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Abstract

Is general equilibrium theory empirically testable? Our perspec-
tive on this question differs from the standard, Sonnenschein-Debreu-
Mantel (SDM) viewpoint. While SDM tradition considers aggregate
(excess) demand as a function of prices, we assume that what is observ-
able is the equilibrium price vector as a function of the fundamentals
of the economy. We apply this perspective to an exchange economy
where equilibrium prices and individual endowments are observable.
We derive necessary and sufficient conditions that characterize the
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equilibrium prices, as functions of initial endowments. Furthermore,
we show that, if these conditions are satisfied, then the economy can
generically be identified. Finally, we show that when only aggregate
data are available, observable restrictions vanish. We conclude that
the availability of individual data is essential for the derivation of
testable consequences of the general equilibrium construct.

Key words: aggregation, excess demand, equilibrium manifold, identifi-
cation.
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1 Introduction

Is general equilibrium theory empirically testable? This question has at-
tracted considerable attention for at least thirty years; that is, at least since
the statement of the “Sonnenschein problems”. In two seminal papers, Son-
nenschein [20], [21] posed the question whether the individualistic founda-
tions of general equilibrium theory could generate non-trivial testable re-
strictions on the aggregate excess demand or market demand functions of an
exchange economy. The case of excess demand was solved by Mantel [17]
and Debreu [9]; the market demand problem was solved by Andreu [1] for
finite sets of data, and, recently, by Chiappori and Ekeland [7] for analytic
demand functions. In all cases, the answer is negative, provided there are
enough individuals in the economy — a conclusion that confirmed Sonnen-
schein’s intuition and initial arguments.

These (by now classical) results have widely been interpreted as pointing
out a severe weakness of general equilibrium theory, namely its inability to
generate empirically falsifiable predictions. A prominent illustration of this
stand is provided for instance by Kenneth Arrow, who, in a recent survey,
listed among the main developments of utility theory the result that “in the
aggregate, the hypothesis of rational behavior has in general no implications”,
and drew the conclusion that “if agents are different in unspecifiable ways,
then [...] very few, if any, inferences can be made” ([2], p. 201).

The main claim of the present paper is that this view is overly pessimistic,
and that general equilibrium theory can actually generate strong testable
predictions, even for large economies. The main idea is in the line of recent
contributions by Brown and Matzkin [4] and Brown and Shannon [5], and
can be summarized as follows. The approach by Sonnenschein, Debreu and
Mantel concentrates on the properties of excess (or market) demand as a
function of prices only. There are, of course, deep theoretical reasons for the
investigation of the structure of aggregate demand as a function of prices;
for instance, the SDM result has strong implications for the convergence of
tâtonnement processes.However, this viewpoint is not the only possible one,
and actually not the most adequate for assessing the testability of general
equilibrium theory. As far as testable predictions are concerned, the struc-
ture of aggregate excess demand is not the relevant issue, if only because
excess demand is, in principle, not observable, except at equilibrium prices
— where, by definition, it vanishes. However, prices are not the only variables
that can be observed to vary. Price movements reflect fluctuations of funda-
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mentals, and the relationship between these fundamentals and the resulting
equilibrium prices is the natural object for empirical observation. One of the
goals of general equilibrium theory is precisely to characterize the properties
of this relationship. As it turns out, this characterization generates strong
testable restrictions.

We develop our claim in the simple but natural context of an exchange
economy, where excess demand depends on both prices and initial endow-
ments. The equilibrium equations then relate prices to endowments; the
equilibrium manifold is defined as the set of prices and endowments for which
excess demand is zero. We are interested in the local structure of that man-
ifold; that is, we study equilibrium prices, locally, as a smooth function of
initial endowments. We derive two main results. First, there exist strong re-
strictions on the local structure of the equilibrium manifold. Some of these
restrictions come from the individualism assumption (the aggregate demand
arises as the sum of individual demands each of which is a function solely of
prices and individual income), and others stem from the rationality assump-
tion (each individual is a utility maximizer). In other words, although none
of these assumptions constrains the shape of excess demand as a function
of prices (the SDM conclusion), they do restrict the form of the equilibrium
manifold, which is of empirical relevance.

