
Individual Excess Demands∗

P.A. Chiappori† and I. Ekeland‡

Abstract

We characterize the excess demand function in the one-consumer
model. We describe the relation between the direct and indirect
utility functions, and we use it to derive a simple proof of the
Debreu-Mantel-Sonnenschein theorem.

1 Introduction

In consumer theory, an individual demand function x (p, y) is defined as
the solution to a simple optimization problem: it maximizes some utility
function under a linear budget constraint. The properties that stem
from this characterization have been known for more than one century.
Under standard smoothness assumptions, individual demand functions
are fully characterized by three properties: (i) homogeneity, (ii) Walras
Law, and (iii) the Slutsky conditions. In addition, one can define the
indirect utility and expenditure functions. Again, it has been known
for a long time that a one-to-one relationship exists between demand,
direct utility, indirect utility and expenditure functions. Knowing any
of these function is sufficient to uniquely recover preferences, hence the
other three.
The results summarized above belong by now to the most standard

presentation of consumer theory. Equally standard is the fact that, for
many applications (among which general equilibrium theory), it can be
helpful to consider excess demand functions instead of Marshallian de-
mands. For any Marshallian demand x (p, y), the excess demand z (p)
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is defined by z (p) = x (p, p0ω) − ω where ω denotes the agent’s initial
endowment. A very natural question is whether the standard results on
Marshallian demands have a counterpart for excess demands. Specifi-
cally, can one find necessary and sufficient condition for some arbitrary
function z (p) to be an individual excess demand? And does the one-
to-one correspondence between the direct utility, indirect utility and
demand functions extend to the excess demand framework?
Quite surprisingly, these very natural questions have not received an

answer so far. While it is easy to derive necessary conditions on individ-
ual excess demand functions, their sufficiency has not been established,
and the relationship between the direct utility, indirect utility and de-
mand functions has not been investigated. Standard consumer theory
thus exhibits a gap.
The goal of this paper is precisely to fill this gap. We first derive a

set of necessary and sufficient conditions that fully characterize excess
demand functions. Whenever a smooth function z (p) satisfies these
conditions, then it is possible to find an initial endowment and a direct
utility function for which z (p) is the excess demand. These conditions,
somewhat unsurprisingly, are (i) homogeneity, (ii) Walras Law, and (iii)
a variant of the Slutsky conditions; however, the proof of sufficiency
(the so-called ’integrability’ problem) cannot be transposed from the
standard framework, and one has to find a different argument.
It turns out from our results that the one-to-one relationship between

the direct utility, indirect utility and demand functions is lost in the
excess demand context. For any excess demand function z (p) and any
initial endowment, there exist a continuum of different direct utility
functions from which z (p) can be derived. In a similar way, while it
is always possible, starting from some direct utility function (and some
initial endowment), to uniquely define the corresponding, indirect utility
function, the converse is not true. To any indirect utility function can be
associated a continuum of different excess demand functions z (p). Each
of these satisfy the necessary and sufficient conditions for integrability,
hence can be associated with a continuum of direct utility functions.
Finally, our results have direct consequences for several problems

in consumer theory and aggregation. In the paper, we consider the
well-known Debreu-Mantel-Sonnenschein theorem on aggregate excess
demand. The question, here, is whether it is possible, for any arbitrary,
smooth function Z (p) that satisfies homogeneity and the Walras Law,
to find n individual excess demand functions z1 (p) , ..., zn (p) such that
Z (p) decomposes into the sum of the zi (p). Surprisingly, the exist-
ing results do not rely on a formal characterization of individual excess
demand functions. Our characterization of individual excess demand
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yields a one-line proof of the theorem. Not only is this proof short, it
also allows a precise characterization of the degrees of freedom one has in
constructing the individual utilities: in fact, the indirect utilities V i can
be chosen arbitrarily; the choice of the corresponding zi then is unique.
Our result gives a better understanding of the fundamental difference

between the two versions (market demand versus excess demand) of
Sonnenschein’s problem. It also suggests that the characterization of
individual excess demand is indeed a difficult problem; as a matter of
fact, it constitutes the core difficulty in the Debreu-Mantel-Sonnenschein
literature.

