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Abstract

This paper considers the identiÞcation and estimation of hedonic models. We establish

that in an additive version of the hedonic model, technology and preferences are generically

identiÞed up to affine transformations from data on demand and supply in a single hedonic

market. For a very general parametric structure, preferences and technology are fully

identiÞed. This is true under a strong assumption of statistical independence of the error

term. It is also true under the weaker assumption of mean independence of the error term.

Much of the confusion in the empirical literature that claims that hedonic models estimated

on data from a single market are fundamentally underidentiÞed is based on linearizations

that do not use all of the information in the model. The exact economic model that

justiÞes widely used linear approximations has strange properties so the approximation

is doubly poor. A semiparametric estimation method is proposed that is valid when a

statistical independence assumption is valid. Alternatively, under the weaker condition of

mean independence instrumental variables estimators can be applied to identify technology

and preference parameters from a single market. They are justiÞed by nonlinearities that

are generic features of equilibrium in hedonic models.
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1 Introduction

Sherwin Rosen pioneered the analysis of hedonic markets in a perfectly competitive set-

ting. He also proposed an econometric identiÞcation strategy for recovering preferences

and technology from hedonic markets. His hedonic model characterizes markets for het-

erogeneous goods (or characteristics or amenities) that implicitly price out the attributes

that characterize the goods (or characteristics or amenities).

Rosen�s fundamental paper has shaped the way economists think about the pricing of

heterogeneous characteristics or attributes. Yet for two reasons, the full potential of his

method remains to be exploited. First, except for special cases, high dimensional hedonic

models with multiple characteristics require solutions of complicated partial differential

equations to fully characterize market equilibrium. This renders difficult theoretical analy-

ses which require computation of nonlinear implicit equations. Second, the method of

identiÞcation of preferences and technology proposed by Rosen has been severely criticized

in the literature. It is widely held that the preferences and technology generating hedonic

models are identiÞed only through arbitrary functional form and exclusion assumptions,

especially when they are estimated on data from a single market.

This paper considers whether equilibrium in hedonic markets imposes any restrictions

on estimating equations and whether it is possible to identify technology and preferences

from data on a single hedonic market. We consider both parametric and nonparametric

versions of these questions.

We show that the hedonic model has empirical content even in a single market. For

very general parametric families, the hypothesis of equilibrium imposes very tight restric-

tions on the data. This is true under the assumption that the error term, representing
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unobserved heterogeneity in productivity or preferences, is statistically independent of ob-

served preference and productivity traits. It is also true under the weaker assumption of

mean independence. Preferences and technology are generically identiÞed from data on a

single hedonic market. For the nonparametric case, we establish generic identiÞcation of

technology and preference parameters up to affine transformations, the standard level of

identiÞcation that can be obtained for market choice equations.

We establish that commonly used linearization strategies made to simplify estimation

problems produce identiÞcation problems. The hedonic model is generically nonlinear.

The nongeneric functional form assumptions made in the applied literature give rise to the

identiÞcation problems that are widely thought to be fatal to Rosen�s empirical method-

ology. We go on to show that the economic model which produces the widely-used linear

estimating equations is implausible, so the approximation is doubly poor.

Based on our identiÞcation analysis we propose estimators that can recover the pa-

rameters of a hedonic model in a single market. The Þrst is based on semi-parametric

transformation model methods and requires estimation of conditional densities and their

derivatives. This method is valid when the error term is independent of the observed ex-

ogenous variables. The second is based on instrumental variables techniques and simply

requires estimation of conditional mean functions. This method is valid under the weaker

assumption that the error term is mean independent of the observed exogenous variables.

Our identiÞcation analysis also applies to a broader class of empirical models of nonlinear

pricing: models of the effects of taxes on behavior when taxes are set optimally (Mirrlees,

1971), and a model of monopoly pricing (Mussa and Rosen, 1978, Wilson, 1993). It also

applies to the standard problem of taxes and labor supply (Heckman 1974; Hausman,

1980). For speciÞcity, in this paper we focus on the hedonic model, brießy discussing other
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applications in the conclusion.

This paper proceeds in the following way. In Section 2, we present the hedonic model

and review an important special case, the linear-quadratic-normal model due to Tinber-

gen (1956) and used by Epple (1987). This model gives rise to closed form solutions and

justiÞes widely used linear estimating equations for hedonic models as exact solutions. In

Section 3, we discuss the peculiar properties of this model. While it widely recognized that

this model has very special properties and is too restrictive for most applications, much of

the hedonic literature focuses on linearized versions of more general hedonic models. These

linear approximations however are rarely justiÞed. Unless the true model is nearly linear

or nearly additive, they cannot be justiÞed. They implicitly assume that the true model

is nearly linear or nearly additive. The inßuential criticism of Rosen�s estimating strategy

by James Brown and Harvey Rosen (1982) is based on a linear-quadratic approximation

of the estimating equations from some true model. This approximation is exact when the

true model is the Tinbergen model. However, when the Tinbergen model is slightly mod-

iÞed, the Brown-Rosen critique no longer applies. In a later section, we prove a theorem

(Theorem 1) that establishes that for a general class of models, the Brown-Rosen critique

only applies to a special, nongeneric, case. In Section 3 we go on to review standard discus-

sions of instrumental variables methods applied to estimate preferences and technologies in

hedonic markets: (a) that sorting implies that within a single market, there are no natural

exclusion restrictions, so instrumental variables methods cannot be applied (Epple, 1987;

Kahn and Lang, 1988) and (b) that identiÞcation can only be secured by multimarket data.

We challenge both assertions in this paper and question conventional applications of the

multimarket method.

In Section 4, we establish (a) the identiÞability of the hedonic model within a single
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market for a broad class of parametric models (polynomials of any Þnite order or any model

belonging to a Þnite dimensional vector space); and (b) the identiÞcation of the hedonic

model up to levels for a broad class of nonparametric models. We also establish that using

all of the information from both sides of the hedonic market together adds nothing to what

can be identiÞed analyzing the supply side and demand side separately in conjunction

with the hedonic pricing function. We show how extra information on levels of outcomes,

rather than just pricing and demand equations, aids in identifying the missing level set

information. In Section 5, we show that when the assumption of independence which is

used in Section 4 is weakened to mean independence, the identiÞcation result still holds

for hedonic models in a single cross section, as well as for a broad class of parametric

models. Theorems 4 and 5 justify the application of instrumental variables in the general

parametric case. We brießy discuss instrumental variables estimation and extensions of the

existing literature to cover the nonparametric case. Section 6 presents some conclusions

and suggestions for future research.

2 The Hedonic Model: General Results and An Im-

portant Special Case With A Closed Form Solution

We Þrst present a general statement of the hedonic model. For simplicity, consider a

labor market setting. The model is static. Consumers (workers) match to single worker

Þrms. Let z be an attribute vector characterizing jobs. P (z) is the earnings of workers

supplying attribute vector z, which is a disamenity. Let R be unearned income. We

deÞne U(c, z, x, ε,A) as the preferences of workers where x and ε represent observable (to
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the econometrician) and unobservable characteristics of workers that vary across persons,

A represents preference parameters common across persons and c is consumption where

c = P (z) + R. Higher values of z lead to lower values of U . For ease of exposition, we

assume R = 0. Given P (z), a twice continuously differentiable price function, and assuming

the utility function is twice differentiable2, we obtain the following Þrst and second order

conditions for a maximum

Uc (c, z, x, ε, A)Pz (z) + Uz (c, z, x, ε,A) = 0 (1)

Uzz0 + UcPzz0 + 2PzUcz0 + PzUcc0 (Pz)
0 is negative deÞnite. (2)

These characterize optimal job attribute choices for each worker. For each location z in

attribute space, they characterize the set of workers who choose that location.

Firms demand attribute z and maximize proÞts which equal output Γ(z, y, η,B) minus

production costs P (z) where y and η are observable and unobservable vectors of technology

parameters that vary across Þrms and B is a common technology parameter shared by all

Þrms. Observable and unobservable are deÞned with respect to what the econometrician

observes. We assume that the production function is twice differentiable. ProÞts are

Π (z, y, η, B, P (z)) = Γ(z, y, η,B)− P (z)

and the Þrst and second order conditions for a maximum are
2For expositional convenience, we restrict our analysis to economies in which the equilibrium price func-

tion is smooth. Similar analyses can be done for economies in which the equilibrium price function is not

smooth. For an example of an economy with smooth technologies and absolutely continuous distributions

of consumer heterogeneity in which the equilibrium price function is piecewise twice continuously differen-

tiable see Nesheim (2001). For other examples of sorting problems with non-smooth pricing functions see

Wilson (1993).
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Γz (z, y, η, B)− Pz (z) = 0 (3)

Γzz0 − Pzz0 is negative deÞnite. (4)

Throughout we follow the classical hedonic literature and we assume the regular case in

which the second order conditions hold as strict inequalities, Γzη0 is positive deÞnite, and

PzUcε0 +Uzε0 is positive deÞnite. These conditions guarantee positive sorting on unobserv-

ables in the sense that in equilibrium ∂η
∂z
> 0 and ∂ε

dz
> 0.

Workers differ in their preference vectors x and ε. Firms differ in their productivity

vectors y and η. Let the densities of x and ε be fx and fε and let x be independent

of ε. x and ε have supports X and E respectively. The densities of y and η are fy and
fη. y is independent of η and y and η have supports Y and H respectively. We assume

that x, ε, y, and η are absolutely continuous random variables. In this paper, we focus

on the case in which dim (ε) = dim (η) = dim (z) and in which there is no bunching in

equilibrium. That is, in equilibrium every bundle of characteristics has population measure

zero of demanders or suppliers. This is the classical case analyzed in Rosen (1974) and the

subsequent literature. For an analysis of equilibria with bunching see Heckman, Matzkin,

and Nesheim (2002).

Given the assumptions above, a local implicit function theorem applies and we can

invert the Þrst order conditions (FOC) (1) and (3) to obtain ε and η as functions of z and

x and y, respectively. Inverting the FOC (1) for the worker we obtain

ε = ε (z, Pz, P (z), x,A) .

Similarly, inverting the FOC (3) for the Þrm we obtain

η = η (z, Pz, y, B) .
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Using these relationships, we use fx and fε to Þnd the density of z supplied given P (z),

and we use fy and fη to Þnd the density of z demanded given P (z).

The Supply Density is:Z
X

fε (ε (z, Pz, P (z), x,A)) det

·
dε (z, Pz, P (z), x, A)

dz

¸
fx (x) dx.

where the term in square brackets is the Jacobian matrix with respect to vector z (i.e., its

effect on all arguments of ε that depend on z). This is the density of the amenity supplied

as a function of the price function, preference parameters A, and the densities of x and ε.

The Demand Density is:Z
Y

fη (η (z, Pz, y, B)) det

·
dη (z, Pz, y, B)

dz

¸
fy (y) dy.

Again, the term in square brackets is the Jacobian matrix with respect to vector z. This is

the density of demand for a given price function, vector of technology parameters B, and

pair of densities of y and η. From the second order conditions (2) and (4), respectively, the

Jacobian terms are both positive.

Equilibrium in hedonic markets requires that supply and demand be equated at each

point of the support of z. Hence, equilibrium prices P (z) must satisfy the following second

order partial differential equationZ
X

fε (ε (z, Pz, P (z), x, A)) det

·
dε (z, Pz, P (z), x, A)

dz

¸
fx (x) dx = (5)

Z
Y

fη (η (z, Pz, B)) det

·
dη (z, Pz, y, B)

dz

¸
fy (y) dy

The solution depends on U, the utility function of the workers, Γ, the technology of Þrms,

and the pairs of density functions (fx, fε) and (fy, fη) characterizing the population dis-

tributions of workers and Þrms respectively. Additionally, we impose that workers and
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Þrms must receive wages and proÞts above reservation levels in order to participate in the

market. This generates the boundary conditions that determine the solution of the partial

differential equation. This entry condition also plays a role in the identiÞcation analysis.

We examine the empirical content of the restrictions imposed by the equilibrium equation

and these conditions in the rest of this paper.

When z is scalar and utility is quasi-linear so that U (c, z, x, ε,A) = c − V (z, x, ε, A) ,
dε
dz
= Pzz−Vzz

Vzε
and dη

dz
= Pzz−Γzz

Γzη
. Since Vzε < 0 and Γzη > 0, we can substitute these

expressions into (5) to obtain an explicit expression for Pzz

Pzz =

R
X
fεfx

³
Vzz
−Vzε

´
dx+

R
Y
fηfy

³
Γzz
Γzη

´
dyR

Y
fηfy
Γzη
dy +

R
X

fεfx
−Vzεdx

(6)

where the arguments of the functions have been suppressed for ease of exposition. In

equilibrium, the curvature of the pricing function is a weighted average of the average

curvature of the workers� utility and the average curvature of the Þrms� technology. The

weights at any particular point in z space depend on the ratio of the densities of worker

and Þrm heterogeneity.

