. [16]) that the range
R((Bt(ω))∗) = R((At(ω))1/2). The solvability of each one of equations (85)
and (91) is therefore equivalent to the existence of a progressive `2-valued
process z satisfying

(At(ω))1/2zt(ω) = xt(ω), a.e. (t, ω) ∈ T× Ω. (93)

The kernelK((At(ω))1/2) is trivial sinceK((At(ω))1/2) = K(At(ω)) = K(Bt(ω))
= {0}. Now, if xt(ω) ∈ R((Bt(ω))∗) then the unique solution of (93) is
zt(ω) = (((At(ω))1/2)−1xt(ω) and a solution of (91) is given by

ηt(ω) = St(ω)(At(ω))−1/2xt(ω), (94)

where St(ω), the closure of the operator Bt(ω)(At(ω))−1/2, is isometric (cf.
[16]) from `2 to Es. Let a be as in (89) and

θ = aδ0 + θ̄ and θ̄t = (lt/pt)Sηt. (95)

Then θ is a hedging portfolio according to Lemma 34.
In order to ensure that xt(ω) of (85) is in the range of (σ

′
tpt)(ω), we

introduce spaces `s,2, of vectors decreasing faster (for s > 0) than those of `2.
For s ∈ R, let `s,2 be the Hilbert space of real sequences endowed with the
norm

‖x‖`s,2 = (
∑
i∈N

(1 + i2)s|xi|2)1/2. (96)

Obviously `2 = `0,2 and `s′,2 ⊂ `s,2, if s′ ≥ s. Although (At(ω))−1/2 is an
unbounded operator in `2 its restriction to `s,2 can be a bounded operator
for some sufficient large s > 0, i.e. (At(ω))−1/2`s,2 ⊂ `2. This is the idea of
our assumption, which will ensure hedgeability. However a precise formula-
tion of this assumption must, as in the case of a finite of Bm., take care of
integrability properties in (t, ω).

To consider also the case of a finite I, we define after obvious modifications
the operator At(ω)) in `2(I) by formula (92). In this case At(ω)) has obviously
a bounded inverse.

Condition 36 i) If Card(I) < ∞, then there exists k ∈ D0, such that for
all x ∈ `2(I) :

‖x‖`2 ≤ k(ω)‖(At(ω))1/2x‖`2 a.e. (t, ω) ∈ T× Ω. (97)

ii) If I = N, then there exists s > 0 and k ∈ D0, such that for all x ∈ `2(I) :

‖x‖`2 ≤ k(ω)‖(At(ω))1/2x‖`s,2 a.e. (t, ω) ∈ T× Ω. (98)
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In the case of a finite number of Bm. Condition 36 i) leads to a complete
market and one can choose a hedging portfolio such that it is continuous
in the asset to hedge. To state the result let use introduce the notation
D0(F ) = ∩p≥1L

p(Ω, P,F , F ), where F is a Banach space. D0 = D0(R).

Theorem 37 (Finite number of random-sources, Card(I) < ∞)
If (i) of Condition 36 is satisfied and if X ∈ D0, then the portfolio given by
equation (95) satisfies θ ∈ Psf and VT̄ (θ) = X. Moreover the linear mapping
D0 3 X 7→ θ ∈ P ∩ D0(L

2(T, E
′
)), is continuous.

Proof. We only outline the proof of the theorem. Here `2 = `2(I) = Rm̄ is
finite dimensional.
Let X ∈ D0 and let x be given by (83). First one proves (see Lemma 3.1 of
[34]) that

D0(F ) = ∩p≥1L
p(Ω, Q,F , F ). (99)

Applying the BDG inequalities to equation (83) it follows that

x ∈ D0(L
2(T, `2)), (100)

where x is progressively measurable. The definition of η in (94) and the
condition (97) give

‖ηt(ω)‖`2 ≤ kt(ω)‖xt(ω)‖`2 .

Inequality (100) then leads to η ∈ D0(L
2(T, E)). Using the definition (95) of

θ̄ we then obtain
θ̄ ∈ D0(L

2(T, E
′
)). (101)

Since θ̄ satisfies equation (85) by construction and since formulas (100) and
(101) shows that θ̄ is admissible, the hypotheses of Lemma 34 are satisfied,
so θ ∈ Psf . This shows that θ is a hedging portfolio of X.

All the linear maps X 7→ x 7→ η 7→ θ are continuous in the above spaces,
which also proves the claimed continuity of the map X 7→ θ.

The solution of the hedging problem, given by Theorem 37, is highly
non-unique, since when Card(I) = m̄ < ∞ then the kernel K((σ

′
tpt)(ω)) has

infinite dimension. For instance there is a hedging portfolio ϑ̂ consisting of
m̄ + 1 rollovers at any time.

