
Characterizing Group Behavior∗

P.A. Chiappori† I. Ekeland‡

February 2005

Abstract

We study the demand function of a group of S members facing a global
budget constraint. Any vector belonging to the budget set can be con-
sumed within the group, with no restriction on the form of individual pref-
erences, the nature of individual consumptions or the form of the decision
process beyond efficiency. Moreover, only the group aggregate behavior,
summarized by its demand function, is observable. We provide necessary
and (locally) sufficient restrictions that fully characterize the group’s de-
mand function, with and without distribution factors. We show that the
private or public nature of consumption within the group is not testable
from aggregate data on group behavior. Journal of Economic Literature
Classification Numbers: D11, D13, C65.

Keywords: demand theory, aggregation, group behavior.

∗Paper presented at seminars in Chicago, Paris, Tel Aviv and London. We thank the
participants for their suggestions. This research received financial support from the NSF
(grant SBR9729559) and from UBC (grant 22R31545)

†Corresponding author. Address: Department of Economics, Columbia University, 1014
International Affairs Building, 420 West 118th St., New York, NY 10025, USA. Email:
pc2167@columbia.edu

‡Canada Research Chair in Mathematical Economics, University of British Columbia, Van-
couver BC, Canada. Email: ekeland@math.ubc.ca

1



1 Introduction

1.1 Individual demand and group demand

The study and characterization of market behavior is one of the goals of micro
economic theory. Most existing results concentrate on two extreme cases. On
the one hand, it has been known for at least one century that individual de-
mand, as derived from the maximization of a single utility function under budget
constraint, satisfies specific and stringent properties (homogeneity, adding up,
Slutsky symmetry and negativeness). On the other hand, the main conclusion
of the so-called Debreu-Mantel-Sonnenschein (henceforth DMS) literature1 is
that, if the number of agents is large enough, aggregate demand does not ex-
hibit specific properties, except for the obvious ones (continuity, homogeneity,
Walras Law). In other words, the standard assumptions of microeconomic the-
ory generate considerable structure at the individual level, but this structure is
essentially lost by (large) aggregation.
However, many interesting economic situations lie somewhere in-between

these two polar situations. These are cases where the group under consideration
includes more than one individual, but is not large enough for the aggregation
results of DMS type to apply. For instance, standard demand theory uses data
on households or families, most of which gather several individuals. The behav-
ior of even large firms is routinely analyzed as stemming from the interaction of
a small number of agents (management and unions, manager and shareholders,
top manager and division heads, etc.), who bargain under some global financial
constraint. The same remark obviously applies to committees, clubs, villages
and other local organizations, who have also attracted much interest. In short,
many economic decisions are made by small, multi-person groups.
The goal of the present paper is to provide a general characterization of

group behavior in a market environment. In contrast with many existing works,
we do not make particular assumptions on the details of the interaction or the
nature of the decision process. Rather, following [10] and [7] among others, we
simply extend the traditional individual rationality requirement to aggregate
behavior, by assuming that outcomes are Pareto efficient - what can readily
be called ’collective rationality’. We view efficiency as a natural assumption
in many contexts, and as a natural benchmark in all cases. For instance, the
analysis of household behavior often borrows the ’collective’ point of view, where
efficiency is the basic postulate. Other models, in particular in the literature
on firm behavior2, are based on cooperative game theory in a symmetric in-
formation context, where efficiency is paramount. The analysis of intra-group
risk sharing, starting with Townsend’s seminal paper [40], provides other inter-
esting examples. Finally, even in the presence of asymmetric information, first
best efficiency is a natural benchmark. For instance, a large part of the empiri-
cal literature on contract theory tests models involving asymmetric information

1See [36] for a general survey.
2 See for instance the ’insider-outsider’ literature, and more generally the models involving

bargaining between the management and the workers (or the unions).
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against the null hypothesis of symmetric information and first best efficiency3

The general problem we consider can be stated as follows. Take a group
consisting of S members. The group is faced with a global budget constraint that
limits its global consumption vector x; this constraint takes the usual market
form π0x = 1 (where π is a vector of prices, and where total group income
is normalized to one). Any demand vector belonging to the global budget set
thus defined provides the group with an aggregate endowment, which will be
consumed by the members. A crucial feature of our approach is that we do not
restrict the form of individual preferences (except for the standard convexity
assumptions) or the nature of individual consumptions. That is, we allow for
public as well as private consumption, for intra-group production, and for any
type of consumption externalities across group members. Also, we do not place
any restriction on the form of the decision process except for efficiency. Finally,
our approach does not require observability of individual consumptions or intra-
group transfers. Only the group aggregate behavior, summarized by its demand
function, is observable. The question we investigate throughout the paper is:
what restrictions (if any) on the aggregate demand function characterize the
efficient behavior of the group? And how do these restrictions vary with the
size of the group?
Our work generalizes two existing lines of research.4 The DMS tradition, on

the one hand, has investigated the property of the aggregate demand of a ’small’
economy (defined as an economy with less consumers than commodities). Diew-
ert [23] and Geanakoplos and Polemarchakis [29] provide necessary conditions
for a given function to be the aggregate excess demand of an economy of this
kind. Our approach generalizes these results in two respects. First, the whole
literature on aggregate demand only considers exchange economies where all
commodities are privately consumed and no externalities are allowed for. Our
framework is more general, as it allows for a much richer set of interactions.
Secondly, these contributions only give necessary conditions, the sufficiency of
which was still an open problem. The characterization we provide is necessary
and sufficient.
Our paper can also be viewed as a direct generalization of Browning and

Chiappori’s [7] analysis of household behavior. Their framework is exactly as
general as ours; in particular, they allow for public consumptions, household
production and consumption externalities. Although most of their analysis deals
with couples, they indicate how their results extend to larger groups. However,
the purpose of Browning and Chiappori’s contribution is to exhibit necessary
conditions that have to be fulfilled by the demand of a group making efficient
decisions. Whether these conditions are also sufficient is still an open question.
In other words, what is missing is a generalization to the collective setting of
the well-known integrability results in consumer theory, whereby any smooth
function that satisfies homogeneity, adding up and Slustky conditions is indeed

3See [20] for a recent review.
4A third references is provided by the abstract characterization of group attitude toward

risk, as pioneered by Wilson’s contribution [41]. See Mazzocco ([32] and [33]) for recent
advances in this direction.
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the demand function stemming from the maximization of a well behaved utility
function.
The goal of the present paper is precisely to fill this gap; i.e., to derive con-

ditions that are sufficient for any smooth function to stem from some Pareto
efficient decision process within a ’well behaved’ group. We first show that the
SR(1) condition in Browning-Chiappori (or its immediate generalization to our
context, SR(S − 1)) is also sufficient for local integration. That is, for any map
ξ satisfying the SR(S−1) condition, it is possible to find a group (i.e., S prefer-
ences, a production function and a decision rule) the aggregate demand of which
locally coincides with ξ. We then investigate whether stronger assumptions on
the nature of consumption could generate additional restrictions. We consider
the two particular cases when the consumption is purely private and purely pub-
lic, and then we treat the general case. We show that condition SR(S−1) is still
necessary and sufficient; an interesting consequence being that an assumption
like privateness (or publicness) of individual consumptions is not testable from
data on group behavior.
Finally, let us point out that all our results are local, that is, they hold in

a sufficient small neighborhood of a given point. What happen if, for instance,
condition SR(S − 1) holds globally we have not investigated, but our strong
suspicion is that it would not imply that a decomposition similar to the one in
Proposition 5 would hold globally.

