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Abstract

Consider a group consisting of S members facing a common budget

constraint p0ξ = 1; any demand vector belonging to the budget set can

be (privately or publicly) consumed by the members. Although the

intra-group decision process is not known, it is assumed to generate
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Pareto efficient outcomes; neither individual consumptions nor intra-

group transfers are observable. The paper analyzes when, to what

extent and under which conditions it is possible to recover the un-

derlying structure - individual preferences and the decision process -

from the group’s aggregate behavior. We show that although the gen-

eral version of the model is not identified, specific restrictions such as

private or public consumptions and exclusivity can be used to obtain

identification. We also show how the presence of distribution factors,

defined as variables that can influence behavior only through their

impact on the decision process, can be used in the estimation process.

We conclude that in all the cases we consider (private consumption

only, public consumption only, private and public consumption), while

the detailed structure may or may not be fully identifiable, a simple

exclusivity assumption (each member is the exclusive consumer of at

least one good) is almost always sufficient to formulate unambiguous

welfare judgments.
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1 Introduction

Group behavior: beyond the ’black box’ Consider a group consisting

of S members. The group has limited resources; specifically, its global con-

sumption vector ξ must satisfy a standard market budget constraint of the

form p0ξ = 1 (where p is a vector of prices, and where total group income is

normalized to one). Any demand vector belonging to the global budget set

thus defined can be consumed by the members. Some of the goods can be

privately consumed, while others may be publicly used. The decision process

within the group is not known, and is only assumed to generate Pareto ef-

ficient outcomes1. Finally, neither individual consumptions nor intra-group

transfers are observable. In other words, the group is perceived as a ’black

box’; only its aggregate behavior, summarized by the demand function ξ (p),

is recorded. The goal of the present paper is to provide answers to the

1We view efficiency as a natural assumption in many contexts, and as a natural bench-
mark in all cases. For instance, the analysis of household behavior often takes the ’col-
lective’ point of view, where efficiency is the basic postulate. Other models, in particular
in the literature on firm behavior, are based on cooperative game theory in a symmetric
information context, where efficiency is paramount (see for instance the ’insider-outsider’
literature, and more generally the models involving bargaining between management and
workers or unions). The analysis of intra group risk sharing, starting with Townsend’s
seminal paper (1994), provides other interesting examples. Finally, even in the presence of
asymmetric information, first best efficiency is a natural benchmark. For instance, a large
part of the empirical literature on contract theory tests models involving asymmetric infor-
mation against the null of symmetric information and first best efficiency (see Chiappori
and Salanie (2000) for a recent survey).
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general question: when is it possible to recover the underlying structure -

namely, individual preferences, the decision process and the resulting intra-

group transfers - from the group’s aggregate behavior?

In the (very) particular case where the group consists of only one member,

the answer is well known: individual demand uniquely defines the underly-

ing preferences. Not much is known in the case of a larger group. However,

recent results in the literature on household behavior suggest that, surpris-

ingly enough, when the group is ’small’, the structure can be recovered under

reasonably mild assumptions. For instance, in the model of household labor

supply proposed by Chiappori (1988, 1992), two individuals privately con-

sume leisure and some Hicksian composite good. The main conclusion is

that the two individual preferences and the decision process can generically

be recovered (up to an additive constant) from the two labor supply func-

tions. This result has been empirically applied (among others) by Fortin

and Lacroix (1997) and Chiappori Fortin and Lacroix (2002), and extended

by Chiappori (1997) to household production and by Blundell et al. (2000)

to discrete participation decisions. Fong and Zhang (2001) consider a more

general model where leisure can be consumed both privately and publicly.

Although the two alternative uses are not independently observed, they can
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in general be identified under a separability restriction, provided that the

consumption of another exclusive good (e.g. clothing) is observed.

Altogether, these results suggest that there is information to be gained

on the contents of the ’black box’. In a companion paper (Chiappori and

Ekeland 2004), we investigate the properties of aggregate behavior stemming

from the efficiency assumption. We conclude that when the group is small

enough, a lot of structure is imposed on collective demand by this basic

assumption: there exist strong, testable, restrictions on the way the black

box may operate. The main point of the present paper is complementary.

We investigate to what extent, and under which conditions, it is possible

to recover much (or all) of the interior structure of the black box without

opening it. We first show that in the most general case, there exists a con-

tinuum of observationally equivalent models - i.e. a continuum of different

structural settings generating identical observable behavior. This negative

result implies that additional assumptions are required.

We then provide examples of such assumptions, and show that they are

surprisingly mild. Essentially, each agent in the group must be the exclusive

consumer of (at least) one commodity; moreover, in some case the availability

of a ‘distribution factor’ is required (see below). Under these conditions, the
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structure that is relevant to formulate welfare judgments is non parametric

identified in general (in a sense that is made clear below), irrespective of the

total number of commodities. We conclude that even when decision processes

or intra group transfers are not known, much can be learned about them

from the sole observation of the group’s aggregate behavior. This conclusion

generalizes the earlier intuition of Chiappori (1988, 1992); it shows that the

results obtained in these early contributions, far from being specific to the

particular settings under consideration, were in fact general.

Identifiability and identification From a methodological perspective, it

may be useful to define more precisely what is meant by ’recovering the un-

derlying structure’. The structure, in our case, is defined by the (strictly

convex) preferences of individuals in the group and the decision process.

Because of the efficiency assumption, for any particular cardinalization of

individual utilities the decision process is fully summarized by the Pareto

weights corresponding to the outcome at stake. The structure, thus, con-

sists in a set of individual preferences (with a particular cardinalization) and

Pareto weights (with some normalization - e.g., the sum of Pareto weights is

one).
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This structure is not observable; what can be recorded is the group’s

aggregate demand function ξ (p). In practice, the ’observation’ of ξ (p) is

a complex process, that entails specific difficulties. For instance, one never

observes a (continuous) function, but only a finite number of values on the

function’s graph. These values arte measured with some errors, which raises

problems of statistical inference. In some cases, the data are cross-sectional,

in the sense that different groups are observed in different situations; specific

assumptions have to be made on the nature and the form of (observed and

unobserved) heterogeneity between the groups. Even when the same group

is observed in different contexts (say, from panel data), other assumptions

are needed on the dynamics of the situation, e.g. on the way past behavior

influences present choices. All these issues, which lay at the core of what is

usually called the identification problem, are outside the scope of the paper.

Our interest, here, is in what has been called the identifiability problem,

which can be defined as follows: when is it the case that the (hypothetically)

perfect knowledge of a smooth demand function ξ (p) uniquely defines the

underlying structure within a given class? A more formal version of the de-

finition is the following. For any given structure, the maximization of the

(Pareto) weighted sum of utilities generates a unique demand function. This
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defines a mapping from the set of structures to the set of demand functions.

Identifiability obtains if this mapping is injective, in the sense that two differ-

ent structures can never generate the same demand function. For instance, in

the case of individual behavior, a standard result in consumer theory states

that identifiability always obtains, meaning that an individual demand func-

tion uniquely identifies the underlying preferences. Usual as this property

may have become, it arguably remains one of the strongest results in micro-

economic theory. The present work can be seen as an attempt at generalizing

this classical identifiability property to efficient groups of arbitrary sizes.2

Identifiability is a necessary condition for identification. If different struc-

tures are observationally equivalent, there is no hope that observed behavior

will help to distinguish between them - only ad hoc functional form restric-

tions can do that. Clearly, observationally equivalent models may have very

different welfare implications. Without uniqueness, any normative recom-

mendation based on one particular structural model is thus unreliable, since

it will typically be based on the purely arbitrary choice of one underlying

2The distinction between identification and identifiability can be traced back to Koop-
mans’s (1949) seminal paper (we thank Martin Browning for suggesting this reference).
A difference is that Koopmans’s defines a ’structure’ as ’a combination of a specific set
of structural equations and a specific distribution function of the latent variables’ - a
’model’ being defined as a ’set of structures’. Koopmans clearly distinguishes two types
of identification problems, namely those linked with ’statistical inference’ and those due
to ’identifiablity’.

8



structural model among the various possible selections. Clearly, identifiabil-

ity is only a necessary first step for identification (in the standard, econo-

metric sense). Whether an identifiable model is econometrically identified

depends on the stochastic structure representing the various statistical issues

(measurement errors, unobserved heterogeneity,...) discussed above. After

all, the abundant empirical literature on consumer behavior, while dealing

with a model that is always identifiable, has convinced us that identification

crucially depends on the nature of available data.

Parametric versus non-parametric identifiability The identifiability

problem may be approached from a parametric or a non parametric perspec-

tive. In the parametric approach, a particular functional form is chosen for

the structural model, and a reduced form for the demand function is derived.

In particular, the derivation highlights the links between the parameters of

the structural model and the coefficient of the demand function that will be

taken to data. Identification, in this context, is equivalent to the uniqueness

of the set of parameters of the structural model corresponding to any speci-

fied values for the (estimated) coefficients of the reduced form. Note that in

such a context, uniqueness or identifiability are conditional on the functional

9



form; i.e. it obtains (at best) within a specific and narrow set, defined by

the functional form chosen at the outset.

Throughout this paper, our approach, on the contrary, is explicitly non-

parametric. That is, we try to find conditions that guarantee uniqueness

within the general class of smooth, strictly convex preferences and differ-

entiable Pareto weights. We give below an example in which identifiability

obtains in a purely parametric sense, while it does not obtain in the non-

parametric setting, and we argue that welfare recommendations made in this

case are unreliable.

Distribution factors An important tool to achieve identification is the

presence of distribution factors; see Bourguignon, Browning and Chiappori

(1995). These are defined as variables that can affect group behavior only

through their impact on the decision process. Think, for instance, of the

choices as resulting from a bargaining process. Typically, the outcomes will

depend on the members’ respective bargaining positions; hence, any factor of

the group’s environment that may influence these positions (EEPs in McEl-

roy’s (1990) terminology) potentially affects the outcome. Such effects are of

course paramount, and their relevance is not restricted to bargaining in any
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particular sense. In general, group behavior depends not only on preferences

and budget constraint, but also on the members’ respective ’power’ in the

decision process. Any variable that changes the powers may have an impact

on observed collective behavior.

In many cases, distribution factors are readily observable. An example is

provided by the literature on household behavior. In their study of house-

hold labor supply, Chiappori, Fortin and Lacroix (2002) use the state of the

marriage market, as proxied by the sex ratio by age, race and state, and

the legislation on divorce, as particular distribution factors affecting the in-

trahousehold decision process, and therebt its outcome, i.e. labor supplies.

They find, indeed, that factors more favorable to women significantly de-

crease (resp. increase) female (resp. male) labor supply. Using similar tools,

Oreffice (2005) concludes that the legalization of abortion had a significant

impact on intrahousehold allocation of power. In a similar context, Rubal-

cava and Thomas (2000) use the generosity of single parent benefits and

reach identical conclusions. Thomas, Contreras, and Frankenberg(1997), us-

ing an Indonesian survey, show that the distribution of wealth by gender at

marriage - another candidate distribution factor - has a significant impact on

children health in those areas where wealth remains under the contributor’s
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control3. Duflo (2000) has derived related conclusions from a careful analy-

sis of a reform of the South African social pension program that extended

the benefits to a large, previously not covered black population. She finds

that the recipient’s gender - a typical distribution factor - is of considerable

importance for the consequences of the transfers on children’s health.

Whenever the aggregate group demand is observable as a function of

prices and distribution factors, one can expect that identification may be

easier to obtain. This is actually known to be the case in particular situ-

ations. For instance, Chiappori, Fortin and Lacroix (2002) show how the

use of distribution factors allows a simpler and more robust estimation of a

collective model of labor supply. In the present paper, we generalize these

results by providing a general analysis of the estimation of collective models

in different contexts, with and without distribution factors.

The results Our main conclusions can be summarized as follows:

• In its most general formulation, the model is not identifiable. Any given

aggregate demand that is compatible with efficiency can be derived ei-

ther from a model with private consumption only, or from a model with

3See also Galasso (1999) for a similar investigation.
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public consumption only. Even when it is assumed that all consump-

tions are private (or that they are all public, or that some commodities

are privately and other publicly consumed), in the absence of exclusive

consumptions there exists a continuum of different structural models

that generate the same aggregate demand.

• In the public goods case, a simple exclusivity assumption is in general

sufficient to guarantee full, non-parametric identifiability. Specifically,

if, for each agent of the group, there exists a commodity which is exclu-

sively consumed by that agent, then, in general, individual preferences

and the corresponding Pareto weights can be uniquely recovered, irre-

spectively of the total number of commodities.

• In the private consumption case, efficiency has a simple interpretation;

namely, the decision process can be viewed as involving two stages, one

in which the agents agree on some sharing rule for aggregate income,

and one in which each agent independently chooses his/her optimal

consumption bundle. In this context, the exclusivity assumption allows

to recover the sharing rule, up to some additive function φ of the prices

of the non-exclusive commodities; for each choice of φ, preferences are
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uniquely determined.