2 Individual excess demand

2.1 The necessary conditions
Consider a standard consumer model. There are n goods, and the con-
sumer is characterized by his/her utility function U : Rn

++−→ R, where
Rn
++ is the open positive orthant of R

n. The excess demand of the con-
sumer is then defined as the solution z(p) of the optimization problem1:½

maxz U(z)
z ∈ Rn

++, p
0z =

P
piz

i ≤ 0 (P)

We shall say that a Ck function U , with k ≥ 2, is standard if:

• the gradient DzU(z) is non-zero everywhere, and the restriction of
the second derivative D2

zzU(z) of [DzU(z)]
⊥ is negative definite for

every z; it follows that U is strictly quasi-concave.

• for every p ∈ Rn
++, problem (P) has a solution z (p) ∈ Rn with

p0z (p) = 0

If U is standard, it follows from the implicit function theorem that
the excess demand function z(p) is well-defined and Ck−1 on Rn

++ . It is

1In more standard notations, z (p) is defined as x (p, p0ω)−ω, where the Marshal-
lian demand x solves

max
x

Ũ(x)

p0x = p0ω

Then U is defined from Ũ by

U (z) = Ũ (z + ω)
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zero-homogeneous and satisfies the Walras Law:

z (λp)= z (p) ∀λ > 0, ∀p
p0z (p)= 0 ∀p

and there is a Lagrange multiplier λ (p), which is Ck−1 and homogeneous
of degree (−1) on Rn

++, such that:

DzU (z (p)) = λ (p) p (1)

Define the indirect utility V (p), for p ∈ Rn
++, by

V (p) =
n
max
z

U(z) | z ∈ Rn
++, p

0z ≤ 0
o

(E)

If U is standard, then V is Ck−1 in and satisfies V (p) = U (z (p)).
In addition, V (p) is zero-homogenous and quasi-convex. Note that
V cannot be strictly quasi-convex because of homogenety (the level
sets {V ≤ a} are cones). However, it can be proved that, if V is
C2, then D2

ppV (p) has rank (n− 1) and the restriction of D2
ppV (p) to

[Span {p,DpV (p)}]⊥ is positive definite. Note that p0DpV (p) = 0, by
the Euler identity, so p and DpV (p) are orthogonal vectors; if none of
them vanishes, their span is truly two-dimensional.
The envelope theorem applied to (E) gives:

DpV (p) = −λ(p)z (p) (2)

Differentiating with respect to p, one gets:

D2
ppV = −λDpz − z. (Dpλ)

0 (3)

It follows that the restriction of Dpz to [z (p)]
⊥ is symmetric, and

that its restriction to

[Span {p, z (p)}]⊥ = [Span {p,DpV (p)}]⊥

is negative definite for every p. Note that this condition is the exact
equivalent, in the excess demand case, of Slutsky symmetry and nega-
tiveness for Marshallian demands. Also, if p̄ is such that z (p̄) = 0, then,
by equation (3), Dpz (p̄) is proportional to D2

ppV (p̄).
Note that DpV is one-to-one. We have even better:

Lemma 1 If DpV (p1) and DpV (p2) are collinear, then so are p1 and
p2.
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Proof. If DpV (p1) and DpV (p2) are collinear, then so are z (p1)
and z (p2) by relation (2), so that p01z (p2) = p01z (p1) = 0. Set z (p1) =
λ1z̄ and z (p2) = λ2z̄. Since z (p1) solves problem (P) for p = p1, we
have U (z (p1)) ≥ U (z (p2)). The converse inequality holds for the same
reason, so U (z (p1)) = U (z (p2)). Since U is standard, the solution of
problem (P) is unique, so z (p1) must be equal to z (p2), and p1, which
is collinear to DpU (z (p1)) = DpU (z (p2)) must be collinear to p2. ¥
We summarize these results:

Proposition 2 (Necessary conditions) If the Ck function U(z) is
standard, the indirect utility function V : Rn

++−→ R and the excess de-
mand function z : Rn

++−→ Rn satisfy the following:

(a) V is Ck−1, quasi-convex, positively homogenous of degree zero. For
every p, we have DpV (p) 6= 0 and D2

ppV (p) has rank (n− 1); more-
over, the restriction of D2

ppV (p) to [Span {p,DpV (p)}]⊥ is positive
definite. If DpV (p1) and DpV (p2) are collinear, so are p1 and p2.