1.2 Distribution factors

In many situations, the group’s decision depends not only on prices, but also on
factors that can affect the influence of various members on the decision process.
Think, for instance, of the decision process as a bargaining game. Typically,
the outcomes will depend on the members’ respective bargaining positions. It
follows that any factor of the group environment (EEPs in McElroy’s [34] ter-
minology) that may influence the respective bargaining strengths will potentially
affect the outcome. Such effects are of course paramount, and their relevance is
not restricted to bargaining in any particular sense. In general, group behavior
depends not only on preferences and budget constraint, but also on the mem-
bers’ respective ’power’, as summarized for instance by their Pareto weights.
Any variable that changes the powers may have an impact on observed collec-
tive behavior.
In many cases, distribution factors are readily observable. To take a very

basic example, think of the group as a small open economy with private con-
sumption only (in the DMS tradition). Any efficient outcome is an equilibrium;
and the particular equilibrium that will prevail depends typically on individual
incomes (or endowments): initial incomes are distribution factors for the group
under consideration. Other examples are provided by the literature on house-
hold behavior. In their study of household labor supply, Chiappori, Fortin and
Lacroix [19] use the state of the marriage market, as proxied by the sex ratio
by age, race and state, and the legislation on divorce as particular distribution
factors affecting the intrahousehold decision process, hence its outcome (labor
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supplies in that case). They find, indeed, that any improvement in women’s
position (e.g., more favorable divorce laws, or excess ’supply’ of males on the
marriage market) significantly decreases (resp. increases) female (resp. male)
labor supply. In a similar context, Rubalcava and Thomas [35] refer to the gen-
erosity of single parent benefits and reach identical conclusions. Thomas et al.
[39], using an Indonesian survey, show that the distribution of wealth by gender
at marriage - another candidate distribution factor - has a significant impact
on children health in those areas where wealth remains under the contributor’s
control5. Duflo [24] has derived related conclusions from a careful analysis of a
reform of the South African social pension program that extended the benefits
to a large, previously not covered black population. She finds that the recipi-
ent’s gender - a typical distribution factor - matters for the consequences of the
transfers on children’s health.
In many contexts, the group demand is observable as a function of prices

and distribution factors. It is intuitively clear that the presence of distribution
factors should generate additional restrictions. This is actually known to be
the case in particular situations. For instance, Browning and Chiappori [7]
provide conditions of this type in the case of couples; these conditions have
since then be empirically tested (and not rejected). Another illustration is
provided by the small open economy context with private consumption, where
Chiappori, Ekeland, Kubler and Polemarchakis ([18] and [30]) show that the
knowledge of initial endowments leads to testable restrictions on the form of
the aggregate excess demand and the equilibrium manifold. We extend these
results by providing general necessary conditions that characterize the impact
of distribution factors on group demand.
Section 2 describes the model and summarizes the existing results. The main

findings are presented in Section 3, with the exception of distribution factors,
that are considered in Section 4.

2 The model

2.1 Preferences

We consider a S person group. Total purchases are denoted by the vector x ∈
RN . Note that, formally, purchases could include leisure: the price vector would
then include the wages (or virtual wages for non-participants). We allow for
production within the group, so that x could be seen as the input of some
production process described by a production set Γ ⊂ RN+M , the output y ∈
RM being consumed within the group. In the absence of intra-group production,
the model still applies by taking Γ to be the diagonal in RN ×RN (thenM = N
and x = y).
As it will become clear, our results are more interesting when the number

of purchased commodities N is ‘large’ (technically, when N is larger than the
number of agents S in the group). In the alternative situation, some generalized

5See also Galasso [28] for a similar investigation.
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version of the DMS theorem applies, and there are no restrictions of the group
demand except for the obvious ones (continuity, adding up); we shall discuss
this case in subsection 3.2. If, however, additional assumptions are made on the
number of output consumed (specifically, if M < S), then stronger conditions
apply; these will be considered in subsection 3.5.
Within the group, each output yi can be consumed privately, publicly, or

both. We denote private consumptions by yi1, ..., y
i
S , where the lower (resp.

upper) index denotes a group member (resp. a commodity), and public con-
sumption by Y ; then ³

−x,
X

ys + Y
´
∈ Γ

If, for instance, commodity i is purely public (resp. purely private), then yis = 0
for all s (resp. Y i = 0). In general, however, we allow the consumption of any
given commodity to be partly private and partly public.
The group operates in a market environment; hence the input can be pur-

chased at given (linear) prices. The budget constraint is thus:

π0x = 1 (1)

where π ∈ RN++ is the price vector. Note that the group’s total income (or
total expenditure for empirical purposes) is normalized to one: we (implicitly)
assume that the group’s behavior is zero-homogeneous in prices and income.
A vector (−x,P ys + Y ) is said to be feasible if (i) it belongs to Γ, and (ii) x
satisfies π0x ≤ 1.
Each member has her or his own preferences over the goods consumed in the

group. In the most general case, each member’s preferences can depend on other
members’ private and public consumptions; this allows for altruism, but also for
externalities or any other preference interaction. Formally, member s’s utility is
of the form Us(y1, ...yS , Y ), where Us is concave, strictly increasing in (ys, Y ),
twice differentiable in (y1, ...yS , Y ), with the matrix of second derivatives being
positive definite everywhere. Henceforth, such function will be referred to as
strongly concave.
In some sections, however, we further specify the form of preferences. We

devote a particular attention to two benchmark cases. In both of them, we
assume away production, so that xs = ys and X = Y . The two alternative
assumptions are either that all goods are publicly consumed (then preferences
are Us(X)), or that all goods are privately consumed, with no externalities
except may be for altruism (then preferences are either egoistic, Us(xs), or of
the ’caring’ type W s

¡
U1(x1), ..., U

S (xS)
¢
) . Finally, we also consider the case

of household production.

2.2 The decision process

We now consider the mechanism that the group uses to decide on what to buy.
Note, first, that if the functions U1, ..., US represent the same preferences, we are
back in the conventional ’unitary’ model; then the common utility is maximized
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under the budget constraint.6 Alternatively, we could assume that one of the
partners imposes his/hers preferences and use the corresponding utility function
in the traditional way; this also yields a unitary model. But these are highly
specific assumptions. In general, the decisions process that takes place within the
group is much more complex. Following the ’collective’ approach, we postulate
efficiency, as expressed in the following axiom :

Axiom 1 The outcome of the group decision process is Pareto efficient; that is,
for any price vector, the vector

¡
x̄, ȳ1, ...ȳS , Ȳ

¢
chosen by the group is such that

no other feasible vector (x, y1, ...yS , Y ) could make all members at least as well
off, one member at least being strictly better off.