Hedonic equilibrium is illustrated in Figure 1. The Þgure shows the optimal job sorting

choices of three Þrm-worker pairs. The solid line depicts the equilibrium price function. The

dotted lines depict Þrm output as a function of job type for three different Þrms.3 Each

Þrm chooses the job type z where the output function is tangent to the price function.

The dashed lines depict worker disutility as a function of z for three different workers.4

3For each Þrm, this output function has been shifted vertically by substracting off each Þrm�s equilibrium

proÞts so that all three plots Þt in the same Þgure.
4Each worker�s disutility curve has been shifted vertically by subtracting off equilibrium utility so that

all three plots Þt in the same Þgure.
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Each worker chooses the job type where disutility is tangent to the price function. Each

worker matches with a Þrm so that the worker disutility function is tangent to the output

function of his matched Þrm. In each case the curvature of Þrm output is less than the

curvature of the price function which is less than the curvature of worker disutility. The

curvature of the pricing function is a weighted average of the curvature of Þrm proÞts and

the curvature of worker disutility. If this were not the case, then the Þrms and workers

would not both be choosing optimal job types. In the special cases where all Þrms are

alike or all consumers are alike the hedonic pricing function corresponds, respectively, to

the Þrm proÞt or worker disutility functions. Otherwise, the curvature of the hedonic

function differs from the curvature of technology or preference functions. This difference in

curvature which is a fundamental characteristic of the equilibrium, provides the basis for

the econometric identiÞcation results in this paper.

We next present a linear-quadratic model with normal heterogeneity due to Tinbergen

(1956) that has a closed form expression. This is the model that justiÞes widely used

empirical approximations as exact descriptions and provides an intuitive introduction to

the hedonic model.

2.1 A Linear-Quadratic-Normal Example

Assume that preferences are quadratic in z and linear in c, unearned incomeR = 0, and that

individual heterogeneity (x, ε) only affects utility through the single index θ = µθ (x) + ε
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where dim (θ) = dim (z) 5. Workers maximize

U(c, z, θ, A) = P (z) + θ0z − 1
2
z0Az.

The conditions determining a worker�s maximum are

Pz + θ −Az = 0

where Pzz0 −A is negative deÞnite. On the Þrm side, assume that the production function
is quadratic in z and that Þrm heterogeneity only affects proÞts through the single index

ν = µν (y) + η where dim (ν) = dim (z). ProÞts are

Π (z, ν, B, P (z)) = ν 0z − 1
2
z0Bz − P (z)

and the conditions determining a Þrm�s optimum are

ν −Bz − Pz = 0

where −(B+Pzz0) is negative deÞnite. The distributions of θ and ν in the population are
normal. The distribution of θ is θ ∼ N(µθ,Σθ), and the distribution of ν is ν ∼ N(µν ,Σν).

An arbitrary price function induces a density of demand and a density of supply at every

location z. The equilibrium price function can be found by equating these densities at every

point z and solving the differential equation (5) . However, in the linear-quadratic-normal

case one can correctly guess that the solution to the problem is quadratic in z

P (z) = π0 + π
0
1z +

1

2
z0π2z

5The model in this example was Þrst analyzed by Tinbergen (1956) and has been used by Epple (1987)

and Tauchen and Witte (2001) among others.
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and then Þnd the coefficients (π0, π1, π2) that satisfy the equilibrium equation. Assuming

that the price function is quadratic, the Þrst order condition for a worker is

π1 + π2z + θ −Az = 0. (7)

For a Þrm, it is

ν −Bz − π1 − π2z = 0. (8)

The second order conditions require that both A − π2 and B + π2 are positive deÞnite.
Thus we may solve for z from (7) to obtain

z = (A− π2)−1(θ + π1) (9)

and from (8) to obtain

z = (B + π2)
−1(ν − π1). (10)

These equations deÞne mappings from workers θ and Þrms ν to job types z. These mappings

determine the density of supply and demand at every bundle of characteristics or attributes

and the types of workers and Þrms at every location. Equilibrium is characterized by a

vector π1 and a matrix π2 that equate demand and supply at all z. However, since both

θ and ν are normally distributed, this only requires equating the mean and variance of

supply and demand.

The mean supply ES (z) is obtained from (9):

(Average Supply) ES (z) = (A− π2)−1E (θ + π1) .

The mean demand is obtained from (10):

(Average Demand) ED (z) = (B + π2)
−1E (ν − π1) .
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Since µθ = E(θ) and µν = E(ν), the condition E
S(z) = ED(z) implies that

(Equality of means) (A− π2)−1 (µθ + π1) = (B + π2)−1 (µν − π1) .

Rearranging terms, we obtain an explicit expression for π1 in terms of A,B, µθ, µν and π2 :

π1 = [(A− π2)−1 + (B + π2)−1]−1[−(A− π2)−1µθ + (B + π2)−1 µν].

To determine π2, compute the variances of supply and demand from (9) and (10) re-

spectively to obtain:

ΣSz = (A− π2)−1Σθ
£
(A− π2)−1

¤0
ΣDz = (B + π2)

−1Σν
£
(B + π2)

−1¤0
where ΣSz is the variance of supply and Σ

D
z is the variance of demand. From equality of

variances of the demand and supply distributions we obtain an implicit equation for π2 :

(Equality of variances) (A− π2)−1Σθ [(A− π2)−1]0 = (B + π2)−1Σν [(B + π2)−1]0 .

We pin down initial conditions using the restrictions that U ≥ Ū , a reservation value, and
proÞts are positive (Π ≥ 0). After taking into account the equilibrium relationship between
ν and z, equilibrium proÞts as a function of z are

1

2
z0(B+ π2)z− π0. Hence nonnegativity

of proÞts implies −π0 ≥ 0 since (B+π2) is positive deÞnite by the second order conditions
and we have to allow for the possibility of z = 0. Setting reservation utility equal to zero,

a similar argument on the worker side implies π0 ≥ 0. Hence π0 = 0.
Once we have solved for π1 and π2, (9) and (10) also deÞne the equilibrium matching

function linking the characteristics of suppliers (θ) to those of demanders (ν). Substituting

out for z, this function is

(A− π2)−1(θ + π1) = (B + π2)−1(ν − π1)
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so, the equilibrium relationship between θ and ν is

θ = (A− π2) (B + π2)−1(ν − π1)− π1. (11)

Because of sorting, equilibrium worker and Þrm characteristics are related. We discuss the

implications of this relationship in Sections 3 and 4.

In the separable case where Σθ, Σν, A, and B are diagonal, π2 is diagonal. Effectively,

this is a scalar case where each attribute is priced separately. In the scalar case, equality

of variances implies that (A− π2)2Σν = (B + π2)2Σθ. The second order conditions imply
that A− π2 > 0 and B + π2 > 0. DeÞning σθ = (Σθ)

1
2 and σν = (Σν)

1
2 , this implies that6

π2 =
Aσν −Bσθ
σθ + σν

.

π1 =
−µθσν + µνσθ
σθ + σν

.

π2, the curvature of the price function, is a weighted average of the curvatures of workers�

and Þrms� preference and technology functions. π1 is a weighted average of the means of

worker and Þrm distributions of heterogeneity. In both expressions, the weights depend

on the relative variances of worker and Þrm heterogeneity. If workers are much more

heterogeneous than Þrms σθ >> σν, π2 will approximately equal B, the curvature of Þrms�

technology. If σθ = σν and A = B, π2 = 0 is a solution and the equilibrium price function

is linear in z. If σθ = σν, but A 6= B, then π2 = A−B
2

. In the polar cases when σθ = 0 or

σν = 0 then there is effectively only one type of consumer or one type of Þrm respectively.

If σθ = 0 and σν > 0, then π2 = A and π1 = −µθ. Then prices reveal the parameters
of consumer preferences. If σν = 0 and σθ > 0, π2 = B and π1 = µν. These two polar

cases are discussed in Rosen (1974) and are the ones that dominate discussions in the

6The other root of the equation violates second order conditions.
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empirical literature on hedonic models. Only in these two polar cases do prices directly

reveal consumer preferences or Þrm productivities respectively. Similar results hold when

z, θ, and ν are vectors.

3 Identifying and Estimating The Model

Sherwin Rosen stressed the importance of taking theory to data. He considered the problem

of recovering technology and prefereo framed the empirical questions about hedonic models

that have occupied the attention of economists for the past 30 years.

He analyzed the problem of estimating parameters of preference and technology func-

tions using data on prices P (z) and characteristics choices of agents in hedonic markets.

Using the Þrst order conditions (1) and (3) ((7) and (8) in the linear-quadratic-normal

example) he proposed a two step method for estimating both preference and technology

parameters. He did not consider direct estimation of production, proÞt or preference func-

tions, a source of information we consider in section four. We simply note here that if there

are no missing attributes, we can recover the production function directly from data on

inputs and outputs using standard methods. Nevertheless, even if production (or proÞt)

data are available, data on utility are not, so the problem considered by Rosen still remains

for recovering the parameters of worker preferences.

>From our discussion of the linear-quadratic-normal case, the parameters π1 and π2

do not directly identify either preference or technology parameters except when Σθ = 0 or

Σν = 0 respectively. In general, the pricing function combines parameters of technology,

preferences and distributions of heterogeneity, a result that is evident in equation (6).

The most direct approach to estimating the hedonic model would be to solve equation
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(5) for P (z) in terms of the parameters of preferences, technology and the distributions of

tastes and productivity and to jointly estimate the demand functions and supply functions

and distributions of preference and technology parameters exploiting all of the information

in the equilibrium conditions including data on demand, supply and the pricing function.

That approach is computationally complicated and does not transparently deliver identiÞ-

cation of the deep structural parameters.

Rosen suggested an intuitively plausible and computationally simpler two step estima-

tion procedure that has been widely used and widely criticized. In step 1 of his procedure,

the analyst estimates P (z) from market data. In step 2, the analyst uses Þrst order condi-

tions (1) and (3) in conjunction with the marginal prices obtained from step 1 to recover

preferences and technology respectively.

In the context of the linear-quadratic-normal example, the analyst Þrst estimates the

pricing function P (z) and forms the marginal prices from estimates of π1 and π2 and

then estimates the curvature parameters of technology, and preferences using the estimated

marginal prices in (7) and (8) respectively. SpeciÞcally, this method estimates A, B, µθ (x) ,

and µν (y) from the system of equations

�π1 + �π2z = −µθ (x) +Az − ε (12)

�π1 + �π2z = µν (y)−Bz + η (13)

where as stated previously θ = µθ (x) + ε, ν = µν (y) + η, and �^� denotes estimate.

In two inßuential papers, James Brown and Harvey Rosen (1982) and James Brown

(1983) analyze the regression method based on (12) and (13) . These papers contain most

of the main ideas in the empirical literature on hedonics that emerged following Rosen�s

paper. They interpret (12) and (13) as linearized approximations to (1) and (3) . The linear-
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quadratic-normal model of Section 2 is the framework for which these approximations are

exact.

In this approximation interpretation, the distributions of θ and ν (determined by the

distributions of (x, ε) and (y, η) respectively) are kept in the background. Standard linear

econometric methods are applied to identify the parameters of (12) and (13) and connec-

tions among the parameters of preferences, technology and the distributions of tastes and

productivity are not made explicit. Issues of identiÞcation are confused with issues of es-

timation. Common to an entire genre of empirical economics, this literature focuses on

Þnding �good instruments� and misses basic sources of identiÞcation in hedonic models.

Starting from (12) and (13), Brown (1983) and Brown and Rosen (1982) make three

points which have frequently been reiterated in the subsequent empirical literature.

Point One: IdentiÞcation Can Only Be Obtained Through Arbitrary Func-

tional Form Assumptions

Since z is on both sides of (12) and (13), by a property of least squares, a regression

using the constructed price �Pz(z) = �π1 + �π2z as the dependent variable in (12) or (13)

only identiÞes π2 even if µθ (x) and µν (y) are functions of regressors. This argument is

not necessarily fatal. In the special cases where there is no preference or no technology

heterogeneity the method identiÞes preference or technology parameters respectively.