(b) z is Ck−1 and positively homogenous of degree zero. The restriction
ofDpz to [z (p)]

⊥ is symmetric, and its restriction to [Span {p, z (p)}]⊥
is negative definite for every p.

Note that the positivity condition on D2
ppV (p) and the negativity

condition on Dpz are void if n = 2.

2.2 Local integrability
We now consider the converse. Take some C2 functions V (p) and z (p)
satisfying the necessary conditions. Is it possible to find a standard util-
ity function U such that z (p) solves (P) for all p , and V (p) is the cor-
responding, indirect utility ? This is the standard ’integration’ problem
in consumer theory, expressed in the case of excess demand. It divides
into two subproblems: the local one, where V and z are considered in
a suitably small neighbourhood of a given point p̄, and the global one,
where V and z are considered on all of Rn. In this section, we address
the local problem, and we show that the answer is positive, provided
DpV (p̄) 6= 0 and a nondegeneracy condition is met. The situation near
a point p̄ where DpV (p̄) = 0 is mathematically quite interesting, but
will not be investigated in this paper.

Theorem 3 Let V (p) be a Ck function, k ≥ 3, defined on some neigh-
bourhood of p̄ with DpV (p̄) 6= 0. Assume that, on that neigbourhood,
V (p) is quasi-convex, positively homogenous of degree zero, that D2

ppV (p)

has rank (n− 1) and the restriction of D2
ppV (p) to [Span {p,DpV (p)}]⊥
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is positive definite. Then there is an open convex cone Γ containing p̄
such that V is an indirect utility function on Γ. In fact, take any Ck−1

function λ(p) > 0, homogeneous of degree (−1) on Γ, and define:

z(p) = − 1

λ(p)
DpV (p) (4)

Then there is a quasi-concave function U (z), defined and Ck−1 on a
convex neighbourhood N of z (p̄), with the following properties:

(1) For every z ∈ N , the restriction of D2
zzU (z) to [DzU (z)]

⊥ is nega-
tive definite

(2) For every p ∈ Γ, we have:

DzU(z(p)) = λ(p)p, p0z (p) = 0 (5)

V (p) = U(z(p)) =
n
max
z

U(z) | p0z ≤ 0, z ∈ N
o

(6)

The proof will be given in the appendix.
We have similar results for excess demand:

Theorem 4 Let z (p) be a Ck map, k ≥ 2, defined on some neigh-
bourhood of p̄ into Rn such that z (p̄) 6= 0 and Dpz (p̄) has rank (n− 1).
Assume that, on that neigbourhood, z is homogeneous of degree zero, and
that the restriction of Dpz to [p]

⊥ is symmetric, and that its restriction
to [Span {p, z (p)}]⊥ is negative definite. Then there is an open convex
cone Γ containing p̄ such that z is an excess demand function on Γ. In
fact, there is a quasi-concave function U (z), defined and Ck on a convex
neighbourhood N of z (p̄), with the following properties:

(1) For every z ∈ N , the restriction of D2
zzU (z) to [DzU (z)]

⊥ is nega-
tive definite

(2) For every p ∈ Γ, we have:

DzU(z(p)) = λ(p)p, p0z (p) = 0 (7)

V (p) = U(z(p)) =
n
max
z

U(z) | p0z ≤ 0, z ∈ N
o

(8)

The proof will be given in the appendix.
Several remarks are in order here. First, unlike the standard case of

market demand, one has existence but not uniqueness. This follows from
the fact that, while U is a function of n variables, V and z are functions of
n− 1 variables only (one dimension being lost because of homogeneity):
information is lost in going from U to V and z, and cannot be recovered,
in sharp constrast with the Marshallian case. Specifically:
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• for each excess demand function z (p), there exist a continuum of
direct utility functions U for which z is the excess demand. The
idea is that U is characterized only on the subsetM ⊂ Rn gener-
ated by z (p) when p varies in Ω ⊂ Sn−1, which is a submanifold of
codimension 1 in Rn. The function U and its derivatives are known
only onM, and must be extended outside this set;obviously, this
extension can be made in many different ways.