A very important remark, however, is that the additive function φ is

welfare irrelevant. Specifically, we define the collective indirect utility

of agent s as the utility he/she gets for any values of prices, aggregate

income and distribution factors, taking into account the sharing rule

within the group: we show that the collective indirect utility of each

agent is exactly identifiable. It follows, in particular, that whenever

some given change in prices, income and distribution factors is found

to benefit agent s for one particular choice of φ, then the conclusion

holds for all possible choices of φ.

• Finally, the same results obtain in the case of public and private con-

sumptions.

Our general conclusion, hence, is that in all three cases we consider (pri-

vate consumption only, public consumption only, private and public con-

sumption), exclusivity is sufficient to identify all welfare-relevant aspects of

the collective model.

Section 2 describes the model. A precise statement of the identifiability

problem, as well as a negative result for the general case are stated in Sec-
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tion 3. We then consider three specific cases - public consumptions, private

consumptions, public and private consumptions - in the next three sections.

2 The model

2.1 Preferences

We consider a S person group. Purchases are denoted by the vector x ∈

RN where N = n + K4. The group demand can in principle be divided

between two uses : private consumption by each person5, x1, ...xS, and public

consumption X. Here, xs ∈ Rn, X ∈ RK and corresponding prices are

(p, P ) ∈ RN = Rn ×RK , giving the budget constraint6:

p0 (x1 + ...+ xS) + P 0X = 1

Each member has her/his own preferences over the goods consumed in

4Formally purchases could include leisure; then the price vector includes the wages - or
virtual wages for non-participants.

5Throughout the paper, xis denotes the private consumption of commodity i by agent
s, and xs is the vector of private consumption for agent s.

6In most of what follows, the group’s total income (or total expenditure for empirical
purposes) is normalized to one. In particular, we implicitly assume that all functions at
stake are homogeneous in prices and income. In some cases, however, we abandon the
normalization for explanatory convenience. Then y denotes the group’s aggregate income.
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the group. In the most general case, each member’s preferences can depend

on other members’ private and public consumptions; this allows for altru-

ism, but also for externalities or any other preference interaction. Then

preferences of member s are then of the form U s(x1, ...xS, X), where Us is

strongly concave, twice differentiable in (x1, ...xS, X), and strictly increasing

in (xs,X). However, we shall see that identification does not obtain in this

general setting, and we shall concentrate on more specific preferences. We

will analyze in detail three cases:

1. all goods are publicly consumed: then n = 0, N = K and preferences

are U s(X) for 1 ≤ s ≤ S.

2. all goods are privately consumed, with no externalities (except for al-

truism); then K = 0, N = n and preferences are egoistic U s(xs)

3. some goods are publicly consumed while others are privately consumed

with no externalities; then K ≥ 0, n ≥ 0, N = K + n. While this

case is in a sense ’general’, it should be noted that we do not allow

for externalities of private consumptions, and that we assume that any

given good is known to be either public or private.

Each setting can in principle be extended to allow for preferences of the
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’caring’ type (i.e., agent s maximizes an index of the form W s
¡
U1, ..., US

¢
;

however, we do not discuss the identifiability of the W s.7

Finally, we shall denote by z the vector of distribution factors.

2.2 The decision process.

We now consider the mechanism that the group uses to decide on what to buy.

Note, first, that if the functions U1, ..., US represent the same preferences then

we are in a ’unitary’ model where the common utility is maximized under the

budget constraint. The same conclusion obtains if one of the partners can act

as a dictator and impose her (or his) preferences as the group’s maximand.

Clearly, these are very particular cases. In general, the ’process’ that takes

place within the group is more complex.

Following the ’collective’ approach, we shall throughout the paper postu-

late efficiency, as expressed in the following axiom :

Axiom 1 (Efficiency) The outcome of the group decision process is Pareto

efficient; that is, for any prices (p, P ) and distribution factors z, the con-

sumption (x1, ...xS,X) chosen by the group is such that no other vector

7Each allocation that is efficient with respect to the W s must also be efficient with
respect to the Us. The converse is not true (e.g., an allocation which is too unequal
may fail to be efficient for the W s), a property that has sometimes been used to achieve
identification.
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¡
x̄1, ...x̄S, X̄

¢
in the budget set could make all members better off, one of

them strictly so.

Denote the vector of Pareto weights by µ = (µ1, ..., µS), with the nor-

malization
P

s µs = 1. The axiom can be restated as follows: there exists

S scalar functions µs(p, P, z) ≥ 0, 1 ≤ s ≤ S, with
P
µs = 1, such that

(x1, ...xS,X) is a solution of:

(P)


maxx1,...xS ,X

P
µs (p, P, z)U

s(x1, ...xS, X)

p0 (x1 + ...+ xS) + P 0X = 1

For any given utility functions U1,...,US and any price-income bundle, the

budget constraint defines a Pareto frontier for the group. From the Efficiency

Axiom, the final outcome will be located on this frontier. It is well-known

that, for every (p, P, z), any point on the Pareto frontier can be obtained as a

solution to problem (P): the vector µ (p, P, z), which belongs to the (S − 1)-

dimensional simplex, summarizes the decision process because it determines

the final location of the demand vector on this frontier. The map µ describes

the distribution of power. If one of the weights, µs, is equal to one for every

(p, P, z), then the group behaves as though s is the effective dictator. For

intermediate values, the group behaves as though each person s has some
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decision power, and the person’s weight µs can be seen as an indicator of this

power8.

It is important to note that the weights µs will in general depend on

prices p and distribution factors z, since these variables may in principle

influence the distribution of ’power’ within the group, hence the location of

the final choice over the Pareto frontier. However, while prices enter both

Pareto weights and the budget constraint, distribution factors matter only

(if at all) through their impact on µ.

Following Browning and Chiappori (1998), we add some structure by

assuming that the functions µs(π, z) are continuously differentiable for s =

1, ..., S

8This interpretation must be used with care, since the Pareto coefficient µs obviously
depend on the particular cardinalization adopted for individual preferences; in particular,
µs > µt does not necessarily mean that ’s has more power than t’. However, the variations
of µs are significant, in the sense that for any given cardinalization, a change in parameters
that increases µs while leaving µt constant unambiguously ameliorates the relative position
of s.
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2.3 Characterization of aggregate demand.

Set:

π : = (p, P )

ξ(π, z) : = (x1(π, z) + ...+ xs(π, z), X(π, z)) ∈ RN

The map ξ is the aggregate demand of the group, i.e. the solution of

program (P). Note that, by the Walras law:

π0ξ (π, z) = 1

We define a demand function ξ(π, z) to be S-admissible if one can find a

group of size S such that ξ(π, z) is Pareto efficient for the group. Formally:

Definition 2 Assume that prices π vary on some open subset P of the pos-

itive orthant RN+ , while distribution factors z vary within some open subset

D of Rd

• A demand function ξ (π, z) is S−admissible if there exists S utility

functions U1, ..., US, strictly increasing, with negative definite Hessian,

and a differentiable map µ from P ×D into the (S − 1)-dimensional
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simplex such that ξ (π, z) solves program (P) for all (π, z).

• It is locally S−admissible near ξ (π̄, z̄) if there exists an open neighbor-

hood P of π̄, an open neighborhood D of z̄, an open neighborhood N of

ξ (π̄, z̄), S utility functions U1, ..., US defined on N , strictly increasing,

with negative definite Hessian, and a differentiable map µ from P ×D

into the (S − 1)-dimensional simplex, such that ξ (π, z) solves program

(P) for all (π, z) in P ×D .

In a companion paper, Chiappori and Ekeland (2005), we derive necessary

and sufficient conditions for a function ξ(π, z) to be S-admissible. For the

sake of completeness, we briefly restate these conditions below. Let us first

omit the distribution factors:

Proposition 3 If ξ(π) is S-admissible, then the Slutsky matrix S(π) =

(Dπξ) (I − πξ0) can be decomposed as:

S (π) = Σ (π) +R (π) (1)

where the matrix Σ is symmetric, negative definite and the matrix R is of

rank at most S − 1. Equivalently, there exists a subspace R of dimension at

least N − (S − 1) such that the restriction of S (π) to R is symmetric and
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negative definite. Conversely, if a map ξ(π) satisfies the Walras law π0ξ = 1

and condition SR(S − 1) in some neighborhood of π̄, and if the Jacobian

Dπξ(π̄) is invertible, then ξ is locally S-admissible.

Relation (1) is known as the SR(S − 1) condition. According to Propo-

sition 3, if a map ξ satisfies Walras and SR(S − 1), then one can recover

S utility functions of the general form Us(x1, ...xS,X) and S Pareto weights

µs(p, P ) ≥ 0 such that ξ (p, P ) is the collective demand associated with prob-

lem (P). A natural question is whether more knowledge about intra-group

consumption will generate stronger restrictions. Assume, for instance, that

commodities are known to be privately consumed, so that the utility func-

tions are of the form Us(xs), or, alternatively, that consumption is exclusively

public, so that the preferences are Us (X). Does the integration result still

hold when utilities are constrained to belong to these specific classes?

Interestingly enough, the answer is positive. In fact, it is impossible to

distinguish the two cases by looking at the aggregate demand only. In the

paper mentioned above, we prove the following result:

Proposition 4 For any given function ξ(π), with π0ξ(π) = 1, satisfying

SR(S − 1) in some neighborhood of π̄, and such that the Jacobian Dπξ(π̄) is
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invertible:

• there exist S strictly increasing, strictly concave functions U1(X), ..., US(X),

defined in some neighborhood of ξ̄ = ξ(π̄), and S Pareto weights µ1(π), ..., µS (π),

defined in some neighborhood N of π̄ such that, for all π ∈ N :

ξ (π) = ArgMax

(
SX
s=1

µs (π)U
s(X) | π0X = 1

)

• there exist S maps xs (π), and S Pareto weights µ1(π), ..., µS (π), all

defined in some neighborhood N of π̄, and S strictly increasing, strictly

quasi-concave functions Us(x) defined in some neighborhood of ξ̄ =

ξ(π̄), such that, for all π ∈ N :

ξ (π) =
X

xs (π)

(x1(π), ..., xS(π)) = ArgMax

(
SX
s=1

µs (π)U
s(xs) | π0 (x1(π) + ...+ xS(π)) = 1

)

Finally, the same paper provides necessary condition on the effect of dis-

tribution factors. Denoting by d the number of distribution factors, so that

z = (z1, ..., zd)) and by Z the Jacobian matrix Dzξ, with general term
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∂ξi/∂zk, one has the following result:

Proposition 5 If d ≥ S − 1, then rank Z ≤ S − 1. Denote by Z the space

of vectors v ∈ RN such that v0Z = 0. If rank Z = S − 1, then the restriction

of the Slutsky matrix S = (Dπξ) (I − πξ0) to Z is symmetric and negative

definite.

3 Identifiability: the general problem

3.1 Statement of the problem

Following the discussion above, we now consider the following, general ques-

tion:

Question I (Identifiability): Take an arbitrary, S-admissible demand

ξ (π, z). Is there a unique family of differentiable, strictly increasing, strictly

convex preference relations on RN , represented by (non-unique) utility func-

tions Us (x1, ..., xS, X), and, for each cardinalization of preferences, a unique

family of differentiable Pareto weights µs (π, z), 1 ≤ s ≤ S, such that ξ (π, z) is

the aggregate demand associated with problem (P) ?
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Question I refers to what could be called a non-parametric definition of

identifiability, because uniqueness is required within the general set of well-

behaved functions, rather than within the set of functions sharing a specific

parametric form in which a finite number of parameters can be varied. We

now examine a specific example that illustrates the nature and the scope of

this important distinction

3.2 Parametric versus non-parametric identifiability.

The example is borrowed from Blundell, Chiappori and Meghir (2004). Con-

sider a 2-person household in a collective model of labor supply. There are

three commodities: two individual leisure L1, L2 and a Hicksian composite

good C. Wages are denoted w1 and w2, non-labor income by y, while the

price of the Hicksian good is normalized to one. The Hicksian good is used

for private expenditures and some public consumption:

C = C1 + C2 +K (2)
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where K denotes the level of expenditures for public consumption. Finally,

assume that preferences are Cobb-Douglas:

U s(Cs, Ls, K) = αs logL
s + (1− αs) logC

s + δs logK (3)

and that the Pareto weights are related to wages by:

µ1 =
lw1

lw1 + w2
, µ2 =

w2

lw1 + w2

Here, the αs, δs and l are parameters to be estimated.

Solving (P) leads to the following demand functions:

L1 =
α1l

(1 + δ1) lw1 + (1 + δ2)w2
¡
w1 + w2 + y

¢
L2 =

α2
(1 + δ1) lw1 + (1 + δ2)w2

¡
w1 + w2 + y

¢
K =

δ1lw
1 + δ2w

2

(1 + δ1) lw1 + (1 + δ2)w2
¡
w1 + w2 + y

¢

Finally, let us introduce, for expositional convenience, a very simple sto-

chastic structure; i.e., the only shock is an additive measurement error, so
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that the econometric model is

L1 =
α1l

(1 + δ1) lw1 + (1 + δ2)w2
¡
w1 + w2 + y

¢
+ ε1

L2 =
α2

(1 + δ1) lw1 + (1 + δ2)w2
¡
w1 + w2 + y

¢
+ ε2 (4)

K =
δ1lw

1 + δ2w
2

(1 + δ1) lw1 + (1 + δ2)w2
¡
w1 + w2 + y

¢
+ η

where (ε1, ε2, η) follows some known stochastic structure.