To state the result in the case of a infinite number of Bm., we first in-
troduce spaces of contingent claims Ds, smaller than D0 if s > 0 and corre-
sponding to that the integrand x in (83) takes values in `s,2. More precisely,
for s > 0 let

Ds = {X ∈ D0 | x ∈ D0(L
2(T, `s,2)) where x is given by (83)}. (102)
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Condition 36 ii) leads to a Ds-complete market, i.e. Ds is a space of attainable
contingent claims, Ds is a dense subspace of D0 and Ds is itself a complete
topological vectorspace. This concept gives a natural frame-work to study
existence and continuity of hedging portfolios. We have (see Theorem 4.3 of
[34]):

Theorem 38 (Infinite number of random-sources I = N)
If (ii) of Condition 36 is satisfied and if X ∈ Ds, where s > 0 is given by

Condition 36, then the portfolio given by equation (95) satisfies θ ∈ Psf and
VT̄ (θ) = X. Moreover the linear map Ds 3 X 7→ θ ∈ P ∩ D0(L

2(T, E
′
)), is

continuous.

For the proof, which only uses elementary spectral properties of self-adjoint
operators and compact operators, the reader is refered to [34].

A Malliavin-Clark-Ocone formalism was adapted recently in reference [6],
for the construction of hedging portfolios in a Markovian context, with a
Lipschitz continuous (in the bond price) volatility operator. This guaranties
that the Malliavin derivative of the bond price is proportional to the volatility
operator (formula (30) of [6]). Hedging is then achieved for a restricted class
of claims, namely European claims being a Lipschitz continuous function in
the price of the bond at maturity.

References [8] and [27] studies the hedging problem in a weaker sense of
approximate hedging, which in our context simply boils down to the well-
known existence of the integrand x in the decomposition (83).

6 Optimal portfolio management

We now consider an investor, characterized by a von-Neumann-Morgenstern
utility function U , an initial wealth v, and a horizon T̄ . The money is in-
vested in a market portfolio, and the investor seeks to maximize the terminal
(discounted) value VT̄ (θ) of the portfolio. Transaction costs and taxes are
neglected. The optimal portfolio problem is then to find a admissible self-
financing portfolio θ̂ with VT̄ (θ̂) = v, such that:

(P0)

 sup EP [U (VT̄ (θ))] = U(VT̄ (θ̂))
VT̄ (θ) = v
θ ∈ Psf .

We will follow the now classical two-step approach (cf. [17], [28]) towards
solving that problem. If the portfolio is self-financing and is worth v at time
0, then, by the martingale property:

EP [ξT̄ VT̄ ] = v
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where the random variable ξT̄ , arising from Girsanov’s theorem, was intro-
duced earlier in (76). In general there can be several possible ξT̄ , one for
each γ satisfying the conditions of Definition 32. The first step (optimiza-
tion) consists of finding, among FT̄ -measurable random variables X such
that EP [ξT̄ X] = v, the one(s) that maximize expected utility EP [U (X)].
This problem has in our setting a general solution X̂, given by Proposition
43. The second one (accessibility) consists in hedging one of the contingent
claims X̂ by a self-financing portfolio θ̂. This portfolio is then a solution of
the optimal portfolio problem (P0).

6.1 Optimization

Consider the optimization problem:
sup EP [U (X)]
EP [ξT̄ X] = v

X ∈ L2 (Ω,FT̄ , P )

which we can rewrite in a more geometric way, involving the scalar product
in L2 (Ω,FT̄ , P ):

(P)


sup

∫
Ω

U (X) dP∫
Ω

ξT̄ XdP = (ξT̄ , X)L2 = v
X ∈ L2 (Ω,FT̄ , P )

Problem (P) consists of maximizing a concave function on a closed linear
subspace of L2. Assume there is a maximizer X̂. If the usual theory of
Lagrange multipliers applies, there will be some λ ∈ R such that X̂ actually
optimizes the functional ∫

Ω

[U (X)− λξT̄ X] dP

over all of L2. Maximizing pointwise under the integral, and bearing in mind
that U is concave, we are led to the equation:

U ′
(
X̂ (ω)

)
= λξT̄ (ω) P -a.e., (103)

which fully characterizes the solution X̂. Unfortunately this program cannot
be carried through, for the function EP [U (X)] has no point of continuity
in L2 unless U is bounded, so the constraint qualification conditions do not
hold for problem (P), cf. [9]. We will therefore proceed by a roundabout
way: use (103) to define X̂, and then prove that X̂ is optimal for a suitable
choice of λ. For this, we need some conditions on U .
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Definition 39 The utility function U will be called admissible if it satisfies
the following properties:

1. U : R → {−∞} ∪ R is concave and upper semi-continuous

2. there is some a ∈ {−∞}∪ ] −∞, 0], such that U (x) = −∞ if x < a
and U (x) > −∞ if x > a

3. U is twice differentiable on the interval A = ]a, ∞[; set B = U ′ (A)

4. sup B = +∞; inf B = 0 or inf B = −∞.

