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Abstract. We study invariant manifolds of conformal symplectic
dynamical systems on a symplectic manifold pM, ωq of dimension
ě 4. This class of systems is the 1-dimensional extension of symplec-
tic dynamical systems for which the symplectic form is transformed
colinearly to itself.

In this context, we first examine how the ω-isotropy of an invari-
ant manifold N relates to the entropy of the dynamics it carries.
Central to our study is Yomdin’s inequality, and a refinement ob-
tained using that the local entropies have no effect transversally to
the characteristic foliation of N .

When pM, ωq is exact and N is isotropic, we also show that N
must be exact for some choice of the primitive of ω, under the condi-
tion that the dynamics acts trivially on the cohomology of degree 1
of N . The conclusion partially extends to the case when a one-sided
orbit of N has compact closure.

We eventually prove the uniqueness of invariant submanifolds N
whenM is a cotangent bundle, provided that the dynamics is isotopic
to the identity among Hamiltonian diffeomorphisms. In the case of
the cotangent bundle of the torus, a theorem of Shelukhin allows us to
conclude that N is unique even among submanifolds with relatively
compact orbits.
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1. Introduction

Let pM2d, ωq be a symplectic manifold. Symplectic dynamical systems
form a class of infinite codimension. We will study conformal symplectic
dynamics, a now classical extension of symplectic dynamics1 where the
symplectic form may change in its own direction:

Definition 1.

‚ A diffeomorphism f : M ý is conformal symplectic if f˚ω “ aω
for some a ą 0 (conformality ratio).2

‚ A complete vector field X onM is conformal symplectic if LXω “

αω, where LX is the Lie derivative, for some α P R (conformality
rate).3

Such dynamics encapsulate mechanical systems whose friction force is
proportional to velocity, in which case a ă 1 or α ă 0.

In this paper we will focus on the non-symplectic case, i.e. a ‰ 1 and
α ‰ 0. Of course, time reversal changes a in 1{a and α in ´α.
For such a dynamics, the volume form ω^d is monotonic. So if such

a dynamics exists on M, M cannot be closed and has infinite volume.
Moreover, when the dynamics is given by a vector field X, the symplectic
form satisfies ω “ 1

α
LXω “ d

`

1
α
iXω

˘

and is exact. Hence conformal
vector fields exist only on exact symplectic manifolds. Yet this is not the
case for conformal diffeomorphisms (see an example in Proposition 2).

1Vaisman [20] and others have defined local conformal symplectic structures on a
manifold M. There is a corresponding notion of dynamics preserving the structure,
thus extending our setting.

2As Libermann noticed [10]: if f˚ω “ aω for some smooth function a, aω being
closed we have da^ω “ 0, which implies, if M has dimension ě 4, that a is constant.

3Then the flow pφtq of X is conformal symplectic and φ˚
t ω “ eαtω.
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Also, if a vector field X is conformal symplectic of conformality rate
α and if Z is the Liouville vector field associated with the 1-form λ “

´ 1
α
iXω i.e., iZω “ λ, then X `αZ is symplectic. Thus, when ω is exact,

conformal symplectic vector fields form a 1-dimensional extension of the
space of symplectic vector fields.

When pM, ωq is exact, there exists a 1-parameter subgroup C of the
set of conformal symplectic diffeomorphims such that the group of con-
formal symplectic diffeomorphisms is tf ˝ g; pf, gq P C ˆ Su where S is
the set of symplectic diffeomorphisms. When M is not exact, let R be
the subgroup of R˚

` of conformality ratios of conformal symplectic diffeo-
morphisms of M. This subgroup can be trivial, e.g. when M is compact
(all conformal symplectic diffeomorphism are symplectic).

Questions. Can R be strictly between t1u and R˚
`? Assuming that

R “ R˚
`, does there exist a continuous 1-parameter family of conformal

symplectic diffeomorphisms indexed by its conformality ratio in R˚
`?

An important case is that of cotangent bundles pM “ T ˚Q, ω “

´dλq, where Q is a manifold and λ is the canonical Liouville 1-form.
A continuous-time example is the flow expptZλqpq, pq “ pq, e´tpq of the
Liouville vector field Zλ defined by iZλ

p´dλq “ λ and a discrete-time
example is f “ expZλ : pq, pq ÞÑ pq, apq, a “ e´1. These two examples of
conformal symplectic dynamics have a very simple behaviour:

‚ there is a global attractor A;
‚ the ω-limit set of every orbit is a point of A.

More generally, consider a discounted Tonelli vector field X on T ˚Q
of negative rate α; by definition it satisfies iXω “ dH ` αλ for some
Hamiltonian H which is superlinear in the fiber direction and whose
Hessian in the fiber direction is positive definite. It has been shown that
the flow of such a vector field has a global attractor [12].

In the general setting, many natural questions are open, for example:

Questions. Which conditions ensure the existence of a global attractor?
And provided that the global attractor exists (necessarily having zero
volume), what can be said of its size?

As a first step, in this article we focus on the case of invariant sub-
manifolds (with a digression on the case of submanifolds with compact
orbit), although the study of dissipative twist maps proves that there can
exist invariant subsets that are not submanifolds [9].

First, we explore the isotropy of invariant submanifolds. This question
is akin to its analogue in symplectic dynamics, where both negative and
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positive results have been proven in particular for invariant tori carrying
minimal quasiperiodic flows.