• perhaps more surprisingly, to any homogenous, strictly quasi-convex
indirect utility V (p) can be associated a continuum of excess de-
mand functions: just pick up some arbitrary, positive scalar func-
tion λ (p), then z(p) = −DpV (p) /λ(p) is an excess demand.

It should also be noted that the proof cannot follow the usual path,
based on duality. The standard approach, as in Hurwicz and Ozawa [5],
relies on the expenditure function, which has no natural equivalent in the
case of excess demand. Similarly, proofs based on indirect utilities (i.e.,
integration of Roy’s identity) cannot be used here, precisely because the
one-to-one correspondence between direct and indirect utilities does not
hold in this context. Hence, although the statement of the result is quite
similar to the Slutsky characterization of market demand, its proof relies
on a completely different (and somewhat more difficult) approach.

3 Global integrability

We now address the global problem. Take a C2 function V : Rn
++−→ R

satisfying condition (a). We associate with it a function V ∗ : Rn
++−→ R

defined as follows:

V ∗ (z) = inf
p

©
V (p) | p ∈ Rn

++, p
0z ≥ 0

ª
(P∗)

The function V ∗ : Rn
++−→ R∪ {−∞} is quasi-concave, positively

homogeneous of degree 0, and its domain, domV ∗ = {z | V ∗ (z) > −∞} ,
is a convex set. The optimality condition in problem (P∗) is DpV (p) =
µz,with µ < 0. If z̄ = µDpV (p̄), for some µ < 0, then p̄0z̄ = 0 by the
Euler identity, and the minimum in problem (P∗) with z = z̄ is attained
at p = p̄.
Introduce the cone:

C =
©
µDpV (p) | µ < 0, p ∈ Rn

++

ª
(9)

It follows from the above that C ⊂ domV ∗ ; if z ∈ C, then z =
µDpV (p) for some µ < 0 and p ∈ Rn

++, and V ∗ (z) = V (p) .
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Theorem 5 Let V : Rn
++−→ R be a C2 function satisfying condition

(a). Assume that V (p) is quasi-convex, positively homogenous of degree
zero, that D2

ppV (p) has rank (n− 1) and the restriction of D2
ppV (p) to

[Span {p,DpV (p)}]⊥ is positive definite. Given any compact subset K ⊂
Rn
++where DpV does not vanish, then V is an indirect utility function
on K. In fact, take any C1 function λ(p) > 0, homogeneous of degree
(−1) on a neighbourhood of K, and define:

z(p)=− 1

λ(p)
DpV (p) (10)

M= {z (p) | p ∈ K} (11)

Then there is a quasi-concave function U (z), defined and C2 on a convex
open set Ω containingM , with the following properties:

(1) U is C2 on a neighbourhood N of M, and for every z ∈ N , the
restriction of D2

zzU (z) to [DzU (z)]
⊥ is negative definite

(2) For every p ∈ K, the point z (p) is the unique solution of problem
(P), so that:

DzU(z(p)) = λ(p)p, p0z (p) = 0 (12)

V (p) = U(z(p)) =
n
max
z

U(z) | p0z ≤ 0, z ∈ Rn
++

o
(13)

4 The Sonnenschein-Mantel-Debreu theorem

Let Z(p) be a C∞ map from some open cone Ω of Rn
+ into Rn, homo-

geneous of degree zero and satisfying the Walras law p0Z(p) = 0. The
problem raised by Sonnenschein (see [?]) is the following: for any k ≥ n,
is it possible to find k excess demand functions z1(p), ..., zk(p), such that:

Z(p) = z1(p) + ...+ zk(p) (14)

As it is well known, the answer to this question is positive (see [10],
[6],[3]). We provide a short proof. Note that we require that Z be C2,
so that our result is more in the Mas-Colell line (see [7])