Denote the vector of distribution factors by z, the vector of Pareto weights
by µ = (µ1, ..., µS) (with the normalization

P
µs = 1), and let µ−S denote

the vector (µ1, ..., µS−1). The axiom can be restated as follows: there exists
S scalar functions µ1(π, z) ≥ 0, ..., µS (π, z) ≥ 0, with

P
µs = 1, such that

(x, ȳ1, ...ȳS , Ȳ ) solves7:

max
x.y1,...yS,Y

X
µs (π, z)U

s(y1, ...yS , Y ) (P)³
−x,

X
ys + Y

´
∈ Γ (2)

π0x ≤ 1 (3)

In what follows, we denote by ξ(π, z) ∈ RN the vector of the first N compo-
nents in the solution (x, ȳ1, ...ȳS , Ȳ ) to program (P); remember that, according
to our assumption, only ξ(π, z) is observable by the outside observer.
As it is well-known, any point on the Pareto frontier can be obtained as a

solution to a program of type (P) for some well-chosen µ. The Pareto vector µ
summarizes the decision process. Take some given utility functions U1,...,US .
The budget constraint defines, for any price-income bundle, a Pareto frontier.
From Axiom 1, the final outcome will be located on this frontier. Then µ de-
termines the final location of the demand vector on this frontier. The vector
µ has an obvious interpretation in terms of distribution of power. If one of the
weights, µs, is equal to one, then the group behaves as though s is the effective
dictator. For intermediate values, the group behaves as though each person s
has some decision power, and the person’s weight µs can be seen as an indicator
of this power. It is important to note that the weights µs will in general depend
on prices π and distribution factors z, since these variables may in principle
influence the distribution of power within the group, hence the location of the
final choice over the Pareto frontier. However, while prices enter both Pareto
weights and the budget constraint, distribution factors matter only (if at all)
through their impact on µ.
Following [7], we add some structure by assuming the following:
6This assumption is implicit in Becker’s model of household production (see section 3.5

below).
7Note that, from the normalization, µS = 1−

PS−1
s=1 µs; in particular, both vectors µ and

µ−S vary within a (S − 1)-dimensional plane.
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Axiom 2 The function µs(π, z) is continuously differentiable for s = 1, ..., S.

Problem (P) can be rewritten as a two-stage optimization problem, namely:

max
x
Ũ (x,π, z) ((P1))

π0x ≤ 1
where:

Ũ(x,π, z) = max
y1,...yS ,Y

nX
µs (π, z)U

s (y1, ..., yS , Y ) |
³
−x,

X
ys + Y

´
∈ Γ

o
((P2))

Again, the solution x̄ = ξ (π, z) to problem (P1) is observable, whereas the
solution

¡
ȳ1, ..., ȳS .Ȳ

¢
to problem (P2) is not.

2.3 Necessary conditions without distribution factors

In the benchmark case where the group consists of only one person, the frame-
work above boils down to the standard ’unitary’ model of consumer theory, and
demand is derived from the maximization of the person’s utility function under
budget constraint. As it is well known, this derivation implies restrictive prop-
erties on the form of the demand function: it is homogeneous and satisfies the
Walras law, together with symmetry and negativeness of the Slutsky matrix.
Moreover, these conditions are sufficient under mild smoothness conditions. A
natural question is thus: how does this result extend to collective demand? That
is, what conditions does (P) imply upon the form of ξ(π, z)?
We first omit the distribution factors z and concentrate on price effects; this

allows us to stress the links with the Slutsky conditions on the one hand, and
with the DMS literature on aggregate demand on the other. We thus consider
the group demand function ξ (π) as a function of π only.
A first necessary condition can be found in [7]. It uses the Slutsky matrix

defined from ξ by S(π) = (Dπξ) (I − πξ0). Note, incidentally, that v0S (π) v = 0
for all vectors v ∈ Span {π}
Proposition 3 (The SR(S − 1) condition). If ξ(π) solves problem (P), then
the Slutsky matrix S(π) = (Dπξ) (I − πξ0) can be decomposed as:

S (π) = Σ (π) +R (π) (SR(S-1))

where:

• the matrix Σ (π) is symmetric and satisfies v0Σ (π) v = 0 for all vectors
v ∈ Span {π}, v0Σ (π) v < 0 for all vectors v /∈ Span {π}

• the matrix R (π) is of rank at most S − 1.
Equivalently, there exists a subspace E (π) of dimension at least N − (S − 1)

such that the restriction of S (π) to E (π) is symmetric and negative, in the sense
that v0Σ (π) v = 0 for all vectors v ∈ E (π) ∩ Span {π}, v0Σ (π) v < 0 for all
vectors v ∈ E (π)− Span {π} .
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Proof. A detailed proof can be found in the original paper. However, it
is important for our present purpose to see the core of the argument. This can
be summarized as follows. Given (µ1, ..., µS−1) ∈ RS−1, with µs ≥ 0, andP
µs = 1, define:

Û(x, µ1, ..., µS) = max
y1,...yS,Y

(X
s

µsU
s (y1, ..., yS , Y ) |

³
−x,

X
ys + Y

´
∈ Γ

)
V̂ (π, µ1, ..., µS) = max

x

n
Û(x, µ1, ..., µS−1) | π0x≤1

o
and denote by x̂ = ξ̂ (π, µ1, ..., µS) the maximizer, so that π0ξ̂ (π, µ1, ..., µS) = 1
and:

V̂ (π) = Û(ξ (π, µ1, ..., µS) , µ1, ..., µS)

The map π → ξ̂ (π, µ1, ..., µS) is the standard Marshallian demand associated
to x → Û(x, µ1, ..., µS), and as such it must satisfy Slutsky symmetry and
negativeness8. In addition, it is related to ξ by ξ(π) = ξ̂ (π, µ1 (π) , ..., µS (π)).
It follows that

S(π) =Σ(π)+
S−1X
s=1

as (π) b
0
s (π) (4)

where S(π) is the Slutsky matrix associated to ξ̂ (•, µ1, ..., µS), the matrix Σ (π)
has the standard Slutsky properties, and where as and bs are vectors defined
by:

as = Dµs ξ̂ and b0s = (Dπµs)
0 ³I − pξ̂0´ (5)

In particular, asb0s is of rank at most 1 for s = 1, ..., S − 1, so that R =PS−1
s=1 asb

0
s is of rank at most S − 1. Note, incidentally, that v0R (π) v = 0 for

all vectors v ∈ Span {π}.
Finally, let E (π) be the space of vectors v ∈ RN such that v0R = 0.Then

dim E (π) = N − rank (R) ≥ N − (S − 1), and for any v, w ∈ E (π),
v0Sw = v0Σw = w0Σv = w0Sv and

v0Sv = v0Σv ≤ 0

which shows that the restriction of S to E (π) is symmetric and negative.
Interestingly enough, Proposition 3 implies that the behavior of a group

reflects the number of decision makers: how you consume is how many you
are. The proposition also shows that, in contrast with individual demand, the
Slutsky matrix of a group need not be symmetric negative. However, there
are restrictions on how symmetry and negativeness can be violated, and these
restrictions are more stringent for smaller groups. Specifically, there exist a
subspace of dimension at least N−(S − 1) on which symmetry and negativeness
are preserved. The interpretation is the following. Changes in prices can have

8Note that the function x→ Û(x, µ1, ..., µS) is not concave, but the Slutsky relations ex-
press the maximization property of consumption rather than concavity of the utility function.
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two effects. On the one hand, they modify the Pareto frontier, which will affect
behavior even when µ is kept constant. However, such changes would satisfy
Slutsky symmetry and negativeness. On the other hand, changing prices vary
the µ, hence the location on the Pareto frontier. This effect is summarized by
the matrix R. The conditions on the rank of R simply reflect the fact that the
Pareto frontier is of dimension S − 1.
How can a property like SR(S−1) be tested? The answer, again, generalizes

[7], and uses the antisymmetric part of S. Formally:

Proposition 4 Let M(π) = S(π) − S(π)0. Then the antisymmetric matrix
M(π) is of rank at most 2 (S − 1).