We start by providing an example where an invariant submanifold is a
hypersurface and hence non-isotropic (Propositions 1 and 2 in section 2).
There exist similar examples due to McDuff, [13] and Geiges [4, 5], but
our example is somewhat more explicit. We do not know if there exist
examples of invariant non-insotropic submanifolds that are invariant by
a conformally symplectic dynamics on a cotangent bundle. An even more
difficult question is to determine whether such submanifolds may exist
for discounted Tonelli flows on cotangent bundles. In this case and when
dimM ě 4, the global attractor never separates M and hence cannot
be a hypersurface.

In turn, we show some positive results regarding the isotropy of in-
variant submanifolds. If the invariant submanifold is a surface, isotropy
follows from a simple argument using the growth of the area. In higher
dimension, a first result follows from Yomdin’s theory [22, 7]. Propo-
sition 4 of section 2 states that if a smooth4 conformal diffeomorphism
f : M ý with conformality rate a has an invariant smooth submanifold
N Ă M such that the topological entropy of f|N is less than | logpaq|,
then N is isotropic.

But Yomdin’s proof can be improved in the setting of diffeomorphisms
which are conformal with respect to a presymplectic form. Here, we prove
that the so-called local entropies have no effect on the volume growth
transversally to the characteristic foliation of N (section 3). It follows
that if a conformal symplectic C3-diffeomorphism of conformality ratio
a has an invariant C3-manifold on which ω has constant rank 2ℓ and
such that the entropy of f|N is smaller than ℓ | log a|, N is isotropic. In
particular, if an invariant submanifold carries a minimal dynamics (every
orbit is dense) with zero entropy, it is isotropic (corollary 2).

This new result assumes less regularity than the former one (C3 in-
stead of smooth in Proposition 4) but requires that the symplectic form
restricted to the submanifold has constant rank.

A related result is [2, 2.2.1], where the authors prove that if a C1

conformal dynamics has a C1 invariant torus on which the dynamics is
C1 conjugate to a rigid rotation, then this torus is isotropic. This results
is a direct consequence of Proposition 4. Corollary 2 of section 3 doesn’t
imply this result because our result require more regularity, and on the
other hand our result applies when a C3 dynamics is C0 conjugated to a
transitive rotation.

Second, we examine the question of exactness. In this purpose, in
section 4 we assume that pM, ω “ ´dλq is exact. Define the Liouville

4Smooth means C8.
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class of an isotropic embedding in M as the cohomology class of the form
induced by λ. The embedding is called exact when this class vanishes.
The action of conformal symplectic diffeomorphisms on Liouville classes
depends on a notion of exactness for the diffeomorphisms themselves.
Let f : M ý be a conformal symplectic diffeomorphism of conformality
ratio a. The form f˚λ ´ aλ is closed.

Definition 2. The diffeomorphism f is λ conformal exact symplectic
(CES) if f˚λ ´ aλ is exact.

It is Hamiltonian if f is the time-one map of the flow of a non au-
tonomous conformal Hamiltonian vector field Xt (meaning that iXtω “

αt λ ` dHt for all t).

These definitions depend of the chosen primitive of the symplectic
form. We prove in appendix B that there is always a choice of primitive
for which f is exact. Alternatively, we also show that f is symplecti-
cally conjugate to a diffeomorphism which is exact with respect to the
initial λ (see appendix B). Hence we state our results for exact conformal
symplectic dynamics (see section 4 for more comprehensive statements).

Our main result here is that if f is an exact conformal symplectic
diffeomorphism and if S is a strongly f -invariant submanifold (in the
sense that j ˝ fpSq “ jpSq and f acts trivially on H1pjpSq,Rq), j is
exact.

When L is a Lagrangian submanifold that is H-isotopic5 to a graph in
M “ T ˚Q and f is CS isotopic6 to IdM, we obtain the same conclusion
when assuming only that the orbit of L is bounded. For example, the
submanifolds that are H-isotopic to the zero section and contained in an
attractor satisfy this hypothesis.

Question. Is it possible to obtain similar results without assuming that
the Lagrangian submanifold is H-isotopic to a graph? On other mani-
folds?

Third, in section 6, we raise the question of the uniqueness of a invari-
ant Lagrangian submanifolds in a cotangent bundle pT ˚Q,´dλq. Indeed,
let f : T ˚Q ý be a CES diffeomorphism that is CH isotopic7 to IdT˚Q.
We show that there exists at most one submanifold of T ˚Q that is H-
isotopic to the zero section and invariant by f . Key to the proof is the
Viterbo distance of Lagrangian submanifolds which are H-isotopic to the
zero section, and the fact that this distance is monotonic with respect to
the action of f .

5By H-isotopic, we mean isotopic among Hamiltonian diffeomorphisms.
6By CS isotopic, we mean isotopic among conformal symplectic diffeomorphisms.
7By CH-isotopic, we naturally mean isotopic among conformally Hamiltonian

diffeomorphisms
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A recent result of Shelukhin even allows us to show the following. Let
f : T ˚Tn ý be a CES diffeomorphism that is CH-isotopic to IdT˚Tn .
Then there exists at most one submanifold L which is H-isotopic to the
zero section and such that

ď

kPZ

fk
pLq is relatively compact.

Hence when it exists, L is invariant by f .
For discounted Tonelli flows, it was known that there is at most one

invariant exact Lagrangian graph because this corresponds to the unique
weak KAM solution [12]. But we give in Section 7 an example of such
a dynamics with an invariant H-isotopic to a graph submanifold that is
not a graph, hence even in this case our uniqueness result is new.

2. Isotropy

The so-called Mañé example [11] (see subsection 7.1) shows that any
flow defined on a closed manifold Q can be achieved as the restriction of
a Tonelli conformal Hamiltonian flow to the zero section of T ˚Q. In this
case, the zero section is an invariant Lagrangian submanifold.