5. U ′ : A → B is one-to-one, and there are some positive constants r, c1, c2

and c3 such that its inverse I = [U ′]−1 satisfies the estimate |I(y)| +
|yI ′(y)| ≤ c1 + c2 |y|r + c3 |y|−r for y ∈ B.

It follows from these assumptions that I is continuous and strictly decreasing,
with:

I (λ) → +∞ when λ → inf B

I (λ) → a when λ → +∞.

We note that the estimate, in point 5) of Definition 39, is satisfied iff there
exist C ≥ 0 such that

|I(y)|+ |yI ′(y)| ≤ C (|y|r + |y|−r),

for all y ∈ B. All usual utility functions are admissible:

Example 40
i) Quadratic utility; Set U (x) = µx − 1

2
x2, µ ∈ R. Then a = −∞, and

U ′ (x) = µ − x, so that B = R and I (y) = µ − y. The estimate is satisfied
with r = 1.
ii) Exponential utility; Set U (x) = 1− 1

µ
exp (−µx) , µ > 0. Then a = −∞,

and U ′ (x) = exp (−µx) , so that B =]0, ∞[ and I (y) = − 1
µ

ln (y). The
estimate is satisfied for any r > 0.
iii) Power utility; Set U (x) = 1

µ
xµ for some µ < 1 and µ 6= 0 (note that µ

may be negative). Then a = 0, and U ′ (x) = xµ−1, so that B =]0, ∞[ and
I (y) = y1/(µ−1). The estimate is satisfied with r = 1

1−µ
.

iv) Logarithmic utility; Set U (x) = ln x. Then a = 0 and U ′ (x) = 1
x
, so that

B =]0, ∞[ and I (y) = 1
y
. The estimate is satisfied with r = 1.

Take some λ ∈ B, and define a random variable Xλ by:

Xλ (ω) = I (λξT̄ (ω)) .

Xλ is FT̄ -measurable. In addition, we have:
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Lemma 41 Xλ ∈ Lp (Ω,FT̄ , P ) for every p ≥ 1.

Proof. Since U is admissible, we know from condition 4 that, for some r > 0
we have:

|I (λξT̄ )|p ≤
(
c1 + c2 |λξT̄ |

r + c3 |λξT̄ |
−r)p

≤ k1 + k2 |λ|pr |ξT̄ |
pr + k3 |λ|−pr |ξT̄ |

−pr

and the right-hand side is integrable, for we know that ξs
T̄
∈ L1 (Ω,FT̄ , P )

for every s ∈ R.

Lemma 42 Let v ∈ A. There is a unique λ̂ ∈ R such that EP [Xλ̂ξT̄ ] = v

Proof. Consider the map ϕ : B → R defined by ϕ (λ) = EP [XλξT̄ ] =
EP [I (λξT̄ ) ξT̄ ]. Since ξT̄ > 0 P -a.e., and f is strictly decreasing, ϕ is strictly
decreasing. Using the Lebesgue dominated convergence theorem, we find
that it is continuous. Using Fatou’s lemma, we find that:

• ϕ (λ) → +∞ when λ → inf B

• lim inf ϕ (λ) ≤ 0 when λ → +∞

Since v ∈ A, it follows that there is a unique λ̂ such that ϕ
(
λ̂
)

= v.

Denote Xλ̂ by X̂. We now conclude:

Proposition 43 X̂ is the unique solution of problem (P).

Proof. Let us show that X̂ is indeed a solution of problem (P). Uniqueness
follows from the strict concavity of U.

We have shown that X̂ is in L2, and EP [X̂ξT̄ ] = v, so X̂ satisfies the
constraints. Take another X ∈ L2 such that EP [X̂ξT̄ ] = v. Since U is
concave, we have:

U (X (ω)) ≤ U
(
X̂ (ω)

)
+ (X (ω)− X̂ (ω))U ′

(
X̂ (ω)

)
P -a.e.

By definition, U ′
(
X̂ (ω)

)
= λξT̄ (ω). Substituting into the inequality and

integrating, we get:∫
Ω

U (X) dP ≤
∫

Ω

U
(
X̂
)

dP + λ

∫
Ω

(X − X̂)ξT̄ dP

and the last term vanishes because it is just λ (v − v). So X̂ is indeed a
optimizer, and the result follows.
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6.2 Hedging

6.2.1 Deterministic case

In this paragraph we suppose that m and σ are deterministic processes.

Once the solution X̂ of the optimization problem is found, for a given γ,
the question is whether it can be hedged by a self-financing portfolio θt, so
that VT̄ (θ) = X̂. We shall now use the general hedging results of §5 to solve
this problem, in the case when the m and σ, are deterministic (i.e. they do
not depend on ω).