Second, and perhaps more surprisingly, we prove that, if income effects do
not vanish, observing equilibrium prices as a function of initial endowment
generically identifies the underlying economy, in the sense that individual
preferences can be recovered without ambiguity. In a way, this result is the
exact opposite of the SDM conclusion. In the SDM perspective, all the struc-
ture due to individual utility maximization is lost by aggregation. Adopting
the equilibrium manifold perspective, we reach the opposite conclusion that
all the relevant structure is generically preserved, in the sense that the ini-
tial economy can be recovered from the local structure of the equilibrium
manifold.

These results indicate that the two lines contrasted above — the ’man-
ifold’ point of view versus the SDM excess demand approach — generate
different (and in a sense opposite) conclusions. How can this striking dis-
crepancy be explained? Our interpretation emphasizes a crucial difference:
in the manifold approach, individual data (initial endowments) are available,
whereas only aggregate variables can be observed in the SDM setting. In
other words, we understand our results as suggesting the important con-
clusion that whenever data are available at the individual level, then utility
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maximization generates very stringent restrictions upon observed behavior,
even if the observed variables (equilibrium prices in our case) are aggregate.
From this perspective, whether individual transactions can be observed is
irrelevant. Individual determinants of individual choices (such as initial en-
dowments or individual incomes) may do just as well.

A natural question, then, is whether the converse claim also holds: is
it the case that, when aggregate variables only are observed, no testable
restriction can be generated, at least if the number of individuals is “large
enough”? Specifically, assume that only aggregate endowments Ω can be
recorded. These aggregate endowments are redistributed among individuals
in the economy according to some rule that is not observed. In particular,
fluctuations in Ω generate changes in individual endowments that are not
recorded. What is observed, however, are the corresponding movements of
equilibrium prices. In this new context, the equilibrium manifold is observed
as a function of aggregate endowments only. Is there any restriction on the
form of this relationship?

We show that, under an analyticity condition, when the number of in-
dividuals is at least equal to the number of commodities, any (sufficiently
smooth) manifold can be (locally) rationalized as the equilibrium manifold of
an exchange economy with utility maximizing individuals, for some ’well cho-
sen’ redistribution rule. This result closes the argument by confirming that
the Walrasian framework cannot generate restrictions on the local structure
of the equilibrium manifold when only aggregate data are observable. In this
sense, although our results emphasize a new aspect of aggregation theory,
they remain fully consistent with the conventional wisdom of the field.

Our work is in the line of a former contribution by Brown and Matzkin
[4], who study the restrictions on the structure of the equilibrium manifold
from a “non-parametric”, revealed preferences perspective. In their paper,
Brown and Matzkin derive a set of necessary and sufficient conditions under
the form of linear equalities and inequalities that have to be satisfied by any
finite data set, and they show that these relationships are indeed restrictive.
This approach has been recently extended by Kübler [14], Snyder [19] and
Brown and Shannon [5].. Our work complements these results in three ways.
First, we adopt a differentiable viewpoint, so that our necessary and suffi-
cient conditions take the somewhat more familiar form of a system of partial
differential equations, reminiscent of Slutsky conditions. In particular, our
conditions can readily be imposed on a parametric estimation of the equilib-
rium manifold; hence they can be tested using the standard econometric tools
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of consumer analysis. We provide an example of such a parametric analy-
sis in Section 3. Secondly, the result that these restrictions, if fulfilled, are
sufficient to generically recover the underlying economy is original. Thirdly,
we extend the analysis to the case where only aggregate endowments are
observable, and provide a formal non testability result.

2 The framework

2.1 The model

We consider an exchange economy with K commodities and N individuals.
Initial endowments of individual n we denote by ωn = (ω1

n, . . . , ω
K
n ) ∈ RK

+ ,
and his wealth by yn = p′ωn =

∑
k pkω

k
n.Here and throughout the paper, x′

denotes the transpose of the vector x, and E⊥ denotes the orthogonal of a
subspace E.

Individual n is characterized by a demand function, xn(p, yn), which we
assume to be smooth and homogeneous of degree 0, and to satisfy the Walras
law. As a consequence, differentiating the relation p′x (p, p′ωn) = p′ωn with
respect to ωn, we get the identity:

p′Dyx (p, p′ωn) = 1 (1)

We shall say that this demand function is rationalizable if it is derived from
the maximization of smooth, strongly quasi-concave utilities. It is well-known
that xn(p, yn) is rationalizable if and only if it satisfies the Slutsky conditions
on symmetry and negative definiteness.

