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1 The economic problem.
The purpose of this short paper is to show a fundamental problem of economic
theory gives rise to a system of nonlinear PDEs of the first order which - up to
now - can only be solved by applying the celebrated Cartan-Kähler theorem on
integral manifolds of exterior differential systems (see [3], [2]).
Following standard definitions in microeconomics (see [11] for an exhaustive

review of the theory), an economy is described by N agents and K goods.
Agents trade and consume, not individual goods, but bundles, each bundle being
described by a point x =

¡
x1, ..., xK

¢
∈ RK , where xk denotes the quantity of

good k ; for instance, we do not eat of buy bread and butter separately, but
sandwiches, which are certain bundles of bread and butter. There will also be a
set of prices p = (p1, ..., pK) ∈ RK . It the prevailing price system is p, the cost
of bundle x is p0x =

P
pkx

k.
Agent n is fully described by his utility function Un : RK → R and by his

initial endowment ; the latter can be given,

• either in real terms, namely a goods bundle ωn ∈ RK , which the agent
will trade at market prices

• or in monetary terms, namely a wealth wn ∈ R which the agent will spend

The utility function determines the preferences, and hence the behaviour, of
the consumers: agent n prefers the bundle x to the bundle y iff Un (x) ≥ Un (y).
Given his initial endowment, agent n chooses the bundle he prefers among all
those he can afford. This leads to an optimization problem.

• in the case of real endowments, ωn ∈ RK , the agent’s problem is:

max
x

Un (x)

p0x ≤ p0ωi

leading to a solution x̂n (p), which is the agent’s response to the set of
prices p. The map

zn (p) = x̂n (p)− ωn

is called the excess demand of agent n.
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• In the case of monetary endowments, wn ∈ R, the agent’s problem is:

max
x

Un (x)

p0x ≤ wn

leading to a solution x̄n (p), which is called the market demand of agent
n.

Suitable assumptions, mainly strict concavity of the utility functions, will
ensure that the excess demand or market demand functions are well-defined,
smooth, and satisfy the so-called Walras law, which simply expresses the fact
that all available resources are spent towards acquiring the consumption bundle:

p0zn (p) = 0 or p0x̄n (p) = wn

Typically, it will be assumed that the Un are C2, and that its second derivative
is positive definite, so that the solutions x̂n (p) or x̄n (p) are unique, depend
smoothly on the data, and activates the budget constraint.
In practice, the utility function of an individual cannot be observed, but his

demand can. This leads to a very interesting question: suppose one observes the
(excess of market) demand of an individual; does it arise from a maximization
procedure similar to the one I just described, and if so, can one recover the
utility function U i from the data ? In the case of market demand, the answer
has been known very early on, since the work of Antonelli [1], later rediscovered
by Slutsky [10]. It turns out that, to arise from a maximization procedure, the
market demand of an individual must satisfy a stringent set of conditions, and
if it does so, then the corresponding preferences are fully determined.
However, individual demand is hard to observe. It is much easier to observe

the aggregate demand of a large number of consumers, for instance by sifting
through macroeconomic data. With the above notations, we define aggregate
excess demand by:

Z (p) =
NX
n=1

zi (p)

and aggregate market demand by:

X (p) =
NX
n=1

x̄i (p)

so that both satisfy the Walras law:

p0Z (p) = 0, and p0X (p) =
X

wn

In a celebrated series of papers, around 1975, Sonnenschein, Mantel and
Debreu treated the case of excess demand. They proved that, if there are more
agents than goods, N ≥ K, then any function Z (p) satisfying theWalras law can
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be written as Z (p) =
P

zi (p), where the zi (p) are individual excess demands
(see [11], [9] and the references therein), and this result has been very influential
in the development of economic theory.
Surprisingly, the corresponding problem for market demand remained open

until very recently; it is only in 1995 that Chiappori and Ekeland [5] proved
a similar result. Their proof uses the Cartan theory of exterior differential
systems, and the Cartan-Ka̋hler theorem.