However, if the constructed price is a nonlinear function of z, this argument no longer

holds. The nonlinear variation in bPz (z) gives an added piece of information that can help
to identify technology and preference parameters.7 This identiÞcation strategy rules out

collinearity between z and bPz (z) , but such nonlinearity is widely viewed as an artiÞcial
source of identiÞcation that is thought to be �arbitrary.� In Theorem 1 in section 4, we

7See Fisher (1966) for an early discussion of the value of nonlinearities in identifying econometric models.
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prove that this nonlinearity is a generic feature of equilibria in hedonic models. Generically,

Pz (z) is not a linear function of z. More generally, we prove that as a property of hedonic

equilibria, generically, the curvature of z in P (z) is different from the curvature of z in both

technology and preference parameters, a result that might be anticipated from inspection of

equation (6) characterizing the relationship between the curvature of technology, preference

and price second partials.

Point Two: Absence of Instruments

Even if such �arbitrary� assumptions are made, so that we can use the nonlinearity inbPz (z) to help identify the parameters and circumvent Point One, we still face standard
endogeneity problems. As a property of sorting equilibria, z is correlated with ε and η

in (12) and (13) respectively. Moreover, as discussed by Epple (1987), Bartik (1987), and

Kahn and Lang (1988), exclusion restrictions from the other side of the market cannot be

justiÞed. In the notation of this section, the equilibrium matching condition (11) of Section

2 implies that

µθ (x) + ε = (A− π2) (B + π2)−1 (µν (y) + η − π1)− π1.

In addition, conditional on z, the unobservable ε (or η) becomes stochastically dependent

on the observables x and y, respectively even if they are independent in the underlying

population.

Thus even if x is independent of ε, and y is independent of η, equilibrium y is a function

of ε and equilibrium x is a function of η so x is endogenous in the supply equation and y

is endogenous in the demand equation.

With data from a single market, one is forced to hunt for �clever� instruments which

lack a solid economic foundation. Thus, even if �arbitrary� nonlinearities are invoked to
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surmount point one, standard instruments appear to be lacking. In Sections 4 and 5 we

show that the economics of the model guarantees valid instruments even though there are

no exclusion restrictions.

Point Three: Use of Multimarket Data

Rosen (1974), Brown and Rosen (1982), Epple (1987), Kahn and Lang (1988), and

Tauchen and Witte (2001) consider estimation of the Þrst order conditions using multi-

market data either across different markets (or economic regions), or across time in the

same market. In this case, if we assume that preference parameters common across agents

remain constant across markets while distributions of individual heterogeneity vary across

markets, we can use cross market variation in prices and location choices to estimate the

common preference parameters. This identiÞcation strategy relies on assumptions that can

be tested if hedonic models can be identiÞed in a single market. Using the techniques we

develop in this paper, the structure of hedonic models can be estimated and identiÞed using

data from a single market for a class of additive parametric structures that includes as a

special case the linear approximation version that has been the focus of nearly all empirical

applications of hedonic models.

3.1 Using All Of The Economics of The Model

These criticisms are symptoms of a deeper problem with the current literature. The full

economic content of the hedonic model is not being exploited. We argue that when it is

exploited, the model is generically identiÞed even within a single market without having

to invoke assumptions about arbitrary functional forms. We develop this point formally in

the next section. Here we develop the intuition for it using the linear-quadratic model.
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Consider the restrictive assumptions of the linear-quadratic-normal model and its eco-

nomic implications. Both consumer and Þrm heterogeneity have normal distributions (not

approximately normal but exactly normal). Reservation proÞts equal reservation utilities

equal zero identically so that all agents enter the market. Finally, a positive fraction of the

population chooses equilibrium attribute levels where marginal prices are negative, mar-

ginal products are negative, and marginal disutilities are positive.8 Minor alterations of

the model to relax any of these restrictive features makes the marginal pricing function

nonlinear in z and makes, Point One irrelevant for the linear-quadratic example of Section

2.

The linear-quadratic-normal model of Section 2 results in an equilibrium with a linear

marginal price function. This equilibrium produces an econometric system that is not

identiÞed except for special cases (Brown-Rosen Point One). In this example, it would

be incorrect to impose that the marginal price function is nonlinear. However, the model

in Section 2 is very special. It belongs to a very small class of models that produce an

equilibrium marginal price function that is linear in z. In the next section we prove as a

special case of a more general theorem that most models �close� to the linear-quadratic

models of Section 2 do not produce linear marginal price functions where we deÞne �close�

more precisely in the next section. In these models, it is not arbitrary to impose nonlinear

marginal price functions.

To see how fragile Point One is, suppose that we change the scalar version of the model

8This last problem can be reduced by proper choice of parameters so that the fraction choosing locations

with negative marginal prices is made small. The marginal price is Pz = π1 + π2z. In equilibrium this is a

normal random variable with mean E (Pz) =
Aµν−Bµθ
A+B and standard deviation STD (Pz) =

|Aσν−Bσθ|
A+B .
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to have non-normal θ and ν. Worker preferences are

U(z) = θz − A
2
z2 + P (z)

with Þrst order condition

θ −Az + Pz(z) = 0.

ProÞts are

Π(z) = νz − B
2
z2 − P (z)

with Þrst order condition

ν −Bz − Pz(z) = 0.

Unlike the Tinbergen model, θ and ν distributed as mixtures of two normals. We call this

Model 1. Using the parameter values reported in appendix B.1, we solve the equilibrium

differential equation (5) for this model numerically for three cases. Figures 2 and 3 show

the equilibrium marginal price functions and curvatures of the price function for this model

for each of the three cases. The bottom panels of each Þgure show the population density

at every location z for each case. The weight (λ) on the Þrst component of the mixtures

of normal distributions is varied across cases. In the Þrst case λ = 1, ν and θ are normally

distributed. In this case, the marginal price is linear in z and the curvature of the price

function is a constant. In the second case, λ = 0.9 and ν and θ now distributed as mixtures

of normals with weights λ = 0.9 on the Þrst component and 1 − λ = 0.1 on the second

component. With this minor perturbation, the marginal price function becomes nonlinear

and the curvature is not constant. When λ = 0.5, the effect on the pricing equation is even

more dramatic. The price function is nonlinear over a wide stretch of the z and the second

derivative of the price function is far from constant. This is true for a model that is very
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nearly the normal linear quadratic model. In general, for models that are not close to the

non-generic linear-quadratic-normal Tinbergen model, Brown-Rosen Point One does not

apply.

These Þgures also reveal unattractive properties of the linear-quadratic model. Negative

and positive quantities of z are demanded and supplied and marginal prices are negative for

a large portion of the population. While the importance of these features can be reduced by

appropriate choice of parameter values, they are intrinsic features of the linear-quadratic-

normal model. One model that imposes a set of restrictions that eliminates these features

is Model 2 displayed in Figures 4 and 5. In this model, we restrict marginal prices to be

positive and restrict characteristics to be non-negative (z > 0) by writing down a transfor-

mation of the linear quadratic model. In this model, Þrms� proÞts are exp(ν)z1−B
1−B − P (z)

and workers� utility is −exp(−θ)z1+A
1+A

+ P (z) where ν and θ are distributed as mixtures of

normals. On the Þrm side ν = ν0+ ν 01y+ η where y and η are independent and distributed

as mixtures of normals. The exact speciÞcation of parameter values used to construct this

example is given in appendix B.2. In this model the Þrms� Þrst order condition, after taking

logarithms, is ln (Pz (z)) = −B ln z+ν0+ν 01y+η. This is a simple logarithmic transforma-
tion of the linear-quadratic model. For model 2, we computed numerical solutions to the

equilibrium differential equation (5) . Now marginal prices are positive and only positive

quantities of the characteristic are demanded and supplied. In this case, we require that

lnPz (z) not be a linear function of ln z in order to identify the parameters. Figures 4 and 5

show that there is a case where lnPz (z) is a linear function of ln z; namely the case where

λ = 1.0 so that θ and ν are distributed as normal random variables. Figure 4 explicitly

plots the derivative of lnPz (z) in z, which is a straight line in the Tinbergen case. In the

other two cases when λ = 0.9 or 0.5, however, lnPz (z) is a non-linear function of ln z.
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Other examples can be generated in the context of the linear-quadratic-normal model by

assuming that reservation utility does not equal zero so that not all agents enter the mar-

ket or by imposing restrictions on the technology in other ways. By imposing economically

plausible restrictions, Brown-Rosen Point One is shown to be less cogent. In Section 4 we

show that these examples are generic.

Even though Point One is non-generic, Point Two remains. There are apparently no

valid instruments for z on the right hand sides of (12) and (13). A strategy needs to be

found to deal with the endogeneity of z. In the next two sections, we discuss two such

strategies and present general results for a model with a single characteristic. We do not

invoke arbitrary functional form restrictions or distributional assumptions and establish

that the hedonic model is generically identiÞed from data from a single market. Even

though there are no conventional exclusion restrictions that justify the use of demand side

variables as instrumental variables in the supply equations (or vice versa), instrumental

variables that use non-linear transformations of the functions of the exogenous variables in

each estimating equation are generically valid instruments.

4 Parametric and Nonparametric Analyses of a One

Dimensional Model with Additively Separable First

Order Conditions

This section analyzes a class of one dimensional hedonic models with additive separability

in the Þrst order conditions but with no speciÞc functional form or distributional assump-

tions imposed. The one dimensional case allows us to abstract from a variety of problems
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that we address in our other work: (a) questions of existence of solutions to partial dif-

ferential equations and (b) questions about the proper treatment of missing attributes in

a multidimensional model.9 Both types of questions are important but they distract us

from the basic questions of identiÞcation and testability of the hedonic model posed in the

introduction to this paper.

We analyze a class of models in which z, ε, and η are one dimensional, preferences are

linear in consumption, and both preferences and technologies belong to a restricted class so

that monotonic transformations of consumer and Þrm Þrst order conditions are additively

separable in (z, x, ε) and (z, y, η) respectively.

Rewrite the consumer and Þrm Þrst order conditions (1) and (3) as

P 0 (z) = −Uz (z, x, ε)

P 0 (z) = Γz (z, y, η)

where P 0 (z) = Pz (z) where we assume that utility is linear in consumption. Uz and Γz are

nonparametric functions. We assume the following type of separability for Uz and Γz

−Uz (z, x, ε) =M1 (ϕ1 (z) + ψ1 (g1 (x)− ε))

Γz (z, y, η) =M2 (ϕ2 (z) + ψ2 (η − g2 (y)))

where M1,M2 ∈ C2 (R) and ψ1, ψ2 ∈ C2 (R) are known and are strictly monotonically
increasing in their arguments.10 Linear-quadratic models are an element of this class of

models in whichM1, M2, ψ1, and ψ2 are identity functions and ϕ1 (z) = Az, ϕ2 (z) = −Bz,
9Existence conditions for ordinary differential equations are much easier to satisfy. See, e.g., Zach-

manoglou and Thoe, 1986.
10C2 (R) means that the functions are real valued, twice continuously differentiable.
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g1 (x) = θ
0x, and g2 (y) = ν 0y. The model in our second example in section 3 is an element

of this class in which M1 and M2 are the exponential functions and ψ1 and ψ2 are the

identity functions.

With these restrictions, we can rewrite the consumer Þrst order conditions as

ψ−11
¡
M−1
1 (P 0 (z))− ϕ1 (z)

¢
= g1 (x)− ε. (14)

Similarly, we can rewrite the Þrms� maximization conditions as

ψ−12
¡
M−1
2 (P 0 (z))− ϕ2 (z)

¢
= η − g2 (y) . (15)

For ease of exposition we assume that M1, M2, ψ1, and ψ2 all equal the identity function,

noting that the proofs presented in this section can easily be extended to treat the more

general case for other known speciÞcations of M1, M2, ψ1, and ψ2
11

We assume equilibrium prices so that equation (5) generates the hedonic price function.

As in section 2, fx(x) is the density of x with support X , fε is the density of ε with support
E , fy is the density of y with support Y, and fη is the density of η with support H. Assume
E = H = (−∞,∞). Also, x is independent of ε and y is independent of η. We assume that
(ϕ1(z), ϕ2(z)) ∈ C2 (R) and that both g1(x) and g2(y) are twice continuously differentiable
in their arguments.

The Þrst order conditions deÞne mappings from (x, ε) to (x, z) and from (y, η) to (y, z) :

ε = ϕ1(z)− P 0 (z) + g1(x)
x = x

11These mappings cannot be identiÞed. Thus (14) and (15) form an equivalence class of models which

are indistinguishable.
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and

η = P 0(z)− ϕ2(z) + g2(y)
y = y.