A smooth map Z, defined on RK
+ ×RKN

+ , is an excess demand function
if there exist N individual demand functions x1, ..., xN , such that

Z(p, ω) =
N∑

n=1

(xn(p, p′ωn)− ωn). (2)

If Z is an excess demand function, then it is is homogeneous of degree
zero with respect to p, and, by Walras’ law,

p′Z(p, ω) = 0.

We use, henceforth, the normalization

p′p = 1.
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We denote by SK−1 the unit sphere in RK , and by SK−1
+ its intersection with

RK
+ . With the normalization of prices,

Z : SK−1
+ ×RKN

+ −→ RK ,

and Z(•, ω) is a map from the unit sphere into RK . Note that the tangent
space to SK−1

+ at the point p is the orthogonal subspace [p]⊥ so that

DZ (p, ω) : [p]⊥ ×RKN −→ RK

There are other restrictions on the derivative DZ. Differentiating the
Walras law, we get:

p′DpZ = Z (3)

p′DωnZ = 0 (4)

Finally, the equilibrium manifold is defined as

E =
{
(p, ω) ∈ SK−1

+ ×RKN
+ | Z(p, ω) = 0

}
.

In particular, at any point (p, ω) belonging to E ,

p′DpZ = 0. (5)

This means that, at every point, (p, ω) on E , the Jacobian DpZ maps the
tangent space [p]⊥ into itself. Its rank is at most (K − 1), and if it is exactly
(K − 1), then DpZ has a pseudo-inverse ∆, that is, there is a map

∆ (p, ω) : [p]⊥ −→ [p]⊥

such that DpZ (p, ω) ◦∆ (p, ω) is the identity in [p]⊥.

2.2 The problem

Under standard assumptions, see [3], the graph of the competitive equilib-
rium correspondence has the structure of a continuously differentiable man-
ifold. Locally, in a neighborhood, N (p, ω̄) , of some arbitrary, non-singular
point (p, ω̄), the equilibrium price can be defined as a function of individual
endowments:

(p, ω) ∈ E ∩ N (p, ω̄) ⇒ p = π (ω) .

We denote by N (ω̄) the projection of N (p, ω̄) over RKN
+ .
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Definition 2 A smooth map, π : N (ω̄) 7→ RK
+ , with π′π = 1, is a reg-

ular equilibrium map over N (ω̄) if there exists a smooth aggregate excess
demand function Z (p, ω), defined on N (p, ω̄), such that Z (π (ω) , ω) = 0
and DpZ (π (ω) , ω) has rank (K − 1) for all ω ∈ N (ω̄).

Our basic question is thus: What are the conditions for a smooth map,
π, to be a regular equilibrium map over N (ω̄)?

An immediate remark is that the local nature of the problem is crucial.
Indeed, assume that the equilibrium manifold is known globally, including at
the boundaries of RKN

+ . Then, one can set ω2, ..., ωn to zero, so that aggre-
gate excess demand coincides with the excess demand of individual 1; the
corresponding section of the manifold gives the inverse demand function of
individual 1, and the same trick can be used for all individuals. The interest-
ing, and more difficult, question we consider refer to the neighborhood of an
interior point (p, ω̄), where the non-negativity constraints are not binding:
xk

n(p̄, p̄′ω̄n) > 0, for all commodities k and individuals n.

3 Characterization of the equilibrium mani-

fold

3.1 Necessary conditions

There are two sets of necessary conditions. The first one derive from indi-
vidualism, that is, the fact that aggregate demand is the sum of individual
demands, the second one derives from the fact that individuals are maximiz-
ers.

Proposition 3 If π is a regular equilibrium map over N (ω̄) , then there is
an invertible linear map Θ(ω) from [π(ω)]⊥ into itself, and vectors θn(ω), 1 ≤
n ≤ N , depending smoothly on ω, such that, for every n, we have:

Θ(ω)Dωnπ(ω) = I − θn(ω)π(ω)′, ω ∈ N (ω̄) (6)

The linear map Θ(ω) and the vectors θn(ω) are determined uniquely by the
map π.