2 The mathematical problem
Define, for 1 ≥ n ≥ N , the indirect utility function V n by:

V n (p) = max
x
{Un (x) | p0x ≤ wn}

= Un (x̄ (p)) with p0x̄n (p) = wn

There is a one-to-one correspondence between V n and Un, and we can re-
cover one from the other. If Un is quasi-concave, then V n is quasi-convex, and
conversely. By the Lagrange multiplier rule, there exists some λn (p) > 0 such
that:

V n (p) = max
x
{Un (x) + λn (p) (wn − p0x) | p0x ≤ wn}

= Un (x̄ (p)) + λn (p) (wn − p0x̄n (p))

Differentiating this identity with respect to p, most terms cancel, and we are
left with:

DV n (p) = −λn (p) x̄n (p)
So the vector field x̄n = −DV n/λn must be collinear to a gradient, a very

strong condition. Unfortunately, we do not observe the individual demands x̄n,
only their aggregate. Summing up, we get:

X (p) = −
NX
n=1

DV n (p)

λn (p)
(1)

In addition, we adjoin the condition p0x̄n (p) = wn, which yields:

p0DV n (p) = −λn (p)wn (2)

We now state the mathematical problem to be solved: given X (p), satis-
fying p0X (p) =

P
wn, find convex functions V 1, ..., V N and positive functions

λ1, ..., λN satisfying (1) and (2).
Computing the λnfrom (2) and writing the result in (1) , we get:

NX
n=1

DV n (p)

p0DV n (p)
wn = −X (p) (3)
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which is a system of K nonlinear equations of the first order for N functions of
K variables.
The following result, which is due to Chiappori and Ekeland (see [5]), states

that this system can be solved locally, provided the right-hand side X (p) is real
analytic:

Theorem 1 Assume N ≥ K. Consider some open set U in RKÂ {0}, and
some analytic map X : U → RK such that p0X (p) =

P
wn. For all p̄ ∈ U and

for all (x̄1, ..., x̄N ) ∈ RNK and (λ1, ..., λN ) ∈ RN that satisfy
P

x̄n = X (p̄) and
λ̄
n
> 0, there exists real-analytic functions V n and λn, 1 ≤ n ≤ N , defined on

some neighourhood N of p̄, such that:

1. ∀n, DpV
n (p̄) = −λ̄nx̄n, λn (p̄) = λ̄

n
,

2. ∀n, D2
ppV

n (p̄) is positive definite

3. (V n, λn) , 1 ≤ n ≤ N, solve (1) and (2)

As a consequence, we extend the Mantel-Sonnenschein-Debreu result to mar-
ket demand:

Corollary 2 Assume N ≥ K. Consider some open set U in RKÂ {0}, and
some analytic map X : U → RK such that p0X (p) =

P
wn. For all p̄ ∈ U

and for all (x̄1, ..., x̄N ) ∈ RNK and
³
λ̄
1
, ..., λ̄

N
´
∈ RN that satisfy

P
x̄n =

X (p̄) , p̄0xn (p̄) = wn and λ̄
n
> 0, there exists real-valued functions Un and

λn, 1 ≤ n ≤ N , such that:

Theorem 3 1. Un is defined on some convex neighbourhood Vn of x̄n where
it is analytic and strictly quasi-concave,

2. the λn are all defined on some neighourhood N of p̄, where there are
analytic and positive,

3. ∀n, xn(p̄) = x̄n, λ
n (p̄) = λ̄

n
,

4. for all p ∈ N , we have:

p0xn(p) = wn ∀n,

X (p) =
NX
n=1

xn (p) ,

∂Un

∂xk
(xn (p)) = λn (p) pk ∀n, k,

Un (xn (p)) = max {Un (x) | x ∈ Vn, p
0x ≤ wn} ∀n.
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The proof of the theorem will be described in the next section. Note that
it is not known whether one can solve the system (1), (2) when the right-hand
side X (p) is C∞ instead of analytic. A simple case is the system:

ux
uz
+

vx
vz

= f (x, y, z)

uy
uz
+

vy
vz

= g (x, y, z)

to be solved for two functions u (x, y, z) and v (x, y, z) of three variables, with
f and g given and C∞. We have been investigating this system for some time
without success.