The associated Jacobian terms are dxdε = [ϕ01(z) − P 00 (z)]dxdz and dydη = [P 00 (z) −
ϕ02(z)]dydz, respectively. >From the second order conditions, both terms in brackets are

positive. Equilibrium condition (5) can be written asZ
X

fε(ϕ1(z)− P 0 (z) + g1(x))(ϕ01(z)− P 00 (z))fx(x)dx (16)

=

Z
Y

fη(P
0(z)− ϕ2(z) + g2(y))(P 00(z)− ϕ02(z))fy(y)dy.

Initial conditions are provided by the requirements that Π ≥ 0 and U ≥ U . We next state
a genericity result for the hedonic model.

4.1 A Genericity Property for the Hedonic Model

A property P (θ), that characterizes parameter θ ∈ Θ, is called generic if the set Ω ⊂ Θ of
values of the parameter for which the property holds true contains a countable intersection

of open dense subsets. In our context, θ indexes parameters that generate different speci-

Þcations of a model. The property we are analyzing is identiÞability of the model. If Θ is

a complete metric space, such a set Ω will be dense in Θ, by Baire�s theorem.12 Moreover,

the intersection of two such sets will also be dense in Θ. In other words, if a property

is generic, and does not hold for a certain value θ̄ of the parameter, there will be in any

neighborhood of θ̄ some other value θ of the parameter where the property holds true.

12See e.g. Royden (1968).
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Genericity is a useful concept in our context because it provides us with a measure of the

relative �density� of certain types of models, as the following discussion shows. Consider

a model m. Typically, such a model depends on a set of parameters θ, the values of which

are to be determined by the available data. Denoting by Θ the set of possible values for the

parameters, deÞne a map θ → m (θ) which associates with each θ ∈ Θ the actual model to
be used when the parameter values are θ. The parameter space Θ can be Þnite-dimensional,

θ = (θ1, ..., θn) ∈ Rn. It can also be inÞnite-dimensional, for instance when θ is a function
of a real variable, θ = θ (x) , x ∈ R.
The most interesting properties of a model are those which are always true, that is,

which hold for all versions of the model irrespective of the actual values of the parameters.

Such a property is characterized formally by introducing the following set:

A (P ) = {θ | P (θ) is true}

and writing

A (P ) = Θ,

the entire set of all possible parameters. Such properties are rare. When A(P ) 6= Θ,

it is natural to ask what kind of properties are true �in general� , where violations are

�exceptional.� For instance, we think that a �general� real number is irrational, and a

�general� function is nonlinear. However, it is not so easy to give a precise mathematical

content to this intuition.

One approach to making these intuitive ideas precise appeals to Bayesian notions. In

this approach, one endows the parameter space Θ with a positive measure µ, and says that

a property P holds �in general� if it holds µ-almost surely, that is, if:

µ [Θ−A (P )] = 0.
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With this deÞnition, taking Θ to be the real line, µ to be the Lebesgue measure, and P (θ)

to be the property �θ is irrational�, we will state (correctly) that real numbers are irrational

in general.

The problem with this approach lies in choosing the measure µ. In the absence of a

priori information, the Lebesgue measure may seem an appropriate starting point, because

it is translation-invariant. Unfortunately, it is not a probability, so that it will not Þt

easily into a Bayesian framework. One may choose to overlook this problem and point

out that the measure µ is not important, only the µ-negligible subsets are. One then runs

into a second problem, namely the fact that there is no equivalent of Lebesgue measure in

inÞnite-dimensional spaces such as function spaces. On such spaces, there is no translation-

invariant measure that one could use to deÞne negligible sets without a priori information.

If one does not ignore the problem that Lebesgue measure is not a probability, then one

has to choose a probability. If Θ is Þnite-dimensional, one runs into the familiar problems

of Bayesian theory. There is no reason why two different observers should share the same

prior, or even why they should have priors which are absolutely continuous with respect

to each other. If Θ is inÞnite-dimensional, there is the added difficulty that there are

very few probabilities on such spaces; we have already noted that there is no equivalent of

the Lebesgue measure. In fact, except for Dirac masses (point masses) and the like, the

only known probabilities on spaces of continous functions are Gaussian, and derive from

the Wiener measure (See Ito and MacKean, 1974 and Stroock, 1994 for comprehensive

discussions). The Wiener measure is a very sophisticated mathematical tool, of great

usefulness in other contexts, such as in the proper deÞnition of Brownian motion, but there

is no reason why it should serve as a universal standard to decide which functions are

�general� and which are �exceptions�.
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There is a second approach to the problem of assessing the density of a property in a

function space that we use in this paper, and that is due to Rene Thom (See Abraham and

Robbin, 1967, and Aubin and Ekeland, 1984 for discussions of this approach). It consists

in endowing the parameter space Θ , not with a positive measure, but with a complete

metric.13 This approach deÞnes a property P to be generic if there is a sequence of subsets

Un ⊂ Θ such that

Un is open and dense ∀n
A (P ) ⊃ ∩nUn

and deÞnes a property as holding �in general� if it is generic.

This approach works nicely in our Þrst example. The set of rational numbers is count-

able, so the set of irrational numbers is the intersection of a countable number of open

dense sets. Let ρn, n ∈ N , be the rationals, then the set of irrationals will be ∩nUn, where
Un is the complement of {ρn}. This approach also works in our second example. Denote
the space of continuous functions on [0, 1] by C0 ([0, 1]) and let P (f) be true if f is affine.

The subset of affine functions is

Af (P ) =
©
f ∈ C0 [0, 1]¯̄P (f) is trueª .

Af (P ) is closed and has empty interior so that its complement is an open dense subset.

Thus, nonlinearity is a generic property in C0 ([0, 1]) .

If two properties P1 and P2 are generic, so is P1 ∧P2. As a consequence, if P is generic,
then its negation ∼ P cannot be generic. More generally, if a sequence of properties Pn are
all generic, then so is ∧nPn. In other words, generic properties behave in the same way as
13Meaning that all Cauchy sequences converge.

28



properties that are true almost surely, although there is no underlying measure to support

them.

Thom�s approach has the great advantage that in many cases of interest there is a

natural metric on the parameter space Θ, even if there is no natural probability measure

on it. So people will agree on what is generic or not, although they do not agree on which

sets have measure zero. We now apply the tool of genericity to the analysis of hedonic

models.

We Þrst need a technical assumption to avoid some integrability problems. Assume

there are some continuous probability densities hx and hy with hx > 0 on X and hy > 0

on Y such that fx /hx and fy /hy are bounded away from zero and inÞnity on X and Y.
Note that this will always be the case if X and Y are compact intervals. Set f0x = fx /hx
and f0y = fy /hy .

The �parameters� of our model are the functions: (ϕ1, ϕ2) , (g1, g2) , (fε, fη) , and¡
f0x , f

0
y

¢
.We have the following:

Theorem 1 Generically with respect to any of the parameter pairs, the equilibrium equa-

tions have no solution of the form P 0 (z) = a1 + b1ϕ1 (z), nor any solution of the form

P 0 (z) = a2 + b2ϕ2 (z) , where a1, a2, b1, and b2 are constants.

Proof. See Appendix A.

The precise deÞnitions of the parameter spaces and their respective topologies are given

in Appendix A, together with the proof of the theorem. This theorem can easily be modiÞed

to prove that generically, the equilibrium equations have no solution P 0 (z) that can be

expressed as a polynomial in (ϕ1, ϕ2).

The idea motivating the proof is simple. Equilibrium equation (5) (or (28) below in the
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notation of this section) is an inÞnite set of equations; one equation for each value of z.

If P 0 (z) = a1 + b1ϕ1 (z) (or alternatively P
0 (z) = a2 + b2ϕ2 (z)), then this equation must

be satisÞed at every value of z when a1 + b1ϕ1 (z) is substituted into (5) for each ϕ1 (z)

or ϕ2 (z). But making the substitution gives an inÞnite set of equations in two variables,

a1 and b1 or a2 and b2 if the other substitution is made. While it is certainly possible

that two variables can simultaneously satisfy an inÞnite set of equations (the Tinbergen

linear-quadratic-normal economy is one example), in general, one would expect that the

set of parameters (ϕ1, ϕ2) , (g1, g2) , (fε, fη) , and
¡
f0x , f

0
y

¢
that yields such cases is highly

unlikely. In fact the set of parameters that yields such solutions is negligible relative to the

set of potential parameters. The proof of the theorem formally establishes this claim.14

As a consequence of this theorem, Brown-Rosen Point One that regressions of P 0(z) on

ϕ1(z) or ϕ2(z) only recover the marginal price is not generically correct. More generally,

the curvature in z of the pricing function is generally distinct from the curvature in z in

the demand or supply equations, a result that might have been anticipated from (6). The

hedonic model is intrinsically (generically) nonlinear. The examples presented at the end

of the section 3 are prototypical, not special. There is no arbitrariness in assuming that

P 0(z) and ϕ1(z) do not lie in the same linear space.

14Mas-Colell (1985) discusses and illustrates the transversal theorem (p. 42-45) and genericity (chapter

8).
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4.2 Can We Identify the Parameters of the Model from a Single

Market ?

Even if Point One is not generic, Point Two remains. Within a single market, there are

no natural exclusion restrictions. The sorting condition rules out use of shifter variables

from the other side of the market from data on matched pairs even if they are available.

The larger question considered in this paper is whether we can identify (ϕ1, ϕ2, g1, g2, fε, fη)

from data on P (z), z, x, and y from a single market. We focus on identifying (ϕ1, g1, fε)

from data on P (z) , z, and x since the analysis is symmetric for (ϕ2, g2, fη) using data

on P (z) , z, and y. We later consider what information, if any, is available from the joint

density of (z, x, y, P (z)).

We present two methods for recovering these functions from data in a single market.

One is based on extensions of average derivative models (Powell, Stock and Stoker, 1989)

and closely related transformation models (see Horowitz, 1998). We develop these methods

in this section. The other is based on nonlinear instrumental variables. (Kelejian, 1971;

Amemiya, 1975). We discuss the second method in section Þve.

The trick in applying average derivative and transformation models to the hedonic

problem is to exploit the separability of z, x and ε. DeÞne

T1(z) = ϕ1(z)− P 0 (z) .

This function combines price and preference data. This kind of function is called a transfor-

mation function and its nonparametric identiÞcation and estimation have received extensive

theoretical attention. (See Horowitz (1998) for a survey and new results). These models

extend average derivative models (Powell, Stock and Stoker, 1989) by considering nonlinear

transformations of dependent variables.
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Let Fε be the cumulative distribution function corresponding to density fε and let

Fz|x (z, x) be the empirical cumulative distribution function of z conditional on x. Fz|x (z, x)

can be estimated directly from data on the joint distribution of (z, x) . For the purposes

of our analysis, we assume it is known. Since we have assumed x is independent of ε and

taking account of the Þrst order condition (14) , we may write

Fz|x (z, x) = Fε(T1(z) + g1(x)). (17)

Assuming that lim
z→∞

T1(z) = ∞, which follows from the assumption that the support of

ε = (−∞,∞), and further assuming that T1 is twice continuously differentiable, and g1 has
continuous cross partials of order nx, where T 01(z) > 0 from the second order conditions.

Moreover
∂Fz|x (z, x)

∂xi
= fε(T1(z) + g1(x)) · ∂g1

∂xi
. (18)

>From (18) , assuming
∂g1(x)

∂xj
6= 0 for all j,

∂Fz|x (z,x)
∂xi

∂Fz|x (z,x)
∂xj

=

∂g1(x)

∂xi
∂g1(x)

∂xj

for all i, j.

This ratio determines the level sets of g1(x). More generally, taking the ratio of (??) to

(18) for an arbitrary argument i, we obtain ∂Fz|x (z,x)
∂z

∂Fz|x (z,x)
∂xi

 =
T 01(z)
∂g1(x)

∂xi

. (19)

>From (18), sign (
∂Fz|x (z,x)

∂xi
) = sign

µ
∂g1
∂xi

¶
. Assume, without loss of generality, that
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∂g1
∂xi

> 0.15

Then the left hand side of (19) is positive and (recall that T 01(z) > 0 from second order

conditions)

∂

∂z
log

 ∂Fz|x (z,x)
∂z

∂Fz|x (z,x)
∂xi

 = T 001 (z)
T 01(z)

. (20)

DeÞne hi (z, x) = log

"
∂Fz|x (z,x)

∂z
∂Fz|x (z,x)

∂xi

#
. Since hi(z, x) satisÞes equation (20), then hi(z, x) must

be of the form

hi(z, x) = h0i + h1(z) + h2i(x)

where h0i is a constant and without loss of generality we make the normalizations that

h1(0) = 0 and h2i(0) = 0. h0i, h1(z), and h2i(x) are known empirically. Further, equation

(20) can be written as
dh1(z)

dz
=
T 001 (z)
T 01(z)

.