Theorem 6 Assume Z(p) is a C2 map defined on a compact subset
K ⊂;Rn

++ , homogeneous of degree zero and satisfying the Walras law
p0Z(p) = 0. For any k ≥ n, we can find k excess demand functions
z1(p), ..., zk(p), defined on K such that the decomposition (14) holds
on K. The corresponding utility functions U1 (z) , ..., Uk (z) are quasi-
concave, and each Ui is C2 and strictly quasi-concave in a neighbourhood
of zi (K).
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Proof. Normalize prices by imposing that p0p = 1, so that prices
belong to Rn

++ ∪ Sn−1. Since p0Z(p) = 0, we can think of Z(p) as a
tangent vector to Sn−1 at p; the space of all such vectors (the tangent
space TpS

n−1 to Sn−1 at p) has dimension (n − 1). Pick k functions
V1(p), ..., Vk(p), of class C3, satisfying condition (a), and such that, at
every p ∈ K, the convex hull of DV1 (p) , ...,DVk (p) contains 0 in its
interior; this is possible provided k ≥ n. Using a smooth partition of
unity, we can then find C2 functions µ1 < 0, ..., µk < 0 on K such that

Z(p) =
kX
i=1

µi (p)DpVi(p)

Define zi (p) = −DpVi (p) /λi (p) where λi (p) = 1/µi (p). By Theorem 4,
zi is an individual excess demand, and the corresponding utility function
Ui (z) satisfy conditions (1) and (2).

4.1 Comments
A few comments are in order at this stage. Note, first, that in gen-
eral only (n− 1) functions are required to span the positive orthant of
the (n− 1)-dimensional sphere Sn−1. It is only when Z(p) = 0 that n
functions are required, a well-known fact. Secondly, an interesting by-
product of this proof is that it describes the degrees of freedom available
in the choice of individual utility functions. Basically, indirect utilities
can be picked up almost arbitrarily (the only constraint being that Z (p)
belongs to their negative span). However, once they have been chosen,
then only one set of λi (p) is acceptable; in other words, among the con-
tinuum of individual excess demands that can be associated with Vi,
only one can be used. Then any of the direct utilities corresponding to
the zi can be adopted.
Finally, this argument sheds some light on the differences between

the two problems raised by Sonnenschein, i.e. aggregate excess demand
versus aggregate market demand. In the market demand case, a given
function X (p) must be decomposed as the sum of n individual Marshal-
lian demands:

X(p) = x1(p) + ...+ xn(p)

where xi(p) is the solution of

V i(p)=maxU i(xi)

p.xi=1, xi ≥ 0

In particular, the envelope theorem givesDpV
i(p) = −αi.x

i(p), where
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αi is the Lagrange multiplier. It follows that :

X(p)=− 1

α1(p)
DpV

1(p)− ...− 1

αn(p)
DpV

n(p)

=−µ1(p)DpV
1(p)− ...− µn(p) DpV

n(p)

Again, X(p) must be a linear combination of n gradients. The dif-
ference, however, is that while the coefficients µi could be freely chosen
in the excess demand case, in the market demand context they have to
satisfy the budget constraint, which implies that:

µi (p) =
1

p.DpV i(p)
∀i

These additional restrictions considerably increase the difficulty of
the problem, which now amounts to a system of nonlinear partial differ-
ential equations:

DpV
1(p)

p0.DpV 1(p)
+ ...+

DpV
n(p)

p0.DpV n(p)
= −X (p) (15a)

This system has been solved in [1], in the case when the rigth-hand
side X (p) is real analytic. The case when X (p) is smooth, C∞ say,
but not real analytic, remains open. It is also an open question whether
solutions to (15a) can be found globally: the mathematical technique
used in [1] constructs solutions in some neighbourhood of any given
point p̄.
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A Proof of Theorem 3

A.1 Step 1: Constructing UA.
Define z (p) from (4). It is Ck−1, and by the Euler identity, we have:

p0z = −1
λ
p0DpV = 0

so that z satisfies the Walras law. In addition, z(p) is zero-homogeneous
of degree zero, so that

(Dpz)
0p = 0 (16)

and

p0Dpz + z0 = 0 (17)