Proof. Differentiating formula (2) for the excess demand function Z, we
obtain:

∂Zk

∂ωj
n

=
∂xk

n

∂yn

pj − δj
k
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where δj
k is equal to 1 if j = k, and to 0 otherwise. In matrix notation, this

is written:

DωnZ =
∂xk

n

∂yn

(p, p′ωn)p′ − I.

Differentiating the equation Z(π(ω), ω)) = 0 with respect to ωn yields:

DpZ Dωnπ = −DωnZ

Note that, by equations (4) and (5), both sides are contained in [p]⊥.
Substituting the last equation into the preceding one, we get:

DpZ Dωnπ = I − θnπ′, (7)

where

θn =
∂xn

∂y
(π, π′ωn)

Note that, because of relations (4) and (1), both sides of relation (7)
map RK into [π (ω)]⊥.Recall that Dωnπ maps [π (ω)]⊥, the tangent space
to SK−1 at π (ω) into RK . Applying ∆ (π (ω) , ω), the pseudo-inverse of
DZ (π (ω) , ω), to both sides of (7), we get:

Dωnπ = ∆ (π (ω) , ω)
(
I − θn (ω) π (ω)′

)
(8)

Setting Θ (ω) = ∆ (π (ω) , ω)−1 we get the desired decomposition.
We now prove that the linear map Θ(ω) and the vectors θn(ω) above

are uniquely defined from π.Note first that it follows from equation (6) and
the fact that Θ(ω) : [π (ω)]⊥ −→ [π (ω)]⊥ is invertible that Dωnπ has rank
(K − 1) Now suppose we have:

Dωnπ = Γ (I − γnπ
′)

for some other operator Γ : [π]⊥ −→ [π]⊥ and vector γn. Since Dωnπ has
rank (K − 1) , so must Γ. We have:

Γ (I − γnπ
′) = Θ−1 (I − θnπ′)

This yields Γξ = Θ−1ξ for all ξ ∈ [π]⊥, so Γ = Θ−1, and then γn = θn

follows.
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Proposition 3 describes the testable properties of equilibrium prices, as
function of the initial allocation, stemming from the individualism assump-
tion. underlying, general equilibrium framework. It states that there exists
a linear map Θ such that, for any n, the matrix (Θ(ω)Dωnπ(ω) − I) is of
rank one and vanishes over the subspace [π(ω)]⊥.Note that the operator
Θ (ω) : [π (ω)]⊥ −→ [π (ω)]⊥ is independent of n. As a consequence, for any
i and j, the rank of the operator (Dωj

π−Dωi
π) is at most one. Indeed, from

(6) we get:
(Dωj

π −Dωi
π) = Θ (θi − θj) π′

Proposition 4 Assume that

K∑
i,j=1

ωj ∂πj

∂ωi
n

πi 6= −1

at a certain ω = ω. Then, in some neighbourhood of ω, knowledge of Θ(ω)
and θn (ω) uniquely identifies the marginal propensity to consume, an (p, y) =
Dyxn (p, y) , of individual n:

an

[
π (ω) , π (ω)′ ωn

]
= θn (ω)

Proof. Consider the map Φn : ω 7−→ (
π (ω)′ ωn, π (ω)

)
, which sends

RKN
+ into R× SK

+ . The derivative DωnΦn (ω) maps RK into R× [π (ω)]⊥ .We
have:

DωnΦn (ω) =
(
ω′nDωnπ (ω) + π (ω)′ , Dωnπ (ω)

)

Splitting RK
+ into the orthogonal sum of π (ω) and [π (ω)]⊥ , we get:

DωnΦn (ω) =
ω′n (Dωnπ) π + 1 0...0

ξn Θ (ω)−1

where ξn is some (K − 1) vector.
It follows from the assumption that DωnΦn (ω) is invertible.This will allow

us, by the implicit functions theorem, to use the following change of variable:

ω = (ω1, ...ωN) −→ (
ω1, ..., ωn−1, π (ω)′ ωn, π (ω) , ωn+1, ..., ωN

)
.