If adequate data are available, this model can be consistently estimated.

Then the third equation allows to recover δ1, δ2 and l; and the two first give

α1 and α2 with additional, overidentifying restrictions. One might conclude

that the model is fully (actually, over-) identified, that individual preferences

and the Pareto weights can be estimated, and that these estimates can be

used to formulate normative recommendations.

However, such a conclusion would be very fragile, because it is entirely

driven by the choice of the functional form. Indeed, a consequence of the

results derived below is that the model at stake is not identifiable. There

exists a continuum of different structural models (i.e., functional forms for

preferences and Pareto weights) that generate the same collective demand
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(4)9.

Non identifiability, here, does not result from the econometrician’s in-

ability to exactly recover the form of demand functions - say, because only

noisy estimates of the parameters in (4) can be obtained, or even because

the functional form itself (and the stochastic structure added to it) have

been arbitrarily chosen. These econometric questions have, at least to some

extent, econometric or statistical answers. For instance, confidence intervals

can be computed for the parameters (and become negligible when the sample

size grows); the relevance of the functional form can be checked using spec-

ification tests; etc. The non identifiability problem has a different nature:

even if a perfect fit to ideal data was feasible, it would still be impossible

to recover the underlying structure from observed behavior, hence to emit

reliable normative judgments.

In practice, parametric models are often convenient; the discussion above

should by no means be taken to imply that parametric estimations should

not be used, or even that it should be resorted to with some reluctance. Pos-

tulating a specific functional form is a standard, well established and often

9More precisely, uniqueness obtains only within the class of separable preferences (to
which our Cobb-Douglas example obviously belongs). General identifiability requires in
addition the availability of a distribution factor (see below).
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extremely fruitful methodology. We do however submit that the status of the

conclusions drawn from parametric estimations crucially depend on whether

or not the underlying model is non-parametrically identifiable. If it is, then

the reliability of the parametric estimates (and, consequently, of the conclu-

sions drawn from it) is directly related to the quality of the empirical fit. If

the econometrician can convince himself (and the scientific community) that

the model provides a pretty faithful representation of the real phenomenon,

then the same level of trust could in principle be put into the conclusions

derived from it. The case is however much weaker in the absence of non

parametric identifiability. A good empirical fit is no longer sufficient: by

definition, many different structural models, with potentially divergent nor-

mative implications, have exactly the same fit (since they generate the same

reduced forms), hence are exactly as well supported by the data as the initial

one.

Of course, this discussion should not be interpreted too strictly. In the

end, identifying assumptions are (almost) always needed. The absence of

non parametrically identifiability, thus, should not necessarily be viewed as

a major weakness. We believe, however, that it justifies a more cautious

interpretation of the estimates. More importantly, we submit, as a basic,
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methodological rule, that an explicit analysis of non parametric identifiabil-

ity is a necessary first step in any consistent empirical strategy - if only to

suggest the most adequate identifying assumptions. Applying this approach

to collective models is indeed the main purpose of this paper.

3.3 A general negative result

It should be clear that in the most general version of the model we consider,

identifiability cannot obtain. To see why, take a demand function that sat-

isfies SR(S − 1). From Proposition 4 above, it is compatible with at least

two different structural models: one where all commodities are privately con-

sumed, and one in which all consumption is public. Quite obviously, these

models have very different welfare implications, although they generate the

same aggregate demand. This suggests that more specific assumptions are

needed. We explore below assumptions regarding the private or public nature

of consumptions; i.e. we shall consider models in which either all commodi-

ties are publicly consumed, or all consumptions are private, or more generally

some commodities are exclusively private and other exclusively public, each

consumption type being known ex ante. We shall actually see that the nature

of the indeterminacy is deeper than suggested by the previous remark. Even
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when all consumptions are assumed to be public (or, alternatively, private),

it is still the case that a continuum of different structural models generate

the same group demand function. In other words, identifying restrictions

are needed, that go beyond the publicness (or privateness) of individual con-

sumptions. However, such restrictions may be far from stringent, as it will

be documented below.

4 Identifiability with purely public consump-

tions.

We first consider the benchmark case where all commodities are publicly

consumed; then n = 0 and N = K, and problem (P) becomes:

(P1)


maxX

PS
s=1 µs (P )U

s(X)

X ∈ RN , P 0X = 1

4.1 A negative result

A first finding is that, even in the pure public goods context, identifiability

does not obtain without additional assumptions. We state this formally.

Definition 6 Take any C2 function X(P ), with P 0X(P ) = 1, defined on an

31



open subset P of RN+ . We shall say that X (P ) is S-admissible on P with

public consumption if there exist S utility functions U1, ..., US, defined in

a neighborhood of X (P), strictly increasing, with negative definite Hessian,

and a C1 map µ from P into the (S − 1)-dimensional simplex such that

X(P ) solves problem (P1) for every P ∈ P . In that case, we shall say that¡
U1, ..., US

¢
support the demand function X (P ), and that the underlying

preferences (¹U1 , ...,¹US) support the demand function X (P ) .

If a given family of utility function
¡
U1, ..., US

¢
supports X (P ) then so

does any other family
¡
V 1, ..., V S

¢
which has the same underlying preferences.

So identifiability can only hold at the level of preferences. In fact, it does

not without further assumptions:

Proposition 7 Assume that all goods are publicly consumed. Let X(P ) be

a demand function defined on an open subset P of RN+ , and supported by

a family
¡
U1, ..., US

¢
of preferences. Let K ⊂ P be a compact subset, set

X = X (K), and assume that ∂U s/∂Xi > 0 over X for all s, i. Then for

every ε small enough, there exists a family of utility functions
¡
U1ε , ..., U

S
ε

¢
,

defined in a neighborhood of X , strictly increasing, with negative definite

Hessian, defined in a neighborhood of X and supporting X (P ). In addition,

32



if there is a point x̄ ∈ X where OU s (x̄) and
P

t6=sOU t (x̄) are not collinear,

then the preferences associated with the Usε1 and U
s
ε2
are different for ε1 6= ε2

In other words, if some function X (P ) solves problem (P) on some com-

pact set for a particular choice of preferences and Pareto weights, then it

solves problem (P) on the same compact set for many other different choices

of preferences and Pareto weights - in fact, for a whole continuum of them.

Clearly, all the structural models thus defined are observationally equiv-

alent, since they generate the same demand X (P ). The condition that

∂U i/∂Xj > 0 over X for all i, j is crucial; as we shall see below, exclusive

consumptions, that is, commodities such that ∂U i/∂Xj = 0, are a typical

identifying assumption, leading to uniqueness, hence to full identifiability.

Proof. Starting from a particular choice {Us (X) , µs (P )}, 1 ≤ s ≤ S, we

shall show that there exists a continuous family F ε = (F ε
1 , ..., F

ε
S) of linear

invertible maps of RS into itself, such that if Usε is defined by U sε (X) =

F ε
s

¡
U1 (X) , ..., US (X)

¢
thenX (P ) is supported by

¡
U1ε (X), ..., U

S
ε (X)

¢
over

P.
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Set:

F ε =



1 −ε · · · −ε

−ε 1 · · · −ε
...

...
. . .

...

−ε −ε · · · 1


The inverse of F ε is:

[F ε]−1 =



A b · · · b

b A · · · b

...
...
. . .

...

b b · · · A


with:

A = 1− (K − 1) ε2
1− (K − 2) ε− (K − 1) ε2

b =
ε

1− (K − 2) ε− (K − 1) ε2

Both A and b are positive if ε > 0 is small enough. Setting U sε (X) =

F sε
¡
U1 (X) , ..., US (X)

¢
, we have:
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∂U sε
∂Xj

=
∂Us

∂Xj
−
X
t6=s

ε
∂U t

∂Xj

∂2Usε
∂Xi∂Xj

=
∂2U s

∂Xi∂Xj
−
X
t6=s

ε
∂2U t

∂Xi∂Xj

so that Usε behaves like U (that is, it is increasing and has negative definite

Hessian) on the compact set X , provided ε is small enough.

Let us look at the indifference curve Cε = {x | Usε (x) = Usε (x)}. The

normal to Cε at x̄ is the unitary vector in the direction of the gradient:

OUsε (x̄) = OUs (x̄)− ε
X
t6=s
OU t (x̄)

and it changes with ε since OUs (x̄) and
P

t6=sOU t (x̄) are not collinear.

We conclude by showing that any allocation that is Pareto efficient for

the Us must be Pareto efficient for the Usε . Assume that X (P ) is not efficient

for the Usε , for some P ∈ P. Then we know that there exists some ξ such

that P 0ξ = 1 and ξ is preferred to X (P ) by all the U sε . and strictly preferred
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by at least one of them. But then

Us (ξ) = AUsε (ξ)+
X
t6=s
bU tε (ξ) > AU

s
ε (X (P ))+

X
t6=s
bU tε (X (P )) = U

s (X (P ))

for all s, so X (P ) could not be efficient for U s either.

Finally, it should be stressed that the F ε need not be linear in U ; by

continuity, since P is compact, any function that is ’close enough’ to the U s

in the C2 topology will lead to the same conclusion. Thus the set of possible

choices of preferences and Pareto weights is very large.

The intuition behind Proposition 7 is easy to get: it is possible to replace

each Us with a function of all the U t without decreasing the set of Pareto

efficient allocations.

The next result is a by-product of our approach to existence, based on

exterior differential calculus. It states essentially that the type of indetermi-

nacy described in Proposition 7 is (almost) the only one. For simplicity, we

formulate the result for the case S = 2, although it is valid for any S.

Lemma 8 Assume that all goods are publicly consumed. Let X(P ), with

P 0X(P ) = 1, be a map satisfying SR(1) but not SR(0) in some neighborhood

of P̄ and assume the Jacobian DPX(P̄ ) is invertible, so that the inverse map
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P (X) is locally well-defined. Then X(P ) is locally S-admissible with public

consumption, and the sets

Hh1,h2,h3 =

½
X | U1(X) = h1, U2(X) = h2, µ1(P (X))

µ2(P (X))
= h3

¾

are uniquely identified near X
¡
P̄
¢

Proof. See Appendix 1.

This strong result lies at the core of the identifiability findings below.

It states that U1, U2 and µ are identified up to one mapping of R3: if

U1, U2, µ1, µ2, with µ1 + µ2 = 1, support X (P ), then for any other fam-

ily Ū1, Ū2, µ̄1, µ̄2, with µ̄1 + µ̄2 = 1, which also support X (P ), there must

exist functions F,G and H such that

Ū 1 = F
¡
U1, U2, µ1

¢
(5)

Ū 2 = G
¡
U1, U2, µ1

¢
µ̄1 = H

¡
U1, U2, µ1

¢
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In other words, given the collective demand function, one can identify, in

the space of goods, subsets of codimension 3 along which both members of the

household are indifferent and the Pareto weight µ is constant. But one could

not, for instance, identify subsets along which both members of the household

are indifferent, as defined by the equations U2(X) = h1, U
2(X) = h2. So

the preference relations are not identified.

4.2 Generic identifiability with exclusive goods.

The next task is to work out additional conditions under which full identi-

fiability obtains. A natural assumption is the existence of exclusive goods,

i.e. goods that are consumed by one member only. We first consider the

simple case of two agents (S = 2). The following result states that, in that

case, one exclusive good per member is sufficient for identifiability, except in

particular, non-robust, situations.

Assume henceforth that S = 2 ≤ K, and that prices vary within some

compact setK. Assume that we are observing a demand function X̄ (P ) , P ∈

K, and that it is invertible, leading to an inverse demand function P̄ (X) , X ∈

X̄ (P ). Both are supposed to be C1.

Assume, furthermore, that all goods are publicly consumed, except for
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good 1 (resp. 2) that is consumed exclusively by member 1 (resp. 2), so that

the two utility functions have the formU1(X1,X3, ...,XK) andU2
¡
X2,X3, ..., XK

¢
.

Given such utility functions U1 and U2, and µ ∈ C2 (K) a distribution

function, so that µ1 (P ) = µ (P ) > 0 and µ2 (P ) = 1−µ1 (P ) > 0 are Pareto

weights, we shall denote by X (U1, U2, µ, P ) be the corresponding demand

function, that is, the solution problem (P1) for S = 2.

Proposition 9 Assume that ∂P̄ /∂X1 and ∂P̄ /∂X2 are nonzero everywhere.

Suppose that (U1, U2, µ) and
³
Ũ1, Ũ2, µ̃

´
both support X̄ (P ):

X
¡
U1, U2, µ, P

¢
= X̄ (P ) = X(Ũ1, Ũ2, µ̃, P ) ∀P ∈ P

Then we have the following alternative:

• either there are two functions ϕ1 and ϕ2 such that eU1 = ϕ1 (U
1) and

eU2 = ϕ2 (U
2)

• or µ (P ) satisfies the following partial differential equation:

∂2

∂X1∂X2
[logµ (P (µ,X))− log(1− µ (P (µ,X))] = 0

Proof. See Appendix 2.
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As noted earlier, the function µ (P ) represents the distribution of power

within the group. It is extremely unlikely that it would turn out to verify

that particular partial differential equation; if it did, in any given case, some

rationale would have to be provided why it should. Note that if µ (P ) did

satisfy that equation, one could find another distribution function ν (P ),

arbitrarily close to µ (P ) in the C2 topology, which did not; hence any model

which would have µ (P ) verify that equation would have to be non-robust.