3 Proof.

Introduce the space:

E = RK ×RN ×RNK

=
n³

pk, µ
n,∆k0

n0

´
| 1 ≤ k, k0 ≤ K, 1 ≤ n, n0 ≤ N

o
In this space, consider the submanifoldM defined by the equations:X

µn∆k
n = Xk (p) ∀k, (4)X

pk∆
k
n =

1

µn
∀n. (5)

Sums are carried over repeated indices. The equations are independent, so
that M is a submanifold of codimension (N + L) . In M (and not in E) we
consider the exterior differential system (EDS):X

d∆k
n ∧ dpk = 0 ∀n, (6)

dp1 ∧ ... ∧ dpK = 0 (7)

This EDS is equivalent to the system (1),(2). An integral manifold of (6),(7)
is the graph of a map

¡
∆k
n (p) , µ

n (p)
¢
, 1 ≤ n ≤ N ; relations (6) mean that

∆k
n (p) =

∂V n

∂pk
for some function V n, and setting λn = −1/µn we get (1) and

(2) from (4) and (5). We now apply the Cartan-Kähler theorem, bearing in
mind that we seek convex V n and negative µn .
The system is obviously closed. The next step is to find integral elements.

This is done in the standard fashion, by writing:

dµn =
X

mnkdpk (8)

d∆k
n =

X
δkk

0

n dpk0 (9)
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and substituting in (4),(5) and (6). The latter gives:

δkk
0

n = δk
0k
n

and the other two give:X
∆k
nm

nk0 +
X

µnδkk
0

n =
∂Xk

∂pk0
∀k, k0 (10)X

(µn)2∆k
n +

X
(µn)2 pk0δ

kk0

n = −mnk ∀k, n (11)

This is a system ofK2+KN equations for theNK+NK (K + 1) /2 variables
mnk, δkk

0

n . We seek a solution such that the N matrices δkk
0

n are symmetric, of
course, but also positive definite: once the integral manifold is found, we will
have ∆k

n (p) =
∂V n

∂pk
, and (9) then gives:

δkk
0

n =
∂2V n

∂pk∂pk0
(p̄)

Having δkk
0

n positive definite ensures that V n is convex in a neighbourhood
of p̄.
Back to the equations (10) and (11). Substituting the second into the first,

we eliminate mnk and get an equation for δkk
0

n only:X
µnδkk

0

n −
X

(µn)2 pk00δ
k0k00

n ∆k
n = rhs ∀k, k0 (12)

where rhs stands for some right-hand side which we do not care to write down.
This is now a system of K2 linear equations in NK (K + 1) /2 unknowns (bear-
ing in mind that δkk

0

n = δk
0k
n ), and we want a solution which makes all the

matrices δn positive definite.
To do this, we will show that the kernel of this system contains a family

δ̄n, 1 ≤ n ≤ N , where all the δ̄n are positive definite. If the family δ0n, is any
solution of (12), then the family δn = δ0n+ aδ̄n, is also a solution, and for a > 0
large enough it will be positive definite. So our next step is investigate the
homogeneous system:X

µnδkk
0

n −
X

(µn)2 pk00δ
k0k00

n ∆k
n = 0 ∀k, k0 (13)

and to show that it has a solution δn, 1 ≤ n ≤ N , with all the δn positive
definite.
Let us rewrite this system as a relation between matrices. Call δn the matrix³

δkk
0

n

´
, and set γkn =

P
pk0δ

kk0

n . Call γn and ζn the vectors with components

γk
0

n and (µn)2∆k
n. Equation (13) then can be rewritten as:X

µnδn −
X

γnζn = 0 (14)

where γn∆n must be understood as a rank one matrix. Since the δn are sym-
metric, so is the first term in this equation, and therefore the sum

P
n γnζn
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must also be symmetric. By a celebrated lemma of Elie Cartan, this means that
there is a symmetric (N ×N) matrix A such that γn = Aζn for every n.