Under these conditions, there can be several γ that satisfy the conditions
of Definition 32 and some γ can even be non-deterministic. However, as we
have supposed that the market is strongly arbitrage free, so equation (74)
has a solution, we can choose γ to be the unique solution with the property of
being orthogonal in `2 to the kernel of the volatility operator. More precisely,
we choose the unique γ such that

(γt, x)`2 = 0, ∀ x ∈ `2(I) s.t. σtx = 0. (104)

The γ defined by this condition is deterministic. In the sequel of this para-
graph γ is given by (104). In that case, it follows from formula (76) that
ξT̄ is Malliavin differentiable. It follows from formula (86) that the partial
derivative with respect to W̃ i is given by:

Di,tξT̄ = −γi
tξT̄

and X̂ = I
(
λ̂ξT̄

)
is Malliavin differentiable as well, with:

Di,tX̂ = −λ̂γi
tξT̄ I ′(λ̂ξT̄ ).

The Clarke-Ocone formula now reads:

X = EQ[X | F0] +
∑
i∈I

∫ ˆ̄T

0

EQ [Di,tX | Ft] dW̃ i
t (105)

= v − λ̂
∑
i∈I

∫ ˆ̄T

t

γi
tEQ

[
ξT̄ I ′(λ̂ξT̄ ) | Ft

]
dW̃ i

t (106)

We then write the equation (85) for the hedging portfolio θ̂, and we substitute
the Clark-Ocone formula for xi

t (ω):

bt(ω)′θt(ω) = −λ̂EQ

[
ξT̄ I ′(λ̂ξT̄ ) | Ft

]
γt. (107)
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This equation has a solution iff γt is in the range of bt(ω)′. Since σ is determin-
istic, this condition simplifies. In fact, let lt and Bt be given by (90), which
here both are deterministic, and let q(t, ω) = pt(ω)/lt. Then the expression
(82) of bt(ω)′ give:

(bt(ω)′θt(ω))i =< θt(ω) , pt(ω)σi
t >=< θt(ω)q(t, ω) , ltσ

i
t >= (B′

tft(ω))i,

where ft(ω) ∈ E−s is given by ft(ω) = q(t, ω)θt(ω). So, equation (107) has a
solution iff γt is in the range of B′

t. This is always true when I is finite, since
then the range of B′

t is equal to the orthogonal complement of the kernel of
σt (we remember that pt(ω, x) > 0 for x ≥ 0). When I = N, then the range
is only a strictly smaller dense subset.

We are lead to following condition

Definition 44 We shall say that the market satisfies condition (C) if there
exists a deterministic portfolio θ0

t which is admissible and satisfies:

< θ0
t , (Ltp0) σi

t > = γi
t, (108)

for each i ∈ I and t.

Condition C is then equivalent to γt ∈ R(B′
t), the range of B′

t. In the case
when I is finite, there is never uniqueness in the choice of θ0

t .

In the case when I is finite, we know that condition (C) is satisfied and
it can easily be verified, with n elements say, by picking n maturities 0 <
S1 < ... < Sn and by seeking θ0

t as a linear combination of rollovers: θ0
t =∑

xi
tδSi

. Condition (108) then reduces to a system of n linear equations with
n unknowns which determines the xi

t.
In the case when I = N, condition (C) may not be satisfied. We will be

content with reminding that the left-hand side of equation (108) is meaning-
ful, since (Ltp0) σi

t belongs to the space Es.
If condition (C) is satisfied, equation (107) becomes:

< θt, ptσ
i
t > = −λ̂EQ[ξT̄ I ′(λ̂ξT̄ ) | Ft] < θ0

t ,
Ltp0

pt

ptσ
i
t >

=< −λ̂EQ[ξT̄ I ′(λ̂ξT̄ ) | Ft]
Ltp0

pt

θ0
t , ptσ

i
t >

and an obvious solution θt = θ̄t (the risky part of the optimal portfolio) is
given by:

θ̄t = −λ̂EQ[ξT̄ I ′(λ̂ξT̄ ) | Ft]
Ltp0

pt

θ0
t .
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Applying Lemma 34, with x defined by (89), we obtain a hedging portfolio
θ̂ = xδ0 + θ̄ of X̂, where θ̄ is as above, and:

xt =
1

pt (0)

(
EQ

[
I
(
λ̂ξT̄

)
| Ft

]
− < θ̄t, pt >

)
.