So Proposition 9 really means that if each individual is the exclusive

consumer of at least one commodity, then the preferences are identifiable,

except in very particular and non-robust situations. In addition, the location

of the final choice X (P ) on the Pareto frontier is the same, even though the

parametrization may change from (U1, U2, µ) to
³
Ũ1, Ũ2, µ̃

´
.

4.3 Collective models of labor supply with public con-

sumptions

An immediate application is to the collective model of household labor sup-

ply, initially introduced by Chiappori (1988, 1992). The idea is to consider

the household as a two-person group making Pareto efficient decisions on

consumption and labor supply; let Ls denote the leisure of member s, and
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ws the corresponding wage. Various versions of the model can be considered.

In each of them Proposition 9 applies, leading to full identifiability of the

model.

1. Leisure as an exclusive good

In the first model, each member’s leisure is exclusive and there is no

household production. Labor and non labor incomes are used to pur-

chase commodities X1, ..., XK that are publicly consumed within the

household; utilities are thus of the form Us
¡
Ls,X1, ...,XK

¢
.

2. Leisures are public, one exclusive good per member

In the second model, leisure of one member is also consumed by the

other member; again, there is no household production. The identifying

assumption is that there exists two commodities (say, 1 and 2) such that

commodity i is exclusively consumed by member s.10 One can think,

for instance, of clothing as the exclusive commodity (as in Browning

et al 1994), but many other examples can be considered. Utilities

are then of the form Us
¡
L1, L2, Xs,X3, ...,XK

¢
. Again, Proposition

9 applies: from the observation of the two labor supplies and the K

10This framework is close to (but less general than) that of Fong and Zhang (2000)

41



consumptions as functions of prices, wages and non labor income, it

is possible to uniquely recover preferences and Pareto weights. This

is a strong result indeed, since it states that one can, from the sole

observation of household labor supply and consumption, identify the

partials ∂U i/∂Lj, i 6= j, that is, deduce to what extent individual

leisures are publicly consumed.

3. Leisure as exclusive goods with household production

As a third example, assume that individual time can be devoted to

three different uses: leisure, market work and household production.

The domestic good Y is produced from domestic labor under some

constant return to scale technology, say Y = f (t1, t2),11 and pub-

licly consumed within the household. Preferences are of the form

U s
¡
Ls, Y,X1, ..., XK

¢
and one can define

Ũs
¡
Ls, t1, t2,X1, ...,XK

¢
= U s

¡
Ls, f

¡
t1, t2

¢
,X1, ...,XK

¢
(6)

Here, Y is not observable in general, but t1 and t2 are observed, which

typically requires data over time use (obviously, there is little chance to

11Other inputs can be introduced at no cost, provided they are observable.
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identify household production if neither the output nor the input are

observable).

From Proposition 9, the Ũs are identified. Then the production tech-

nology can be recovered up to a scaling factor, using the assumption

of constant return to scale, from the relation:

∂Ũ1/∂t1

∂Ũ1/∂t2
=

∂Ũ2/∂t1

∂Ũ2/∂t2
=

∂f/∂t1

∂f/∂t2

which in addition generates an overidentifying restriction. Finally, (6)

allows to recover the Us; again, the separability property in (6) gener-

ates additional, testable restrictions.

4. Leisures are public, one exclusive good per member and house-

hold production

Finally, one can combine models 2 and 3 by assuming that leisure is

a public good, but the demand for two other exclusive goods can be

observed. Again, identifiability generically obtains in this context.
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4.4 Identifiability with S > 2 members

The identifiability result extends to larger groups. Say 2 < S < K and prices

vary within some compact set P. Given a function X (P ) , with P 0X (P ) =

1, recall that X (P ) is supported by (µ1, ..., µS, U
1, ..., US) if X (P ) is the

collective demand function associated with (µ1, ..., µS, U
1, ..., US), that is,

the solution of problem (P1).

Given S and K, we show in the appendix how to define an integer R̄ and

family of polynomialsΠm, 1 ≤ m ≤M in S(1+
PR̄

r=1C
K+r−1
K ) variables. The

polynomials Πm depend only on S and K, and can be computed explicitly

in each particular case.

Proposition 10 Assume that S < K and that prices vary within some com-

pact set P. Let X (P ), P ∈ P, be the observed demand of the group, and

assume that the inverse demand P (X) is well-defined and C1. Assume more-

over that each group member i is the exclusive consumer of good i, with

1 ≤ i ≤ S, while commodities S + 1 to K are consumed by all agents.

If X (P ) is supported by two families (µ1, ..., µS, U
1, ..., US) and (µ̃1, ..., µ̃S,

Ũ1, ..., ŨS), then one of the following alternatives holds:

(a) either there are functions ϕs, 1 ≤ s ≤ S such that Ũs = ϕs (U
s) ∀s.

(b) or the functions µ1, ..., µS satisfy a system of nonlinear partial differ-
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ential equations:

Πm

µ
µs,

∂µs
∂Xk

, ....,
∂rµs

(∂X1)r1 ... (∂XK)rK

¶
= 0, 1 ≤ m ≤M, (7)

Proof. See Appendix 3.

The functions µ1, ..., µS with 0 < µi < 1 and
P
µi = 1 represent the

division of power within the group. As noted earlier, in the case S = 2, it is

extremely unlikely that they would turn out to verify that particular partial

differential equation, and if they did, it would be a non-robust property

that would need some supporting rationale to be credible. So the preceding

Proposition really means that if each individual is the exclusive consumer

of at least one commodity, then the preferences are identifiable, except in

pathological situations.

It is important to note that in the public good case with exclusive com-

modities, identifiability obtains without the help of distribution factors. These

can be used to increase the robustness of the estimation and to generate

overidentifying restrictions (see Chiappori and Ekeland 2001).
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5 Identifiability with purely private consump-

tions

We now consider the second benchmark case where all commodities are pri-

vately consumed; then K = 0 and N = n.

5.1 The sharing rule interpretation

In the private good context, a key concept is that of a sharing rule. The

basic remark is that the group can be formally seen as a small Arrow-Debreu

economy, endowed with a linear ’production’ technology characterized by the

production constraint p0
P

s xs ≤ 1. From the second welfare theorem, any

efficient allocation is an equilibrium of this economy. Also, because of the

linear nature of the production technology, the equilibrium price vector must

equal p (up to normalization). The decision process, thus, can be summarized

by the transfers that are needed to implement the selected equilibrium. This

motivates the following result:

Proposition 11 Assume that all goods are privately consumed and there is

no consumption externality. The the efficiency axiom is equivalent to the

following: there exists a sharing rule ρ (p) = (ρ1 (p) , ..., ρS (p)) ,with ρs (p) ≥

46



0 and
P

ρs(p) = 1, such that the consumption of member s = 1, ..., S solves

xs(p) = argmax {Us(x) | p0x ≤ ρs(p)} (8)

Efficiency, in the private consumption case, is equivalent to a two-stage

process. In stage one, agents agree on (or bargain over) a sharing rule that

defines the transfers between members. At stage two, each agent chooses her

consumption subject to the budget constraint defined by the sharing rule.

Such a process is always efficient, whatever the particular sharing rule at

stake. There is a one-to-one, increasing correspondence between a member’s

share ρs (p) and her Pareto weight µs (p): a member who has more weight

in the decision process will be able to attract a larger fraction of the group

income. From a welfare viewpoint, shares are more convenient conceptual

tools than Pareto weights, because they are expressed in monetary units

and are independent of the cardinal representation of preferences. These

advantages come however at a price: the sharing rule approach can only be

adopted in the pure private goods case.12

12However, one can, in a model with private and public consumption, define a conditional
sharing rule (see below).
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In the sequel, we shall need some more insight into the optimization

problem (8). The necessary condition for optimality is:

DU s (x) = λs (x) p

for some Lagrange multiplier λs (p) ≥ 0, and the second-order condition is

that the restriction of the Hessian D2U s (x) to the hyperplane [DUs (x)]⊥ is

positive semi-definite.

Definition 12 Assume Us is C2. We shall say that xs (p) is a strong max-

imizer for (Us, ρs) at p if:

• there is no other maximizer of problem (8)

• the Lagrange multiplier λs (p) is positive

• the restriction of D2Us (x) to [DUs (x)]⊥ is positive definite.

Now consider a C2 family of utility functions Usε (x) and sharing rules

ρεs (p) with U
s
0 = U

s and ρεs = ρs. Consider the optimization problem::

max {U sε (x)} | p0x ≤ ρεs (p) (9)
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If xs (p) is a strong maximizer for (Us, ρs) at p̄, then the implicit function

theorem can be applied near p̄ to show that, for ε close enough to zero, the

following system, considered as (N + 1) equations for the (N + 1) variables

(x,λ) :

DUsε (x) = λp

p0x = ρεs (p)

has a unique solution (xεs (p) ,λ
ε
s (p)), defined in a neighborhood of p̄ and

C1 in that neighborhood. This solution must then be the global maximizer.

In other words, the necessary conditions for optimality are also sufficient

for small perturbations of the initial problem. Another consequence of the

implicit function theorem is that the individual demand function xs is locally

invertible near p, and so of course are the xεs for ε small enough.

5.2 Welfare-relevant identifiability

Before investigating the identifiability properties of the private good model,

a remark is in order. In general, the main reason why identifiability matters

is the ability to formulate normative judgments. When considering a possible
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reform that would affect the group’s budget constraint and/or its decision

process, one would like to assess who in the group is likely to gain or lose from

the reform, and how much. For instance, if a tax reform or the targetting of a

family benefit to a specific member may have an impact on the intrahousehold

allocation of welfare, as argued by numerous studies, then one should ideally

be able to assess this impact.

Clearly, complete identifiability of preferences and the decision process (as

summarized by the Pareto weights) is a sufficient condition for such welfare

judgments to be formulated. In the public good case, the condition is also

necessary; i.e., if different structural models arer compatible with the same

observed behavior, these models will in general generate different welfare

evaluations. However, in the case of private commodities, this equivalence

does not hold. Indeed, we shall see that there typically exist a class of

different structural models that (i) are compatible with the same observed

behavior, and (ii) always generate identical welfare assessments - so that the

differences are welfare-irrelevant.

To see why this is the case, consider the following model of household

labor supply, directly borrowed from Chiappori (1992). The economy has

three commodities: two leisures and some private, Hicksian composite con-
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sumption good, the price of which is normalized to one. Preferences are

of the form U s (Ls, Cs), where Ls (resp. Cs) stands for s’s leisure (resp.

consumption). Individual labor supply functions Ls (w1, w2, y) are observed;

individual consumptions are not.

In this context, one can prove that the sharing rule is identifiable, but only

up to an additive constant. Namely, if some function ρ (w1, w2, y) is compat-

ible with observed behavior, so is any function of the form ρ̄ (w1, w2, y) =

ρ (w1, w2, y) + K, where K is a constant. The intuition for this result is

straightforward. If U1, U2 are the individual utilities corresponding to ρ,

define two alternative utilities Ū1, Ū2 by

Ū1 (L1, C1) = U1 (L1, C1 −K)

Ū2 (L2, C2) = U2 (L2, C2 +K)

Graphically, in a standard two good diagram with leisure on the horizontal

axis and consumption on the vertical one, the indifference curves of Ū1 (resp.

Ū2) are those of U1 (resp. U2), only shifted downwards (resp. upwards).

Clearly, for any price-income bundle the individual labor supply generated

by Ū1 and the sharing rule ρ̄ is equal to that generated by U1 and ρ, while the
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demand for the private commodity is smaller by K units of the consumption

good. Similarly, Ū2 and ρ̄ generate the same labor supply than U2 and ρ,

and a private consumption which is larger by exactly K units. It results that

the group’s behavior (as defined by the two labor supplies and the aggregate

consumption of the private ghood) is the same in the two models.

Now, what about welfare judgments? The basic remark, here, is that the

Ū construct has a very simple interpretation in welfare terms. Namely, the

Ū are such that the utility reached by each member, when facing the sharing

rule ρ̄, is always the same as under the U and ρ. Under ρ̄, 1 always receiveK

less units of the consumption good (and 2 receivesK more), but both achieve

the same utility level as initially. It follows, in particular, that any reform

that is found to increase 1’s welfare under U1 and ρ will also increase welfare

under Ū1 and ρ̄, irrespective of the value of K. Or, in other words: the two,

observationaly equivalent structural models (U1, U2, ρ) and
¡
Ū1, Ū2, ρ̄

¢
are

different, but the difference is welfare irrelevant.

As it turns out, this intuition is very general. In a private good set-

ting, exact identifiability never obtains (unless each individual consumption

is recorded); indeed, the ’indifference curve shifting’ trick can always be ap-

plied (and generalized) to generate different but observationally identical
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structural models. However, exact identifiability is not needed to formulate

welfare judgments.