The following example, which is very similar to an example of [5], is
key to this section. It shows that a closed submanifold which is invariant
by a conformal symplectic dynamics may be non ω-isotropic. In the
remaining of the section, we will give some general conditions under
which the submanifold must be ω-isotropic.

Proposition 1. There exists a conformal symplectic vector field X on a
4-dimensional symplectic manifold pM, ωq, with a 3-dimensional invari-
ant submanifold L (hence L is not isotropic).

Moreover, the submanifold L is the global attractor for the flow pφtq of
X, pφt|Lq is conjugate to the suspension of an Anosov automorphism of T2

with 2-dimensional stable and unstable foliations, and pφt|Lq is transitive
with entropy equal to |α|, where α is the conformality rate of X.

Remarks 3. (1) In our example, L is coisotropic, but it is easy to
extend this example to an invariant submanifold which is neither
isotropic nor coisotropic. Indeed, let Y be a conformal symplectic
vector field on a symplectic manifold pN , ω1q with a periodic orbit
γ. Then the sum X‘Y admits Lˆγ as an invariant submanifold
that is neither isotropic nor coisotropic in M ˆ N if dimN ě 4.

(2) The submanifold L is the maximal (among compact subsets) at-
tractor of the dynamics.

(3) Replacing the vector field X by bX for b P R, we can achieve any
positive value for the entropy.
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Questions. We don’t know if it is possible to build a non-isotropic ex-
ample on a cotangent bundle endowed with its usual symplectic form
or, even stronger, if a similar example exists on such a manifold among
Tonelli flows.

Proof of Proposition 1. We consider an Anosov automorphism A : T2 ý

induced by a matrix

ˆ

a b
c d

˙

P SLp2,Zq with eigenvalues 0 ă λ´ ă 1 ă

λ` “ 1
λ´

and eigenvectors v˘. An example of such an automorphism is

Apx, yq “ p2x ` y, x ` yq, with eigenvalues λ´ “ 3´
?
5

2
ă 1 and λ` “

3`
?
5

2
ą 1.

Following [1], we define a suspension T of the diffeomorphism by using
the following relation on T2 ˆ R (writing ξ “ px, yq):

@pξ, zq P T2
ˆ R, pξ, zq „ F pξ, zq :“ pAξ, z ´ 1q.

Denote by α˘ the linear forms on R2 such that α˘pv˘q “ 1 and α˘pv¯q “

0. Observe that α˘ ˝A “ λ˘α˘. Rescale the forms α˘ in the z-direction
in order to get F -invariant forms on T2 ˆ R: define

β˘pξ, zq “
`

λ˘

˘z
α˘pξq,

so that

F ˚β˘ “
`

λ˘

˘z´1
α˘ ˝ A “

`

λ˘

˘z
α˘ “ β˘.

Hence β˘ is F -invariant and defines a 1-form on the quotient manifold
N “ pT2 ˆ Rq{ „. We use the same notation for these 1-forms. Then

(1) dβ˘ “ lnλ˘ dz ^ β˘.

We consider the vector field X “ p0, 0, 1q on N . The lift of its flow to
T2 ˆ R is defined by

ĂΦtpξ, zq “ pξ, z ` tq

hence the first return map to tz “ 0u is Φ1pξ, 0q “ pAξ, 0q and is conju-
gate to A. The flow pΦtq is a suspension of A and has the same Lyapunov
exponents as A.

We endow the manifold M “ N ˆ R with the 1-form

Λ “ β´ ` sβ`

where s is the R-coordinate. We define Ω “ dΛ. By (1), we have

Ω “ dβ´ ` ds ^ β` ` sdβ` “ dz ^ plnλ´β´ ` s lnλ`β`q ` ds ^ β`.

Thus Ω^2 “ 2 lnλ´dz ^ β` ^ ds ^ β` ­“ 0 and Ω is a symplectic form.
We define on M the vector field Y “ X ` 2 lnλ´Bs. Its flow is

ψtpξ, z, sq “ pΦtpξ, zq,
`

λ´

˘2t
sq.
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Hence N ˆ t0u is the global attractor for pψtq. We have

ψ˚
t Ω “dz ^

´

lnλ´.
`

λ´

˘t
β´ `

``

λ´

˘2t
.s
˘

lnλ`.
`

λ`

˘t
β`

¯

`

`

λ´

˘2t
ds ^

`

λ`

˘t
β`.

As λ´λ` “ 1, we finally obtain

ψ˚
t Ω “ λt´Ω.

□

There are also examples of conformal symplectic diffeomorphisms on
a non-exact symplectic manifold that have a non-isotropic invariant sub-
manifold on which the restricted dynamics is Anosov.

Proposition 2. There exists a conformal symplectic diffeomorphism f
on a 6-dimensional symplectic manifold pM, ωq,with a 4-dimensional in-
variant submanifold L (so L is not isotropic).

Moreover, the submanifold L is the global attractor for f , f|L is conju-
gated to a hyperbolic automorphism of T4 with 2-dimensional stable and
unstable foliations, and f|L is transitive with entropy equal to ´ log a,
where a is the conformality ratio of f .

Question. In our example we have a “

´

3´
?
5

2

¯2

. In fact we can replace

this number by the square of the largest eigenvalue of any Anosov auto-
morphism of T2. We don’t know if we can achieve other constants by a
conformal symplectic diffeomorphisms of the same symplectic manifold.