This equation has the solution

T 01 (z) = K1 exp (h1 (z)) (21)

where K1 is a constant of integration which must be positive since the second order condi-

tions imply that T 01 (z) > 0. This implies that

T1(z) = C1 +K1

zZ
0

exp(h1(z
0))dz0

where C1 is a new constant of integration. Thus, from data on the joint distribution of

(z, x) alone, we can identify the function T1 (z) up to two constants.

15If ∂g1∂xi
is not strictly positive, then the arguments below can be carried out separately on each region

where it does not change sign.
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This solution enables us to solve for g1(x). Substituting (21) into (19),

∂g1
∂xi

exp(h0i + h1(z) + h2i(x)) = K1 exp (h1(z)), i = 1, ..., nx

∂g1(x)

∂xi
= K1 exp(− h0i − h2i(x)), i = 1, ..., nx (22)

Thus, the partial derivative of g1 with respect to each xi i = 1, ..., nx is identiÞed. Further,

this deÞnes g1 (x) as the solution of a set of partial differential equations.The solution of

this set of equations is

g1 (x) = R1 +K1eg1 (x)
where R1 is a constant of integration and

eg1(x1, ..., xnx) = (23)
nxX
i=1

xiZ
−∞

exp(− h0i − h2i(x1, ..., x0i, ..., xnx))dx0i

+
nxX
k=2

(−1)k−1 ×

(1+nx−k)X
i1=1

(2+nx−k)X
i2=i1+1

· · ·
nxX

ik=ik−1+1


xi1R
−∞

· · ·
xikR
−∞

∂ exp
³
−h0i1−h2i1

³
x1,...,x0i1 ,...,x

0
ik
,...,xn

´´
∂xi2 ···∂xik

×

dx0i1 · · · dx0ik


 .

For the case where nx = dim (x) = 1, this implies

g1(x) = R1 +K1

xZ
−∞

exp(−h0 − h2(x0))dx0.

For the case where nx = 2,

g1(x1, x2) = R1 +K1

2X
i=1

xiZ
−∞

exp(− h0i − h2i(x0i, x−i))dx0i −

K1

x2Z
−∞

x1Z
−∞

∂ exp(−h01 − h21(x01, x02))
∂x2

dx01dx
0
2.
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Thus we can identify

eg1(x) = g1(x)−R1
K1

and

�T1(z) =
T1(z)− C1

K1
=

zZ
0

exp(h1(z
0))dz0 (24)

where eg1 (x) is given in (23) and the right hand sides of (23) and (24) are constructed
entirely from the data.

In this notation

ε = T1(z) + g1(x) = (C1 +R1) +K1( �T1(z) + eg1(x)).
If we substitute this into (17) we obtain

Fz|x (z, x) = Fε(C1 +R1 +K1( �T1(z) + eg1(x))). (25)

This identiÞes the distribution function Fε up to the unknown parameters C1, R1, and K1.

Using a normalization such as setting the median or the mean of ε to 0, we can identify the

constant C1 +R1 up to scale K1. Finally, since P 0 (z) can be estimated nonparametrically

from data on (z, P (z)) , for the purposes of our identiÞcation argument, we can treat it as

known. Hence, we can identify ϕ1(z) = C1+K1
�T1(z)+P

0 (z) up to the unknown constants

C1 and K1.

Separability plays an important role in this proof. Because of separability hi (z, x) is

separable in z and xmeaning that one more derivative (with respect to z or x) depends only

on z or x, and we can integrate back to recover ϕi (z) and gi (x) each up to two constants

(a location and scale parameter). Recall that hi (z, x) is itself formed from the ratio of

derivatives.
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In summary, the joint distribution of (z, x, P (z)) in conjunction with the additive struc-

ture contains enough information to identify the structure of preferences and the distribu-

tion of preferences in the population up to the three constants C1, R1, andK1. An algorithm

for implementing this procedure when nx = 1 is as follows. First estimate bP (z) , bP 0 (z) ,
and bFz|x (z, x) non-parametrically. Then calculate

bhi (z, x) = bh0i + bh1 (z) + bh2i (x)
= log

 ∂ bFz|x (z,x)
∂z

∂ bFz|x (z,x)
∂xi

 .
Use this to estimate beT 1 (z) = zR

0

exp
³bh1 (z0)´ dz0 and beg1 (x) using equation (23) . Then Þx a

value ofK1, sayK1 = 1. Also, ÞxR1 since C1 andK1 are not separately identiÞed. Then us-

ing (25) , for each Þxed C1 we can trace out an estimator of Fε by varying
³eT1 (z) + eg1 (x)´ .

Doing this we can Þx C1 so that the median (or mean) of ε is zero. Finally, estimators of

ϕ1 and g1 are bϕ1 (z) = C1 +K1
beT 1 (z) + bP 0 (z) and bg1 (x) = R1 +K1

beg1 (x) .
Analogous arguments on the demand side can be used to identify the structure of

technology and the distribution of productivities using data on (z, y, P (z)) . In particular,

if we deÞne

T2 (z) = P
0 (z)− ϕ2 (z)

we can identify ϕ2, g2, and fη up to a set of constants so that ϕ2 (z) = P
0 (z)−C2−K2

eT2 (z) ,
g2 (y) = R2 +K2eg2 (y) , Fη satisÞes an equation analogous to (25) , and eT2 (z) and eg2 (y)
are deÞned like eT1 (z) and eg1 (x) respectively. In these expressions, K2 > 0 from the second

order condition.
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4.3 Using Output and ProÞt Information

The lack of identiÞcation of the scale of the utility function is a classical result. We do

not observe utility so we can only identify level sets connected with utility. If we observe

utility or output or proÞts on the production side, we can determine the missing parameters

by using direct analysis of the utility or production or proÞt functions. Suppose proÞt is

observed directly and that proÞt associated with the Þrst order conditions (15) is

Π (z, y) = Φ2 (z) + z (η − g2 (y))− P (z) (26)

whereΦ2 (z) =
zR
0

ϕ2 (z
0) dz0.Direct estimation of (26) taking into account that characteristic

level z is chosen by a Þrm with observable and unobservable characteristics y and η, entails

identiÞcation of a correlated random coefficient model in a semiparametric setting.16 Using

(15) as a replacement function in the sense of Heckman and Robb (1985) or as a control

function in the sense of Blundell and Powell (2001), we may solve for η and substitute in

(26) to obtain

Π (z, y, η) = Φ2(z) + zP
0 (z)− zϕ2 (z)

so

ψ(z) = Π(z, y, η)− zP 0(z) =
zZ
0

ϕ2(z
0)dz0 − zϕ2(z).

But, since proÞts and prices are observed, ψ(z) is observed. We may estimate the derivative

of the right hand side
∂ψ(z)

∂z
= −zϕ02(z).

16See Heckman and Vytlacil (1998) for a discussion of correlated random coefficient models.
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Integrating up we obtain

C0 +

zZ
0

·
− 1
z0
∂ψ(z0)
∂z

¸
dz0 = ϕ2(z)

so we determine ϕ2(z) up to an additive constant. Combining this with the information

that ϕ2 (z) = P
0 (z)− C2 −K2

eT2 (z) provides determination of K2.

4.4 A General Parametric Approach

With additional (weak) parametric structure, we can determine the scaling constants with-

out using the output data. Using only demand, supply and pricing data, we can stay within

the Rosen program which does not contemplate using output data. We now assume that

there is a Þnite-dimensional vector space V which contains both ϕ1 and ϕ2 and which is

known ex ante. In other words, both ϕ1 and ϕ2 can be described by a Þnite set of para-

meters (a1, ..., aK) and (b1, ..., bK) that enter linearly. That is, ϕ1 (z) =
MP
k=0

akϕk (z) and

ϕ2 (z) =
MP
k=0

bkϕk (z) where ϕ0 (z) = 1 and the ϕk (z) , k = 1, ...,M , are known C
1 functions

and M is known. For example, V could be the set of polynomials of degree less than or

equal to M where M is a known integer.

To see how this restriction can be used to determine the scaling constants, consider the

supply side of the market. Using the arguments above P 0 (z) and eT1 (z) are functions of
the data alone. In large samples we can treat them as known. Then, using the deÞnition
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of T1 (z) and the restriction ϕ1 (z) =
MP
k=0

akϕk (z) we can write

eT1 (z) = −C1
K1

− 1

K1
P 0 (z) +

1

K1

MX
k=0

akϕk (z) (27)

=
a0 − C1
K1

− 1

K1
P 0 (z) +

1

K1

MX
k=1

akϕk (z) .

This equation has M + 3 unknown parameters, (C1, K1, ak, k = 0, ...,M). If we considier

M + 3 values of z, we have M + 3 equations. Can this system be inverted to solve for

the parameters? C1 and a0 are not independently identiÞed since ϕ0 (z) = 1. If P
0 (z) is

an element of V, then the system of equations has rank M + 1 since P 0 (z) is then linearly

dependent on the functions ϕk. This is precisely the problem that worried Brown and Rosen

(1982). However, if P 0 (z) is not an element of V then P 0 (z) is linearly independent of the

functions ϕk. In this case, the system of equations has rank M + 2 and K1 is identiÞed.

Theorem 2 proves that generically P 0 (z) is not an element of V and thus the ak, k = 1, ...,M

and K1 are identiÞed. Thus, the Brown and Rosen point is generically irrelevant within

this ßexible class of parametric models.

Theorem 2 Generically with respect to any of the parameter pairs in Theorem 1, no so-

lution P 0 of the equilibrium equation belongs to V , and ϕ1, ϕ2 are identiÞed up to additive

constants

Proof. As shown above, we have:

eT1 (z) = −P 0 (z)
K1

− C1
K1

+
ϕ1 (z)

K1

eT2 (z) = P 0 (z)
K2

− C2
K2

− ϕ2 (z)
K2

.
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Arguing as in Theorem 1, we can show that generically P 0 /∈ V. As a consequence, there
must be some continuous function f such that

R
Z
f (z)h (z) dz = 0 for all h ∈ V, butR

Z
f (z)P 0 (z) dz 6= 0. Applying such a function to both sides of the preceding equations, we

obtain: Z
Z

eT1 (z) f (z) dz = −1
K1

Z
Z

P 0 (z) f (z) dz

Z
Z

eT2 (z) f (z) dz = 1

K2

Z
Z

P 0 (z) f (z) dz

which determines K1 and K2. Plugging back into the equations, we Þnd that ϕ1 and ϕ2 are

determined up to the additive constants C1 and C2.

This theorem suggests an estimation strategy for recoveringK1 (orK2) when it is known

that ϕ1 and/or ϕ2 belong to a Þnite-dimensional space. First estimate P
0 (z) and eT 01 (z) by

nonparametric methods. Then estimate the sample analogue of equation (27) . Thus, for

a very general class of Þnite dimensional models including polynomial models, we obtain

identiÞcation of the
¡
ϕ1, ϕ2

¢
functions from single market data.

Thus far we have considered identiÞcation only using data from one side of the market or

the other. Sometimes, information on the equilibrium pairs is available. We next consider

the information available in the joint densities.

4.5 Is There Identifying Information In The Joint Densities?

So far we have only considered identiÞcation using data from one side of the market. We

have used information on the densities of (x, z) and (y, z) and have shown how to identify

everything except K1 and K2.We obtain Ci+RI
Ki

by a normalization of the errors to mean or

median zero, but cannot separately identify Ci
Ki
and Ri

Ki
. In the parametric case covered by
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Theorem 2, we identify K1 and K2. There is one potentially powerful piece of information

that we have not yet used; the joint distribution of (x, y, z) . We now consider whether

additional identifying information can be extracted from this joint density. This joint

distribution may have identifying power because the distribution of z conditional on x is

not the same as the distribution of z conditional on x and y.Where there is sorting on both

sides of the market, this full joint density contains information that might be exploited.17

We show that there is no more identifying information available beyond what is in the

marginal densities.

Recall the Þrst-order conditions from the previous section. On the worker side we have

ε = T1 (z) + g1 (x) and on the Þrm side we have η = T2 (z) + g2(y). The joint density

of (x, y, ε, η) is fx (x) fy (y) fε (ε) fη (η) , since by assumption x, y, ε, and η are jointly

independent. Note that this independence does not hold conditional on characteristic z.