In what follow, we thus proceed to show that exclusivity is sufficient

to generate what can be called ’welfare-relevant’ identifiability; a precise

deifnition of the concept, based on the notion of collective indirect utilities,

will be given in the process.

5.3 A negative result

Again, we first consider the case S = 2. Then the sharing rule is fully

defined by ρ1 (p) (since ρ2 = 1 − ρ1), and we can use the notation ρ1 (p) =

ρ (p) , ρ2 (p) = 1− ρ (p).

From Proposition 11, the question we investigate can thus be stated as

follows: when is it possible to uniquely recover individual preferences and

the sharing rule from observed demand? As before, we start with a negative

result.

Definition 13 Take any C2 function x(p), with p0x(p) = 1, defined on an

open subset P of RN+ . We shall say that x (p) is 2-admissible on P with

private consumptions if there exists a pair of strictly increasing strictly quasi-

concave functions U1(x), U2 (x) and a sharing rule ρ (p) such that x (p) =
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x1 (p) + x2 (p), where:

xs(p) = argmax {Us(x) | p0x = ρs(p)} , s = 1, 2 (10)

In that case, we shall say that (U1, U2, ρ) support the demand function x (p).

Proposition 14 Assume that all goods are privately consumed and there is

no consumption externality. Assume that x̄ (p) is 2-admissible with private

consumption, and supported by
¡
Ū1, Ū2, ρ̄

¢
on some neighborhood of p̄. As-

sume moreover that xs (p̄) is a strong maximizer of
¡
Ū s, ρs

¢
at p̄ , for s = 1, 2.

Then, for every ε small enough, there is a family (U1ε , U
2
ε , ρ

ε), still supporting

x̄ (p) in a neighborhood of p̄, such that (U10 , U
2
0 , ρ

0) =
¡
Ū1, Ū2, ρ̄

¢
and ρε 6= ρ̄

for ε 6= 0.

Proof. Define V s (p) = maxx
©
Ū s(x) | p0x ≤ ρ̄s(p)

ª
for s = 1, 2. From

the envelope theorem, one gets that

DV s (p) = λs (p) (Dρ̄s − x̄s (p)) (11)

where λs (p) is the Lagrange multiplier of the budget constraint. Now, con-
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sider the partial differential equation in ρ :

p0Dρ− ρ =
p0DV 1 (p)
λ1 (p)

(12)

This is a linear equation which can be solved by the method of char-

acteristics. By (11), ρ = ρ̄ is a particular solution, so that the general

solution is ρ (p) = ρ̄ (p)+ϕ (p), where ϕ (p) solves the homogeneous equation

ϕ− p0Dpϕ = 0. But this simply means that ϕ is a homogeneous function of

degree 1 in p.

Choosing such a function ϕ (p), define:

ρε1 (p) = ρ (p) + εϕ (p) , ρε2 (p) = 1− ρε2 (p) (13)

xεs (p) = Dρεs −
DV s (p)

λs (p)
(14)

For ε = 0 we have xεs = x̄s. Since xs (p̄) is a strong maximizer of
¡
Ū s, ρs

¢
at p̄ , the demand function xεs (p) is locally invertible in a neighborhood of

p̄, provided ε is small enough. Its inverse will be denoted by pεs (x); it is the
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inverse demand function. Note that:

xε1 (p) + x
ε
2 (p) = x̄1 (p) + x̄2 (p) = x̄ (p) (15)

p0xεs (p) = ρεs (p) (16)

Now define:

Usε (x) = V
s (pεs (x)) (17)

This defines a utility function U s in a neighborhood of x̄s (p̄). Differenti-

ating, we get:

DUsε (x) = DV s (pεs (x))Dp
ε
s (x)

= λs (p
ε
s (x)) (Dρεs (p

ε
s (x))− xεs (pεs (x)))Dpεs (x)

On the other hand, differentiating relation (16), we get Dρεs (p) = x
ε
s (p)+

p0Dxεs (p) .Substituting in the above equation, we get:

DU sε (x) = λs (p
ε
s (x)) p

ε
s (x)
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Inverting the map pεs (x), we rewrite this relation as follows:

DUsε (x
ε
s (p)) = λs (p) p

which is the necessary condition for optimality in the problem:

max
x
{Usε (x) | p0x ≤ ρε (p)}

Since xs (p̄) is a strong maximizer of
¡
Ū s, ρs

¢
at p̄, the necessary condition

is also sufficient, so that xεs (p) is the solution of the problem. In view of (15)

and (16), this proves that (U1ε , U
2
ε , ρ

ε) also support x̄ (p) near p̄, as we claimed.

To summarize, the sharing rule can (at best) only be identified up to some

one-homogeneous function of prices.

5.4 Identifiability with exclusive goods

As above, we now consider the case of exclusive goods, i.e. goods that are

consumed by one member only. Throughout this subsection, it will be con-

venient to abandon the normalization of income to 1. So demand functions

will 0-homogeneous in prices and, while sharing rules will be 1-homogeneous.
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We start by the simplest case, initially considered by Chiappori (1988,

1992). Namely, we assume there exists three goods, and that good 1 (resp.

2) is consumed exclusively by member 1 (resp. 2). Chiappori’s result is the

following:

Proposition 15 Assume that there are three goods, and that good 1 (resp.

2) is consumed exclusively by member 1 (resp. 2). Then, for almost all

0-homogeneous, C2 functions x (p, y) which satisfy p0x (p, y) = y and are 2-

admissible with private consumptions, the sharing rule can be identified up to

a linear function cp3: if ρ (p, y) is a sharing rule, so is ρ (p, y)+ cp3 for small

enough c. Conversely, if ρ and ρ0 are two sharing rules, then ρ− ρ0 is of the

form cp3. For each value of c, there is a unique pair of strictly increasing,

strictly concave individual preferences which support x (p, y).

Proof. See Chiappori (1992) for the proof and an explanation of what is

meant by ”almost all”13.

The identifiability result, however, is valid only for three goods, a frame-

work that is typically used for models of labor supply but may still seem

restrictive. A immediate corollary is the following:

13In Chiappori’s initial paper, the price p3 was normalized to be one, so the sharing rule
was identified up to an additive constant.
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Corollary 16 Assume that there are n goods, and that good 1 (resp. 2) is

consumed exclusively by member 1 (resp. 2). Generically, for any given 0-

homogeneous function x(p, y), with p0x (p, y) = y, the 1-homogeneous sharing

rule ρ (p, y), with ρ1 = ρ and ρ2 = 1 − ρ, is identifiable up to an additive,

1-homogeneous function of (p3, ..., pn).

Proof. Choose the vector (p3, ..., pn) to be proportional to some partic-

ular value (p̄3, ..., p̄n):

(p3, ..., pn) = λ (p̄3, ..., p̄n)

Define the functions Ũs by

Ũs (xs, ξs) = max
x3s,...,x

n
s

©
Us
¡
xs, x

3
s, ..., x

n
s

¢ | p̄3x3s + ...+ p̄nxns = ξs
ª

Then program (8) become

max
n
Ũ s (xs, ξs) | psxs + λξ = ρs (p, y)

o

Proposition 15 applies. Hence ρ is identified up to some linear function

of λ. This argument applies for any choice of the vector (p̄3, ..., p̄n); note,
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however, that the constant will in general vary with (p̄3, ..., p̄n). Hence ρ is

identified up to some additive, 1-homogeneous function of (p3, ..., pn) .

In other words, if ρ (p, y) is a sharing rule that is compatible with observed

behavior, then any other sharing rule ρ must be of the form

ρ (p, y) = ρ (p, y) + φ (p3, ..., pn) (18)

5.5 Identification with exclusive goods and a distribu-

tion factor.

In the present subsection, we shall assume that there is a distribution factor

z, which has a non-zero impact on behaviour, so that the sharing rule ρs and

the observed demands xs are functions of (p, y, z), with ∂xs/∂z 6= 0. We also

take S = 2, and we assume that there are at least S +1 goods, two of which

are exclusive.

In this framework, one can readily generate different structural mod-

els generating the same demand. Indeed, take any 1-homogeneous func-

tion φ (p3, ..., pn), and define, as above, a new sharing rule by ρ̂ (p, y, z) =
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ρ (p, y, z) + φ (p3, ..., pn). Also, define the new indirect utilities V̂ i by

V̂ 1 (p, y) = V 1 (p, y − φ (p3, ..., pn)) (19)

V̂ 2 (p, y) = V 2 (p, y + φ (p3, ..., pn)) (20)

Note that if the V i are strictly decreasing and quasi-convex in p, so are

the V̂ i for small enough.

For j ≥ 3:

∂V̂ 1 (p, y)

∂pj
=

∂V 1 (p, y − φ (p3, ..., pn))

∂pj
− ∂V 1 (p, y − φ (p3, ..., pn))

∂y

∂φ

∂pj

∂V̂ 1 (p, y)

∂y
=

∂V 1 (p, y − φ (p3, ..., pn))

∂y

and hence, using Roy’s identity:

x̂j1 (p, ρ (p, y, z)) =
∂V̂ 1 (p, ρ (p, y, z)) /∂pj

∂V̂ 1 (p, ρ (p, y, z)) /∂y
=

∂V 1 (p, ρ (p, y, z)) /∂pj
∂V 1 (p, ρ (p, y, z)) /∂y

− ∂φ

∂pj

= xj1 (p, ρ (p, y, z))−
∂φ

∂pj
(21)

61



Similarly

x̂j2 (p, y − ρ (p, y, z)) = xj2 (p, y − ρ (p, y, z)) +
∂φ

∂pj
(22)

and

x̂j1 (p, ρ (p, y, z))+x̂
j
2 (p, y − ρ (p, y, z)) = xj1 (p, ρ (p, y, z))+x

j
2 (p, y − ρ (p, y, z))

Finally, for j = 1, 2, the partials of φ vanish, so

x̂11 (p, ρ (p, y, z)) = x11 (p, ρ (p, y, z))

x̂22 (p, y − ρ (p, y, z)) = x22 (p, y − ρ (p, y, z))

and the two frameworks generate the same demand.

In fact, the following result states that this is the only possible indeter-

minacy in the construction of individual demands:

Proposition 17 Assume that both (U1, U2, ρ̂) and
³
Û1, Û2, ρ̂

´
support the

same demand function x (p, y, z), and let
¡
xj1, x

j
2

¢
, j = 1, ..., n and

¡
x̂j1, x̂

j
2

¢
, j =

1, ..., n denote the corresponding individual demands. Suppose that the func-
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tions
¡
xj1, x

j
2, x̂

j
1, x̂

j
2

¢
, j = 1, ..., n are continuously differentiable over some

open subset Ω, and the partials ∂
∂z
x1 (p, y, z), ∂

∂z
x2 (p, y, z) , and ∂

∂ρ
x11 (p, ρ) do

not vanish on some open, dense subset of Ω. Then there exists a function

φ (p3, ..., pn) defined over Ω, such that

ρ̂ (p, y, z) = ρ (p, y, z) + φ (p3, ..., pn) , (23)

and, for all j = 1, ..., n:

x̂j1 (p, ρ̂ (p, y, z)) = xj1 (p, ρ (p, y, z))−
∂φ

∂pj
(p3, ..., pn) (24)

x̂j2 (p, y − ρ̂ (p, y, z)) = xj2 (p, y − ρ (p, y, z)) +
∂φ

∂pj
(p3, ..., pn) (25)

Proof. See Appendix 4.

Note that equations (24) and (25) are precisely (21) and (22), which follow

from (19) and (20). Also, the existence of a distribution factor, although not

indispensable, greatly simplifies the proof, and generate identifiability under

more general conditions.
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5.6 Collective indirect utility

These results are best understood by using the notion of collective indi-

rect utility, first introduced by Blundell, Chiappori and Meghir (2005). Let

V i (p, y) denote the indirect utility corresponding to agent i’s agent direct

utility U i(x). As usual, V i only depends on i’s preferences; it is agent i’s indi-

vidual indirect utility. When preferences are strictly increasing, ∂V i/∂y > 0

at each point.

Now, for any prescribed sharing rule ρi (p, y, z), we can express V
i directly

as a function of prices, income, and the distribution factor:

W i (p, y, z) := V i (p, ρi (p, y, z))

In words: for any given sharing rule, W i describes i’s resulting utility

when the group is faced with a bundle (p, y, z). It is called the collective

indirect utility of agent i, to reflect the fact that the definition of W i im-

plicitly includes the sharing function ρi, hence an outcome of the collective

decision process. In particular, in contrast with the individual indirect util-

ity V i, the collective indirect utility W i can only be defined in reference to a

particular decision process. Whenever normative judgments are at stake, the
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collective indirect utility is the relevant concept, since it measures the level

of utility that will ultimately be reached by each agent, taking into account

the redistribution that will take place within the household.

We now can state an important consequence of Proposition 17:

Corollary 18 In the above setting, the collective indirect preferences of each

agent are identifiable: there exists two functions F i (wi) , increasing with

respect to wi, such that

V̂ i (p, ρ̂i (p, y, z)) = F
i
¡
V i (p, ρi (p, y, z))

¢
(26)

Proof. Assume that both (U1, U2, ρ) and
³
Û1, Û2, ρ

´
support x (p, y, z).