To sum up, in the case when the ms and the σi
s, i ∈ I, are deterministic,

with σi
t (0) = 0, with condition (C) and equation (74) satisfied, an optimal

admissible and self-financing portfolio is given by

θ̂t = xtδ0 + θ̄t, where θ̄t = yt
(Ltp0)

pt

θ0
t (109)

and where the coefficients xt and yt are real-valued progressively measurable
processes given by

yt = −EQ(λ̂ξT̄ I ′(λ̂ξT̄ ) | Ft) (110)

xt = (pt(0))−1
(
EQ[I(λ̂ξT̄ ) | Ft]− yt < θ0

t , Ltp0 >
)

. (111)

This leads immediately to a mutual fund theorem: whatever the utility
function and the initial wealth, the optimal portfolio at time t is a linear
combination of the current account δ0 and the portfolio f 7→< θ0

t ,
Ltp0

pt
f >,

i.e. the portfolio Ltp0

pt
θ0

t . This portfolio is in general not self-financed, so it
can not be given the status of a market portfolio. However we can easily
reformulate the result with a self-financed portfolio. In fact, chose an ad-
missible utility function, with a = 0, according to Definition 39. For this
utility function, let Θ be the optimal portfolio given by (109), with unit ini-
tial wealth. Obviously Ltp0

pt
θ0

t is a linear combination of δ0 and Θt. This gives
us:

Theorem 45 (Mutual fund theorem) The optimal portfolio Θ has the
following properties:

i) Θ is an admissible self-financing portfolio, with unit initial value, i.e.
< Θ0 , p0 >= 1, and the value at each time t ∈ T is strictly positive, i.e.
< Θt , pt >> 0.

ii) For each utility function U, admissible according to Definition 39 and each
initial wealth v ∈ ]a,∞[ , there exist two real valued processes c and d such
that if θ̂t = ctδ0 + dtΘt, then θ̂ is an optimal self financing portfolio for U,
i.e. a solution of problem (P0).
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6.2.2 Stochastic m and σ

We shall here concentrate on the case of an approximately complete market,
which is equivalent to that the volatility operator is non-degenerated. In
fact, according to iii) of Theorem 35, the market is approximately complete
if and only if σt(ω) has a trivial kernel a.e. (t, ω) ∈ T× Ω.

In the case of a finite number of Bm. we obtain easily from Lemma 41
and Theorem 37 the following result (see Theorem 3.6 of [10]):

Theorem 46 Let I be a finite set, let U be admissible in the sens of Defini-
tion 39 and let i) of Condition 36 be satisfied. The problem (P0) then has a
solution θ̂. One solution θ̂ = aδ0 + θ̄ ∈ Psf is given by (95).

In the case of an infinite number of Bm. we shall impose Malliavin differen-
tiability properties on the market price of risk γ. To this end we introduce
the space D1

s, for s > 0 by

D1
s = {X ∈ D0 | DX ∈ D0(L

2(T, `s,2))}. (112)

We can now state a result in the case of an infinite number of Bm., quite
analog to the case of a finite number of Bm. (see Theorem 4.5 of [34]):

Theorem 47 Let I = N, let U be admissible in the sens of Definition 39, let
ii) of Condition 36 be satisfied and let ln(ξT̄ ) ∈ D1

s, where s > 0 is given by
ii) of Condition 36. The problem (P0) then has a solution θ̂. One solution
θ̂ = aδ0 + θ ∈ Psf is given by (95).

Proof. We only consider the case of U ′ > 0, since the case of U ′(x) = 0 for
some x is so similar. Let the hypotheses of the theorem be satisfied. The
portfolio θ̂ is a solution of equation (P0), if θ̂ ∈ Psf and if it hedges X̂ given
by Proposition 43. (See Corollary 3.4 of [10]). It is enough to verify that
Theorem 38 applies to X̂ = I(λ̂ξT̄ ) for a certain given λ̂ > 0.

I is C1, so DtX̂ = λξT̄ ϕ′(λξT̄ )Dt ln(ξT̄ ). Since ln(ξT̄ ) ∈ D1
s, this gives

‖DX̂‖L2(T,`s,2) = |λξT̄ ϕ′(λξT̄ )| ‖D ln(ξT̄ )‖L2(T,`s,2). The inequality in 5) of De-

finition 39 gives ‖DX̂‖L2(T,`s,2) ≤ C((λξT̄ )p + (λξT̄ )−p)‖D ln(ξT̄ )‖L2(T,`s,2), for
some p ≥ 1. Condition (75) of Definition 32 shows that (λξT̄ )p + (λξT̄ )−p ∈
Lq(Ω, P ), for all q ≥ 1. By hypothesis ‖D ln(ξT̄ )‖L2(T,`s,2) ∈ D0, so Hölder’s

inequality now gives that ‖DX̂‖L2(T,`s,2) ∈ D0, i.e. DX̂ ∈ D0(L
2(T, `s,2)). By

Lemma 41, X̂ ∈ D0. It follows that X̂ ∈ D1
s. We can now apply Theorem 38,

which proves the existence of θ̂.
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6.2.3 Examples.