The hedonic equilibrium maps the joint distribution of (x, y, ε, η) to the joint distribution of

(x, y, ε, η, z) . This mapping does not change the distribution of (x, y, ε, η) . This distribution

is exogenous.18

To derive the restrictions that equilibrium places on the observable data; i.e. the joint

distribution of (x, y, z) , note that the dimension of random vector (x, y, ε, η) is nx+ny +2

where nx is the dimension of x, ny is the dimension of y, and ε and η are each of dimension

1. The equilibrium maps this random vector into the observable random vector (x, y, z) .

Suppose that we ignore equilibrium and assume that worker and Þrm choices are made

independently of each other. Let z1 be the choice of workers and z2 the choice of Þrms.

17Epple (1987) discusses the potential importance of using the full joint density but his discussion is not

complete.
18A more complete dynamic analysis would model how this marginal distribution changes over time.
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Then the joint density without imposing equilibrium is

fx (x) fy (y) fε (T1 (z1) + g1 (x)) fη (T2 (z2) + g2 (y))T
0
1 (z1)T

0
2 (z2)

where T 01(z1) and T
0
2(z2) are the Jacobians of transformation for z1 and z2 respectively.

Imposing the equilibrium condition (z1 = z2 = z) determines the density of (x, y)

conditional on z :

fxy|z (x, y, z)

=
fx (x) fy (y) fε (T1 (z) + g1 (x)) fη (T2 (z) + g2 (y))T

0
1 (z)T

0
2 (z)µR

X
fx (x0) fε (T1 (z) + g1 (x0))T 01 (z) dx0

¶ÃR
Y
fy (y0) fη (T2 (z) + g2 (y0))T 02 (z) dy0

!

=
fx (x) fy (y) fε (T1 (z) + g1 (x)) fη (T2 (z) + g2 (y))T

0
1 (z)T

0
2 (z)

(fz (z))
2

where fz (z) is the marginal density of z and by the equilibrium condition (5) we have

fz(z) =

Z
X

fx (x
0) fε (T1 (z) + g1 (x0))T 01 (z) dx

0 (28)

=

Z
Y

fy (y
0) fη (T2 (z) + g2 (y0))T 02 (z) dy

0.

Multiplying through by the marginal density, the joint density of (x, y, z) is

fxyz (x, y, z) =
fx (x) fy (y) fε (T1 (z) + g1 (x)) fη (T2 (z) + g2 (y))T

0
1 (z)T

0
2 (z)

fz (z)
. (29)

In the appendix we prove that there is no more identifying information in the joint densities

than in the marginal densities.

Theorem 3 Joint density (29) provides no more identifying information than the marginal

densities fxz (x, z) and fyz (y, z) .
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Proof. See Appendix A.

Note however that these conditions can be used to improve the efficiency of estimation.

DeÞne eε = ε
K1
and eη = η

K2
and deÞne feε and feη to be the respective densities of the scaled

error terms as in the proof of Theorem 3. From the arguments in the previous section feε
and feη are identiÞed. If we substitute all identiÞed parameters into (28) we can write the
equilibrium condition in terms of them. We obtainZ

X

fx (x
0) feε

³
τ 1 + eT1 (z) + eg1 (x0)´ eT 01 (z) dx0 = (30)

Z
Y

fy (y
0) feη

³
τ 2 + eT2 (z) + eg2 (y0)´ eT 02 (z) dy0

where as in the appendix we deÞne τ 1 = C1+R1
K1

and τ 2 = C2+R2
K2

. In empirical applications,

each of the parameters denoted by �∼ � can be estimated and this equation establishes

a functional relationship between the supply and demand side parameter estimates. This

relationship can be used to improve the efficiency of estimation. Since the slope of the

equilibrium price P 0 (z) generally must also be estimated from data on (z, P (z)), a similar

argument can be used to improve efficiency in estimating it since its estimate must �Þt�

the data and satisfy the equilibrium equation (28) . We develop these efficiency gains in

another paper.

5 Instrumental Variables

Theorems 1 and 2 and the arguments in Section 4 show how separability and the inde-

pendence between x and ε can be used to identify the structure of the hedonic model.

The nonlinearity inherent in the model and weak parametric structure were then used
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to recover the parameter K1. Much of the argument does not rely on the independence

assumption. In this section, we relax the independence assumption and show that when

E (ε |x) = 0 and we impose general parametric structure on ϕ1 and g1, then the parameters
of the model can be identiÞed by the method of instrumental variables. Nonlinearity in

the equilibrium hedonic model is crucial for this identiÞcation result. Theorem 5 below

justiÞes the application of instrumental variables for general parametric versions of model

(14). Instrumental variables are generically valid. The exclusion restrictions we exploit to

show this identiÞcation do not use variables from the other side of the market which are

endogeneous because of the sorting condition. Rather, the exclusion restrictions we exploit

arise naturally from the parametric structure of the model and the nonlinearity emerging

from the equilibrium pricing equation.

We analyze the supply side Þrst order condition

P 0 (z) = ϕ1 (z) + g1 (x)− ε (31)

under the conditions stated in section 4 but with (x, ε) ∼ fxε (x, ε) where fxε is a strictly
positive density. We assume E (ε |x) = 0 and E (g21 (x)) <∞.We also assume that (y, η) ∼
fyη (y, η) .

The literature reviewed in Section 3 establishes that in a single market setting there are

no exclusion restrictions that justify the use of demand side variables (y) as instrumental

variables in estimating this equation. Variables from the demand side of the market are

stochastically dependent on ε given z. However, instruments for ϕ1(z) are still available.

If E (ϕ1(z) |x) is not collinear with g1(x), then it is possible to construct E (ϕ1(z) |x) and
use it as an instrument for ϕ1(z) in (31). Kahn and Lang (1988) make this point by way

of an example for a particular functional form. In this section we establish that generically
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E (ϕ1 (z) |x) is a valid instrument for any arbitrary parametric functional form that satisÞes
the conditions required to prove Theorem 5. This result highlights the main themes of our

paper: that the hedonic model is intrinsically nonlinear, that nonlinearity is an important

source of identifying information and that intuitions developed in linear econometrics when

applied to a nonlinear model are misleading. We can use our result to justify the choice of

parametric nonlinear IV as in Amemiya (1975).

Theorem 4 Generically with respect to any of the parameter pairs (ϕ1, ϕ2) , (g1, g2) , and

(fxε, fyη) , the equilibrium equations have no solution of the form P 0 (z) = a1+b1ϕ1 (z), nor

any solution of the form P 0 (z) = a2 + b2ϕ2 (z) where a1, a2, b1, and b2 are constants.

Proof. See Appendix A.

This theorem extends Theorem 1 to the case where ε is not independent of x. Using

this result we can show the following.

Theorem 5 Generically with respect to any parameter pairs in Theorem 4, E (ϕ1 (z) |x)
cannot be collinear with g1 (x) .

Proof. See Appendix A.

As a consequence of this theorem, we can use E (ϕ1 (z) |x) as an instrument for ϕ1(z)
using parametric nonlinear IV (Amemiya, 1975). As an example, consider the case where

it is known that ϕ1 (z) = ϕ0 + ϕ1z + ϕ2z
2 and g1 (x) = g1 (x, θ) where θ is a vector of

parameters. In this case, Þrst estimate bP 0 (z) . Then estimate the regressions E (z |x) and
E (z2 |x) . Finally estimate

bP 0 (z) = ϕ0 + ϕ1z + ϕ2z2 + g1 (x, θ)− ε (32)
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using E (z |x) and E (z2 |x) as instruments for z and z2. While these instruments are
functions of x, Theorem 5 guarantees that they are linearly independent of g1 (x, θ) .

More generally, using nonlinear IV we can estimate the parameters generating ϕ1(z) and

the parameters generating g1 (x, θ). The separability implies that we can vary E (ϕ1 (z) |x)
separately from g1(x) and hence identify both.

We conjecture that this condition also justiÞes the application of nonparametric IV

(Darolles et. al, 2001, Florens, Heckman, Meghir and Vytlacil, 2000, or Newey and Powell,

2000) when these parametric restrictions are not imposed. However, as currently formulated

those papers require an exclusion restriction which is not intrinsic to the model and it is

necessary to extend their arguments to impose Theorem 5 as an identifying condition in

the estimation. This is a task we leave for the future.

6 Summary, Conclusions and Proposed Extensions

This paper considers identiÞcation and estimation of technology and preference parameters

using data on choices made in a single hedonic market. The general hedonic problem is

formulated, a normal-linear-quadratic version of the model is developed and its advantages

and peculiarities are exposed.

Standard criticisms directed against Sherwin Rosen�s two stage estimation procedure

for hedonic models are shown to be misleading. Generically, a separable nonparametric

version of the linear-quadratic-normal model is identiÞed up to levels. When it is not

identiÞed, the pricing function alone identiÞes technology or preference parameters. With

mild functional form assumptions, the model is completely identiÞed in both the case where

ε is independent of x and under the weaker assumption that E (ε |x) = 0. Two estimation
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procedures are presented: (a) nonparametric transformation methods, and (b) IV in a

general nonlinear (but parametric) setting.

The analysis developed here applies to closely related problems of estimating preferences

and technology when taxes are set optimally (Mirrlees, 1971 and 1986), when monopolists

price discriminate (Mussa and Rosen, 1978; Wilson, 1993) and for the standard problem of

taxes and labor supply (Heckman, 1974; Hausman 1980) when tax schedules are nonlinear

and continuous.

Our presentation of the hedonic model is for the vector case. Yet our basic proofs

are only for the scalar case. Extensions for the scalar nonseparable and the vector cases

are underway in joint work with Rosa Matzkin. That work also considers the case of

identiÞcation for a nonseparable hedonic model with vector attributes when some of the

attributes are missing (Heckman, Matzkin and Nesheim, 2002).
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Appendix A Proofs

Recall that we have denoted by X and Y the supports of fx and fy, so that we may assume
that x ∈ X and y ∈ Y. Denote by Z the domain of z, so that z ∈ Z ; both ϕ1 and ϕ2

map Z into R. For the sake of simplicity, it will be assumed that Z is an interval, possibly
unbounded.

For a rectangle A ⊆ Rn, denote by C1 (A) the space of continuously differentiable19

functions on A endowed with the following topology: ϕn → ϕ iff ϕn converges to ϕ and

the derivatives ϕ0n converge to ϕ
0, uniformly on all compact subsets of A. It is known that

this topology turns C1 into a complete metric space.20 C1 (Z) is the natural space for ϕ1
and ϕ2. C

1 (X ) and C1 (Y) are the natural spaces for g1 and g2 respectively.
For an interval A ⊆ R, denote by C21 (A) the space of twice differentiable functions f

on A, satisfying R
A
f = 1 and f > 0 everywhere on A, with f, f 0, and f 00 continuous and

uniformly bounded. It is endowed with the topology of uniform convergence of f, f 0, f 00

which turns it into a complete metric space. C21 (E) and C21 (H) are the natural spaces for
fε and fη respectively.

Denote by C01 (X ) the space of continuous functions f such that
R
X
fhx = 1 and f > 0

everywhere on X , endowed with the uniform norm, which turns it into a complete metric

space. This is the natural space for f0x where we recall that f
0
x = fx /hx .

Finally, denote by C01 (Y) the space of continuous functions f such that
R
Y
fhy = 1 and

f > 0 everywhere on Y, endowed with the uniform norm, which turns it into a complete

metric space. This is the natural space for f0y where we recall that f
0
y = fy /hy .

19If z0 ∈ Z is the left (or right) extremity of Z, a derivative at z0 will be understood to mean a right (or
left) derivative.
20And, even a Banach space if Z is compact.
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We now restate Theorem 1 more precisely:

Theorem 1 Restated Generically with respect to any of the parameters pairs (ϕ1, ϕ2) ∈
C1 (Z)×C1 (Z) , (fε, fη) ∈ C21 (E)×C21 (H) , (g1, g2) ∈ C1 (X )×C1 (Y) ,

¡
f0x , f

0
y

¢ ∈ C01 (X )×
C01 (Y) the equilibrium equations have no solution of the form P 0 (z) = a1 + b1ϕ1 (z), nor

any solution of the form P 0 (z) = a2 + b2ϕ2 (z) , where a1, a2, b1, and b2 are constants.

Proof of Theorem 1:

Set
¡
ϕ1, ϕ2, fε, fη, g1, g2, f

0
x , f

0
y

¢
= θ and C1 (Z)×C1 (Z)×C21 (E)×C21 (H)×C1 (X )×

C1 (Y)× C01 (X )× C01 (Y) = Θ.
DeÞne a map Φ : Θ×R2 → C0 (R) derived from equilibrium condition (16) by substi-

tuting P 0(z) = a1 + b1ϕ1(z)

Φ (θ, a1, b1) (z) = (1− b1)ϕ01 (z)
Z
X

fε(−a1 + (1− b1)ϕ1 (z) + g1 (x))f0x (x)hx (x) dx

− (b1ϕ01 (z)− ϕ02 (z))
Z
Y

fη (a1 + b1ϕ1 (z)− ϕ2 (z) + g2 (y)) f0y (y)hy (y) dy.