Proof. We consider the hyperbolic toral automorphism T : T2 Ñ T2 that
is defined by T pθ1, θ2q “ p2θ1 ` θ2, θ1 ` θ2q. The associated linear map

has eigenvalues λ “ 3´
?
5

2
ă 1 and λ´1 “ 3`

?
5

2
ą 1. Let p “

?
5´1
2

. The

unstable direction is spanned by p1, pq and the stable one by p1,´1
p
q. The

topological entropy is ´ log λ (see [8]).
Then the product map F “ pT, T q : pθ1, θ2, θ3, θ4q P T2 ˆ T2 ÞÑ

pT pθ1, θ2q, T pθ3, θ4qq has topological entropy equal to ´2 log λ. We en-
dow T4 with the closed 2-form Ω that is defined by

Ω “ pdθ2 ´ p dθ1q ^ pdθ4 ´ p dθ3q.

Observe that the kernel of Ω is the direction of the unstable foliation.
Obviously, F ˚Ω “ λ2Ω. Now, we consider the subbundle

M “
␣

pθ, rq P T4
ˆ R4; r2 “ pr1 and r4 “ pr3

(

of T4ˆR4. This bundle corresponds to the tangent bundle to the unstable
foliation in the identification of TT4 with T4 ˆ R4.
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We denote by Ω1 the closed 2-form on M that is equal to π˚Ω where
π : pθ, rq P M ÞÑ θ P T4 and by Ω2 the restriction of the usual symplectic
form dθ ^ dr of T ˚T4 to M:
#

Ω1 “ pdθ2 ´ p dθ1q ^ pdθ4 ´ p dθ3q

Ω2 “ 1
5
pdθ2 ` 1

p
dθ1q ^ pdr2 ` 1

p
dr1q ` 1

5
pdθ4 ` 1

p
dθ3q ^ pdr4 ` 1

p
dr3q.

Let then ω “ Ω1 ` Ω2 be the chosen symplectic form on M.

If we define f : M Ñ M by fpθ, rq “ pT pθq,
´

3´
?
5

2

¯3

rq, then we have

#

f˚Ω1 “ π˚F ˚Ω “ λ2Ω1

f˚Ω2 “ λ3

λ
Ω2 “ λ2Ω2.

So finally f : M Ñ M is a conformal symplectic diffeomorphism such
that f˚ω “ λ2ω and f˚pT4 ˆ t0uq “ T4 ˆ t0u, where T4 ˆ t0u is not
isotropic and the topological entropy of f|T4ˆt0u is ´2 log λ. □

Let us come back to the general case of a C1 conformal symplectic
diffeomorphism f of a symplectic manifold pM, ωq, of conformality ratio
a ‰ 1.

Proposition 3. A C1 closed submanifold L of even dimension which is
invariant by f is nowhere symplectic. In particular, if L is a surface, it
is isotropic.

Proof. Assume the conformality ratio a of f is ‰ 1 and an f -invariant sub-
manifold L has dimension 2ℓ. Let Ω “ ωℓ, so that f˚Ω “ aℓ Ω. Choose a
finite atlas A “ tpUi,Φiqu1ďiďN of L, endow L with a Riemannian metric
and define

#

}Ω}L,8 “ supxPL,u1,...,uℓPTxLzt0u

|Ωpu1,...,uℓq|

}u1} ... }uℓ}

}DΦ´1
i }L,8 “ supuPTLzt0u

}DΦ´1
i puq}

}u}
.

Then,
ş

U
Ω is bounded over open subsets U of L:

(2)

ˇ

ˇ

ˇ

ˇ

ż

U

ω

ˇ

ˇ

ˇ

ˇ

ď

N
ÿ

i“1

ż

ΦipUiq

}ω}L,8 }DΦ´1
i }

ℓ
L,8 dLeb.

Now, let U be any open set of L. For n P Z, fnU is an open subset of L
and

ż

fnU

Ω “ an
ż

U

Ω.

Since a is assumed ‰ 1,
ş

U
Ω must thus be zero. Hence the 2ℓ-form

induced by Ω vanishes identically, whence the conclusion. □
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If L has any dimension, the same conclusion holds provided some con-
straint on the topological entropy ent pf|Lq of the dynamics carried by L.
Define the spectral radius of a self-map g as

rad pDgq “ lim sup
nÑ`8

}Dgn}
1
n
8.

Proposition 4. Let f be a conformal diffeomorphism of pM, ωq, i.e.
such that f˚ω “ aω with a Ps0, 1r. Let L be an invariant closed subman-
ifold. Assume one of the following hypothesis.

(1) The diffeomorphism f is smooth, L is smooth and

ent pf|Lq ă ´ logpaq;

(2) The diffeomorphism f and L are Cr for some r ě 1 and

ent pf|Lq ` log`
´

RadpDf´1
|L q

2{r
¯

ă ´ logpaq.

Then L is ω-isotropic.

Proof. We assume that L is invariant and not isotropic. There exists a
constant k ą 0 such that on L, we have |ω| ď k|vol| where vol is the 2-
dimensional volume form induced by the Riemannian metric. We choose
in L a small piece S of symplectic surface (whose tangent space intersects
the characteristic bundle of L only in 0). Then ωpf´npSqq “ a´nωpSq ­“ 0
and then

lim sup
nÑ8

1

n
log

ˇ

ˇ

ˇ
volpf´n

pSq

ˇ

ˇ

ˇ
ě lim

nÑ8

1

n

`

log |ωpf´n
pSqq| ´ log k

˘

“ ´ logpaq.

The conclusion follows from Yomdin’s inequality, which we have recalled
in appendix A. □

Remark 4. This statement implies in particular that if L is an invariant
submanifold by a conformal flow pφtq then

‚ if L and pφtq are C
1 and if φt|L is C1 conjugate to a rotation on a

torus for some t ­“ 0, then L is isotropic; indeed, in this case, the
entropy vanishes and the spectral radius of Df is 1. A simpler
proof of this statement is given in [2].

