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Abstract

The literature on the characterization of aggregate excess and market
demand has generated three types of results: global, local, or ’at a point’.
In this note, we study the relationship between the last two approaches.
We prove that within the class of functions satisfying standard conditions
and whose Jacobian matrix is negative semi-definite, only n/2 + 1 agents
are needed for the ’at’ decomposition. We ask whether, within the same
class, the ’around’ decomposition also requires only n/2 + 1 agents.
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1. Introduction

The literature on the characterization of aggregate excess and market demand
has generated three types of results: global, local, or ’at a point’. Global results
provide necessary and sufficient conditions for a given function to coincide with
the aggregate excess (respectively market) demand of a n-commodity economy
within some given, possibly ’large’ domain of prices. Debreu (1974) and Mantel
(1974) show, for instance, that any continuous and homogeneous mapping of Rn
that satisfies Walras Law can be decomposed as the aggregate excess demand of
an economy with k ≥ n agents on any open subset of the positive orthant. No
result of this kind exists for market demand, essentially because of non negativity
constraints; indeed, Sonnenschein, in his initial contribution (1973a), provides an
example of mapping that cannot be globally decomposed as the market demand of
an economy, whatever the number of agents. Local results provide conditions for
the existence of a decomposition of this type within some neighbourhood of a given
point. For instance, Geanakoplos and Polemarchakis (1980) have proved that n−1
agents are sufficient for solving the excess demand problem in the neighbourhood
of any price vector where aggregate demand is not zero. Similarly, Chiappori and
Ekeland (1999) have recently demonstrated that any analytic mapping of Rn that
satisfies adding up can be decomposed as the market demand of some n-consumer
economy in the neighbourhood of any price vector.
Finally, several authors (Sonnenschein 1974, Mantel 1977, Diewert 1977, Geanako-

plos and Polemarchakis 1980) have derived conditions under which, at some given
point, an arbitrary mapping behaves ’as if’ it was the aggregate (excess or market)
demand of an economy, in the sense that both the value of the function and its
(first) derivatives coincide with those of an aggregate demand. This is sometimes
referred to as the ’at a point’ approach (as opposed to the local, ’around a point’
one).
However, the link between the last two types of results (’around a point’ versus

’at a point’) has not been fully understood yet. An open question is whether the
local decomposition theorems (’around’) are simply some non linear extension
of the ’point wise’ (’at’) approach, in the sense that the same conditions that
were necessary and sufficient in the latter case turn out to be also necessary and
sufficient for the former problem. In other words, take a function such that the
’at’ problem has a solution at any point in a neighbourhood of some given p̄. Is it
always possible to extend (one of) the solutions to the ’at’ problem at p̄, in order
to get a solution to the ’around’ problem?
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The goal of this note is to contribute to this issue by proving a result and
asking a question. The result can be stated as follows. Take some arbitrary price
vector p̄ and some arbitrary function X (p) satisfying the standard conditions
(differentiability or smoothness and adding-up, plus homogeneity in the excess
demand case). Assume, in addition, that DpX (p̄) is negative semidefinite. Then,
for any k ≥ n/2 + 1, it is always possible to find an economy with k agents such
that the value of the aggregate demand and of its first derivatives coincide with
that of X (p). In other words, within the class of function satisfying standard
conditions and with a negative Jacobian matrix at p̄, only n/2 + 1 agents (at
most) are needed for the ’at’ approach. The question is whether the same result
holds for local decomposition. Within the class of functions satisfying standard
conditions and the Jacobian matrix of which is negative definite at p̄, is it the case
that only k = n/2 + 1 agents (at most) are needed to decompose the function, in
some arbitrarily small neighbourhood of p̄, as the aggregate market demand of an
economy with k agents?

2. The basic framework

In what follows, all results are derived in the case of market demand; the extension
to excess demand is straightforward and left to the reader.

2.1. The problem

Take some continuously differentiable mappingX(p) : Rn → Rn satisfying adding-
up:

p.X(p) = 1 (1)

and choose some arbitrary price vector p̄ in Rn+.
The ’around’ problem can be stated as follows : under which conditions is it

possible to find an open neighbourhood V (p̄) and k individual demand functions
x1(p), ...,xk(p) such that, for any p within V (p̄)

X(p) = x1(p) + ...+ xk(p) (2)

The ’at’ problem can be stated as follows : under which conditions is it possible
to find k individual demand functions x1(p), ...,xk(p) such that

X(p̄) = x1(p̄) + ...+ xk(p̄) (3)
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and

DpX(p̄) = Dpx
1(p̄) + ...+Dpx

k(p̄) (4)

In both cases, xi(p) must be a demand function, i.e., must solve

V i(p) = maxU i(xi)
p.xi = 1

k

xi ≥ 0
(5)

for some well-behaved utility function U i.
Obviously, any solution to the ’around’ problem provides a solution to the

’at’ problem. However, whether, conversely, the existence of solutions to the ’at’
problem is sufficient for the existence of a solution to the ’around’ problem is not
known.