Saying that the equilibrium equation has a solution of the form P 0 (z) = a1+b1ϕ1 (z) means

that there is a pair (a1, b1) ∈ R2 such that Φ (θ, a1, b1) = 0 for every z. We want to show
that generically in θ this cannot happen.

To do so, Þx three points z1, z2, and z3 in Z, pairwise distinct, and deÞne a map
Ψ : Θ×R2 → R3 by:

Ψ (θ, a1, b1) = (Φ (θ, a1, b1) (zi))1≤i≤3 .

We will show that the map Ψ is C1 and that its derivative DΨ, which is a linear map from

Θ × R2 into R3, is onto. We will then apply Thom�s transversality theorem which states

that if Ψ = 0 implies that DΨ is onto, then generically in θ, Ψ (θ, a1, b1) is transversal to
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the origin. This means that generically in θ either

ª (θ, a1, b1) 6= 0

or

[Ψ (θ, a1, b1) = 0] =⇒
·µ
∂Ψ

∂a1
(θ, a1, b1) ,

∂Ψ

∂b1
(θ, a1, b1)

¶
is onto

¸
But the linear map

³
∂Ψ
∂a1
, ∂Ψ
∂b1

´
can never be onto, because it sends a two dimensional space

into a three dimensional one. It follows that Ψ (θ, a1, b1) 6= 0 generically.
Lemma: The map Ψ is C1.

Proof: The Gateaux derivative DΨ of Ψ at (θ, a1, b1) is easily expressed. Set δθ =¡
δϕ1, δϕ2, δfε, δfη, δg1, δg2, δf

0
x , δf

0
y

¢
, where the components of δθ belong to the appropriate

vector spaces, δfε, δfη, δf0x , δf
0
y being subject to the additional requirement of integrating

to zero. Similarly, set (δa1, δb1) ∈ R2, and compute the Þrst variation of Ψ:

DΨ (δθ, δa1, δb1) = (A-1) DΨ (δϕ1) +DΨ (δϕ2) +DΨ (δfε) +DΨ (δfη)+

DΨ (δg1) +DΨ (δg2) +DΨ (δf
0
x) +DΨ

¡
δf0y
¢
+DΨ (δa1) +DΨ (δb1)


i=1,2,3

where we use the notation

DΨ (δϕ1) =

δϕ01(zi)

 (1− b1)
R
X
fε(−a1 + (1− b1)ϕ1(zi) + g1(x))f0x(x)hx (x) dx

−b1
R
Y
fη(a1 + b1ϕ1(zi)− ϕ2(zi) + g2(y))f0y (y)hy (y) dy

+

δϕ1(zi)


(1− b1)2ϕ01(zi)

R
X
f 0ε(−a1 + (1− b1)ϕ1(zi) + g1(x))f0x(x)hx (x) dx

−b21ϕ01(zi)
R
Y
f 0η (a1 + b1ϕ1(zi)− ϕ2(zi) + g2(y)) f0y (y)hy (y) dy

+b1ϕ
0
2(zi)

R
Y
f 0η (a1 + b1ϕ1(zi)− ϕ2(zi) + g2(y)) f0y (y)hy (y) dy




i=1,2,3
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DΨ (δϕ2) = δϕ02(zi)
R
Y
fη(a1 + b1ϕ1(zi)− ϕ2(zi) + g2(y))f0y (y)hy (y) dy

+δϕ2(zi) (b1ϕ
0
1(zi)− ϕ02(zi))

R
Y
f 0η(a1 + b1ϕ1(zi)− ϕ2(zi) + g2(y))f0y (y)hy (y) dy


i=1,2,3

DΨ (δfε) =(1− b1)ϕ01 (zi)Z
X

δfε(−a1 + (1− b1)ϕ1 (zi) + g1 (x))f0x (x)hx (x) dx

i=1,2,3

DΨ (δfη) =− (b1ϕ01 (zi)− ϕ02 (zi))Z
Y

δfη (a1 + b1ϕ1 (zi)− ϕ2 (zi) + g2 (y)) f0y (y)hy (y) dy

i=1,2,3

DΨ (δg1) =(1− b1)ϕ01 (zi)Z
X

f 0ε(−a1 + (1− b1)ϕ1 (zi) + g1 (x))δg1 (x) f0x (x)hx (x) dx

i=1,2,3

DΨ (δg2) =− (b1ϕ01 (zi)− ϕ02 (zi))Z
Y

f 0η (a1 + b1ϕ1 (zi)− ϕ2 (zi) + g2 (y)) δg2 (y) f0y (y)hy (y) dy

i=1,2,3

DΨ
¡
δf0x
¢
=(1− b1)ϕ01 (zi)Z

X

fε(−a1 + (1− b1)ϕ1 (zi) + g1 (x))δf0x (x)hx (x) dx

i=1,2,3

DΨ
¡
δf0y
¢
=− (b1ϕ01 (zi)− ϕ02 (zi))Z

Y

fη (a1 + b1ϕ1 (zi)− ϕ2 (zi) + g2 (y)) δf0y (y)hy (y) dy

i=1,2,3
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DΨ (δa1) =δa1
 (b1 − 1)ϕ01 (zi)

R
X
f 0ε(−a1 + (1− b1)ϕ1(zi) + g1(x))f0x(x)hx (x) dx

− (b1ϕ01 (zi)− ϕ02 (zi))
R
Y
f 0η(a1 + b1ϕ1(zi)− ϕ2(zi) + g2(y))f0y (y)hy (y) dy



i=1,2,3

DΨ (δb1) =
δb1



−ϕ01 (zi)
R
X
fε(−a1 + (1− b1)ϕ1(zi) + g1(x))f0x(x)hx (x) dx

−ϕ01 (zi)
R
Y
fη(a1 + b1ϕ1(zi)− ϕ2(zi) + g2(y))f0y (y)hy (y) dy

−ϕ1 (zi) (1− b1)ϕ01 (zi)
R
X
f 0ε(−a1 + (1− b1)ϕ1(zi) + g1(x))f0x(x)hx (x) dx

−ϕ1 (zi) b1ϕ01 (zi)
R
Y
f 0η(a1 + b1ϕ1(zi)− ϕ2(zi) + g2(y))f0y (y)hy (y) dy

+ϕ1 (zi)ϕ
0
2 (zi)

R
Y
f 0η(a1 + b1ϕ1(zi)− ϕ2(zi) + g2(y))f0y (y)hy (y) dy




i=1,2,3

Since the functions fε and fη are uniformly bounded, as are their Þrst derivatives, all

the integrals in these formulas are well-deÞned. Since the functions fε and fη are uniformly

continuous, as are their Þrst derivatives, these integrals depend continuously on (a1, b1) and

on θ. So the function Ψ is C1.¥

This ends the proof of the lemma. To prove the theorem, we have to vary each pair of

parameters singly. This amounts to considering, instead of Ψ, the partial maps obtained

by keeping all parameter values Þxed except two, and showing that the corresponding

derivative is onto. This gives four different cases.

Genericity with respect to (ϕ1, ϕ2) We consider the partial map Ψ (ϕ1, ϕ2, a1, b1)

and the derivative of the partial map DΨ(δϕ1, δϕ2, δa1, δb1), where it is understood that

all the other parameters fε, fη, g1, g2, f0x , f
0
y are set at Þxed values. Hence the derivative of
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the partial map is given by (A− 1) with all variations other than (δϕ1, δϕ2, δa1, δb1) set to
zero. The derivative of the partial map is

DΨ (δϕ1, δϕ2, δa1, δb1) =

δϕ01(zi)

 (1− b1)
R
X
fε(−a1 + (1− b1)ϕ1(zi) + g1(x))f0x(x)hx (x) dx

−b1
R
Y
fη(a1 + b1ϕ1(zi)− ϕ2(zi) + g2(y))f0y (y)hy (y) dy

+

δϕ1(zi)


(1− b1)2ϕ01(zi)

R
X
f 0ε(−a1 + (1− b1)ϕ1(zi) + g1(x))f0x(x)hx (x) dx

−b21ϕ01(zi)
R
Y
f 0η (a1 + b1ϕ1(zi)− ϕ2(zi) + g2(y)) f0y (y)hy (y) dy

+b1ϕ
0
2(zi)

R
Y
f 0η (a1 + b1ϕ1(zi)− ϕ2(zi) + g2(y)) f0y (y)hy (y) dy

+


i=1,2,3



 δϕ02(zi)
R
Y
fη(a1 + b1ϕ1(zi)− ϕ2(zi) + g2(y))f0y (y)hy (y) dy

+δϕ2(zi) (b1ϕ
0
1(zi)− ϕ02(zi))

R
Y
f 0η(a1 + b1ϕ1(zi)− ϕ2(zi) + g2(y))f0y (y)hy (y) dy


+DΨ (δa1) +DΨ (δb1)


i=1,2,3

Since the points zi are pairwise distinct, we can choose the (δϕ1, δϕ2) so that

(δϕ1(zi), δϕ2(zi)) = (0, 0)

for all i. Choosing in addition (δa1, δb1) = (0, 0) cancels all the terms on the right-hand side

except the Þrst and third ones. Since the remaining integrals are non-zero, the coefficients

of δϕ01(zi) and δϕ
0
2(zi) cannot vanish together. So the image by DΨ of vectors such that

(δϕ1(zi), δϕ2(zi)) = (0, 0) and (δa1, δb1) = (0, 0) must be all of R
3.

Saying that DΨ is onto means that the partial map Ψ is transversal to every point in

R3, in particular to the origin. By Thom�s transversality theorem, generically in (ϕ1, ϕ2),
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the partial map

(a1, b1)→ Ψ (ϕ1, ϕ2, a1, b1)

is transversal to the origin. This means that generically in (ϕ1, ϕ2) eitherΨ (ϕ1, ϕ2, a1, b1) 6=
0 or Ψ (ϕ1, ϕ2, a1, b1) = 0 and the partial derivative Da1,b1Ψ is onto. The latter case is

impossible since Da1,b1Ψ sends a two-dimensional space into a three-dimensional one. So

generically Ψ (ϕ1, ϕ2, a1, b1) 6= 0.
We have thus proved that, generically in (ϕ1, ϕ2) , we must have Φ (ϕ1, ϕ2, a1, b1) (zi) 6= 0

for one i at least. This implies thatΦ (ϕ1, ϕ2, a1, b1) (z) cannot be identically zero, and hence

that the equilibrium equation does not have a solution of the form P 0 (z) = a1 + b1ϕ1 (z) .

A parallel argument shows that, generically in (ϕ1, ϕ2), the equilibrium equation does not

have a solution of the form P 0 (z) = a2 + b2ϕ2 (z) . Since the intersection of two generic

properties is generic, the theorem follows for the pair (ϕ1, ϕ2).¥

Genericity with respect to (fε, fη) We consider the partial map Ψ (fε, fη, a1, b1),

where it is understood that all the other parameters are pegged to Þxed values. The

derivative of the partial map is given by

DΨ (δfε, δfη, δa1, δb1) =
(1− b1)ϕ01 (zi)

R
X
δfε(−a1 + (1− b1)ϕ1 (zi) + g1 (x))f0x (x)hx (x) dx

− (b1ϕ01 (zi)− ϕ02 (zi))
R
Y
δfη (a1 + b1ϕ1 (zi)− ϕ2 (zi) + g2 (y)) f0y (y)hy (y) dy

+DΨ (δa1) +DΨ (δb1)


i=1,2,3

Introduce the distribution functions µ1 and µ2 of the random variables g1 and g2. They are

probability measures on the real line. Setting (δa1, δb1) = (0, 0), the above formula can be

59



rewritten as:

DΨ (δfε, δfη) = (1− b1)ϕ01 (zi)
R
δfε(−a1 + (1− b1)ϕ1 (zi) + t)dµ1−

(b1ϕ
0
1 (zi)− ϕ02 (zi))

R
δfη (a1 + b1ϕ1 (zi)− ϕ2 (zi) + t) dµ2


i=1,2,3

Setting ci = −a1+(1− b1)ϕ1 (zi) and di = a1+ b1ϕ1 (zi)−ϕ2 (zi), and denoting by µi1 and
µi2 the translates of µ1 and µ2 by −ci and −di we rewrite the partial derivative again as:

DΨ (δfε, δfη) =

·
(1− b1)ϕ01 (zi)

Z
δfε(t)dµ

i
1 − (b1ϕ01 (zi)− ϕ02 (zi))

Z
δfη (t) dµ

i
2

¸
i=1,2,3

.