Denote the corresponding, collective indirect utilities by W s (p, y, z) and

Ŵ s (p, y, z). Then, by condition (23) :

ρ̂ (p, y, z) = ρ (p, y, z) + φ (p3, ..., pn)

On the other hand, we have, by the envelope theorem:

Dp
£
V 1 (p, ρ (p, y, z))

¤
= λ1 (p, ρ (p, y, z)) [Dpρ− x1 (p, ρ (p, y, z))]
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where λ1 (p, ρ) is the Lagrange multiplier associated with the budget con-

straint of the first member, and x1 (p, ρ) her Marshallian demand. Conditions

(23) and (24) then tell us that:

1

λ̂1 (p, ρ̂)
Dp
h
V̂ 1 (p, ρ̂)

i
= Dpρ̂− x̂1 (p, ρ̂ (p, y, z))

= Dpρ+Dpφ− x1 (p, ρ (p, y, z))−Dpφ

= Dpρ− x1 (p, ρ (p, y, z))

so that:

1

λ̂1 (p, ρ̂)
Dp
h
V̂ 1 (p, ρ̂)

i
=

1

λ1 (p, ρ)
Dp
£
V 1 (p, ρ)

¤
(27)

Similarly:

1

λ̂1 (p, ρ̂)
Dr

h
V̂ 1 (p, ρ̂)

i
= 1 =

1

λ1 (p, ρ)
Dr
£
V 1 (p, ρ)

¤
(28)

Equations (27) and (28) hold for all (p, y, z), after substituting ρ =

ρ (p, y, z) and ρ̂ = ρ̂ (p, y, z), and the Lagrange multipliers are positive. This

implies relation (26) for i = 1, and for i = 2 it is proved in the same way.

In words: while individual demands are identified only up to the one-

homogeneous function φ (p3, ..., pn), this indetermination is not welfare rel-
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evant. Indeed, the construct above shows that the level utility reached by

each member with the new utilities Ûs (or V̂ s) and the new sharing rule ρ̂ is

the same as initially.

In the end, the general conclusion is that the presence of (at least) one

exclusive commodity per person allows to identify collective indirect utilities

in all cases (i.e., with both private and public consumptions). In the public

goods case, identifying collective indirect utilities is equivalent to identifying

direct utilities and the Pareto weights. This equivalence does not hold in

the case of private consumption; then direct utilities are not fully identified,

although this lack of identification does not hamper welfare judgments.

5.7 Cross-sectional identifiability using distribution fac-

tors.

A corollary of Proposition 15 concerns the joint analysis of consumption and

labor supply in a cross sectional context. We thus specify the previous model

to fit precisely this framework. Assume that leisures L1, L2 are privately

consumed, and let w1, w2 denote the corresponding wages. In addition, there

are n − 2 private goods x3, ...xn, that are privately (but not exclusively)

consumed by the members. We assume there is variation in wages but not
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in prices (cross-sectional assumption), so that prices can be normalized to

1, and we denote non-labor income by y. Finally, we assume that one can

observe a distribution factor z that has a non-zero impact on behavior, in

the sense that ∂Li/∂z 6= 0 for all i. Hence the sharing rule is a function

ρ (w1, w2, y, z) of wages, non-labor income and the distribution factor.

We now show that, in this context, if L1z/L
1
y 6= L2z/L2y, it is possible:

1. to identify the sharing rule up to an additive constant, and

2. to identify individual demands for commodities 1, ..., n, as functions of

wages and non-labor income, again up to an additive constant.

Although this identifiability result does not allow to recover individual

preferences (price variations would be needed for that), it still has an im-

portant (and somewhat surprising) implication: in a collective model of con-

sumption and labor supply estimated on cross sectional data, it is possible to

recover each person’s consumption of each commodity, as well as the income

and wage elasticities of individual demands for each good14.

The proof is in two steps

14In particular, this conclusion generalizes the results derived by Browning, Bour-
guignon, Chiappori and Lechene (1994) under the assumption of fully constrained labor
supply.
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Step 1: we know that

L1 (w1, w2, y, z) = λ1 (w1, ρ (w1, w2, y, z)) (29)

L2 (w1, w2, y, z) = λ2 (w2, y − ρ (w1, w2, y, z))

where λs is member s’s Marshallian demand for leisure. It follows that:

L1y
L1z

=
ρy
ρz
,
L2y
L2z
= −1− ρy

ρz
(30)

and

L1w2
L1z

=
ρw2
ρz
,
L2w1
L1z

=
ρw1
ρz

(31)

At any point where L1z/L
1
y 6= L2z/L2y, equation (30) allows to recover ρy

and ρz, with ρz 6= 0; then (31) gives ρw1 , ρw2 , and ρ is identifiable up to an

additive constant15. For each value of the constant, λ1 and λ2 are exactly

identifiable from (29).

Step 2: Now consider the demand for commodity xi. We have that

15Although the identification of ρ is a direct consequence of Proposition 15, the method
just presented, initially introduced by Chiappori, Fortin and Lacroix (2002), is specific to
the presence of a distribution factor.
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xi = xi1 + x
i
2 with

xi1 (w1, w2, y, z) = ξi1 (w1, ρ (w1, w2, y, z))

xi2 (w1, w2, y, z) = ξi2 (w2, y − ρ (w1, w2, y, z))

where ξis (ws, ρ) is member s’s Marshallian demand for good i. It follows that

∂xi

∂z
=

∂xi1
∂z

+
∂xi2
∂z

=

µ
∂ξi1
∂ρ
− ∂ξi2

∂ρ

¶
ρz

∂xi

∂y
=

∂xi1
∂y

+
∂xi2
∂y

=

µ
∂ξi1
∂ρ
− ∂ξi2

∂ρ

¶
ρy +

∂ξi2
∂ρ

where ∂ξis
∂ρ
denotes s’s marginal propensity to consume. These two equations

allow to identify the ∂ξis
∂ρ
. Finally, since:

∂xi

∂w1
=

∂xi1
∂w1

+
∂xi2
∂w1

=

µ
∂ξi1
∂ρ
− ∂ξi2

∂ρ

¶
∂ρ

∂w1
+

∂ξi1
∂w1

xw1 = x1w1 + x
2
w1
= ξ1w +

¡
ξ1ρ − ξ2ρ

¢
ρw1

we identify ∂ξi1
∂w1
, and ∂ξi2

∂w2
obtains in a similar way. This proves that the ξis

are identifiable up to an additive constant.
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5.8 Identifiability with S > 2 members.

We now show how the previous results extend to any group size. We start

with an extension of Proposition 15.

Proposition 19 Assume that there are S + 1 goods, with S ≥ 3, and that

good s is consumed exclusively by member s for s = 1, ..., S. Generically, for

any given function x(p) that is S-admissible with private consumptions and

satisfies p0x(p) = 1, the sharing rule
³
ρ1 (p) , ..., ρS (p) = 1−

PS−1
i=1 ρi (p)

´
is

identifiable up to S − 1 additive constants. For each value of the constants,

there exist a unique S-uple of positive functions x1 (p) , ..., xS (p) and a unique

S-uple of strictly increasing, strictly convex individual preferences such that

x (p) =
P

s xs (p) and xs (p) is the best choice of agent s in the budget set

p0x = ρs(p)

Proof. For convenience, we change the normalization by posing that the

price of the last, non exclusive good S + 1 is one; then the price vector is

p = (p1, ..., pS) and income is denoted by y. Note that:

xs (p, y) = ξss (p, ρs (p, y)) (32)
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implies:

∂xs/∂pj
∂xs/∂y

=
∂ρs/∂pj
∂ρs/∂y

for j 6= s

∂ρ

∂pj
= fj

∂ρ

∂y
for j 6= s (33)

where we have set ρ = ρs and fj =
∂xs/∂pj
∂xs/∂y

to simplify notations. Take i 6= j,

both different from s. It follows from (33) that ρs also satisfies the equation:

∂ρ

∂y

X
k

µ
∂fi
∂pk
− ∂fj

∂pk

¶
−
µ
∂fi
∂y
fj − ∂fj

∂y
fi

¶
= 0

so that ∂ρs
∂y
is identified (unless its coefficient is zero, which does not happen

in general), and by (33) again, so are the ∂ρs
∂pj

for j 6= s. This last derivative

is identified by writing:

∂ρs
∂pj

= 1−
X
s6=j

∂ρs
∂pj

As before, one can derive an immediate corollary:

Corollary 20 Assume that there are n goods, n ≥ S + 1, and that good s

is consumed exclusively by member s. Generically, for any given function

x(p), with p0x(p) = 1, the share of member s, ρs (p), is identifiable up to an
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homogeneous function of
¡
pS+1, ..., pn

¢
The generalization of Proposition 18 is straightforward; we just state it,

leaving the proof to the reader.

Proposition 21 In the general private goods setting with S agents, n ≥ S+1

goods and at least one distribution factor, assume that good s is consumed

exclusively by member s. Then, for almost all C2 functions x (p, y) which

satisfy p0x (p, y) = y and are 2-admissible with private consumptions, the

collective indirect preferences of each agent are exactly identifiable.

Finally, the result on cross sectional identifiability of individual demands

also obtains provided that there are enough distribution factors (technically,

at least S − 1 distribution factors are required). The argument is basically

the same as above. We have just seen that the sharing rule is identifiable

(up to an additive constant). Now, consider the demand for commodity xi.

We have xi =
P

s x
i
s with

xis (w1, ..., wS, y, z1, ..., zS−1) = ξis (w1, ρs (w1, ..., wS, y, z1, ..., zS−1))
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where ξis is member s’s Marshallian demand for good i. It follows that

∂xi

∂zj
=

X
s

∂xis
∂zj

=
X
s

∂ξis
∂ρs

∂ρs
∂zj

=
X
s

µ
∂ξis
∂ρs
− ∂ξiS

∂ρS

¶
∂ρs
∂zj

(34)

This provides S−1 equations. If these equations are independent (in the

sense that the matrix
³
∂ρs
∂zj

´
is of rank S−1), they allow to identify the S−1

differences
³
∂ξis
∂ρs
− ∂ξiS

∂ρS

´
. Then:

∂xi

∂y
=
X
s

µ
∂ξis
∂ρs
− ∂ξiS

∂ρS

¶
∂ρs
∂y

+
∂ξiS
∂ρS

identifies ∂ξiS
∂ρS
, while:

∂xi

∂wj
=
X
s

µ
∂ξis
∂ρs
− ∂ξiS

∂ρS

¶
∂ρs
∂wj

+
∂ξij
∂wj

identifies the
∂ξij
∂wj
. This proves that the ξij are identifiable up to an additive

constant.
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6 Public and Private goods

Finally, we consider the case where some goods are privately consumed while

others are public within the group. We thus consider the general model

defined above, in which (i) externalities are assumed away (preferences are

of the egoistic or caring type), (ii) private goods 1 and 2 are exclusive, in

the sense that good i is exclusively consumed by consumer i (iii) there is a

non-trivial distribution factor z.

The program describing the group’s behavior is thus16:

(P’)


maxx1,...xS ,X

P2
s=1 µs (p, P, y, z)U

s(xs, x3s..., x
n
s ,X)

p0 (x1 + x2) + P 0X = y

We now proceed to show that under these assumptions, the collective

indirect preferences are identifiable in general. The approach is in four steps.

1. We first define a conditional sharing rule. Its existence stems from the

following:

Lemma 22 Let (x∗1, x
∗
2,X

∗) denote the solution to program (P’). Then

16For the sake of simplicity, we consider the two agents case. The extension to a larger
number is left to the reader.
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the vector x∗i (p, P, y, z) solves

max
x

©
U i (x,X∗) | p0x = p0x∗i (p, P, y, z)

ª
(35)

Lemma 22 states that no other bundle than an agent’s efficient choice

of private consumption could provide more utility (at the optimal level

of public consumption) without costing more. The proof is straightfor-

ward: if a higher utility could be achieved at the same cost (say, for

some x̄i), then the maximand in (P’) could be increased by replacing x∗i

with x̄i, a contradiction. The conditional sharing rule is then defined

by:

ρi (p, P, y, z) = p
0x∗i (p, P, y, z)

and we set as usual ρ1 = ρ and ρ2 = y−P 0X∗ (p, P )− ρ. Note that the

ρi are 1-homogeneous with respect to (p, P, y).

2. Since P 0X∗ (p, P ) is observed, it follows from Propositions 15 that the

conditional sharing rule is is identified up to a function of (p3, ..., pn, P ).

More precisely, assume that (U1, U2, ρ̂) and
³
Û1, Û2, ρ̂

´
support the

same demand function x (p, P, y, z). Define the conditional individual
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indirect utilities V i by:

V i (p, ri, X) = max
©
U i (xi, X) | p0xi = ri

ª

Corollary 18 tells us that the conditional collective indirect preferences

are identified. More precisely, there are functions F i (wi, X) such that

V i (p, ρi (p, P, y, z) ,X) = F
i
³
V̂ i (p, ρ̂i (p, P, y, z) ,X) ,X

´

Note that the function F i may depend on X in general.