2.2. Decomposition ’at’ p̄: the basic result

We first state the basic result of the ’at’ approach. Assume that the ’at’ problem
has a solution, and that each corresponding indirect utility V i is convex and twice
continuously differentiable. From the envelope theorem, (5) implies that:

DpV
i (p) = −λi (p)xi (p) (6)

where DpV denotes the gradient of V and where the scalar λi (p) is the Lagrange
multiplier associated with the program. This, in turn, leads to (with obvious
notations):

D2
pV

i (p) = −λi (p)Dpxi (p)− xi (p)Dpλi (p)0
or

Dpx
i (p) =

1

λi (p)

£−D2
pV

i (p)− xi (p)Dpλi (p)0
¤

Then (4) becomes:

D = DpX(p̄) =
kX
i=1

−1
λi (p̄)

D2
pV

i (p̄)−
kX
i=1

1

λi (p̄)
xi (p̄)Dpλi (p̄)

0

Consider the right-hand side of this equation. The first sum is a symmetric,
negative semidefinite matrix, whereas the second sum is a matrix of rank at most
k. In particular, let

E = x1(p̄)⊥ ∩ ... ∩ xk(p̄)⊥
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denote the set of vectors orthogonal to all individual demands; note that the
dimension of E is at least n − k. Then the restriction to E of the matrix D =
DpX(p̄) is symmetric and negative semidefinite, i.e.,

∀v, w ∈ E, v0Dw = w0Dv

∀v ∈ E, v0Dv ≤ 0
When individual demand are not observable, one can state the following result:

Proposition 2.1. (Diewert 1977) Assume that some matrix D is the Jacobian
matrix, at some point p̄, of the aggregate demand function X (p) of an economy
with k agents. Then there must exist some subspace E, of codimension at most
k, that is included in X (p)⊥ and such that the restriction to E of D is symmetric
and negative semidefinite.

While this condition is obviously necessary for both the ’at’ and the ’around’
approaches, it turns out to be also sufficient for the ’at’ result, as proved by Mantel
(1977) for market demand and Geanakoplos and Polemarchakis (1980) for excess
demand.

3. Symmetry: how many agents?

Proposition 2.1 requires two properties, symmetry and negativeness, that appear
to play very different roles. Clearly, one cannot guarantee negativeness unless
k = n. Indeed, choose a function X (p) such that D = DpX(p̄) is positive
definite. Then the conditions of Proposition 2.1 cannot be fulfilled unless E is
of dimension zero. An illustration, in the excess demand context, is provided by
Debreu’s celebrated example of a function that cannot be globally decomposed as
the excess demand function of an economy with k agents if k < n. It can readily
be checked that function he considers has a positive definite Jacobian on the
orthogonal of the price vector, and that this property is crucial for the argument1.
The case of symmetry is more complex andmore surprising, since only (n+ 1) /2

agents (and sometimes only n/2) are needed. The precise results are the following:

Proposition 3.1. For any (n× n) matrix D, where n is even, one can find a
space F of dimension k ≥ n/2 such that the restriction to F of the mapping D

1In Debreu’s proof, the contradiction obtains from a violation of the weak axiom of revealed
preferences, that is equivalent to negativeness of the Slutsky matrix.
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is symmetric. For any (n× n) matrix D, where n is odd, one can find a space F
of dimension k ≥ (n+ 1) /2 such that the restriction to F of the mapping D is
symmetric.

Proof. See appendix
An immediate corollary is the following:

Corollary 3.2. Let p̄ be any point in Rn+ and let X (p) be some C1 function
satisfying adding-up and such that D = DpX(p̄) is negative semi-definite. Then:

• if n is even, then for any k ≥ n/2 + 1, it is possible to find an economy
with k consumers that solves the ’at p̄’ problem; i.e., it is possible to find k
individual demand functions x1(p), ...,xk(p) such that

X(p̄) = x1(p̄) + ...+ xk(p̄)

and

DpX(p̄) = Dpx
1(p̄) + ...+Dpx

k(p̄)

• if n is odd, then for any k ≥ (n− 1) /2+1, it is possible to find an economy
with k consumers that solves the ’at p̄’ problem

Proof. Stems from Mantel’s result and from Proposition 3.1, with E = F ∩
X (p)⊥.
In other words, for any point p̄ and for any function X (p) with a negative

Jacobian at p̄, only n/2+1 agents (at most) are needed to construct an economy
for which the aggregate demand takes, at p̄, the same value and the same first
derivative as X (p). The same result obtains in the excess demand case, with n
being replaced by n − 1 since the argument must be applied in the hyperplane
orthogonal to the price vector.