in some neigbourhood of ω.
By definition, we have θn (ω) = ∂xn

∂y

(
π (ω) , π (ω)′ ωn

)
. This means that,

in teh nex coordinates, θn is a function of π (ω)′ ωn and π (ω) only, and this
gives ∂xn

∂y
, as announced.
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Proposition 5 Assume in addition that agent n is a utility-maximizer. Then
the function an (p, y) satisfies the equations
(

∂ak
n

∂pj

− ∂aj
n

∂pk

)
∂ai

n

∂y
+

(
∂aj

n

∂pi

− ∂ai
n

∂pj

)
∂ak

n

∂y
+

(
∂ai

n

∂pk

− ∂ak
n

∂pi

)
∂aj

n

∂y
= 0, ∀i, j, k

(9)

Proof. To ease notations, let us drop the index n in the following proof,
and write a for an and x for xn. Since x (p, y) is a demand function, it satisfies
Slutsky symmetry:

∂xk

∂pj

− ∂xj

∂pk

= xk ∂xj

∂y
− xj ∂xk

∂y
.

Differentiating with respect to y,

∂2xk

∂y∂pj

− ∂2xj

∂y∂pk

= xk ∂2xj

∂y2
− xj ∂

2xk

∂y2
,

which can be written as

∂ak

∂pj

− ∂aj

∂pk

= xk ∂aj

∂y
− xj ∂ak

∂y
(10)

This provides a system of equations in the xi where all the coefficients are
known. It can readily be checked that this system cannot be of full rank. In
fact, the equations are not compatible unless condition (9) is fulfilled

Condition (9) is just one of the testable properties of the price function
which derive from the assumption that aggregate demand is rationalizable.
As we shall see later on, there are many more testable properties stemming
from this assumption: in general, knowledge of the an (p, y) determines the
xn (p, y) and the latter must then satisfy the Slutsky relations.

3.2 An example

To see how restrictive condition (6) is in general, assume that K = 2 (then
π2 can be normalized to one) and consider the following functional form for
π1 as a function of the ω :

π1 (ω) =

∑
n (A1

nω1
n + A2

nω
2
n)∑

n (B1
nω1

n + B2
nω

2
n)

, (11)
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with the normalization A2
1 + B1

1 = 1.
We now derive the restrictions implied by (6) on the coefficients Ai

n, B
i
n.

First,

∂π1

∂ωk
s

− ∂π1

∂ωk
t

=

∑2
j=1

∑
n

[(
Ak

sB
j
n −Bk

s Aj
n

)− (
Ak

t B
j
n −Bk

t Aj
n

)]
ωj

n

[
∑

n (B1
nω

1
n + B2

nω2
n) .]2

The decomposition property (6) implies that

∂π1

∂ω1
s
− ∂π1

∂ω1
t

∂π1

∂ω2
s
− ∂π1

∂ω2
t

= π1 for all s, t,

which gives

∑
k

∑
n

[(
A1

sB
k
n −B1

sA
k
n

)− (
A1

t B
k
n −B1

t A
k
n

)]
ωk

n∑
k

∑
n [(A2

sB
k
n −B2

sA
k
n)− (A2

t B
k
n −B2

t A
k
n)] ωk

n

=

∑
n (A1

nω
1
n + A2

nω
2
n)∑

n (B1
nω

1
n + B2

nω
2
n)

.

This equation must be satisfied for all
(
ω1

1, ω
K
N

)
. Simple (although te-

dious) algebra shows that the only form possible for π is then:

π1 (ω) =
A1Ω1 +

∑
n A2

nω
2
n∑

n (1− A2
n) ω1

n + B2Ω2
.

The important message of the example is that should an econometric test
be based on the relatively flexible functional form (11), then the decompo-
sition condition (6) implies that A1

s = A1
t , B

2
s = B2

t and A2
s + B1

s = 1 for all
s, t — that is, a set of strong parametric restrictions.