2.4 The sufficiency problem

2.4.1 The problem

In the remainder of the paper, we consider the converse properties. The ques-
tion we are trying to answer is thus the following: assume that some demand
function ξ(π) satisfies SR(S-1); is it possible to find S quasi-concave utility
functions, U1(y1, ..., yS , Y ), ..., US(y1, ..., yS , Y ), a production function F , and
a vector function µ(π) such that ξ(π) solves problem (P) ?
In other words, we are looking for an equivalent, in the collective setting, to

the integrability theorem in the unitary case, whereby Slutsky conditions (with
homogeneity and adding up) are sufficient for the existence of a well-behaved
utility function generating a given demand.
This is a difficult problem. It is important to note, first, that the decompo-

sition SR(S− 1), if it exists, is not unique. To see why, consider the simple case
where S = 2 (then S(π) =Σ(π)+ab0 and E can be taken to be [b]⊥). Replacing
a with a+ tb, with t > 0 scalar, changes the decomposition to:

S (π) = Σ(π) + ab0 = Σ(π) + (a+ tb)b0 − tbb0
= [Σ(π)− tbb0] + (a+ tb)b0

and the bracketed term is again a symmetric matrix, whose restriction to [b]⊥

will be negative and definite on [π]⊥. In fact, [7] show that a and b belong
to ImM (π), where M (π) = S (π) − S (π)0. Conversely, for any two vectors
α,β ∈ ImM (π), there exist a scalar t and a symmetric Σ̃(π) such that

S (π) = Σ̃(π) + tαβ0 (6)

2.4.2 The main mathematical tool

In the following, we will solve the sufficiency problem in various contexts. Our
main mathematical tool will be the following:

10



Proposition 5 Suppose ξ (π) satisfies the Walras law π0ξ (π) = 1 and condition
SR(S − 1) in some neighborhood of π̄ :

S(π) = (Dπξ) (I− πξ0) =Σ(π)+
S−1X
s=1

as (π) b
0
s (π) (7)

where Σ (π) is symmetric, negative, and the vectors ξ (π) , as (π) and bs (π)
are linearly independent. Then there are positive functions λs (π) and strongly
concave functions V s (π) , 1 ≤ s ≤ S, such that the decomposition:

ξ (π) =
SX
s=1

λs (π)DπV
s (π)

holds true in some neighborhood of π̄.

The proof is given in Appendix 1: it is a consequence of the convex Darboux
Theorem. Actually, there is more information to be derived from that result.
The (2S − 1)-dimensional subspace:

F (π) = Span {ξ (π) , as (π) , bs (π) | 1 ≤ s ≤ S − 1}

depends only on ξ (π), and not on the particular choice of as and bs in the
decomposition (7). For every π and s we must have

DV s (π) ∈ F (π)
Dλs (π) ∈ F (π)

Finally, the DV s (π̄) can be chosen arbitrarily close to 1
S ξ (π̄), so that, if

ξ (π̄) ∈ RN+ , the V s (π) can be chosen to be increasing in a neighborhood of π̄

3 Characterization of group demands: sufficient
conditions

We now prove that condition SR(S − 1) is sufficient for local integration in dif-
ferent contexts. We first consider the general framework described above, and
its implications when the number of agents in the group is ’large’. Then we ana-
lyze the two benchmark cases of purely private and purely public consumptions;
finally, we discuss the implications of intragroup production. Throughout this
section we omit the distribution factors, and consider demands as functions of
prices only; distribution factors will be considered in the next section.

3.1 The general case

We can state our first basic result:
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Proposition 6 Take any function ξ: RN → RN , with π0ξ (π) = 1, satisfying
SR(S − 1) in some neighborhood of π̄, and such that the Jacobian Dπξ(π̄) is
invertible. Then there are S functions ys(π) and a function Y (π) defined in
some neighborhood of π̄, S strongly concave functions Us(y1, ..., yS , Y ) defined
in some neighborhood of (y1(π̄), ..., yS(π̄), Y (π̄)), a convex production set Γ, and
S−1 functions µs(π) ≥ 0 with

P
µs ≤ 1, such that (ξ (π) , y1(π), ..., yS(π), Y (π))

solves problem (P) in some neighborhood of π̄.

In particular, ξ (π) solves problem (P1). Proposition 6 states that condition
SR(S − 1) is sufficient for (local) integration; it thus generalizes the standard
integration theorem of consumer theory.
In some cases, however, additional information is available a priori on the

structure under consideration. It may be the case, for instance, that no produc-
tion takes place within the group (then x = y), that all commodities are known
to be privately (or publicly) consumed, so that utility functions are of the form
Us(ys) (or Us(Y )), or that the number of outputs of the production process is
known a priori.9 In principle, these additional restrictions may narrow the scope
of the integration result: although SR(S−1) is sufficient for general integration,
additional property may be required to recover individual utilities with specific
characteristics. Conversely, if integrability is proved in any of these particular
cases, then it obtains a fortiori in the general case and Proposition 6 is proved.
We investigate this issue in the two benchmark cases listed above. We show,

in particular, that in the case of purely public or purely private goods without
production, condition SR(S − 1) is sufficient for local integration. A surprising
implication is that the publicness (or privateness) assumption is simply not
testable per se; a test requires either stronger assumptions (e.g., exclusivity)
or the presence of distribution factors. As we shall see, the presence of an
intra-group production function is not testable either.
We do not provide a proof of Proposition 6, since it is an obvious consequence

of Propositions 8 and 11 below. Throughout the remainder of this section, we
specialize the notation for prices, using P for the price vector for public goods
and p for the price vector for private goods.

3.2 The case of ‘large’ groups: extending DMS

Before considering the two benchmark cases, we briefly study a simple but
interesting application of the general result. In Proposition 6, no assumption is
made on the size S of the group, with respect to the number N of purchased
commodities. Let us now consider the case of a ’large’ group, in the sense that
S ≥ N . Then:

Proposition 7 Assume that S ≥ N . Take any smooth function ξ: RN →
RN defined in some neighborhood of π̄, that satisfies the adding-up condition

9A different line of investigation obtains when information is available (or assumptions are
made) regarding the nature of the decision process (e.g., cooperative bargaining with known
threat points). This direction will not be followed here; see [12] for a recent analysis.
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π0ξ (π) = 1,and such that the Jacobian Dπξ(π̄) is invertible. Then there are
S functions ys(π) and a function Y (π) defined in some neighborhood of π̄,
S strongly concave functions Us(y1, ..., yS , Y ) defined in some neighborhood of
(y1(π̄), ..., yS(π̄), Y (π̄)), a convex production set Γ, and S−1 functions µs(π) ≥ 0
with

P
µs ≤ 1, such that (ξ (π) , y1(π), ..., yS(π), Y (π)) solves problem (P) in

some neighborhood of π̄.
Conversely, assume that S < N . There exists an open set of smooth func-

tions ξ: RN → RN that satisfy the adding-up condition π0ξ (π) = 1, such
that the Jacobian Dπξ(π̄) is invertible, and for which it is impossible to find
S functions ys(π) and a function Y (π) defined in some neighborhood of π̄,
S strongly concave functions Us(y1, ..., yS , Y ) defined in some neighborhood of
(y1(π̄), ..., yS(π̄), Y (π̄)), a convex production set Γ, and S−1 function µs(π) ≥ 0
with

P
µs ≤ 1, such that (ξ (π) , y1(π), ..., yS(π), Y (π)) solves problem (P) in

some neighborhood of π̄.

