Examen d'Analyse complexe

Des réponses justifiées mais concises sont attendues. Le barême est de deux points par question.

Notation : $D(a, r) = \{z \in \mathbb{C}, |z - a| < r\}, C(a, r) = \{z \in \mathbb{C}, |z - a| = r\}.$

1 Questions indépendantes

- **1.** L'application \mathbb{R} -linéaire $\mathbb{C} \to \mathbb{C}$, $(x,y) \mapsto (x+y,x-y)$ est-elle \mathbb{C} -linéaire?
- 2. Quel est le développement en série de Laurent de $\frac{1}{(z-1)(z-2)}$ sur l'anneau $\{1<|z|<2\}$?
- 3. Dessiner l'image du lacet $\gamma(t)=a\cos t+ib\sin t$ $(a,\,b>0,\,t\in[0,2\pi]$ fixé). Que vaut $\int_{\gamma}\frac{dz}{z}$? En déduire

$$I = \int_0^{2\pi} \frac{dt}{a^2 \cos^2 t + b^2 \sin^2 t};$$

on pourra pour cela transformer $\int_{\gamma} \frac{dz}{z}$ en une intégrale à une intégrale par rapport à t.

4. Soit D = D(0,1). Soit f une fonction holomorphe sur \bar{D} telle que $f(D) \subset D$ et |f| < 1 sur C(0,1). Montrer que f possède un unique point fixe sur D.

Corrigé

1. On a f(i) = 1 - i et if(1) = i(1 + i) = -1 + i. Comme ces deux nombres diffèrent, f n'est pas \mathbb{C} -linéaire.

Autre calcul possible parmi de nombreux autres :

$$f(z) = (1+i)\frac{z+\bar{z}}{2} + (1-i)\frac{z-\bar{z}}{2i} = (...)z + i\bar{z}.$$

Comme le coefficient devant \bar{z} est non nul, f n'est pas \mathbb{C} -linéaire.

2. On note que

$$f(z) = \frac{1}{z - 2} - \frac{1}{z - 1}.$$

Si |z| < 2,

$$\frac{1}{z-2} = \frac{-1}{2} \frac{1}{1-z/2} = \frac{-1}{2} \sum_{n \ge 0} \left(\frac{z}{2}\right).$$

Si
$$z > 1$$
,
$$\frac{1}{z - 1} = \frac{1}{z} \frac{1}{1 - 1/z} = \sum_{n \ge 0} \frac{1}{z^{n+1}}.$$

Dans l'anneau $\{1 < |z| < 2\},\$

$$f(z) = -\sum_{n>0} \left(\frac{z^n}{2^{n+1}} + \frac{1}{z^{n+1}} \right).$$

3. $\Gamma(s,t)=(s+(1-s)a)\cos t+(s+(1-s)b)\sin t$ est une homotopie dans \mathbb{C}_* entre l'ellipse γ et le cercle C(0,1). Comme 1/z est holomorphe dans \mathbb{C}_* , d'après la théorie de Cauchy on a

$$\int_{\mathcal{I}} \frac{dz}{z} = \int_{G(0,1)} \frac{dz}{z} = 2\pi i.$$

Par ailleurs,

$$\int_{\gamma} \frac{dz}{z} = \int_{0}^{2\pi} \frac{\gamma'(t)}{\gamma(t)} dt.$$

En mettant sous forme canonique la fraction sous l'intégrale, on obtient

$$\int_{\gamma} \frac{dz}{z} = \int_{0}^{2\pi} \frac{(-a^2 + b^2)\sin t \cos t}{a^2 \cos^2 t + b^2 \sin^2 t} dt + i \int_{0}^{2\pi} \frac{ab}{a^2 \cos^2 t + b^2 \sin^2 t} dt.$$

La partie réelle doit être nulle, tandis que la partie imaginaire donne l'intégrale cherchée :

$$\int_0^{2\pi} \frac{dt}{a^2 \cos^2 t + b^2 \sin^2 t} = \frac{2\pi}{ab}.$$

4. Les points fixes de f(z) sont les zéros de f(z)-z. Or, d'après le théorème de Rouché, f(z)-z a le même nombre de zéros que z dans D, c'est-à-dire 1.