We now give examples of optimal bond portfolios for certain utility functions
U. We assume the drift function mt and the volatility operator σt to be
deterministic. We shall therefore suppose that the market satisfy condition
(C), of Definition 44, so the market prices of risk γ is deterministic and satisfy
condition (108).

The final optimal discounted wealth is X̂ = I(λ̂ξT̄ ). The corresponding
optimal discounted wealth process Y is given by Yt = EQ[I(λ̂ξT̄ ) | Ft]. The

initial wealth Y0 = v determines λ̂ by the equation

v = Y0 = EQ[I(λ̂ξT̄ )]. (113)

We recall that (pt)
−1Ltp0 ∈ Es a.s and that pt(0) > 0 a.s. We shall derive

the optimal portfolio directly, going through the steps leading to the general
solution (109).

Logarithmic utility Let

U(x) = ln(x). (114)

We have I(x) = 1/x, and X̂ = (λ̂ξT̄ )−1, so that equation (113) gives:

v = EQ[1/(λ̂ξT̄ )] = EP [ξT̄ /(λ̂ξT̄ )] = 1/λ̂.

Then using the expression (76) for ξt and W̃ i
t we have:

1

ξt

= exp

(
−1

2

∫ t

0

∑
i∈I

(
γi

s

)2
ds +

∫ t

0

∑
i∈I

γi
sdW̃ i

s

)
. (115)

The right-hand side is a Q-martingale, then so is 1/ξt. It follows that the
optimal discounted wealth at t is

Yt = EQ[I(λ̂ξT̄ ) | Ft] =
1

λ̂ξt

=
v

ξt

.

Since d(1/ξt) =
∑

i∈I(γ
i
t/ξt)dW̃ i

t and X̂ = YT̄ , it then follows that:

X̂ = v

(
1 +

∑
i∈I

∫ T̄

0

γi
t

1

ξt

dW̃ i
t

)
. (116)

The hedging equation (85) and the above formula give:

∀i ∈ I, < θt (ω) , pt (ω) σi
t (ω) > =

v

ξt (ω)
γi

t (117)
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By condition (C) we find a portfolio θ0 satisfying γi
t = < θ0

t , (Ltp0) σi
t >, so

γi
t = < (Ltp0) θ0

t , σi
t > . (118)

Substituting this expression of γ into (117) we obtain:

∀i ∈ I, < pt (ω) θt (ω)− v

ξt(ω)
(Ltp0) θ0

t , σi
t (ω) > = 0. (119)

One solution of this equation is obviously given by θ = θ̄, where

θ̄t(ω) = yt(ω)
(Ltp0)

pt(ω)
θ0

t , yt(ω) =
v

ξt(ω)
. (120)

The discounted value of θ̄ at time t in state ω is then

(Vt(θ̄))(ω) =< θ̄)t , pt >=
v

ξt(ω)
< θ0

t ,Ltp0 > . (121)

The optimal portfolio θ̂ is now obtained by using Lemma 34: θ̂t = xtδ0 + θ̄t,
where

xt =
1

pt(0)

v

ξt

(1− < θ0
t , θ̂t (ω)Ltp0 >). (122)

As it should, the discounted value of θ̂ is then Vt(θ̂) = Yt = v/ξt.
We note the following useful property: the ratio of the investment in

bonds with time to maturity S > 0 to the total investment is deterministic.
In fact this ratio is simply price at t = 0, of a zero-coupon bond with time
to maturity S + t :

θ̄t(S, ω) pt(S, ω)

(Vt(θ̄))(ω)
= p0(S + t). (123)

Quadratic utility Let the utility function be:

U (x) = µx− 1

2
x2

As in i) of Example 40, we find that

I(y) = µ− y.

The final discounted optimal wealth is X̂ = I(λ̂ξT̄ ), so

X̂ = µ− λ̂ξT̄ .
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We determine λ̂ by the condition:

v = EQ

[
X̂
]

= EQ

[
µ− λ̂ξT̄

]
= µ− λ̂EQ [ξT̄ ] . (124)

Set

Zt = exp

(
−1

2

∫ t

0

∑
i∈I

(γi
s)

2ds−
∫ t

0

∑
i∈I

γi
sdW̃ i

s)

)
.

Then Z is a martingale with respect to Q and formula (77) gives

ξt = Zt exp

(∫ t

0

∑
i∈I

(γi
s)

2ds

)
. (125)

We have, by substitution into (124):

v = µ− λ̂EQ [ξT̄ ] = µ− λ̂ exp

(∫ T̄

0

∑
i∈I

(γi
s)

2ds

)
.

This gives

λ̂ = (µ− v) exp

(
−
∫ T̄

0

∑
i∈I

(γi
s)

2ds

)
. (126)

It now follows from (125) that

X̂ = µ− λ̂ξT̄ = µ + (v − µ) ZT̄ (127)

and the optimal discounted wealth at t is

Yt = EQ[I(λ̂ξT̄ ) | Ft] = µ + (v − µ) Zt.