4. An open question

We now state the basic question:

Question: Let p̄ be any point inRn+ and letX (p) be someC1 function
satisfying adding-up and such that D = DpX(p̄) is negative semidefi-
nite (so that it remains negative semidefinite within a neighbourhood
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of p̄). For any k ≥ n/2 + 1, is it possible to find an economy with k
consumers that solves the ’around p̄’ problem; i.e., is it possible to find
an open neighbourhood V (p̄) of p̄ and k individual demand functions
x1(p), ...,xk(p) such that, for any p in V (p̄)

X(p) = x1(p) + ...+ xk(p)

Take some V (p̄) in which DpX(p̄) remains negative semidefinite. From the
previous result, we know that the ’at’ problem has a solution at any point of V (p̄)
. The question is whether it is possible to select at each point a particular solution
so as to generate a differentiable function over V (p̄).
Note that the existing proof in Chiappori and Ekeland (1999) does not apply

here. It can readily be checked that it requires k ≥ n even when the Jacobian of
X is negative definite. However, the result derived by Chiappori and Ekeland is
stronger than what is needed here. Indeed, they show that the decomposition can
be freely chosen at p̄, which is not necessary in our context.
Should the answer to the above question be yes, it would interestingly reduce

the number of agents needed to generate any function as an aggregate demand.
If, on the contrary, the answer is negative, then it should be possible to generate a
counter example, i.e., to exhibit a functionX (p), the Jacobian of which is negative
semidefinite, that cannot be locally decomposed as the aggregate market demand
of an economy with n/2+1 consumers, albeit it can be decomposed ’at’ any point.
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A. Proof of proposition 3.1

The argument is a direct generalization of that used in Browning and Chiappori
(1998). First, consider the matrix M = D −D0. It is antisymmetric, i.e., M 0 =
−M . This has the following implications:

Lemma A.1. The eigenvalues of any antisymmetric matrix are either zero or
complex. Moreover, Rn can be decomposed as the sum of (S + 1) orthogonal
subspaces E0 = kerM,E1,..., ES (where S ≤ n/2) such that each Ei (for i ≥ 1) is
spanned by two eigenvectors corresponding to a pair of conjugate eigenvalues.

Proof. Let λ be an eigenvalue of M and x a corresponding eigenvector, then
Mx = λx and Mx̄ = λ̄x̄. Then x̄0M = (M 0x̄)0 = − (Mx̄)0 = −λ̄x̄0. It follows that

x̄0Mx = λx̄0x = −λ̄x̄0x (A.1)

and either λ = 0 or λ = −λ̄ and λ is complex. Complex eigenvalues come
by conjugate pairs. If wi and w̄i are two conjugate eigenvectors corresponding
respectively to λi and λ̄i, then Ei is spanned by wi and w̄i (or, equivalently,
by (wi + w̄i) and i (wi − w̄i), which are both real). The decomposition result is
standard, and obtains by induction. It is true for n = 1. Also, assume it is true
for all n ≤ N − 1, let us show that it holds for N as well. It holds if M is zero.
If not, there exist some non zero eigenvalue λi, and one can define Ei as above.
Then define Fi = E⊥i . Fi is stable by M , for if w

0e = 0 for all e ∈ Ei then
(Mw)0 e = w0M 0e = −w0 (Me) = 0 since Me ∈ Ei. Since dimFi = N − 2, Fi can
be decomposed. Finally, Rn = Ei ⊕ Fi, QED.
This leads to the following characterization of M :

Lemma A.2. There exists S vectors u1, ..., uS and S vectors v1, ..., vS, where
S ≤ n/2, such that

M =
SX
i=1

(uiv
0
i − viu0i)

Proof. This stems from the previous Lemma and from the fact that, within each
2-dimensional subspace Ei, M can be decomposed as uiv0i − viu0i (see Browning
and Chiappori, 1998)
Note, in particular, that 2S ≤ n, which implies that S ≤ n/2 if n is even and

S ≤ (n− 1) /2 if n is odd.
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Finally, define
E = {u1}⊥ ∩ ... ∩ {uS}⊥

Note that dimE ≥ n− S ≥ n/2 if n is even and dimE ≥ k − S ≥ (n+ 1) /2
if n is odd. For any u, v ∈ E we have that

u0Mv = 0⇔ u0Dv = u0D0v = v0Du

which means exactly that the restriction of D to E is symmetric.
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