2 Inversion locale

Soient $a \in \mathbb{C}$ et f une fonction holomorphe en a; on note b = f(a). On suppose que $f'(a) = f''(a) = \dots = f^{(p-1)}(a) = 0$ et que $f^{(p)}(a) \neq 0$ pour un certain entier $p \geq 1$; p s'appelle l'ordre ou la multiplicité de f en a. On définit encore la fonction φ par $f(z) = b + (z - a)^p \varphi(z)$.

- 1. Montrer que φ est holomorphe et non nulle en a.
- **2.** Montrer qu'il existe r > 0 tel que D(a, r) ne contienne aucun antécédent de b autre que a.
- **3.** Montrer que, si $\mu = \min_{|z-a|=r} |f(z)-b|$, tout point $w \in D(b,\mu)$ possède exactement p antcédents, comptés avec leur multiplicité.
- **4.** En déduire qu'il existe une fonction holomorphe d'ordre 1 en a de la forme $F(z) = \sqrt[p]{f(z) b}$.
- **5.** Montrer qu'il existe une unique fonction G holomorphe en 0 telle que $F \circ G(w) = w$ au voisinage de 0.
- **6.** En déduire l'expression en fonction de G d'une fonction g telle que $f \circ g(w) = w$, au voisinage de w = b.

Corrigé

1. f est développable en série de Taylor. D'après l'hypothèse que f est d'ordre p en a, au voisinage de a on a

$$f(z) = b + \sum_{k \ge p} c_k (z - a)^k, \quad c_p \ne 0.$$

Forcément,

$$\varphi(z) = \sum_{k \ge p} c_k (z - a)^{k-p} = \sum_{k \ge 0} c_{p+k} (z - a)^k$$

et $\varphi(a) = c_p \neq 0$.

Les suites $(|c_{p+k}| r^k)$ et $r^p(|c_{p+k}| r^k) = (|c_{p+k}| r^{p+k})$ sont bornées pour les mêmes valeurs de r, donc φ a le même rayon de convergence > 0 que f. Donc φ est bien holomorphe en a.

- **2.** Les zéros d'une fonction holomorphe non constante sont isolés. (Ici, ceci se déduit aussi du fait que $\varphi(a) \neq 0$, donc, dans un voisinage de a, $\varphi(z) \neq 0$, donc, si de plus $z \neq a$, $(z-a)^p \varphi(z) \neq 0$.)
- **3.** Soit $w \in D(b, \mu)$. Comme

$$f(z) - w = (f(z) - b) + (b - w),$$

avec, pour tout $z \in C(a, r)$,

$$|f(z) - b| \geqslant \mu \geqslant |b - w|,$$

d'après le théorème de Rouché l'équation f(z) = w possède autant de racines que l'équation f(z) = b (comptées avec multiplicité), c'est-à-dire p.

4. Comme φ ne s'annule pas en a, la racine p-ième de φ possède une détermination continue au voisinage de a. Cette détermination est holomorphe. Donc

$$F(z) = \sqrt[p]{f(z) - b} = \sqrt[p]{\varphi(z)}(z - a)$$

est holomorphe. De plus,

$$F(z) = (z - a) \sqrt[p]{c_p + c_{p+1}(z - a) + \dots},$$

donc $F'(a) = c_p^{1/p}$, donc F est d'ordre 1 en a.

5. D'après ce qui précède dans le cas p=1 (ou directement par le théorème de Rouché), l'équation F(z)=W possède localement une solution unique Z=G(W) si W est proche de 0, de sorte que $F\circ G(W)=W$ au voisinage de 0. Comme F(a)=0, on a G(0)=a.

À une petite variation $\Delta Z \neq 0$ à partir de Z correspond une petite variation ΔW à partir de W = F(Z), qui est non nulle puisque $F'(a) \neq 0$. Donc le rapport $\frac{\Delta Z}{\Delta W}$ existe. Ce rapport tend vers 1/F'(z). Donc G est \mathbb{C} -dérivable, donc holomorphe, au voisinage de 0.

Tout ceci découle aussi du théorème d'inversion locale en classe holomorphe (dont c'est une démonstration en dimension un).

6. De la question qui précède, on déduit que

$$f \circ G(W) = b + W^p,$$

soit, en posant $W = (w - b)^{1/p}$,

$$f \circ G\left((w-b)^{1/p}\right) = w.$$

Il suffit donc de poser

$$g(w) = G\left((w-b)^{1/p}\right).$$