Since dZt = −Zt

∑
i∈I γi

tdW̃ i
t , we have that

X̂ = µ− (v − µ)

∫ T̄

0

∑
i∈I

Ztγ
i
tdW̃ i

t = µ +

∫ T̄

0

∑
i∈I

(µ− Yt)γ
i
tdW̃ i

t ,

so the hedging equation reads (see (85)):

∀i ∈ I, < θt (ω) , pt (ω) σi
t (ω) > = − (µ− Yt(ω)) γi

t. (128)

As usually, condition (C) gives a portfolio θ0 satisfying γi
t = < θ0

t , (Ltp0) σi
t >,

which together with (128) gives:

∀i ∈ I, < pt (ω) θt (ω) + (Yt(ω)− µ) (Ltp0) θ0
t , σi

t (ω) > = 0.
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One solution of this equation is θ = θ̄, where

θ̄t(ω) = yt(ω)
(Ltp0)

pt(ω)
θ0

t , yt(ω) = µ− Yt(ω).

θ̄ gives the risky part of the optimal portfolio.
Applying Lemma 34 we obtain the optimal portfolio θ̂t = xtδ0 + θ̄t, where

xt = (pt(0))−1(Y (t)− (µ− Y (t)) < θ0
t , Ltp̂0 >). (129)

6.3 The H-J-B approach

When mt and σi
t are given functions of pt, for every t, then the optimal

portfolio problem (P0) can be considered within a Hamilton-Jacobi-Bellman
approach. In this subsection we illustrate this approach, without being rig-
orous and we suppose that the utility function U satisfies the conditions of
Definition 39.

The optimal value function, here denoted by F, then only depends of time
t, of the value of the discounted wealth w and the discounted price function
f ∈ Es of Zero-Coupons at time t :

F (t, w, f) = sup{E(u(VT̄ (θ)) | Vt(θ) = w, pt = f) | θ ∈ Psf}.

The derivative DG(f ; g) of a function Es 3 f 7→ G(f) in the direction g ∈ Es,
is as usually defined by

DG(f ; g) = lim
ε→0

G(f + εg)−G(f)

ε
.

Suppose that G is C2. Writing DG(f) for the map g 7→ DG(f ; g) and D2G(f)
for the map g1 × g2 7→ DG(f ; g1, g2), we have that DG(f) is a linear contin-
uous form on Es and D2G(f) is a bi-linear continuous form.

Define the Hamiltonian H(t, w, f, x) by:

H(t, w, f, x) =
∑
i∈I

xi(t, w, f)γi
t

∂F

∂w
(t, w, f) + DF (t, w, f ; ∂f +

∑
i∈I

γi
tσ

i
tf)

+
∑
i∈I

(1
2
(xi(t, w, f))2∂2F

∂w2
(t, w, f) + xi(t, w, f)

∂

∂w
DF (t, w, f ; σi

tf)

+
1

2
D2F (t, w, f ; σi

tf, σi
tf)
)
.

(130)
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In that formula, x = (xi)i∈I ∈ `2 is the control, which is related to the optimal
terminal wealth by formula (83). A control x is called admissible if

xi(t, Vt(θ), pt) =< θt , ptσ
i
t >

for all θ ∈ Psf . In other words, xi can be interpreted as the value invested
in the i-th source of noise. Using the Ito formula, one derives the (formal)
HJB equation:

∂F

∂t
(t, w, f) + sup

x
H(t, w, f, x) = 0, (131)

with the boundary condition

F (T̄ , w) = U(w). (132)

The optimal control x̂, solution of the optimization problem

sup
x

H(t, w, f, x),

is given by

x̂i(t, w, f) = −
(

∂2F

∂w2

)−1(
γi

t

∂F

∂w
+ (D

∂F

∂w
)(t, w, f ; σi

tf)

)
, i ∈ I. (133)

Now, substitution of H(t, w, f, x̂(t, w, f)) into equation (131) gives:

∂2F

∂w2
(t, w, f)

(
∂F

∂t
(t, w, f) + DF (t, w, f ; ∂f + mtf) +

1

2

∑
i∈I

D2F (t, w, f ; σi
tf, σi

tf)

)

=
1

2

∑
i∈I

(
γi

t

∂F

∂w
+ (D

∂F

∂w
)(t, w, f ; σi

tf)

)2

.

(134)

Once the solution F of (134), with boundary condition (132), is found, the
optimal control x̂ is given by (133). Any optimal portfolio θ̂ is then a solution
of the equation:

x̂i(t, Vt(θ̂), pt) =< θ̂t , ptσ
i
t >, ∀ i ∈ I, t ∈ T.