3. We now consider some open subset O of RN such that the Jacobian

determinant DPX∗ does not vanish on O. By the implicit function

theorem, one can define over O a function P ∗ such that the condition

X∗ (p, P, y, z) = X is equivalent to P = P ∗ (p,X, y, z).

We now fix (p3, ..., pn) to some given value, and we investigate the

demand for the public good X. Assuming an interior solution, the

optimal level of consumption is determined by the standard first order
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conditions of Bowen-Lindahl-Samuelson:

∂V 1/∂Xk

∂V 1/∂r1
(p, ρ1 (p, P, y, z) , X)+

∂V 2/∂Xk

∂V 2/∂r2
(p, ρ2 (p, P, y, z) , X) = P

∗
k (p,X, y, z)

or, given the previous computation, for 1 ≤ k ≤ K:

1

∂V̂ 1/∂r1

∂F 1/∂Xk

∂F 1/∂w1
+

1

∂V̂ 2/∂r2

∂F 2/∂Xk

∂F 2/∂w2
= (36)

P ∗k (p,X, y, z)−
Ã
∂V̂ 1/∂Xk

∂V̂ 1/∂r1
+

∂V̂ 2/∂Xk

∂V̂ 2/∂r2

!
(37)

where the V i (p, ρ, X) are known and the F i (wi,X) are unknown.

Clearly, only the ratio ∂F i/∂Xk

∂F i/∂V i
can (at best) be identifiable, reflect-

ing the fact that F i is (at best) only identifiable up to some increasing

transform. Hence we define

Φik (wi, X) =
∂F i/∂Xk

∂F i/∂wi
(wi, X) (38)
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so that (36) can be rewritten as:

1

∂V̂ 1/∂r1
Φ1k

³
V̂ 1 (p, ρ̂1,X) ,X

´
+

1

∂V̂ 2/∂r2
Φ2k

³
V̂ 2 (p, ρ̂2,X) ,X

´
=(39)

P ∗k (p,X, y, z)−
Ã
∂V̂ 1/∂Xk

∂V̂ 1/∂r1
+

∂V̂ 2/∂Xk

∂V̂ 2/∂r2

!

where both sides (including the ρ̂i and the φi) have to be evaluated at

(p,X, y, z).

4. We now proceed to show that generically (in a sense that will be made

precise later), the solution to these equations (if any) is unique. The

result is coming from the fact that the unknowns Φi (wi, z,X) are func-

tions of (K + 2) variables only, while the equations depend in general on

theK+n+2 variables (p,X, y, z) - in fact, K+n+1 because both sides

are 1-homogeneous with respect to (p, y). To use this feature, let us

first note that the right-hand side (39) is linear in Φ1 = (Φ11, ...,Φ
1
K) and

Φ2 = (Φ21, ...,Φ
2
K). Thus, if there exist two distinct solutions (Φ

1,Φ2)

and
¡
Φ̄1, Φ̄2

¢
, the differences:

ψi = Φi − Φ̄i
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must satisfy the homogenous equations:

1

∂V̂ 1/∂r1
ψ1k

³
V̂ 1 (p, ρ̂1, X) , X

´
+

1

∂V̂ 2/∂r2
ψ2k

³
V̂ 2 (p, ρ̂2,X) ,X

´
= 0

If ψ1k and ψ2k do not vanish, the functions V̂
1 (p, r1,X) and V̂ 2 (p, r1, X)

must satisfy the relations:

log

¯̄̄̄
¯̄ψ1k

³
V̂ 1 (p, r1,X) ,X

´
ψ2k

³
V̂ 2 (p, r2,X) ,X

´
¯̄̄̄
¯̄ = log

¯̄̄̄
¯ ∂V̂

1

∂r1
(p, r1,X)

∂V̂ 2

∂r2
(p, r2,X)

¯̄̄̄
¯ , 1 ≤ k ≤ K

where we have to substitute:

r1 = ρ̂i (p, P
∗ (p,X, y, z) , y, z) 1 ≤ i ≤ 2

Now we change variables, by setting:

V̂ i (p, ρ̂i (p, P
∗ (p,X, y, z) , y, z) , X) = vi, 1 ≤ i ≤ 2

By the implicit function theorem, these relations can be inverted, yield-

ing, say:

pi = σi (p̃, X, y, z, v) , 1 ≤ i ≤ 2
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for i = 1, 2, with p̃ denoting (p2, ..., pn) and v = (v1, v2) Set

σ (p̃, X, y, z, v) = (σ1 (p̃, X, y, z, v) ,σ2 (p̃, X, y, z, v) , p̃)

The equation then becomes:

log

¯̄̄̄
ψ1k (v1,X)

ψ2k (v2,X)

¯̄̄̄
= log

¯̄̄̄
¯ ∂V̂

1

∂r1
(σ (p̃, X, y, z, v) , r1,X)

∂V̂ 2

∂r2
(σ (p̃, X, y, z, v) , r2,X)

¯̄̄̄
¯ (40)

where we have to substitute:

r1 = ρ̂1 (σ (p̃, X, y, z, v) , P
∗ (σ (p̃, X, y, z, v) ,X, y, z) , y, z)

r2 = ρ̂2 (σ (p̃, X, y, z, v) , P
∗ (σ (p̃, X, y, z, v) ,X, y, z) , y, z)

Equation (40) requires that the right-hand side be the sum of a function

of (v1,X) and a function of (v2,X). For generic functions V i (p, ri, X),

this property is not satisfied (note for instance the dependence on z),

hence it must be the case that the coefficients ψ1k and ψ2k vanish:

ψ1k (v1,X) = ψ2k (v2, X) = 0, k = 1, ...,K
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almost everywhere. We conclude that, when equations (39) have a

solution (Φ1,Φ2), the solution is unique, implying that the∂F
i/∂Xk

∂F i/∂V i
are

uniquely recovered from (38).

This result generalizes a theorem demonstrated in Blundell, Chiappori

and Meghir (2005), who consider a collective model of household labor sup-

ply with public and private expenditures in a three-commodities framework

without price variations.

7 Conclusion

The main goal of the paper is to assess under which conditions the aggregate

behavior of a group provides enough information to recover the underlying

structure (i.e., preferences and the decision process) even when nothing is

known (or observed) about the intra household decision making mechanism

beyond efficiency. Although the general version of the model is not identi-

fiable, we show that identifiability may obtain under natural assumptions.

Specifically:

• When all commodities are publicly consumed, the existence of an ex-

clusive good for each member buys full identifiability of preferences
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and the decision process (as summarized by the corresponding Pareto

weights).

• In the alternative, polar case where consumption is exclusively private,

things are more complex. A first result is that in a three-good set-

ting, the existence of an exclusive good for each member is in general

sufficient to guarantee full identifiability, in the sense that the shar-

ing rule (which describes how income is shared across members) and

individual preferences are determined up to some additive constant.

For an arbitrary number of goods, when a (relevant) distribution fac-

tor is available, identifiability still obtains, but only up to an additive

function of the prices of the non-exclusive commodities.

In the latter case, however, the additive function is welfare irrelevant;

i.e., the observation of one exclusive commodity for each agent allows

to pin down the ordinal representation of indirect collective utilities,

which in turn are sufficient to formulate normative evaluations.

• Finally, the conclusion extends to the (more general) case in which some

goods are private and others public. Again, one can define conditional

indirect utilities, which are identifiable in a welfare-relevant sense. Our
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general conclusion is thus that, in the variety of cases we consider, the

observation of one exclusive commodity per agent allows in general to

fully assess the welfare-relevant concept that summarize preferences and

the decision processes.

Finally, we adopt throughout the paper a ’non parametric’ standpoint,

in the sense that our results do not rely on specific functional form assump-

tions. Obviously, the introduction of a particular functional form is likely to

considerably facilitate identifiability; that is, it may well be the case that, for

models that are not identifiable in the non parametric sense, all parameters

of a given functional form can be exactly identifiable, even when the form is

quite flexible. In the end, the results above show that not much is needed to

formulate normative judgements that take into account the complex nature

of collective decision processes; one exclusive commodity par agent is ’gener-

ically’ sufficient. Now these conclusions are crying out for more empirical

applications.
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APPENDIX

A Proof of Lemma 8

Recall first that, if X(P ) arises from a collective demand function in this
model, we will have:

X (P ) = argmax
©
µ1 (P )U

1 (P ) + µ2 (P )U
2 (P ) | P 0X = 1

ª
for some µ1, U

1, µ2, U
2. Setting µ = µ1/µ2, we have as well:

X (P ) = argmax
©
µ (P )U1 (P ) + U2 (P ) | P 0X = 1

ª
Introducing the indirect utility function:

V (P ) = max
©
µ (P )U1 (P ) + U2 (P ) | P 0X = 1

ª
we find, by the envelope theorem:

DV (P ) = U1 (X (P ))Dµ(P )− λ (P )X (P )

where λ (P ) is the Lagrange multiplier, so that:

X = −1
λ
DV +

U1

λ
Dµ (41)

We shall now use the tools of exterior differential calculus, as in Chiappori
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and Ekeland (1997, 1999); we refer to Bryant et al. (1991) for a treatise on
the subject. Introduce the 1-form ω defined by:

ω =
NX
n=1

Xn (P ) dPn (42)

Saying that X(P ) satisfies SR(1) means that:

ω ∧ dω ∧ dω = 0

Saying that X(P ) does not satisfy SR(0) (that is, the Slutsky matrix is
not symmetric) means that:

ω ∧ dω 6= 0

By the Darboux theorem (see Ekeland and Nirenberg 2000), these two
conditions mean that we can find functions f1, f2, V 1, V 2 such that:

ω = f1dV
1 + f2dV

2 (43)

in some neighborhood of P̄ .
The four functions f1, f2, V 1, V 2 are not uniquely defined, however the lin-

ear span of df1, dV 1, df2, dV 2 is. Indeed, introduce the set A of all differential
forms α such that:

α ∧ dω ∧ dω = 0

Note that the set C depends on ω only, and not on any particular choice
of f1, f2, V 1 or V 2.

Lemma 23 A is a differential ideal, and the set A1 of all 1-forms belonging
to A is a linear subspace of dimension 4.

Proof. Differentiating the above relation, we get dα ∧ dω ∧ dω = 0.
So that if α ∈ A, then dα ∈ A. It follows that A is a differential ideal.
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Differentiating relation 43, we get dω = 2df1 ∧ dV 1 ∧ df2 ∧ dV 2,so that the
defining relation for A becomes:

α ∧ df1 ∧ dV 1 ∧ df2 ∧ dV 2 = 0

If α is a 1-form, this means precisely that α belongs to the linear span of
df1, dV

1, df2 and dV 2

We can go one step further and find a three-dimensional linear subspace
B1 ⊂ A1 which also depends only on ω and not on a particular choice of
f1, f2, V

1 or V 2. To do this, introduce the set B of all differential forms β
∈ A such that:

β ∧ ω ∧ dω = 0 (44)

Lemma 24 B is a differential ideal, and the set B1 of all 1-forms belonging
to B is a linear subspace of dimension 3.

Proof. Differentiating the above relation, we get:

dβ ∧ ω ∧ dω + β ∧ dω ∧ dω = 0

The second term vanishes since β ∈ A and we are left with the first one,
which tells us that dβ belongs to B if β does. So B is a differential ideal.
Using the decomposition 43 again, we find:

ω ∧ dω =
¡
f1dV

1 + f2dV
2
¢ ∧ ¡df1 ∧ dV 1 + df2 ∧ dV 2¢

= (−f1df2 + f2df1) ∧ dV 1 ∧ dV 2

= (f2)
2 d

µ
f1
f2

¶
∧ dV 1 ∧ dV 2

so that formula44 becomes:

β ∧ d
µ
f1
f2

¶
∧ dV 1 ∧ dV 2 = 0
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If β is a 1-form, this means precisely that β belongs to the linear span of
d
³
f1
f2

´
, dV 1and dV 2

As a consequence of Lemma 24 , the equations:

d

µ
f1
f2

¶
= 0, dV 1 = 0, dV 2 = 0

define a the foliation of RK by 3-planes, which depends only on ω, and not
on the particular choice of f1, f2, V 1 or V 2. Equivalently, this foliation can
be defined by the equations:

f1 (P )

f2 (P )
= h1, V

1 (P ) = h2, V
2 (P ) = h3

In the particular case when ω is given by relation (42), relation (41)
becomes:

ω = −1
λ
dV +

U1

λ
dµ

so that the family of submanifolds defined by the three equations:

U1 (X (P )) = h1, V (P ) = h2, µ (P ) = h3

is identifiable. But U2 (X (P )) = V (P ) − µ (P )U1 (X (P )), so the result
follows.