Without loss of generality, assume that kp̄k = 1. It follows from
equations (16) and (17) that p ∈ Ker Dpz (p) and z (p) /∈ Range Dpz (p),
and it follows from relation (3) that Dpz (p) has rank (n− 1).Consider
the map φ defined on Sn−1 × R by φ(p, t) = t z(p). Then Dp,tφ (p)
has rank n,and it follows from the inverse function theorem that φ is
a Ck−1 diffeomorphism from some neighbourhood N× [1− ε, 1 + ε] of
(p, 1) in Sn−1 ×R onto a neigbourhood of z(p) in Rn. In particular, the
image

M = {z (p) | p ∈ N} = {φ(p, 1) | p ∈ N}
is diffeomorphic to N .
We want a function U (z) such that U(z(p)) = V (p) andDzU(z(p)) =

λ(p)p. In other words, we are prescribing the values of U and its first
derivatives on M. There is a compatibility condition to be satisfied,
namely that we get the same value for DpU(z(p)). This yields:

DpV = λ(Dpz)
0p

Substituting relations (17) and (4), we find an identity, so the com-
patibility condition holds. Now look at the problem in the (p, t)-coordinates,
that is, consider the function Ũ = U ◦ φ: we know Ũ (p, 1) = V (p) and
the partial derivative ∂Ũ

∂t
(p, 1) , and we want to define Ũ(p, t) in a neigh-

bourhood of t = 1. This can be done in many ways, for instance by
setting:

ŨA(p, t) = V (p) + (t− 1)A (p, t) (18)

where A : Rn → R is any Ck−1 function such that A(p, 1) = ∂Ũ
∂t
(p, 1). In

particular, if we evaluate the situation at p̄, we find that the matrix of
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second derivatives takes the form:

D2ŨA(p̄, 1) =
D2

ppŨA

a1,n
...

an−1,n
an,1 ... an,n−1 ann

(19)

where the n terms an,i = ai,n, 1 ≤ i ≤ n, can be chosen freely. We
now show that if A, and hence the ai,n, are appropriately chosen, the
extension UA = ŨA ◦ φ−1 is quasi-concave.

A.2 Step 2: UA is strictly quasi-concave
A.2.1 Substep 2a: investigatingD2

zzUA (z) on the tangent space
TzM

We have U = UA onM.Differentiating the relationDzUA(z(p)) = λ(p)p,
we get:

D2
zzUA (z)Dpz = pDpλ+ λI

and hence, for any ξ ∈ TpS
n−1 :

(Dpz ξ)
0D2

zzUA (z) (Dpz ξ) = (p
0Dpz ξ) (Dpλ ξ) + λ (ξ0Dpz ξ)

Now, by relation (17), p0Dpz ξ = −z0ξ. So the first term on the right
vanishes if Dpz ξ ∈ [p]⊥ , or, equivalently, if ξ ∈ [z (p)]⊥ . We are then
left with the second term, which we compute:

ξ0Dpz ξ= ξ0
µ
−1
λ
D2

ppV +
1

λ2
DpV (Dpλ)

0
¶
ξ

=−1
λ
ξ0D2

ppV ξ +
1

λ2
(ξ0, DpV ) (ξ,Dpλ)

=−1
λ
ξ0D2

ppV ξ −
1

λ
(ξ0, z) (ξ,Dpλ)

and the last term on the right vanishes again if z0ξ = 0. So we are left
with the following:

ξ ∈ TpS
n−1, z0ξ = 0 =⇒ (Dpz ξ)

0D2
zzUA (z) (Dpz ξ) = −

1

λ
ξ0D2

ppV ξ

and the quadratic form on the right-hand side is negative definite on
[Span {p, z (p)}]⊥, by condition (a). Since ξ ∈ TpS

n−1, we have (ξ, p) = 0,
and so:

0 6= ξ ∈ TpS
n−1, z0ξ = 0 =⇒ (Dpz ξ)

0D2
zzUA (z) (Dpz ξ) < 0

13



Set η = Dpz ξ. Note that DzUA (z) η = DzUADpz ξ = DpV ξ =
−λz0ξ, so that z0ξ = 0 if and only if DzUA (z) η = 0. Rewrite the
preceding result in terms of η :

0 6= η ∈ TpM, DzUA (z) η = 0 =⇒ η0D2
zzUA (z) η < 0

which is the desired result.