In the case when mt and σi
t are independent of pt, then the x̂i are inde-

pendent of f and the above equations simplify:

∂F

∂t

∂2F

∂w2
=

1

2

(∑
i∈I

‖γi
t‖2

)
(
∂F

∂w
)2,
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with the boundary condition

F (T̄ , w) = U(w), w ∈ R.

Each self financing portfolio θ̂ ∈ Psf , such that

< θ̂t , ptσ
i
t >= −γi

t

(
∂F

∂w

)(
∂2F

∂w2

)−1

, ∀ i ∈ I, t ∈ T,

where w = Vt(θ̂), is then a solution of problem (P0). The solutions in the
examples in §6.2.3, as well as the general solution (109) for deterministic m
and σ, are easily obtained by solving these equations.

A Appendix

In this appendix, we reproduce results (proved in the appendix of [10]), used
in this article, concerning existence of solutions of some SDE’s and Lp esti-
mates of these solutions. The notations T = [0, T̄ ], W i, I and (Ω, P,F ,A) are
defined in §3.1. Through the appendix m and σi, i ∈ I, are A-progressively
measurable Es-valued processes satisfying∫ T̄

0

(‖mt‖Es +
∑
i∈I

‖σi
t‖2

Es)dt < ∞, a.s. (135)

The Es-valued semi-martingale L is given by

L(t) =

∫ t

0

(msds +
∑
i∈I

σi
sdW i

s), if 0 ≤ t ≤ T̄ (136)

and by L(t) = L(T̄ ), if t > T̄ . We introduce, for t ≥ 0, the random variable

µ(t) = t +

∫ t

0

(‖ms‖Es +
∑
i∈I

‖σi
s‖2

Es)ds, if 0 ≤ t ≤ T̄ (137)

and µ(t) = t − T̄ + µ(T̄ ) if t > T̄ . µ is a.s. strictly increasing, absolutely
continuous and on-to [0,∞[. The inverse τ of µ also have these properties
and τ(t) ≤ t. For a continuous Es-valued processes Y on [0, T̄ ] we introduce

ρt(Y ) = (E( sup
s∈[0,t]

‖Y (τ(s))‖2
Es))1/2, (138)

for t ∈ [0,∞[, where we have defined Y (t) for t > T̄ by Y (t) = Y (T̄ ). We
note that ρt(Y ) ≤ (E(sups∈[0,t] ‖Y (s)‖2

Es))1/2, since τ(t) ≤ t.
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Lemma 48 If condition (135) is satisfied and if Y is an A-progressively
measurable Es-valued continuous process on [0, T̄ ], satisfying ρt(Y ) < ∞, for
all t ≥ 0, then the equation

X(t) = Y (t) +

∫ t

0

Lt−sX(s)(msds +
∑
i∈I

σi
sdW i

s), (139)

t ∈ [0, T̄ ], has a unique solution X, in the set of A-progressively measurable
Es-valued continuous process satisfying:∫ T̄

0

(‖X(t)‖Es + ‖X(t)mt‖Es +
∑
i∈I

‖X(t)σi
t‖2

Es)dt < ∞ a.s. (140)

Moreover this solution satisfies:

i) If
∫ T̄

0
(‖mt‖Es+1 +

∑
i∈I ‖σi

t‖2
Es+1)dt < ∞ and Y is a continuous Es+1-valued

process with ρt(∂Y ) < ∞, for all t ≥ 0, then X is a continuous Es+1-valued
process.
ii) If (i) is satisfied and if Y is a semi-martingale, then X is a semi-
martingale.
iii) If Y is Hs-valued, then X is Hs-valued.

The next lemma establish conditions under which the solution of equation
(139) is in Lp, p ∈ [0,∞[ . The notation Ẽ was introduced in (58).

Lemma 49 Let condition (135) be satisfied and let (i) E(exp(p
∫ T̄

0
(‖mt‖Es +∑

i∈I ‖σi
t‖2

Es)dt)) < ∞, for each p ∈ [1,∞[. Suppose that Y in Lemma 48
satisfies (ii) E(supt∈T ‖Y (t)‖p

Es) < ∞, for each p ∈ [1,∞[. Then the unique
solution X of equation (139) in Lemma 48 satisfies

E(sup
t∈T

‖X(t)‖p
Es) < ∞, ∀p ∈ [1,∞[ . (141)

Moreover if (iii) E((
∫ T̄

0
(‖mt‖Es+1 +

∑
i∈I ‖σi

t‖2
Es+1)dt)p) < ∞ and (iv)

E(supt∈T ‖Y (t)‖p
Es+1) < ∞, for each p ∈ [1,∞[, then also

E(sup
t∈T

‖X(t)‖p
Es+1) < ∞, ∀p ∈ [1,∞[ . (142)

In particular, estimates (141) and (142) applies to X = Ẽ(L).
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