B Proof of Proposition 9

Consider the program

max
X

©
µ (P )U1 (X) + (1− µ (P ))U2 (X) | P 0X = 1

ª
The first order conditions imply the standard Bowen-Lindahl-Samuelson
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conditions:

P1
∂U1/∂Xk

∂U1/∂X1
+ P2

∂U2/∂Xk

∂U2/∂X2
= Pk ∀k ≥ 3 (45)

or equivalently:

P1 (X)

Pk (X)

∂U1/∂Xk

∂U1/∂X1
+
P2 (X)

Pk (X)

∂U2/∂Xk

∂U2/∂X2
= 1 ∀k ≥ 3 (46)

where P (X) is the observed inverse demand function. Note that the same
computation yields:

µ (P (X))

1− µ (P (X))
∂U2/∂X2

∂U1/∂X1
=
P1 (X)

P2 (X)
(47)

Our goal is to show that, generically in µ, the solution to (46), seen as an
equation in U1 and U2, is unique up to an increasing transform. Let eU1 andeU2 be another solution. By linearity, we have that:
P1 (X)

Pk (X)

Ã
∂U1/∂Xk

∂U1/∂X1
− ∂ eU1/∂Xk

∂ eU1/∂X1

!
+
P2 (X)

Pk (X)

Ã
∂U2/∂Xk

∂U2/∂X2
− ∂ eU2/∂Xk

∂ eU2/∂X2

!
= 0

The parenthesis are both zero or both non-zero. If they are both zero,
the first alternative holds. If they are both non-zero, we have:

log

¯̄̄̄
¯∂U1/∂Xk

∂U1/∂X1
− ∂ eU1/∂Xk

∂ eU1/∂X1

¯̄̄̄
¯− log

¯̄̄̄
¯∂U2/∂Xk

∂U2/∂X2
− ∂ eU2/∂Xk

∂ eU2/∂X2

¯̄̄̄
¯ = log

µ
P2 (X)

P1 (X)

¶
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Using relation (47), we find that:

log µ (P (µ,X))− log(1− µ (P (µ,X)) = log

¯̄̄̄
∂U1

∂X1

¯̄̄̄
− log

¯̄̄̄
¯∂U1/∂Xk

∂U1/∂X1
− ∂ eU1/∂Xk

∂ eU1/∂X1

¯̄̄̄
¯

− log
¯̄̄̄
∂U2

∂X2

¯̄̄̄
+ log

¯̄̄̄
¯∂U2/∂Xk

∂U2/∂X2
− ∂ eU2/∂Xk

∂ eU2/∂X2

¯̄̄̄
¯

is the sum of a function of (X1, X3, ...) and a function of (X2,X3, ...). The
second alternative follows immediately.

C Proof of Proposition 19

Proceeding as in the case where S = 2, we find that the Ui must satisfy the
(K − S) equations:

SX
i=1

Pi
Pk

∂U i/∂Xk

∂U i/∂Xi
= 1, S + 1 ≤ k ≤ K

where P (X) is the observed collective demand function. By the same calcu-
lation, we have:

Pi
Pj
=
µi
µj

∂U i/∂X i

∂U j/∂Xj
, 1 ≤ i, j ≤ K (48)

Suppose there is another set
³
µ̃i, Ũi

´
, 1 ≤ i ≤ S, corresponding to the

same collective demand function, and hence to the same inverse demand
P (X). We get by substraction:

SX
i=1

Pi

Ã
∂U i/∂Xk

∂U i/∂X i
− ∂Ũ i/∂Xk

∂Ũ i/∂Xi

!
= 0, S + 1 ≤ k ≤ K
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Taking into account equation (48), this becomes:

SX
i=1

Aikµi = 0, S + 1 ≤ k ≤ K (ck1)

where the functions:

Aik =
∂U i

∂Xi

Ã
∂U i/∂Xk

∂U i/∂Xi
− ∂Ũ i/∂Xk

∂Ũ i/∂X i

!

have the property that the Ajk, for j 6= i, do not depend on X i.
Differentiate each of the (K − S) equations (??). More precisely, fix a

number R > 1, and let us consider all partial derivatives of order up to and
including R, that is, all operators of the form:

∂r

(∂X1)r1 ... (∂XK)rK

with r1 + ...+ rK = r ≤ R. There are CK+r−1K = CK+r−1r−1 partial derivatives
of order r in K variables, and hence:

N (R) =
RX
r=1

CK+r−1K =
RX
r=1

(K + r − 1)!
K! (r − 1)!

partial derivatives of order up to and includingR. Applying each of these par-
tial derivatives to the equations (??) gives us a total of (K − S) (1 +N (R))
linear equations (including the original ones) relating the partial derivatives
of the Aik.
But the Aik are functions of (K − 1) variables only, so the number of

partial derivatives up to and including order R is:

n (R) =
RX
r=1

CK+r−2K−1 =
RX
r=1

(K + r − 2)!
(K − 1)! (r − 1)!
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We have a system of (K − S) (1 +N (R)) linear equations for S (K − S) (1 + n (R))
unknowns (the partial derivatives of the Aik). But:

N (R)− n (R) >
(K +R− 1)!
K! (R− 1)! −

(K +R− 2)!
(K − 1)! (R− 1)!

=
(K +R− 2)!

(K − 1)! (R− 1)!
·
(K +R− 1)

K
− 1
¸

→ ∞ when R→∞

so that the number of equations eventually exceeds the number of unknowns.
Set:

R̄ = inf {R | (K − S) (1 +N (R)) > S (K − S) (1 + n (R))}

For R = R̄, the equations in the system must satisfy certain compatibility
conditions (certain determinants must vanish), which take the form of poly-
nomial relations between the coefficients. But these coefficients are partial
derivatives of the µi of order up to and including R̄. In other words, there
are polynomials Π1, ...,Πm such that

Πm

µ
µs,

∂µs
∂Xk

, ....,
∂rµs

(∂X1)r1 ... (∂XK)rK

¶
= 0, 1 ≤ m ≤M, (49)

If equations (??) do not hold, then the system has the trivial solution
only. In particular, Aik = 0 for all i, k, leading to:

∂U i/∂Xk

∂U i/∂X i
=

∂Ũ i/∂Xk

∂Ũ i/∂X i
, 1 ≤ i ≤ S, S + 1 ≤ k ≤ K

and hence Ũs = ϕs (U
s) for all s.
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D Proof of Proposition 17.

D.1 Condition (23)

This is an adaptation of Chiappori (1988, 1992), and can be found in Chiap-
pori, Fortin and Lacroix (2002). We give the proof for the sake of complete-
ness.
Denote by ξ1 (p, ρ) and ξ2 (p, ρ) the Marshallian demands. Exclusivity

implies that:

x1 (p, y, z) = ξ11 (p, ρ (p, y, z)) (50)

x2 (p, y, z) = ξ22 (p, y − ρ (p, y, z)) (51)

Differentiating these equations, we get:

∂x1 (p, y, z)

∂y
=

∂ξ11 (p, ρ)

∂ρ

∂ρ

∂y

∂x1 (p, y, z)

∂z
=

∂ξ11 (p, ρ)

∂ρ

∂ρ

∂z

and hence:
∂x1 (p, y, z)

∂y

∂ρ

∂z
=

∂x1 (p, y, z)

∂z

∂ρ

∂y
(52)

Similarly, we have:

∂x2 (p, y, z)

∂y

∂ρ

∂z
=

∂x2 (p, y, z)

∂z

µ
∂ρ

∂y
− 1
¶

(53)

Since ∂x1

∂z
and ∂x2

∂z
do not vanish, equations (52) and (53) identify the

derivatives ∂ρ
∂y
and ∂ρ

∂z
, the latter being non-zero.

Now differentiating equations (50) and (51) with respect to p1 and p2, we
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get:

∂x1 (p, y, z)

∂p2

∂ρ

∂z
=

∂x1 (p, y, z)

∂z

∂ρ

∂p2
∂x2 (p, y, z)

∂p1

∂ρ

∂z
=

∂x2 (p, y, z)

∂z

∂ρ

∂p1

which identifies ∂ρ
∂p1

and ∂ρ
∂p2
. The result follows.

D.2 Conditions (24) and (25)

Exclusivity implies that

ξ̂
1

1 (p, ρ̂ (p, y, z)) = ξ11 (p, ρ (p, y, z)) (54)

ξ̂
2

2 (p, y − ρ̂ (p, y, z)) = ξ22 (p, y − ρ (p, y, z)) (55)

Consider now some j ≥ 3. The argument goes in 4 steps:

1. Differentiating the identity:

xj (p, y, z) = ξj1 (p, ρ (p, y, z)) + ξj2 (p, y − ρ (p, y, z))

= ξ̂
j

1 (p, ρ̂ (p, y, z)) + ξ̂
j

2 (p, y − ρ̂ (p, y, z))

we get:

∂xj (p, y, z)

∂z
=

Ã
∂ξj1 (p, ρ)

∂ρ
− ∂ξj2 (p, y − ρ)

∂ρ

!
∂ρ

∂z

=

Ã
∂ξ̂

j

1 (p, ρ̂)

∂ρ̂
− ∂ξ̂

j

2 (p, y − ρ̂)

∂ρ̂

!
∂ρ̂

∂z
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Condition (23) then implies that:

∂ξj1 (p, ρ)

∂ρ
− ∂ξj2 (p, y − ρ)

∂ρ
=

∂ξ̂
j

1 (p, ρ̂)

∂ρ̂
− ∂ξ̂

j

2 (p, y − ρ̂)

∂ρ̂

Similarly:

∂xj (p, y, z)

∂y
=

∂ξj2 (p, y − ρ)

∂ρ
+

Ã
∂ξj1 (p, ρ)

∂ρ
− ∂ξj2 (p, y − ρ)

∂ρ

!
∂ρ

∂y

=
∂ξ̂

j

2 (p, y − ρ̂)

∂ρ̂
+

Ã
∂ξ̂

j

1 (p, ρ̂)

∂ρ̂
− ∂ξ̂

j

2 (p, y − ρ̂)

∂ρ̂

!
∂ρ̂

∂y

We conclude that:

∂ξj1 (p, ρ)

∂ρ
=

∂ξ̂
j

1 (p, ρ̂)

∂ρ̂

∂ξj2 (p, y − ρ)

∂ρ
=

∂ξ̂
j

2 (p, y − ρ̂)

∂ρ̂

2. In the same way, since good 1 is exclusively consumed by agent 1:

∂xj (p, y, z)

∂p1
=

∂ξj1 (p, ρ)

∂p1
+

Ã
∂ξj1 (p, ρ)

∂ρ
− ∂ξj2 (p, y − ρ)

∂ρ

!
∂ρ

∂p1

=
∂ξ̂

j

1 (p, ρ)

∂p1
+

Ã
∂ξ̂

j

1 (p, ρ̂)

∂ρ̂
− ∂ξ̂

j

2 (p, y − ρ̂)

∂ρ̂

!
∂ρ̂

∂p1

implying that
∂ξj1 (p, ρ)

∂p1
=

∂ξ̂
j

1 (p, ρ̂)

∂p1
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and similarly, since good 2 is exclusively consumed by agent 2:

∂ξj2 (p, y − ρ)

∂p2
=

∂ξ̂
j

2 (p, y − ρ̂)

∂p2

3. Since both ξ1 and ξ̂2 satisfy Slutsky symmetry:

∂ξ11 (p, ρ)

∂pj
+ ξj1 (p, ρ)

∂ξ11 (p, ρ)

∂ρ
=

∂ξj1 (p, ρ)

∂p1
+ ξ11 (p, ρ)

∂ξj1 (p, ρ)

∂ρ
(56)

∂ξ̂
1

1 (p, ρ̂)

∂pj
+ ξ̂

j

1 (p, ρ̂)
∂ξ̂

1

1 (p, ρ̂)

∂ρ̂
=

∂ξ̂
j

1 (p, ρ̂)

∂p1
+ ξ̂

1

1 (p, ρ̂)
∂ξ̂

j

1 (p, ρ̂)

∂ρ̂
(57)

Differentiating (54):

∂ξ̂
1

1 (p, ρ̂)

∂pj
+

∂ξ̂
1

1 (p, ρ̂)

∂ρ̂

∂ρ̂

∂pj
=

∂ξ11 (p, ρ)

∂pj
+

∂ξ11 (p, ρ)

∂ρ

∂ρ

∂pj

and hence, using step 1:

∂ξ̂
1

1 (p, ρ̂)

∂pj
=

∂ξ11 (p, ρ)

∂pj
+

∂ξ11 (p, ρ)

∂ρ

µ
∂ρ

∂pj
− ∂ρ̂

∂pj

¶
=

∂ξ11 (p, ρ)

∂pj
+

∂ξ11 (p, ρ)

∂ρ

∂φ

∂pj

4. Plugging this into equation (57), and using step 2, we get:

∂ξ11 (p, ρ)

∂pj
+
∂ξ11 (p, ρ)

∂ρ

∂φ

∂pj
+ξ̂

j

1 (p, ρ̂)
∂ξ11 (p, ρ)

∂ρ
=

∂ξj1 (p, ρ)

∂p1
+ξ11 (p, ρ)

∂ξj1 (p, ρ)

∂ρ
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Substracting from (56) gives:

∂ξ11 (p, ρ)

∂ρ

µ
ξj1 (p, ρ)−

µ
∂φ

∂pj
+ ξ̂

j

1 (p, ρ̂)

¶¶
= 0

On the open, dense subset ofK on which ∂ξ11 (p, ρ) /dρ does not vanish,
we find that:

ξ̂
j

1 (p, ρ̂) = ξj1 (p, ρ)−
∂φ

∂pj

and the conclusion obtains by continuity.
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