Proof. We start with the first part of the Proposition. From Proposition
6, it is sufficient to show that when S ≥ N , any smooth function ξ: RN →
RN defined in some neighborhood of π̄, that satisfies the adding-up condi-
tion π0ξ (π) = 1,and such that the Jacobian Dπξ(π̄) is invertible must satisfy
SR(S − 1). Take any matrix Σ (π) that is symmetric, negative, definite on [π]⊥
and null on Span (π). Define the matrix R (π) as

R (π) = S (π)− Σ (π)

Then the rank of R (π) is at most N − 1 ≤ S − 1 (remember that R (π) .π = 0),
hence the conclusion.
Regarding the second statement, take any smooth function ξ: RN → RN

that satisfies the adding-up condition π0ξ (π) = 1, such that the JacobianDπξ(π̄)
is invertible, and such that the matrix S(π) = (Dπξ) (I − πξ0) is positive definite
on [π]⊥ (i.e., it satisfies v0S (π) v = 0 for all vectors v ∈ Span {π}, v0S (π) v > 0
for all vectors v /∈ Span {π}). Then there cannot exist a subspace E (π) of
dimension at least N − (S − 1) such that the restriction of S (π) to E (π) is
symmetric and negative, hence the necessary condition SR (S − 1) is violated.

In words: when S ≥ N , any smooth, locally regular function satisfying
adding-up is the aggregate demand of a well chosen group using some well-
chosen, efficient decision process. If, however, S < N , there exists an open
set of smooth, locally regular functions satisfying adding-up that cannot be the
aggregate demand of a well behaved group.
This conclusion sheds a new light on the DMS literature. Its main conclu-

sion, which was conjectured by Sonnenschein [37] and proved by Debreu [22]
and Mantel [31] for excess demands and Chiappori and Ekeland [14] for mar-
ket demands, can be summarized as follows: any function that satisfies trivial
properties (continuity, adding up, homogeneity for excess demands) can be de-
composed10 as the aggregate demand of an economy with ’sufficiently many’
10 at least locally in the case of market demands
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agents. The ’economies’ considered in this literature are very special cases of
our ’groups’: there is no production, all commodities are privately consumed,
preferences are purely egoistic. Moreover, our efficiency assumption is satis-
fied by construction.11 Hence the first part of Proposition 7 is an extension of
Chiappori and Ekeland’s market demand theorem to more general group behav-
ior. This remark illustrates the difficulty of the integrability problem considered
here: the more difficult version of the DMS theorem, i.e. the case of market
demand, is an immediate corollary of Proposition 6.
From this perspective, moreover, the second part of Proposition 7 is in a

sense more surprising. It states that extending the definition of an ‘economy’
(which, in the DMS literature, entails only private consumptions, egoistic prefer-
ences, no production,...) to a very general framework (allowing for production,
externalities, public goods,...) does not change its basic conclusion, namely
that in general N agents are needed to generate an arbitrary aggregate demand.
Loosely speaking, allowing for much more general ’economies’ does not make
the decomposition any easier, at least insofar as efficiency is still postulated; the
specifics of market equilibria (private consumptions, absence of externalities,...)
play no significant role in the DMS result. In summary, the informal conclusion
of the DMS literature, which could be stated as:

‘any function satisfying the obvious restrictions can be decom-
posed as the aggregate demand of a market economy if and only if
the number of agents is at least equal to the number of commodities’

should in fact be restated as follows:

‘any function satisfying the obvious restrictions can be decom-
posed as the aggregate, Pareto efficient demand of group if and only
if the number of agents is at least equal to the number of commodi-
ties’

3.3 Benchmark case 1 : no production, public consump-
tion

We now study the specific benchmark case mentioned above. Let us first assume
away intra-group production (so that x is both the household’s market demand
11Consider a DMS economy with S agents and N goods plus a numeraire, in which agents

can freely use their initial endowment of numeraire to purchase consumption goods (this is
the ’market’ demand case, as opposed to the excess demand case solved by Debreu, Mantel
and others). This economy can equivalently be viewed as a production economy, in which
consumption goods x are ’produced’ from the numeraire according to the linear technology
p0x = Q, where Q is the quantity of numeraire available in the economy (and initially owned
by the agents). In this economy, assuming private consumptions and egoistic preferences, the
set of Pareto efficient outcomes coincides with the set of competitive equilibria when initial
endowments of numeraire. are varied. Given the linear technology, equilibrium prices must
coincide with the existing prices p when the price of the numeraire is normalized to be one.
In the end, the resulting market demand is the Pareto efficient outcome of a group which is a
particular case of our setting.
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and total consumption). Assume, moreover, that all goods are public within
the group. So x = Y , π = P, and ys = 0. Then:

Proposition 8 Let there be given a function Y (P ), with P 0Y (P ) = 1, satisfy-
ing SR(S − 1) in some neighborhood of P̄ , and such that the Jacobian DPY (P̄ )
is invertible. Then there are S strictly increasing, strongly concave functions
U1(Y ), ..., US(Y ), defined in some neighborhood of Ȳ = Y (P̄ ), and S nonnega-
tive functions µ1(P ), ..., µS (P ), defined in some neighborhood of P̄ and satisfy-
ing

P
µs = 1, such that Y (P ) solves problem (P), i.e.,

Y (P ) = argmax

(
SX
s=1

µs (P )U
s(Y ) | P 0Y ≤ 1

)
(8)

Proof. By the inverse function theorem, there is a well-defined function
P (Y ) from some neighborhood of Ȳ to some neighborhood of P̄ which inverts
the function Y (P ). We will show in Appendix A2 that the Pn (Y ) , 1 ≤ n ≤ N
meet the conditions of the concave Darboux theorem, so that we can write:

P (Y ) =
SX
s=1

αs (Y )DY U
s(Y )

with positive αs (Y ) and strictly concave Us (Y ), in some neighborhood of Ȳ .
Setting A =

P
αs and βs = αs/A, so that

P
βs = 1, we rewrite this as:

P (Y ) = A (Y )
X
s

βs (Y )DY U
s(Y )

Set µs (P ) = βs (Y (P )). The preceding inequality tells us that Y is the
optimal solution of problem (P) if the prevailing price is P (Y ) and the Pareto
weights are the µs (P (Y )) :

Y = argmax
y

(
SX
s=1

µs (P (Y ))U
s(Y ) | P (Y )0 y ≤ 1

)
.Applying the inverse function theorem again, we find formula (8)

It is a by-product of our proof that inverse demand is characterized precisely
in the same way as direct demand, namely:

Proposition 9 A given, continuously differentiable inverse demand function
P (Y ) satisfying P (Y )0Y = 1 can be written locally as:

P (Y ) =
X
s

αs (Y )DY U
s(Y )

with strictly concave Us(Y ) and positive αs(Y ), if and only if the matrix

A (Y ) = DY P (Y ) .
¡
I − Y P (Y )0¢

can be written as the sum of a symmetric, negative matrix, and a matrix of rank
at most (S − 1).

15



3.4 Benchmark case 2 : private goods only

Still assuming away production, we now turn to the other extreme, when all
goods are private inside the group. One obvious example is the small open
economy example discussed earlier: individuals are characterized by their own
egoistic preferences U i (yi), and one is looking for the equilibria of this economy,
where prices are given exogenously. Note, however, that externalities of the ’car-
ing’ form can be introduced: if i’s utility takes the formW i

¡
U1 (y1) , ..., U

S (yS)
¢
,

where W i is increasing, any allocation that is efficient would also be efficient
with egoistic preferences.
Technically, we restrict the model to π = p, Y = 0 and ξ = y1+ ...+ yS = y.