We pick the probability measures µi1 and µ
i
2, i = 1, 2, 3, so they are pairwise different, and

the values of the z, so that ϕ01 (zi) and ϕ
0
2 (zi) do not vanish. Then the coefficients of

the integrals cannot vanish simultaneously, and the right-hand side clearly spans R3. We

conclude as in the preceding case by applying Thom�s transversality theorem.¥

Genericity with respect to
¡
f0x , f

0
y

¢
We consider the partial map Ψ

¡
f0x , f

0
y , a1, b1

¢
,

where it is understood that all the other parameters are pegged to Þxed values. The partial

derivative is given by

DΨ(δf0x , δf
0
y , δa1, δb1) =

(1− b1)ϕ01 (zi)
R
X
fε(−a1 + (1− b1)ϕ1 (zi) + g1 (x))δf0x (x)hx (x) dx

− (b1ϕ01 (zi)− ϕ02 (zi))
R
Y
fη (a1 + b1ϕ1 (zi)− ϕ2 (zi) + g2 (y)) δf0y (y)hy (y) dy

+DΨ (δa1) +DΨ (δb1)


i=1,2,3
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We claim that the partial map obtained by setting (δa1, δb1) = 0 is onto. At these values

DΨ(δf0x , δf
0
y ) = (1− b1)ϕ01 (zi)

R
X
fε(−a1 + (1− b1)ϕ1 (zi) + g1 (x))δf0x (x)hx (x) dx

− (b1ϕ01 (zi)− ϕ02 (zi))
R
Y
fη (a1 + b1ϕ1 (zi)− ϕ2 (zi) + g2 (y)) δf0y (y)hy (y) dy


i=1,2,3

.

We choose the zi so that the ϕ01 (zi) and the ϕ
0
2 (zi) do not vanish, and so that the func-

tions fε(−a1+(1− b1)ϕ1 (zi)+g1 (x)) and fη (a1 + b1ϕ1 (zi)− ϕ2 (zi) + g2 (y)) are pairwise
different on a set of positive measure. The claim then follows, and genericity obtains as in

the preceding cases.¥

Genericity with respect to (g1, g2) We consider

DΨ(δg1, δg2, δa1, δb1) =
(1− b1)ϕ01 (zi)

R
X
f 0ε(−a1 + (1− b1)ϕ1 (zi) + g1 (x))δg1 (x) f0x (x)hx (x) dx

− (b1ϕ01 (zi)− ϕ02 (zi))
R
Y
f 0η (a1 + b1ϕ1 (zi)− ϕ2 (zi) + g2 (y)) δg2 (y) f0y (y)hy (y) dy

+DΨ (δa1) +DΨ (δb1)


i=1,2,3

and we argue as in the preceding case.

Proof of Theorem 3:

The strategy of the proof is to determine whether taking the objects determined from

the marginal densities as demonstrated in the previous subsection and plugging them into

(29) provides any more information about the parameters that are not identiÞed.
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First we write all the unknown objects in (29) in terms of known functions. We have

T1 (z) = K1
�T1 (z) + C1; T2 (z) = K2

�T2 (z) + C2

feε (eε) = fε (K1�ε)K1; feη (eη) = fη (K2eη)K2

g1 (x) = K1eg1 (x) +R1; g2 (x) = K2eg2 (x) +R2
where

�ε (z, x) =
ε

K1
= �T1 (z) + eg1 (x) + C1 +R1

K1eη (z, x) =
η

K2
= �T2 (z) + eg2 (x) + C2 +R2

K2
.

and we deÞne τ 1 = C1+R1
K1

and τ 2 = C2+R2
K2

. All objects denoted with �∼ � are known from
the analysis of the marginal densities of (z, x) and (z, y) . Additionally, τ 1 and τ 2 are known

from imposing a mean or median 0 restriction on eε and eη respectively.
Substituting these expressions into (29) we obtain

f (x, y, z) =
fxfyfeε

³eT1 (z) + eg1 (x) + τ 1´ eT 01 (z) feη ³eT2 (z) + eg2 (y) + τ 2´ eT 02 (z)R
X
fx (x0) feε

³eT1 (z) + eg1 (x0) + τ 1´ eT 01 (z) dx0 .

It is apparent from the expression for the joint density that it conveys no new identifying

information on K1 and K2 beyond what is obtained from the marginal distribution, since

all terms involving these two parameters cancel and K1 and K2 do not explicitly appear in

the Þnal expression.

Proof of Theorem 4:

As in Theorem 1, we assume there are some continuous probability densities hx and

hy with hx > 0 on X and hy > 0 on Y such that fxε /hx and fyη /hy are bounded away
from zero and inÞnity on X and Y. Note that this will always be the case if X and Y are
compact intervals. Set f0xε = fxε /hx and f

0
yη = fyη /hy .
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The notation and parameter spaces are as in Theorem 1 except that now the natural

spaces for f0xε and f
0
yη are C

2
1 (X × E) and C21 (Y ×H) . Consider the partial map

Ψ
¡
f0xε, f

0
yη, a1, b1

¢
= (1− b1)ϕ01 (z)
R
X
f0xε(x,−a1 + (1− b1)ϕ1 (z) + g1 (x))hx (x) dx−

(b1ϕ
0
1 (z)− ϕ02 (z))

R
Y
f0ηy (y, a1 + b1ϕ1 (zi)− ϕ2 (zi) + g2 (y))hy (y) dy


i=1,2,3

and its derivative

DΨ (δfxε, δfyη, δa1, δb1) =
(1− b1)ϕ01 (zi)

R
X
δf0xε(x,−a1 + (1− b1)ϕ1 (zi) + g1 (x))hx (x) dx−

(b1ϕ
0
1 (zi)− ϕ02 (zi))

R
Y
δf0yη (y, a1 + b1ϕ1 (zi)− ϕ2 (zi) + g2 (y))hy (y) dy

+DΨ (δa1) +DΨ (δb1)


i=1,2,3

We need to show that the right-hand side spans R3. Consider perturbations of the type

δfxε (x, ε) = δfxε (x
0, ε) for all x, x0 and δfyη (y, η) = δfyη (y0, η) for all y, y0. Then argue as

in the proof of genericity with respect to (fε, fη) as in Theorem 1. Then we can conclude the

hypothesis of Theorem 4 as in the preceding theorems by applying Thom�s transversality

theorem.¥

Proof of Theorem 5:

By assumption,

P 0 (z)− ϕ1 (z) = g1 (x)− ε.

Because of the second-order condition P 00 (z)− ϕ01 (z) < 0 so the left side can be inverted
uniquely (globally) to obtain

z = Λ (g1 (x)− ε)
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where by the implicit function theorem Λ0 (q) = [P 00 (Λ (q))− ϕ01 (Λ (q))]−1 . DeÞne the
mapping

h = ϕ1 (Λ (g1 (x)− ε))
x = x,

where

Ez (ϕ1 (z) |x) = Ez (h |x) =
Z
E

ϕ1 (Λ (g1 (x)− ε)) fε|x (ε |x) dε.

This conditional expectation is a functional of g1.Wemust prove that genericallyEz (ϕ1 (z) |x)
is not a linear function of g1 (x) . We will show that, generically with respect to f0xε, if the

conditional expectation is a linear function of g1 (x) then P 0 (z) = a1+b1ϕ1 (z) is a solution

of the equilibrium equation. Generically, this cannot happen, and the result follows.

Assume that Ez (ϕ1 (z) |x) is a linear function of g1 (x) . Pick a direction δg1, and deÞne
a function q(t) on the real line by

q (t) =

Z
E

[ϕ1 (Λ (g1 (x) + t δg1 (x)− ε))− ϕ1 (Λ (g1 (x)− ε))] fε|x (ε |x) dε.

Since Ez (ϕ1 (z) |x) is a linear function of g1 (x) , then q (t) is linear, so that q00 (0) = 0.

Performing the computations, we get the equation:

[δg1 (x)]
2

Z
E

λ (g1 (x)− ε) fε (ε |x) dε = 0

where the composite function λ =
£
(ϕ001 (P

00 − ϕ01)− ϕ01 (P 000 − ϕ001)) (P 00 − ϕ01)−3
¤ ◦ Λ. This

reduces to: Z
E

λ (g1 (x)− ε) fε|x (ε |x) dε = 0 a.e x
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which is the same as Z
E

λ (ε1) fε|x (g1 (x)− ε1 |x) dε1 = 0 a.e x.

The function λ has the property that, a.e. x, it integrates to zero against the density

fε|x (g1 (x)− ε1 |x) . This can only be the case either λ equals zero or fε|x (g1 (x)− ε1 |x)
does not depend on x. This latter condition can only obtain if

f (x, ε) = fx (x) fε (g1 (x)− ε) a.e (x, ε) . (A-2)

That is, fε|x (g1 (x)− ε1 |x) does not depend on x if and only if the joint distribution of
(x, ε) has the property that ε1 = g1 (x)− ε is independent of x. The set of functions that
f0xε that satisÞes (A− 2) is clearly not generic in C21 (X × E).
Hence, it follows that generically with respect to f0xε, we have λ = 0 a.e. As a result,h

(ϕ001 − ϕ01 (P 000 − ϕ001)) (P 00 − ϕ01)−2
i
◦ Λ

vanishes, meaning that (ϕ001 − ϕ01 (P 000 − ϕ001)) (P 00 − ϕ01)−2 vanishes on the range of Λ, which
is precisely the domain Z of z. This proves that

(ϕ001 (P
00 − ϕ01)− ϕ01 (P 000 − ϕ001)) = 0 on Z

so that
ϕ001
ϕ01
=
P 000

P 00

and P 00 = b1ϕ
0
1. Thus P

0 = a1 + b1ϕ1 solves the equilibrium equation and the proof is

concluded.¥
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Appendix B Model SpeciÞcations

B.1 Model 1

Figures 2 and 3 display the slope and curvature of the equilibrium price function in the

unrestricted linear-quadratic hedonic economy in three cases. In all three cases we use

the parameters A = 2.0 and B = 2.0. In addition, each case assumes that both ν and θ

are distributed as mixtures of two normals. ν is distributed as a mixture of normals with

weight λ on the Þrst component (mean 0.0 and variance 0.5) and weight 1 − λ on the
second component (mean 1.0 and variance 1.0). θ is distributed as a mixture of normals

with weight λ on the Þrst component (mean 1.0 and variance 1.0) and weight 1− λ on the
second component (mean -1.0 and variance 0.1).

Each of the three cases is distinguished by the weights on the two components. The

benchmark case assumes that λ, the weight on component one of the mixture is 1.0. Hence,

case 1 is the benchmark linear-quadratic-normal model. The other two cases use different

values of λ to show how the slope and curvature of the price function vary with λ. The

other two cases use λ = 0.9 and λ = 0.5.

B.2 Model 2

Figures 4 and 5 display the slope and curvature of the equilibrium price function in a model

that restricts z > 0 and Pz (z) > 0. In this model, Þrms� proÞts are Π (z) =
exp(ν)z1−B

1−B −P (z)
where ν = ν0+ν 01y+η. y and η are independent and are distributed as mixtures of normals.

Workers have utility V (z) = −exp(−θ)z1+A
1+A

+ P (z) where θ = θ0 + θ01x+ ε and x and ε are

independent and distributed as mixtures of normals. Figures (2) and (3) display the slope
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and curvature of the equilibrium price function in this model for three cases. All three

cases use the parameters A = 2.0 and B = 2.0. In addition, each case assumes that both ν

and θ are distributed as mixtures of two normals. ν is distributed as a mixture of normals

with weight λ on the Þrst component (mean 0.0 and variance 0.5) and weight 1− λ on the
second component (mean 1.0 and variance 1.0). θ is distributed as a mixture of normals

with weight λ on the Þrst component (mean 1.0 and variance 1.0) and weight 1− λ on the
second component (mean -1.0 and variance 0.1).

Each of the three cases is distinguished by the weights on the two components. The

benchmark case assumes that λ, the weight on component one of the mixture is 1.0. In

this case lnPz (z) is a linear function of ln z as shown in Þgure 4. The other two cases use

different values of λ to show how the slope and curvature of the price function vary with

λ. The other two cases use λ = 0.9 and λ = 0.5.



Figure 1: Optimal job choice for three worker-Þrm pairs
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Figure 2: Slope of Price Function: Model 1
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Figure 3: Curvature of Price Function: Model 1
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Figure 4: Logarithm of Slope of Price Function: Model 2
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Figure 5: Elasticity of Slope of Price Function with Respect to z
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