3.3 Recovering individual demands

We now consider the identification problem: to what extent is it possible to
recover preferences from the observation of the local structure of the equilib-
rium manifold? A first remark is that from Proposition 4, the local structure
of the equilibrium manifold fully allows to identify individual income effects.
We are thus left with a problem in consumer theory, namely: is it possible
to recover a demand function x(p, y) from the sole knowledge of its partial
derivatives with respect to income, a (p, y) = Dyx (p, y)? We proceed to show
that the answer is positive in general. We start with the following restriction:

Assumption 1 : The demand function x(p, y) is such that

12



1. the income effect for every commodity i, ∂xi/∂y, is a twice differentiable
function of income, and

∂2xi

∂y2
6= 0;

2. there exist at least two commodities j and k such that

∂

∂y
(ln

∂2xj

∂y2
) 6= ∂

∂y
(ln

∂2xk

∂y2
).

Assumption 1 requires that income effects do not vanish for any com-
modity, while there are two commodities for which the partial elasticities of
the income effects with respect to revenue do not vanish. A few remarks
are in order here. First, Assumption 1 implies that there are at least three
commodities: L ≥ 3; a different argument is required for economies with
two commodities, L = 2. Secondly, Assumption 1 rules out specific prefer-
ences, such as homothetic or quasi-linear utility functions. Indeed, it can
readily be checked that identification is not possible for homothetic utility
functions. Intuitively, this is due to the fact that homothetic utilities permit
aggregation. In general, however, if demand is non-linear in income, and if
income effect do not vanish, Assumption 1 is satisfied for an open and dense
set of prices and incomes; which suffices, since continuity then allows for
identification. More precisely, using the concept of the “generalized rank” of
a demand system, introduced in Lewbel [16], we find that Assumption 1 is
generically satisfied for systems of rank at least 2.

Finally, it is important to note that Assumption 1 involves only deriva-
tives of the income effects. As such, it can be directly expressed in terms of
a (p, y) . In particular, from the general perspective of the paper, Assumption
1 can be tested from the sole knowledge of the equilibrium manifold, since
the latter identifies a (p, y) .

The main result is then the following:

Proposition 6 If the demand function, x(p, y), satisfies Assumption 1, then
it is uniquely identified by its partial derivatives with respect to income a (p, y) =
Dyx (p, y) : for any demand function, ξ (p, y) , if Dyξ (p, y) = Dyx (p, y) for
all (p, y) , then ξ (p, y) = x (p, y) , for all (p, y) .

13



Proof. If (9) holds, the system is indeterminate, and one further deriva-
tion in y is needed. Specifically,

∂2ak

∂y∂pj

− ∂2aj

∂y∂pk

−
(

ak ∂aj

∂y
− aj ∂ak

∂y

)
= xk ∂2aj

∂y2
− xj ∂

2ak

∂y2
(12)

From Assumption 1, there exist commodities j and k such that the system
consisting of the two equations (k, j)1 and (k, j)2 in xj and xk is of full rank.
This identifies xj and xk. Then (i, k)1 written for xk and xi, allows to identify
xi.

Note that this implies a further restriction on a : the identification gives
the same result using j and i instead of k and i. This gives

∂2ak

∂y2
∂aj

∂y

((
∂ai

∂pk
− ∂ak

∂pi

)
∂aj

∂y
− ∂ai

∂y

(
∂aj

∂pk
− ∂ak

∂pj

))
=

∂2aj

∂y2
∂ak

∂y

((
∂aj

∂pi
− ∂ai

∂pj

)
∂ak

∂y
− ∂ai

∂y

(
∂aj

∂pk
− ∂ak

∂pj

))
+

∂aj

∂y
∂ak

∂y

((
∂ai

∂pk
− ∂ak

∂pi

)
∂2aj

∂y2 −
(

∂aj

∂pi
− ∂ai

∂pj

)
∂2ak

∂y2

)
.

Note also that if x(p, y) satisfies Assumption 1 and ξ is such that Dyξ (p, y) =
Dyx (p, y) for all (p, y) , then ξ(p, y) also satisfies Assumption 1.

We can thus summarize our findings:

Theorem 7 A given smooth map π on N (ω̄) cannot be a regular equilibrium
manifold unless it satisfies the testable restrictions given in Propositions 3
and 4. Conversely, if π is a regular equilibrium map over N (ω̄) , and if As-
sumption 1 is satisfied, then the underlying economy, if it exists, is uniquely
identified.