We then approach Pareto optimality in a different, although equivalent way :
the location of the group’s choice on the Pareto frontier will be characterized
by a sharing rule w (p) (instead of a weighting rule µ (p)). More precisely, the
individual consumptions ys(p) obtain as stated in the following result:

Proposition 10 Assume that all goods are privately consumed and there is no
consumption externality (except for caring). Assume that there exists a sharing
rule w (p) = (w1 (p) , ..., wS (p)) ,with ws (p) ≥ 0 and

P
ws(p) = 1, such that the

consumption of member s = 1, ..., S is given by

ys(p) = argmax {Us(y) | p0y ≤ ws(p)} (9)

Then the resulting allocation ys (p) , 1 ≤ s ≤ S is Pareto optimal
Proof. Assume not. Then, for a certain p, there is another allocation

zz, 1 ≤ s ≤ S, with p0
P
zs ≤ 1, such that Us (zs) ≥ Us (ys (p)) for every

s,which strict inequality holding for some s. By the maximization property
(9) this implies that p0zs ≥ ws(p), which strict inequality holding for some s.
Adding up, we find that p0

P
zs > 1, contradicting the assumption.

Intuitively, there is an increasing correspondence between a member’s share
ρs and her Pareto weight µs: a member who has more weight in the decision
process will be able to attract a larger fraction of the group income. How-
ever, shares are more convenient tools than Pareto weights, because they are
expressed in monetary units and are independent of the cardinal representation
of preferences. These advantages come however at a price: the sharing rule
approach can only be adopted in the pure private goods case.
We can now state the main result of this subsection:

Proposition 11 Let y(p), with p0y(p) = 1, be a given function satisfying SR(S−
1) in some neighborhood of p̄. Then there are S strictly increasing, strictly con-
cave functions Us(y) , defined in some neighborhood of y = y (p̄), and a sharing
rule ys(p), 1 ≤ s ≤ S, defined in some neighborhood of p̄,such that

y (p) =
SX
s=1

ys(p)

with ys(p) being given by formula (9).
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Proof. By Proposition 5, we find that:

y (p) = −
X
s

αs (p)DpV
s

for some positive αs and strongly convex V s. For each s, define a function ws (p)
by

ws (p) = p
0 (Dpws − αs (p)DpV

s) (10)

This is a linear first-order partial differential equation for ws (p). Note that
the sum w (p) =

P
ws (p) satisfies a similar equation:

w = p0Dpw + p0y = p0Dpw + 1 (11)

which has the obvious solution w (p) = 1.
Equation (10) can be solved by the method of characteristics12. It follows

that ws (p) can be prescribed arbitrarily on the affine hyperplane H defined as
the set of p where p̄0 (p− p̄) = 0 (technically speaking, this is a non-characteristic
hypersurface, at least in some neigborhood of p̄). We choose ws (p) = 1/S on
H. It follows that w =

P
ws = 1 on H, and since w satisfies equation (11), it

follows that
P
ws (p) = 1 everywhere. As a consequence, we have:X

Dpws = 0

Now define:
ys (p) = Dpws − αs (p)DpV

s (12)

We have:

p0ys (p) = ws (p) 1 ≤ s ≤ SX
s

ys (p) = y (p)

We now have to show that the ys (p) solve the consumer’s problem. For each
s, consider the function:

Us (y) = min
p
{V s (p) | p0y ≤ ws (p)} (13)

12The method of characteristics consists of considering the flow:

dp

dt
= p

in RN , the solutions of which are given by p (t) = p (0) et, and to note that the function
w̄ (t) = w (p (t)) solves the differential equation

w̄ (t) =
dw̄

dt
(t)− αs (p (t))DpV

s (p (t))

on R. This determines the solution w (p) on each trajectory of the flow. See for instance [26]
for details.
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Note that, by the envelope theorem, Us is differentiable, and DyUs (ys (p))
is proportional to p. Now, equation (12) is the optimality condition for this
problem. Since V s is strongly convex, this condition is sufficient, so that:

Us (ys (p)) = V
s (p) (14)

Now set:
W s (p) = sup

y
{Us (y) | p0y ≤ ws (p)} (15)

We have W s (p) ≥ Us (ys (p)) = V s (p). On the other hand, for every y such
that p0y ≤ ws (p), we have Us (y) ≤ V s (p) . Taking the supremum with respect
to all such y, we get W s (p) ≤ V s (p). Finally W s = V s, and equation (15)
becomes:

V s (p) = max
y
{Us (y) | p0y ≤ ws (p)} = Us (ys (p))

which tells us that ys (p) solves the consumer’s problem for the utilities Us (y)
and the sharing rule ws (p).
It remains to show that the Us are quasi-concave, at least in some neigh-

borhood of p̄. To do this, pick y1 and y2 and a number a such that Us (y1) ≥ a
and Us (y2) ≥ a. We have:

Us
µ
y1 + y2
2

¶
= min

p

½
V s (p) | p0

µ
y1 + y2
2

¶
≤ ws (p)

¾
Now, if 12p

0y1 + 1
2p
0y2 ≤ ws (p), then we must have p0yi ≤ ws (p) for i = 1 or

i = 2. Hence:½
p | p0

µ
y1 + y2
2

¶
≤ ws (p)

¾
⊂ {p | p0yi ≤ ws (p)} ∪ {p | p0y2 ≤ ws (p)}

Us
µ
y1 + y2
2

¶
≥ min

i=1,2
{V s (p) | p0yi ≤ ws (p)} = min

i=1,2
Us (yi) = a

So the Us are differentiable and quasi-concave. It is well known that the
same preferences can be represented by concave functions, which concludes the
proof.

3.5 The case of intragroup production

Finally, how are the previous results modified when intragroup production is
allowed for? A first remark is that the previous results can readily be extended
unless specific constraints are introduced on the production process, and specif-
ically on the number M of commodities actually consumed. Indeed, we have
the following result:

Proposition 12 Let x(p), with p0x(p) = 1, be a smooth function satisfying
SR(S − 1) in some neighborhood of p̄. Then there exist:
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• S vectors xi (p) defined in some neighborhood of p̄, such that
PS
i=1 xi (p) =

x (p)

• S strictly increasing, strictly concave production functions fi (x), each de-
fined in some neighborhood of x̄i = xi (p̄),

• S strictly concave utility functions Us(y)
• and S scalar functions µ1(π, z) ≥ 0, ..., µS (π, z) ≥ 0, with

P
µs = 1,

such that (x, ȳ1, ...ȳS , Ȳ ) solves problem (P) for the production set Γ defined
by the production functions f1, ..., fS.

Proposition 12 is an immediate corollary of Proposition 11, after a simple
reinterpretation. Specifically, for any x (p) satisfying SR(S−1) in some neighbor-
hood of p̄, we know that there exist S utility functions U i and a decomposition
x (p) =

PS
i=1 xi(p) solving problem (P). Now, the trick is simply to reinterpret

U i as a production function (producing some ‘commodity’ yi = U i (xi), and to
define S utilities ũ1, ..., ũS by, say, us

¡
y1, ..., yS

¢
=
p
yi (i.e., consumer i only

consumes commodity i for all i = 1, ..., S).