‚ if L and pφtq are smooth and if φt|L is C0 conjugate to a rotation
on a torus for some t ­“ 0, then L is isotropic; indeed, in this case,
the entropy vanishes.

3. Entropy

The purpose of this section is to improve regularity in Proposition 4.
We will start by giving an abstract result on a manifold endowed with a
form with constant rank and then we will give an application to invariant
submanifolds of conformal symplectic dynamics.

Let
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‚ N pnq be a compact Riemannian C2 manifold and d its distance
‚ F be a C2 foliation induced by a subbundle F of TN of rank
pď n ´ 1

‚ Ω be an pn´ pq-form on N which induces a volume on submani-
folds transverse to F

‚ f be a C1-diffeomorphism of N preserving F and such that

f˚Ω “ bΩ

for some b ą 1.

Theorem 5. The topological entropy of f satisfies

ent f ě ln b.

Proof. Key to the proof is the refined distance dF on N defined by

dFpx, yq “

#

8 if x and y are not on the same leaf

distance from x to y along their common leaf otherwise.

Lemma 1. There exist ε ą 0 and K ą 0 such that for every x, y P N

(3) dFpx, yq ă ε ñ dFpx, yq ď Kdpx, yq.

Replacing the Riemannian metric d by 1
ε
d, we will asssume that ε “ 1.

Proof of Lemma 1. We choose ε ą 0 that is strictly less than the radius
of injectivity of the metric d restricted to every leaf and introduce

D “ tpx, yq P N ˆ N ; dFpx, yq ď εu.

This set is closed and due to our choice of ε, dF is continuous on D. If
we use the notation

∆ “ tpx, xq;x P N u,

then the continuous function dF
d

is bounded on the complement of every
neighbourhood of ∆ in D.

The exponential maps for the Riemannian form g and for the Rie-
mannian form gF restricted to the leaves are tangent along the tangent
bundle to the leaves, hence

lim
px,yqÑ∆

dFpx, yq

dpx, yq
“ 1.

□

For every x P N , let U pn´pq
x be a submanifold through x of dimension

n´ p, transverse to F and homeomorphic to a ball, such that its normal
bundle is trivial. Let Vx be a tubular neighborhood of Ux, of the form

Vx “ YyPUxtz P N , dFpy, zq ă ϵxu.
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We choose Ux and ϵx ă 1 small enough so that Vx has a product structure.
Furthermore, let

Wx “ YyPUxtz P N , dFpy, zq ă ϵx{2u.

Let FWx be the foliation induced on Wx by F . (Due to the product
structure, leaves of FWx are of the form Wx X Lx, where Lx is the leaf
through x of the foliation induced on Vx.) The neighborhood Wx has the
property that for any two points y and z of Wx, if dFpy, zq ă ϵx{2 then
y and z must belong to the same leaf of FWx ; indeed, if y and z do not
lie on the same leaf of FWx , their distance must be ě ϵx since any path
from y to z along a leaf of F runs twice across VxzWx.

Ux

Fx

Fy “ Fz

x

y

z

Wx Vx

Figure 1. Construction of the finite covering of N

Let Wx1 , ..., WxI
be a finite subcovering of N . Denote Wxi

by Wi,
and let ϵ “ mini ϵxi

{2. So, the following property holds:

(*) For every i “ 1, ..., I and y, z P Wi such that dFpy, zq ă ϵ, y and
z belong to the same leaf of the foliation FWi

induced by F on
Wi.

Moreover, since f´1 and F are continuous and f preserves F , there
exists η ă ϵ such that

(**) For every x, y P N such that dFpx, yq ă η, dFpf´1x, f´1yq ă ϵ.

According to Lebesgue covering lemma, there exists θ ă η{K such that
every ball of radius θ is inside at least one of the Wi’s.

Let pQjq1ďjďJ be a decomposition of N into cubes (or compact sub-
manifolds with boundaries) such that each cube is contained in a ball of
radius ă θ.

Let S be a submanifold of N of dimension n ´ p, included into some
cube Qj and transverse to F . S must lie into some Wi. For any Wi
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containing S, S meets each leaf of FWi
at isolated points. By narrowing

S, we may assume that S meets each leaf of FWi
at one point at most.

We claim that

(***) For every k and j1, ..., jk P t1, ..., Ju,

fk
pSq X fk´1

pQj1q X ¨ ¨ ¨ X Qjk

meets each leaf of any Wi containing Qjk at one point at most.

Let j P t1, ..., Ju. Then S 1 “ fpSq X Qj is also transverse to the
foliation. Let x, y P S 1 be on a common leaf of FWi

, with Qj Ă Wi0 . Since
such leaves have a diameter ă 1 (due to our choice ϵx ă 1), using (3)8,
we see that

dFpx, yq ď Kdpx, yq ď KdiamQj ď Kθ ď η.

Using (**), dFpf´1x, f´1yq ă ϵ. But using (*), f´1x and f´1y belong to
the same leaf of FWi0

. So, by the constructing property of Wi0 , f
´1x “

f´1y and x “ y. By induction, (***) holds.
If S Ă Wi, we have
ˇ

ˇΩ
`

fk
pSq X fk´1

pQj1q X ¨ ¨ ¨ X Qjk

˘
ˇ

ˇ ď maxt|ΩpU1q|, ..., |ΩpUIq|u “ M,

uniformly with respect to k. Let

Nk “ 7
␣

pj1, ..., jkq, fk
pSq X fk´1

pQj1q X ... X Qjk ‰ H
(

.