4 The case of aggregate endowments

4.1 The problem

The previous restrictions obtain under a specific hypotheses, namely, that
individual endowments are observable. This fact is quite interesting; it sug-
gests, indeed, that testable restrictions require that some data are available at
the individual level. In this section, we substantiate this claim by considering
the case when aggregate endowments only can be observed. Do restrictions
still exist?
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Quite obviously, the answer depends on the number of individuals. Take
the extreme case of a one individual economy. Then the equilibrium condition
boils down to Z = z1 = 0, which means that Ω = ω1 must be the agent’s
equilibrium consumption at prices π(Ω). Then π(Ω) is an inverse demand
function; as such, it has to satisfy the Slutsky relations, that is, Dω1π must
be symmetric on ω1

⊥.
This fact is by no means unexpected. With one individual, utility maxi-

mization is known to generate restrictive conditions on behavior. What the
previous literature suggests, however, is that these conditions might become
less and less restrictive as the number of individuals is increased. This intu-
ition turns out to be true, as we now proceed to demonstrate.

4.2 A formal statement

Suppose that we can no longer observe the individual endowments ωn, but
only the aggregate endowment Ω =

∑
n ωn. Suppose furthermore that, for

each value of Ω, this total endowment is distributed across individuals in a
way which is not observed, and that we only observe some set of equilibrium
prices, p. What can we predict on the local structure of the mapping π :
Ω 7→ p ? More precisely, is it possible to find utility functions U1, . . . , UN

and some distribution of endowment (ω1(Ω), . . . , ωN(Ω)), with
∑

ωi(Ω) = Ω,
such that the price vector π(Ω) is an equilibrium price for an economy
with N individuals, the preference of the n-th individual being Un and his
endowment ωn (Ω)?

We now answer positively a local version of this problem. Assume that
N ≥ K, and suppose we are given a mapping π : RK 7→ SK−1

+ . Chose an Ω̄
that satisfies the following, smoothness restriction:

Assumption 2 : There exists an open neighborhood V
(
Ω̄

)
of Ω̄ in which

the mapping Ω → (π (Ω) , π (Ω) ′Ω) is (locally) invertible, and the inverse

mapping A : (p, Y ) → Ω is analytic in a neighborhood of
(
π

(
Ω̄

)
, π

(
Ω̄

)′
Ω̄

)
.

Here, Y = π (Ω)′ Ω denotes the economy’s total wealth. This assumption
deserves a few comments. First, local invertibility does not raise specific
problems. It is a standard regularity assumption, that can be expected to
hold for almost every Ω. Its main use, here, is to allow to consider the mapping
A as a change of variables; that is, any function of Ω can alternatively be
expressed as a function of prices and aggregate income. This technique will
be helpful in what follows. Analyticity is more demanding; it can be viewed
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as an extreme case of smoothness. However, it is by now known that it is a
very useful assumption for this kind of problem (see [7])

4.3 The main result

If Assumption 2 is satisfied, then the mapping A has two obvious properties:
it is homogenous, and it satisfies p′A (p, Y ) = Y.

Now, let us just assume that resources are shared equally; the distribution
of endowment (ω1(Ω), . . . , ωN(Ω)) is thus defined by

ωn(Ω) =
1

N
Ω.

This implies, in particular, that

π (Ω)′ ωn(Ω) =
Y

N
=

π (Ω) ′Ω
N

.

The problem can be stated as follows: can one find N individual demand
functions x1 (p, y1) , ..., xN (p, yN) , such that

N∑
n=1

xn

(
π (Ω) ,

π (Ω)′ Ω
N

)
= Ω, ∀Ω ∈ V (

Ω̄
)
.

We can use the change in variables defined by Assumption 2; the previous
equation becomes, with obvious notation,

N∑
n=1

xn

(
p,

Y

N

)
= A (p, Y )

or, using homogeneity

N∑
n=1

xn

(
p

Y
,

1

N

)
= A

( p

Y
, 1

)
.

In words, we are now looking for an economy, the aggregate demand of
which is locally equal to some given, analytic function B

(
p
Y

)
= A

(
p
Y

, 1
)
.