This construct illustrates the fact that when studying the necessity and suf-
ficiency of conditions SR (S − 1), there is no basic difference between economies
with and without productions. In particular, whether production is taking place
(or not) within the group is not testable from data on the group’s aggregate be-
havior.
It should however be added that, in many economic models, additional re-

strictions are introduced on the production process, and these conditions dras-
tically alter the integrability conditions. Consider, for instance, Becker’s cele-
brated model of domestic production.13 In its simplest version (which is used
in particular to prove the well-known ’Rotten Kid’ theorem), the model as-
sumes that a single commodity y is produced through the domestic production
function, then distributed across the members of the household. It is easy to
see that, in this context, whatever the number of individuals in the household,
the household aggregate demand will satisfy Slustky symmetry and negative-
ness.14 Hence a Beckerian household will always behave as a single individual.
Obviously, this property is entirely due to assumption of a single domestic com-
modity; in essence, the latter imposes that individuals have identical (ordinal)
preferences over the bundles purchased, a strong hypothesis indeed.
13See [2] for a presentation.
14Pareto efficiency requires that, whatever the sharing, the household produces the max-

imum quantity of the domestic commodity compatible with the budget constraint. I.e., its
behavior can be described by the program:

max
x
f (x)

π0x ≤ 1
where f is the domestic production function. Clearly, the resulting demand x (π) has the
propseties of an individual demand function.
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More generally, consider a S person group that buys some input vector
x ∈ RN , which is used to produce M outputs that are privately consumed
by the members. Then one can readily show the following result: whenever
M < S < N , the group’s aggregate demand x (p) must locally satisfy condi-
tions SR (M − 1), which are more restrictive than SR (S − 1). In our perspec-
tive, however, assumptions on the number of commodities internally produced
and consumed by the household may be hard to justify, if only because intra-
household consumptions are assumed unobservable.

4 Distribution factors: necessary conditions
We finally consider the case where distribution factors are observable. Then
new conditions are generated, that are worked out below.
From Proposition 3, if the function ξ(π, z) solves problem (P), then the

function ξ (., z) satisfies condition SR(S−1), and its Slutsky matrix S(π, z) can
be decomposed as

S(π, z) = Σ(π, z) +R(π, z)

where Σ is symmetric, negative and R is of rank at most S−1. In what follows,
we consider the general case where R is of rank exactly S − 1.
In the presence of distribution factors, their first-order effect on demand is

summarized by the matrix

Z(π, z) = Dzξ(π, z) = (∂ξi/∂zk)i,j

Let us first assume that there are ’enough’ distribution factors, in the sense
that their number d is at least S − 1. The following necessary condition gener-
alizes a result derived in Browning-Chiappori (1994) for two-person groups:

Proposition 13 The rank of Z(π, z) is at most S − 1. If rankZ = S − 1,
so that d ≥ S − 1), denote by F(π, z) be the space of vectors v ∈ RN such
that v0Z (π, z) = 0.Then the restriction of the Slutsky matrix S to F(π, z) is
symmetric, negative, and definite on [π]⊥.

Proof. We use the notations of Proposition 3. Setting ξ(π, z) = ξ̂ (π, µ−S(π, z))
we have:

Z = Dzξ = Dµ−S ξ̂.Dzµ−S

Since the matrix Dµ−S ξ̂ has S − 1 columns, its rank is at most S − 1. This
proves that rankZ ≤ S − 1. From Proposition 3, we know that

R = Dµ−S ξ̂.B
0

where B is a N × (S − 1) matrix, the columns of which are the vectors bs. Now,
let v be such that v0Z = 0. If rankZ = S− 1, we must have rankDµ−S ξ̂ = S− 1
and v0Dµ−S ξ̂ = 0, so that v

0R = 0. Rank conditions imply that the subspaces
F and E coincide, and the conclusion follows from Proposition 3.
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The first part of Proposition 13 states that if there are more than S − 1
distribution factors, their impact on demand must be linearly dependent. This
is a direct generalization of previous results obtained by [4] in the case of couples
(S = 2), where several distribution factors are shown to have proportional
impacts on the demands for various commodities (formally, if d ≥ 2, then the
ratio (∂ξi/∂zk) / (∂ξi/∂zl) does not depend on i). In general, the impact of
distribution factors can be at most S − 1-dimensional. The interpretation is
that distribution factors can only change the location of the outcome on the
Pareto frontier, and the latter is of dimension (at most) S − 1.
The second part of Proposition 13 refines the SR(S − 1) condition, in the

sense that the restriction of S must be negative symmetric on a subspace that
is fully identified from the knowledge of the matrix Z. In particular, this result
establishes a relationship between the impact of distribution factors and that
of prices. The intuition, again, is that both the violations of Slutsky symmetry
and negativeness, on the one hand, and the effect of distribution factors on the
other hand, operate through a similar channel, namely the induced variations of
the Pareto weights µ. In the case S = 2, this result has been tested by Browning
and Chiappori [7] on consumption data, and by Chiappori, Fortin and Lacroix
[19] on labor supply. Both works fail to reject the predictions.
We have a similar result in the case of a ’small’ number of distribution

factors, and it is proved in the same way:

Proposition 14 Assume that rankZ = d < S − 1. Then there exist N − S − 1
linearly independent vectors {v1, ..., vN−S−1} such that (i) v0s.Z = 0 for s =
1, ...,N − S − 1, and (ii) the restriction of the Slutsky matrix S to the span of
{v1, ..., vN−S−1} is symmetric negative.

5 Conclusion
The main conclusion of the paper is clear: in a market environment, collec-
tive rationality has strong testable implications on group behavior, provided
that the size of the group is small enough with respect to number of observed
variables. This result has a known flavor: the DMS literature has generated
similar conclusions regarding aggregate demand in the particular case where all
consumptions are private, so that the group’s behavior can be seen as the ag-
gregate demand of an exchange economy. Our findings are that the conclusions
generated by the existing literature are in fact much more robust, and apply
whenever the group’s behavior satisfies a basic efficiency property. It is Pareto
efficiency, not market equilibrium, that drives the properties of aggregate be-
havior. In addition, we have identified properties which are not only necessary,
but also (locally) sufficient. In other words, they provide a complete (local)
characterization of efficient group behavior for any group size. A by-product of
this conclusion is that it is possible, from the knowledge of the group’s aggregate
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demand, to compute the number of ’true’ decision makers within the group: if
aggregate demand satisfies our SR(S − 1) property, then the group behaves as
if there were exactly S independent decision makers.15

Our second result deals with the testability of two particular cases. We find
that whenever a demand function is compatible with collective rationality, it
is compatible with collective rationality with purely private consumption, and
also with collective rationality with purely public consumption; moreover, it is
also compatible with the presence and/or the absence of intragroup production.
It follows that when the only data available are at the group level, neither
the nature of consumption nor the presence of production are testable unless
additional assumptions are made.
Finally, several recent papers have studied, from an empirical point of view,

the impact of ’distribution factors’, defined as variables that may influence the
group’s behavior only through their impact on the decision process. Our pa-
per provides a theoretical underpinning to these approaches, that generalizes
previous results.
Several questions remain open at this stage. An obvious one is identification:

to what extent is it possible to recover the fundamentals (preferences, produc-
tion technology, decision process) from observed behavior. Quite obviously, the
most general version of the model (with intra-group production and arbitrary
preferences) is testable but not identifiable, in the sense that a continuum of
structurally different models typically generate the same demand function. In
other words, identification requires additional assumptions. These problems are
analyzed in a companion paper ([15]).

A Appendix

A.1 Proof of Proposition 5

A first step is to express condition SR(S − 1) in the language of differential
forms. We refer to [16] for an introduction to differential calculus, and to [9],
[1] and [8] for a detailed treatment.
Introduce the differential one-form

ω (π) =
X

ξj (π) dπj .