A.3 Substep 2b: investigatingD2
zzUA (z) on the whole

space
From ŨA = UA ◦ ϕ we get, at z = ϕ (p, t):

(Dzϕ)
0D2

zzUA (z)Dzϕ = D2ŨA (p, t)−DzUA (z)D
2
zzϕ

Note that the last term, which involves only first derivatives of UA,
does not depend on the choice ofA, provided it is evaluated at a point z ∈
M; this is because of the relations UA (z (p)) = V (p) and DzU(z(p)) =
λ(p)p. Evaluating everything at z̄ = φ (p̄, 1) , the above equation takes
the form:

(Dzϕ)
0D2

zzUA (z̄)Dzϕ = D2ŨA (p̄, 1) +M (20)

whereM is a fixed operator andD2ŨA (p̄, 1) is given by formula (19). We
have shown, in the preceding substep, that the restriction of D2

zzUA (z)
to TzM∩ [p]⊥ is negative definite. This means that the restriction of
D2ŨA (p̄, 1)+M toE∩F is negative definite, whereE = [Dzϕ (p̄, 1)]

−1 (TzM)

and F = [Dzϕ (p̄, 1)]
−1
³
[p]⊥

´
. From the definition of ϕ, it follows that

E is simply the hyperplane t = 0. Going back to formula (19), we find
that:

D2ŨA (p̄, 1) +M =
Q

a1,n +m1,n

...
an−1,n +mn−1,n

a1,n +m1,n ... an−1,n +mn−1,n an,n +mn,n

where the restriction of Q to F ∩E is negative definite. It is then easy to
pick the ai,n so that the restriction of D2ŨA (p̄, 1) +M to F is negative
definite. Going back to equation (20), we find that the restriction of
D2

zzUA (z̄) to [p̄]
⊥ is negative definite. Since [p̄]⊥ is just [DpUA (z̄)]

⊥, this
means that UA is strictly quasi-concave..¥

B Proof of Theorem 4

Proof. Introduce the differential one-form

ω =
X

zi(p)dpi

14



Since the restriction of Dpz to [z(p)]
⊥ is symmetric, we must have

ω ∧ dω = 0. By the Darboux theorem (see [?]), there are Ck+1 functions
µ(p) and V (p), defined in some neighbourhood of p̄, such that ω =
−µdV . By the convex Darboux theorem (see [4] and the references
therein; the proof has to be adapted to the homogeneous case, which is
straigthforward), we can take the functions µ and V to be homogeneous,
with µ > 0 and D2

ppV positive definite on [p]⊥.
We can therefore apply theorem 3, taking λ(p) = 1/µ(p). We find

a Ck utility function U satisfying (a) and (b), the corresponding excess
demand function being precisely z (p) .¥

C Proof of Theorem 5

Choose the function λ. By theorem 3, for every point z ∈M there is a
neighbourhood Nz ⊂ C, the cone defined by (9) and a C2 function Uz :
Nz → R satisfying conditions (1) and (2) in that neighbourhood. Since
M is compact, it can be covered by finitely many such neigbourhoods,
say N1, ...,Nm, associated with the functions U1, ..., Um. Take a smooth
partition of unity associated with this covering, that is, m functions
ϕ1, ...., ϕm of class C2 such that ϕi ≥ 0, ϕi (z) = 0 if z /∈ Ui, andP

ϕi = 1. Set U =
P

ϕiUi; the function U then is defined over ∪Ni,
which is a neighbourhood ofM, and satisfies conditions (1) and (2) in
that neighbourhood.
Looking at formula (9), which defines the cone C, we find that M

⊂ C. If z ∈M, then z = z (p) for some p, and U (z) = V (p) = V ∗ (z).

z ∈M =⇒ U (z) = V ∗ (z) (21)

On the other hand, if z ∈ ∪Ni, but z /∈M, we must have U (z) <
U (z (p)) = V (p) whenever p0z = 0, otherwise z would be the minimizer
of problem (P). Since V ∗ (z) ≤ V (p) whenever p0z = 0, it follows that

z ∈M =⇒ U (z) = V ∗ (z)

z ∈∪Ni , z /∈M, p0z = 0 =⇒ U (z) < V ∗ (z)