Then

bk |ΩpSq| ď NkM,

hence
1

k
lnNk ě

1

k
ln

|ΩpSq|

M
` ln b,

hence the wanted inequality. □

Now assume that ω is a presymplectic form9 of N of (even) rank 2ℓě 2
and

f˚ω “ aω, a ą 1.

The kernel of ω is a uniquely integrable subbundle F of corank 2ℓ. Setting
Ω “ ωℓ and b “ aℓ brings us back to the prior setting.

Corollary 1. The topological entropy of f : N ý satisfies

ent f ě
rank pωq

2
ln a.

Let us now return to our usual setting, where pM, ωq is a symplectic
manifold.

8Recall the metric was changed in order to have ε “ 1 in (3).
9A presymplectic form is a a closed 2-form with constant rank.
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Corollary 2. Let f : M ý be a C3 conformal symplectic diffeomorphism
such that f˚ω “ aω with a ą 1. Suppose that N is an invariant C3

submanifold such that the induced form ω|N on N has constant rank.
Then

ent f|N ě
rank pω|N q

2
ln a;

in particular, if the entropy of f|N vanishes, N is isotropic.

Note that if N is a compact submanifold such that f|N is minimal,10

ω|N has constant rank and so the corollary applies.

Proof. As N is C3, its tangent bundle is C2. Then Frobenius Theorem
applies to F “ kerω|N

11 and the characteristic foliation F exists. □

4. Liouville class of invariant submanifolds

In this section we assume that pM, ω “ ´dλq is an exact symplectic
manifold. The goal is to prove that, given a conformal dynamics, there
is only one Liouville class that an isotropic invariant submanifold may
have.

4.1. Action of conformal dynamics on Liouville classes.

Definition 6. Let j : S ãÑ M be an isotropic embedding.
‚ Its Liouville class rjs P H1pS,Rq is the cohomology class of the

induced form j˚λ.
‚ It is exact if its Liouville class vanishes.

So, the notion of exactness is independent of the embedding with a
given image.

When M “ T ˚Q is the cotangent bundle of a closed manifold endowed
with its tautological 1-form λ and L is a Lagrangian submanifold of
T ˚Q that is homotopic to the zero section Z, the restriction to L of the
canonical projection π : T ˚Q Ñ Q is a homotopy equivalence between
L and Q and induces an isomorphism between H1pL,Rq and H1pQ,Rq.
Denoting by jL : L ãÑ T ˚Q the canonical injection defined by jLpxq “ x,
the Liouville class of the submanifold L is the cohomological class

rLs “

”

`

π|L
˘

˚

`

j˚
Lλ

˘

ı

P H1
pQ,Rq.

In this case, we may thus update the definition of Liouville classes.

10By definition, it is minimal if every orbit is dense
11The infinitesimal integrability condition is well known: if X,Y are sections of F

and Z is a section of TN , 0 “ dωpX,Y, Zq “ ´ωprX,Y s, Zq, which shows that rX,Y s

itself is a section of F .
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Definition 7. Let L be a Lagrangian submanifold of T ˚Q that is homo-
topic to the zero section, the Liouville class rLs of L is the cohomology
class on Q whose pull back by π|L is the cohomology class of λ|TL.

The following straightforward proposition explains that the group of
conformal dynamics acts on the set of Liouville classes of isotropic em-
beddings that are homotopic to a given isotropic embedding of a given
manifold S by homotheties (translations when the dynamics is symplec-
tic).

Proposition 5. Let f : M ý be a conformal diffeomorphism with con-
formality ratio a. Then η “ f˚λ ´ aλ is a closed 1-form.

Let j0 : S ãÑ M be an isotropic embedding. For every isotropic em-
bedding j : S ãÑ M that is homotopic to j0, the Liouville class of the
isotropic embedding f ˝ j : S ãÑ M is

rf ˝ js “ arjs ` rj˚
0 ηs.

Proof. We have dη “ ´f˚ω ` af˚ω “ 0 and η is closed.
For γ : T ãÑ M, let us compute

rf ˝ jsrγs “

ż

γ

pf ˝ jq˚λ “

ż

γ

j˚
pf˚λq “

ż

γ

j˚
pη ` aλq

“

ż

γ

j˚η ` a

ż

j˝γ

λ “ arjsrγs ` rηsrj ˝ γs

“ arjsrγs ` rηsrj0 ˝ γs “ arjsrγs ` rj˚ηsrγs.

□

Definition 8. A diffeomorphism f : M ý is λ conformal Hamiltonian
(CH) if there exists an isotopy pftqtPr0,1s such that f0 “ IdM, f1 “ f and
two functions H : r0, 1s ˆ M Ñ R and α : r0, 1s Ñ R such that

@pt, xq P r0, 1s ˆ M, i 9ftpxq
ω “ αptqλ ` BxHpt, xq.

Remark 9. A diffeomorphism f : M ý is conformal Hamiltonian if
and only if there exists an isotopy pftqtPr0,1s of CES diffeomorphisms such
that f0 “ IdM and f1 “ f .

Definition 10. The flow pφtq associated to the vector field X on M is λ
conformal Hamiltonian if there exists α P R and H : M Ñ R such that
iXω “ αλ ` dH.

Remark 11. A flow is a flow of λ conformal exact symplectic diffeomor-
phisms if and only if it is λ conformal Hamiltonian.

To describe the behavior of Lagrangian submanifolds of T ˚Q that are
H-isotopic to a graph, we first need the following invariance result.
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Proposition 6. Let pLtq be an isotopy of Lagrangian submanifolds of
T ˚Q such that L0 “ Z. Then L1 is H-isotopic to a graph.