Taking the exterior differential yields:

dω =
Xµ

∂ξj

∂πi
− ∂ξi

∂πj

¶
dπi ∧ dπj (16)

Introduce the vector field:

Π (π) =
X

πi
∂

∂πi
(17)

15The exact interpretation of this statement is of course delicate, since it is related to
both preferences and the decision process; for instance, two decision makers with identical
preferences will always count as one. For an empirical test of this conclusion, see [21].
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so that the Walras law becomes ω (Π) =
PN
j=1 ξ

jπj = 1.

Denote by (dω)S the exterior product dω ∧ ... ∧ dω with S terms. It is a
differential 2S-form.

Lemma 15 The following conditions are equivalent:

(a) The Slutsky matrix S (π) decomposes as S = Σ +
PS−1
s=1 as (bs)

0
, with Σ

symmetric.

(b) ω ∧ dωS = 0
(c) There exists one-forms γ,αs,βs such that:

dω =
S−1X
s=1

αs ∧ βs + ω ∧ γ (18)

Proof. By inspection, (c) implies (b). The converse holds as well; we refer
to Bryant et al. (1991), Prop. I.1.6. or to Ekeland and Nirenberg (2003),
Lemma 2.
Writing (a) into the definition of dω, we get:

dω =
X
i,j

(X
s

¡
aisb

j
s − ajsbjs

¢
+

Ã"X
k

∂ξj

∂πk
πk

#
ξi −

"X
k

∂ξi

∂πk
πk

#
ξj

!)
dπi ∧ dπj

(19)

=
X
s

X
i,j

¡
aibj − ajbj¢ dπi ∧ dπj + ω ∧ γ, where γ =

·X ∂ξi

∂πk
πk

¸
dπi

(20)

=
S−1X
s=1

αs ∧ βs + ω ∧ γ, where αs =
X

aisdπi and βs =
X

bisdπi (21)

and hence ω ∧ dωS = 0. So (a) implies (b)
We now show that (c) implies (a). Applying the vector field Π defined by

(17) to both sides of the preceding equation, and using the Walras law, we get:

dω(Π, •) =
X

αs(Π)βs −
X

βs (Π)αs + γ − γ(Π)ω (22)

which defines γ in terms of dω(Π, •), the αs, and the βs, 1 ≤ s ≤ S−1. Replacing
γ by its value, we get:

dω =
X
s

αs ∧ βs + ω ∧
Ã
dω(Π, •)−

X
s

αs(Π)βs +
X
s

βs (Π)αs

!
(23)

=
X
s

(αs − αs(Π)ω) ∧ (βs − βs (Π)ω) + ω ∧ dω(Π, •) (24)
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Differentiate the Walras law:X ∂ξj

∂πi
πj + ξi = 0 (25)

and substitute into the definition (16) of dω. We get:

dω(Π, u) =
X
i,j

∂ξj

∂πi
(πiuj − πjui) =

X
i,j

∂ξj

∂πi
πiuj +

X
i

ξiui

so that:

dω(Π, •) =
X
i,j

∂ξj

∂πi
πidπj +

X
i

ξidπ =
X
i,j

∂ξj

∂πi
πidπj + ω (26)

Substituting in formula (24) yields finally:

dω =
X

(α− α(Π)ω) ∧ (β − β (Π)ω) + ω ∧
X
i,j

∂ξj

∂πi
πidπj

Writing this coordinatewise, that is, using formula (16), and setting

ᾱs = αs − αs(Π)ω =
X
i

aisdπi

β̄s = βs − βs (Π)ω =
X
i

bisdπi

we get:

∂ξj

∂πi
− ∂ξi

∂πj
=
S−1X
s=1

¡
aisb

j
s − ajsbjs

¢
+ ξi

X
k

∂ξj

∂πk
πk − ξj

X
k

∂ξi

∂πk
πk

which is precisely condition (a).

Here is the concave Darboux Theorem, as stated in [25]:

Theorem 16 A necessary and sufficient condition for a one-form ω with C1coefficients
to be decomposable as ω =

P
λsdV

s, 1 ≤ s ≤ S, in some neighborhood of π̄,
for some positive functions λs and some strongly concave functions V s, is that
there exists a decomposition of dω as:

dω =
S−1X
s=1

αs ∧ βs + ω ∧ γ (27)

valid in some neighborhood of π̄, such that the (ω, γ,α1,β1, ...,αS−1, ...βS−1) are
linearly independent and the bilinear form

(Ωζ, η) =
X
i,j

∂ωi

∂πj
(π̄) ζiηj
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is symmetric and negative definite on [E (π̄)]⊥, where:

E (π) = Span {ω,β1, ...βS−1}

In addition, we have the following properties:

• E(π) ⊂ F (π), where the 2S-dimensional subspace F (π) spanned by α1, ...,αS−1,β1,...,βS−1,ω,
depends only on ω, and not on the choice of the decomposition (27),

• the dV s (π̄) can all be chosen arbitrarily close to 1
Sω (π̄)

• the functions V s can be chosen to be strictly increasing in a neighborhood
of π̄.

If we omit the requirement that the λs be positive and the V s be convex, then
the requirement on Ω is dropped, and this reduces to an old theorem of Darboux
(see [9] or [8]). As stated, the result is due to Ekeland and Nirenberg ([25]). It
was also proved by Chiappori and Ekeland ([13]) in the case when the ωn (π) are
real analytic. There is, of course, a convex Darboux theorem along the same
lines. Recall that, by a strongly convex function, we mean a function which
is C2, concave, increasing with respect to each variable, and with a positive
definite matrix of second derivatives. By Lemma 15, condition (27) means that
the Slutsky matrix S associated with ξ decomposes as S = Σ+

PS−1
s=1 as (bs)

0,
with Σ symmetric.
Now apply the concave Darboux Theorem to ω =

P
ξndπn. The subspace

E (π) then is generated by ξ and the as, 1 ≤ s ≤ S. Saying that Ω is symmet-
ric and negative definite on [E (π̄)]⊥ means that the Jacobian matrix Dπξ is
symmetric and negative definite on [E (π̄)]⊥. This is equivalent to

Dπξ = Σ+ γξ0 +
S−1X
s=1

as (bs)
0

where Σ is symmetric, negative definite.By Lemma 13, we have γj =
P

i,j
∂ξj

∂πi
πi,

so that Dπξ−γξ0is the Slutsky matrix. So we get precisely condition SR(S − 1)

A.2 Proof of proposition 8

Consider the differential one-form ω∗ and ω defined in respective neigborhoods
of P̄ and Ȳ = Y

¡
P̄
¢
by:

ω∗ =
X

Pk(Y )dY
k and ω =

X
Y k (P ) dPk

and the associated Jacobian matrices:

Ω =

µ
∂Y i

∂Pj

¶
i,j

and Ω∗ =
µ
∂P i

∂Yj

¶
i,j

25



By assumption, Y (P ) satisfies condition SR(S − 1), so that we can write:

dω =
S−1X
s=1

αs ∧ βs + ω ∧ γ

the restriction of Ω to [Span {ω,α1, ...αS−1}]⊥ is symmetric and negative defi-
nite. By the Walras law, we have ω + ω∗ = d (P 0X) = 0, and hence:

dω∗ = −dω = −
S−1X
s=1

αs ∧ βs − ω ∧ γ = −
S−1X
s=1

αs ∧ βs + ω∗ ∧ γ (28)

Since Ω and −Ω∗ are inverse of each other, so that the restriction of Ω∗
to [Span {ω∗,α1, ...αS−1}]⊥ must also be symmetric and negative definite. It
follows from lemma 15 that P (Y ) also satisfies SR(S − 1) .
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