In conclusion, there is a symmetric matrix A =
³
αnn

0
´
such that:X

pk0δ
k0k
n = (µn)

2
X

αnn
0
∆k
n0 ∀k, n (15)

and writing this back into (13), we get:X
µnδkk

0

n =
X

αnn
0
(µn)

2
³
µn

0
´2
∆k
n∆

k0

n0 ∀k, k0 (16)

Let us rewrite this system in matrix terms again. The family δn, 1 ≤ n ≤ N ,
of symmetric matrices, solves (13) if and only if it satisfies the system:

δnp =
X

αnn
0
³
µn

0
´2
∆n0 ∀n (17)X

µnδn =
X

αnn
0
(µn)2

³
µn

0
´2
∆n (∆n0)

0 (18)

for some symmetric matrix A =
³
αnn

0
´
. One can check that the last equation

is compatible with the preceding ones. Indeed, the first N equations give:X
µnδnp =

X
µnαnn

0
³
µn

0
´2
∆n0

and the last one:X
µnδnp =

X
αnn

0
(µn)

2
³
µn

0
´2
∆n (∆n0p) ,

but since ∆n0p = 1/µ
n0 by (5), and αnn

0
= αn

0n, the two relations coincide.
We end up with an interesting mathematical question: given (N + 1) points

x1, ..., xN and y in RK , given a positive definite matrix Q, does there exist N
positive definite matrices M1, ...,MN such that Mny = xn and

P
Mn = Q ?

Note that there are obvious necessary conditions, namely that
P

xn = Qy and
(xn, y) > 0 ∀n. In our case, xn is the right-hand side of (17), y = p and Q is the
right-hand side of (18); in the paper [5] we solved that particular case, but since
then, professor Inchtchakov ([4]) and professor SanMartin ([8]), independently
of each other, have solved the general case.
Let us state and prove Inchtchakov’s result. Without loss of generality,

assume Q = I, and consider the quadratic form:

(Cz, z) =
X (xn, z)

2

(xn, y)
− (z, z)

which vanishes on y = 0.

Lemma 4 Assume (xn, y) 6= 0 for all n. Then a necessary and sufficient con-
dition for the existence of positive definite matrices Mn such that Mny = xn for
all n and

P
Mn = I is that

P
xn = y, (xn, y) > 0 for all n,and (Cz, z) < 0

for all z not collinear with y.
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Proof. Let us first prove necessity. Consider the quadratic form:

(Cnz, z) =
(Mny, z)

2

(Mny, y)
=
(xn, z)

2

(xn, y)

By Cauchy-Schwarz, sinceMn is positive definite, we have (Cnz, z) < (Mnz, z) unless
z is collinear to y. Adding up, we find

P
(Cnz, z) < (z, z) ,as announced.

Conversely, assume
P

xn = y, (xn, y) > 0 for all n, and (Cz, z) < 0 for all z
not collinear with y. Define

Bnz =
(xn, z)

(xn, y)
xn, 1 ≤ n ≤ N

B0 = I −
X

Bn

Then Bny = xn and B0y = y −
P

xn = 0. Note also that:

(Cnz, z) =
(xn, z)

2

(xn, y)
= (Bnz, z) ≥ 0

(Cz, z) =
X

(Bnz, z)− (z, z) = − (B0z, z)

Now set Mn = Bn +
1
NB0. We have:

Mny = Bny +
1

N
B0y = xn + 0X

Mn =
X

Bn −B0 = I

(Mnz, z) = (Bnz, z) +
1

N
(−B0z, z)

In the last equation, both terms on the right-hand side are positive semi-
definite, and the second one vanishes only when z is collinear to y. The Mn

have the desired properties, and the proof is concluded.¥
Once a positive definite family

¡
δ̄1, ..., δ̄N

¢
is found in the kernel, we take any

solution
¡
δ01, ..., δ

0
N

¢
of (12) and we consider δn = δ0n + aδ̄n for large a > 0. This

will then also be positive definite, and provides us with the integral element we
are looking for.
There remains the last step of the Cartan-Kähler procedure, and this is to

prove that every point p is ordinary in the sense of Elie Cartan. This, as always,
is very delicate, and we refer the reader to the paper [5] for the computations.
Let me just mention the conclusions, for the case K = N . The manifold M
has dimension N2 + 1. The codimension of the bundle of integral elements in
the corresponding Grassmannian is N2 (N − 1) /2. The Cartan characters are
cn = nN for n ≤ N , so that:

c0 + ...+ cN−1 = N (0 + 1 + ...+ (N − 1)) = NN (N − 1) /2

and the Cartan criterion is satisfied, so that the Cartan-Kähler theorem applies.
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