Corollary 3. Let pgtqtPr0,1s be an isotopy of conformal symplectic diffeo-
morphisms such that g0 “ IdT˚Q. Let L be a Lagrangian submanifold of
T ˚Q that is H-isotopic to a graph. Then g1pLq is H-isotopic to a graph.
If moreover L is H-isotopic to the zero-section and the isotopy is confor-
mal Hamiltonian, then g1pLq is H-isotopic to the zero-section.

Proof of Proposition 6. We will prove

Lemma 2. Assume that L is H-isotopic to the zero section and that
pLtqtPr´ε,εs is an isotopy of exact Lagrangian submanifolds such that L0 “

L. Then there exists a neighbourhood N of 0 in r´ε, εs such that for every
t P N , Lt is H-isotopic to the zero section.

Proof of Lemma 2. We use Weinstein tubular neighbourhood Theorem,
[21]. Let T be a symplectic tubular of L, i.e. there exists a neighbourhood
U of the zero section in T ˚L and a symplectic embedding ϕ : U ãÑ

T ˚Q with image T that is IdL on L. As Φ maps the exact Lagrangian
submanifold L of T ˚L onto the exact Lagrangian submanifold L of T ˚Q,
then Φ is exact symplectic.

This implies that every submanifold ϕ´1pLtq is exact Lagrangian. More-
over, there exists a neighbourhood N of 0 in r´ε, εs such that for every
t P N , ϕ´1pLtq is a graph. Hence this is the graph of an exact 1-
form dut. Then ϕ´1pLtq is the image by the time-1 Hamiltonian flow
of H “ ´dut

dt
˝ π. Using a bump function, we can assume that H has

support in U , and then the time-1 map of the Hamiltonian H ˝ ϕ maps
L onto Lt. □

We now prove Proposition 6. Let us firstly deal with the case when all
the Lts are exact. We introduce

tt P r0, 1s; @s P r0, ts, gspLq is H ´ isotopic to the zero sectionu.

Lemma 2 and the transitivity of the relation of H-isotopy imply that this
set is closed and open in r0, 1s, hence equal to r0, 1s.

Now we just assume that pLtq is an isotopy of Lagrangian submanifolds
of T ˚Q such that L0 “ Z. We choose an arc pηtqtPr0,1s of closed 1-forms
on Q whose cohomology class rηts “ rLts is the Liouville class of Lt.
We denote by Tt : T ˚Q ý the symplectic diffeomorphisms such that
Ttppq “ p ` ηt ˝ πppq. Then L˚

t “ T´tpLtq defines a homotopy of exact
Lagrangian submanifolds of T ˚Q. A result of the first part of the proof
is that L˚

t is H-isotopic to the zero section, i.e. there exists a H-isotopy
pϕtqtPr0,1s such that ϕ0 “ Id and ϕ1pZq “ L˚

1 . Hence L1 “ T1pL˚
1q is H

isotopic to the graph of η1 via the H-isotopy

pψtqtPr0,1s “ pT1 ˝ ϕt ˝ T´1
1 qtPr0,1s.
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□

Proof of Corollary 3. We assume that pgtqtPr0,1s is an isotopy of confor-
mal symplectic diffeomorphisms such that g0 “ IdT˚Q and that L is a
Lagrangian submanifold of T ˚Q that is H-isotopic to a graph. Then
there exist a closed 1-form η on Q and a H-isotopy phtqtPr0,1s such that
h0 “ IdT˚Q and L “ h1pgraphpηqq. We introduce the symplectic diffeo-
morphisms pTtqtPr0,1s of T ˚Q that are defined by Ttppq “ p ` tη ˝ πpqq.
Then

pLtqtPr0,1s “ pgt ˝ ht ˝ TtpZqqtPr0,1s

is a isotopy of Lagrangian submanifolds such that L0 “ Z and L1 “

g1pLq. A result of Proposition 6 is that g1pLq is H-isotopic to a graph.

If moreover L is H-isotopic to the zero-section and the isotopy is con-
formal Hamiltonian, then all the maps gt ˝ ht ˝ Tt are conformal Hamil-
tonian and thus every manifold Lt is exact Lagrangian. The conclusion
is a result of the second part of Corollary 3. □

4.2. Liouville classes of invariant submanifolds. Let j0 : S ãÑ M
be an isotropic embedding. We denote by J pj0q the set of isotropic
embeddings j : S ãÑ M that are homotopic to j0.

A consequence of Proposition 5 is

Proposition 7. Let f : M ý be a conformal diffeomorphism. Let
j P J pj0q be an isotropic embedding which is strongly f -invariant in
the sense that
‚ jpSq “ f ˝ jpSq

‚ f acts trivially on H1pjpSq,Rq.
Then j may have only one Liouville class, that we denote by rℓf pJ pj0qqs.
In particular, when f is CES, then rℓf pJ pj0qqs “ 0 and j has to be exact.

Proof. Let j : S ãÑ M be such an embedding. With the notations of
Proposition 5, we have

rf ˝ js “ arjs ` rj˚
0 ηs.

Let us denote by i : jpSq ãÑ M the canonical injection. As f acts
trivially on on H1pjpSq,Rq, we have

rf ˝ js “

”

`

i ˝ f ˝ j
˘˚
λ
ı

“ j˚
”

f˚
`

i˚λ
˘

ı

“ rj˚λs “ rjs

and finally rjs has to be the only fixed point of the homothety that maps
rjs on arjs ` rj˚

0 ηs. □

As a consequence:
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Proposition 8. Let f : M ý be a λ CES diffeomorphism. Then every
invariant isotropic submanifold S such that f|S acts trivially on H1pSq

is exact.