For the latter, note that since z ∈ ∪Ni, the value U (z) is well-
defined. Since z ∈ C, there exists some λ > 0 such that λz ∈M, and
since z /∈M, we must have λ 6= 1. We have λz = z (p) for some p, and
hence:

V ∗ (z)=V ∗ (z (p)) for V ∗ is 0-homogeneous

U (z)<V (p) for p0z =
1

λ
p0z (p) = 0

Since V ∗(z (p)) = V (p) , the conclusion follows.
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Lemma 7 There is a neighbourhood N ofM, with N ⊂ ∪Ni, such that
the restriction of U to N is quasi-concave in the following sense:

z = αz1+(1−α)z2, 0 < α < 1, z1 ∈ N , z2 ∈ N , =⇒ U (z) ≥ min {U (z1) , U (z2)}
(22)

Proof. Argue by contradiction. If condition (22) does not hold, there
must be three sequences zk1 , z

k, zk2 , k →∞, with the following property:

zk1→ z1 ∈M, zk → z ∈M, zk2 → z2 ∈M (23)

zk = (1− αk)zk1 + αkzk2 , 0 < αk < 1 (24)

U
¡
zk
¢
< min

©
U
¡
zk1
¢
, U
¡
zk2
¢ª

(25)

There are three possible cases:

1. The three points z1, z, z2 are distinct. Then we get U (z) ≤ min {U (z1) , U (z2)}
in the limit. Since U = V ∗ onM, and V ∗ is quasi-concave, the re-
verse inequality holds as well, and we get V ∗ (z) = min {V ∗ (z1) , V ∗ (z2)}.
Without loss of generality, assume V ∗ (z1) ≤ V ∗ (z2) , so that
V ∗ (z) = V ∗ (z1). From the quasi-concavity of V ∗ it follows that
V ∗ (z1 + t (z − z1)) = V ∗ (z1) for all t ∈ [0, 1] . Differentiating once,
we get DzU (z1) (z2 − z1) = 0, so (z2 − z1) ∈ [DzU (z1)]

⊥ . Dif-
ferentiating twice, we get (z2 − z1)

0D2
zzU (z1) (z2 − z1) = 0. But

D2
zzU (z1) is positive definite on [DzU (z1)]

⊥, and we have a con-
tradiction.

2. Two of the points z1, z, z2 coincide. The middle one, z, must be
one of them; without loss of generality, say the other one is z1. So
z = z1 6= z2. Condition (25) then yields

U (z1) ≤ U (z2) , (26)

and condition (24) yields αk → 0. Substituting into condition (25),
we get

DzU (z1) (z2 − z1) ≤ 0, (27)

If the strict inequality holds in (27), then there is a point z3 between
z1 and z2 where U (z3) < U (z1) ≤ U (z2), contradicting the quasi-
concavity of U . If DzU (z1) (z2 − z1) = 0, then, since D2

zzU (z1)
is negative definite on [DzU (z1)]

⊥, again there will be a point z3
between z1 and z2 where U (z3) < U (z1) ≤ U (z2), and again we
derive a contradiction.

3. The three points coincide: z1 = z = z2. But then, for k large
enough, the points zk1 , z

k, zk2 enter a convex neighbourhood of z
where U is strictly quasi-concave, contradicting relation (25)¥
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We now extend U to a quasi-concave function Ū , defined on a convex
set containing N , and coinciding with U on N . This is an easy matter:
for any number a, consider the set

Ω (a) = [z ∈ N | U (z) > a] ⊂ Rn
++

and let co [Ω (a)] be its convex hull. It is an open and convex subset of
Rn
++. If a > b, then co [Ω (a)] ⊂ co [Ω (b)]. Set Ω = ∪co [Ω (a)], which is
a convex open set, and define a function Ū : ­→ R by:

Ū (z) = sup {a | z ∈ co [Ω (a)]}

It is quasi-concave by construction. The Lemma implies that if z ∈ N
and z ∈ co [Ω (a)], then z ∈ Ω (a), so Ū (z) = U (z) . This concludes the
proof.¥
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