The answer is given by a recent result ([7]), which states that this is always
possible. Formally,

16



Proposition 8 Under Assumption 2, and assuming N ≥ K, there is an
open neighborhood V of Ω, and N functions U1, ..., UN , concave and analytic
on RK , such that, for all Ω in V , π(Ω) is a system of equilibrium prices for
the economy where individual n is characterized by the utility function Un

and the endowment

ωn =
Ω

N
.

One the one hand, this result confirms the intuition, stated in introduc-
tion, that the observation of individual data is necessary to generate testable
restrictions. These restrictions reflect both the decentralized nature of the
problem and the maximization assumptions made at the individual level;
furthermore, they allow, generically, to recover the entire economy. If, on
the contrary, only fluctuations in aggregate income can be observed, then no
structure is preserved, at least if the number of individuals is large enough.

One the other hand, Proposition 8 seems at variance with other resuls in
aggregation theory, obtained within the same framework of collinear endow-
ments with collinear perturbations. The basic intuition of Hildenbrand [11]
is that, provided there is sufficient dispersion in preferences across agents,
the resulting aggregate demand will satisfy the law of demand. This result
has by now been shown to hold in wider conditions of hererogeneity, see
for instance Chiappori [6], Hildenbrand [12], Grandmont [10],Quah [18]. In
contrast with these situations, proposition 8 makes no restriction at all on
agents’ preferences, except for the fact that they are convex. The intuition
here is that no collective demand function can be so weird as not to arise
from some well-chosen individual preferences, but then, of course, it can no
longer be assumed that these preferences are uncorrelated across agents. So
these two classes of result in aggregation theory are distinct. An earlier result
which is in the spirit of Proposition 8 is due to Kirman and Koch [13]

5 Concluding remarks

A first and obvious conclusion of our work is that the “equilibrium mani-
fold” approach leads to conclusions that differ deeply from the Sonnenschein-
Debreu-Mantel excess demand perspective. The main conclusion of the latter
literature is that all the structure due to individual utility maximization is
lost by aggregation. Adopting the equilibrium manifold perspective, we reach
the opposite conclusion that all the relevant structure is generically preserved,
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in the sense that the initial economy can be recovered from the structure of
the equilibrium manifold. In that sense, our results both generalize Brown
and Matzkin’s findings and shed a new light on their scope and status. We
refer to [15] for an extension to the case of uncertainty and incomplete mar-
kets. Also, out interpretation of these results is simple. Rephrasing Arrow’s
statement quoted in the introduction, we believe that in the aggregate, the
hypothesis of rational behavior and market equilibrium has in general strong
implications even if individuals are different in unspecifiable ways; however,
the latter can be tested only insofar as data are available at the individual
level. In short, rationality may be testable, but not without individual data.

Finally, what is the empirical relevance of the restrictions derived in the
paper? An obvious qualification is that they rely on the impact of changes in
individual endowments on aggregate prices. Obviously, the larger the econ-
omy, the smaller such effects, and the more difficult it will be to produce
empirical work on them. It should be stressed, however, that general equi-
librium does not apply only to ’large’ economies. On the contrary, the tools
of general equilibrium theory have been recently applied, in a very successful
way, to the analysis of the behavior of ’small’ groups. For instance, standard
demand theory uses data on households or families, most of which gather
several individuals. Models aimed at taking into account the ’non unitary’
nature of the interactions at stake usually rely on a ’collective’ approach,
that postulates only efficiency. With private consumptions - a framework
that has been used in most empirical applications - efficient allocations and
market equilibria coincide, and general equilibrium theory is a relevant tool
(see for instance Chiappori and Ekeland [8]). The same approach has also
been adopted to the analysis of such groups as committees, clubs, villages
and other local organizations, which have also attracted much interest. For
instance, many micro studies in development, starting with Townsend’s sem-
inal investigation of risk sharing within an Indian village [22], are based on
data collected at the local level; it is not uncommon to observe endowments
(say, individual crops) and prices within the village, a context to which our
framework directly applies. Even in large economies, our result may still
apply directly when individuals belong to a finite (and “small”) number of
homogeneous “classes”. Finally, an interesting question is how our results
can be extended to production economies. The idea is that, in a production
context, changes in factor endowments will have an observable impact on fac-
tor prices, and that the corresponding equilibrium manifold can in principle
be studied in a similar way. All this shall be the subject of further research
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