Corollary 4. Let X be a CS vector field on M with flow pφtq. Let
j0 : S ãÑ M be an isotropic embedding. We denote by J pj0q the set of
isotropic embeddings j : S ãÑ M that are homotopic to j0. Then there
is only one Liouville class that we denote by rℓXpJ qs, that an isotropic
embedding j P J pj0q such that

@t P R, φtpjpSqq “ jpSq

may have.
In particular, when X is CH, then rℓXpJ qs “ 0.

Corollary 5. Let f : T ˚Q ý be a CS-diffeomorphism that is homotopic
to IdT˚Q. Then there is only one Liouville class that we denote by rℓf s,
that a homotopic to the zero section and f -invariant submanifold may
have.

Proof of corollary 5. Let j0 : Q ãÑ T ˚Q be the canonical injection onto
the zero-section.
We assume that L is an f -invariant submanifold that is isotopic to the
zero section. Because
‚ π|L defines an homotopy equivalence between L and Q;
‚ π defines an homotopy equivalence between T ˚Q and Q;
‚ f is homotopic to IdT˚Q,
then f acts trivially on H1pL,Rq.
Let pψtq be an isotopy of diffeomorphisms of T ˚Q such that ψ0 “ IdT˚Q
and ψ1pZq “ L. Then ψ1 ˝ j0 P J pj0q and a result of Proposition 7 is
that rψ1 ˝ j0s “ rℓf pJ pj0qqs.
Moreover, if iL : L ãÑ T ˚Q is the canonical injection, we have

rψ1 ˝ j0s “ riL ˝ ψ1 ˝ j0s “ rpψ1 ˝ j0q
˚
pi˚Lλqs.

Observe that ψ1 ˝ j0 : Q Ñ L is an homotopy equivalence such that and
π ˝ pφ1 ˝ j0q acts trivially on H1pQ,Rq. We deduce that

rψ1 ˝ j0s “ rpψ1 ˝ j0q
˚
pi˚Lλqs “ rπ˚pi˚Lλqs “ rLs.

and then rLs “ rℓf pJ pj0qqs. □

5. Liouville class of Lagrangian submanifolds of T ˚Q with
compact orbits

The goal of this section is to prove that, given a conformal dynamics
on T ˚Q, there is only one Liouville class that a Lagrangian submanifold
with compact orbit may have.

We assume that M “ T ˚Q and that f : M ý is CS-isotopic to IdM.
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We suppose that j : Q ãÑ M is a Lagrangian embedding such that
jpQq “ L is H-isotopic to a graph and has compact orbit (for example is
contained in some compact attracting set).

Theorem 12. Let f : M ý be a diffeomorphism that is CS-isotopic
to IdM and let L be a Lagrangian submanifold that is isotopic to the
zero section among Lagrangian submanifolds and such that

Ť

kPZ f
kpLq

is relatively compact, then rLs “ ℓf .

Corollary 6. Let pφtq be the flow of the conformal symplectic vector field
X and let L be a Lagrangian submanifold that is isotopic to the zero
section among the Lagrangian submanifolds of T ˚Q such that

Ť

tPR φtpLq

is relatively compact, then rLs “ ℓX .

Remark 13. We give a proof of Theorem 12 that uses the notion of
graph selector. If Q (as Tn) satisfies that every element of H1pQ,Rqzt0u

contains a non-vanishing 1-form, we can give a simpler proof. Indeed, in
the proof, we are reduced to prove that if we have a sequence pLnq of
Lagrangian submanifolds such that rLns “ anprL0s ´ ℓf q ` ℓf tends to
infinity as n Ñ 8, then

Ť

nPN Ln is not relatively compact. If η “ f˚λ´λ
and the 1-form ν1 on Q is non-vanishing and represents rL0s ´ ℓf , then
Ln and the graph of 1

1´a
η ` anν1 intersect. As ν1 doesn’t vanish, we can

conclude.

Proof of Theorem 12. We endowQ with a Riemannian metric and denote
by }.} the norm on TQ. Changing f into f´1, we can assume that a ą 1.
As f is CS, then f˚λ ´ aλ “ η is closed, We deduce from the proof of
Proposition 7 that ℓf “ 1

1´a
rj˚ηs where j is the canonical injection from

Q in T ˚Q “ M on the zero section.
Then fk is also CS with

pfk
q

˚λ ´ akλ “

k´1
ÿ

j“0

ak´j´1
pf j

q
˚
pf˚λ ´ aλq “

k´1
ÿ

j“0

ak´j´1
pf j

q
˚η.

Suppose ad absurdum that rLs is not ℓf . Let ν be a closed 1-form on Q
such that ℓf ` rνs “ rLs. There is a loop γ : T Ñ Q such that

ş

γ
ν ­“ 0.

As f is CS-isotopic to IdM and by transitivity of the relation of CS-
isotopy, fk is also CS-isotopic to IdM. Hence by Corollary 3, fkpLq is
H-isotopic to a Lagrangian graph. The submanifold L is H-isotopic to the
graph of 1

1´a
j˚η`ν. A result of Proposition 5 is that fkpLq is H-isotopic

to the graph of

ak
` 1

1 ´ a
j˚η ` ν

˘

`

k´1
ÿ

j“0

ak´j´1j˚η “ akν `
1

1 ´ a
j˚η.
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If we denote by τk : M ý the symplectic diffeomorphisms τkppq “ p `

akνpπppqq ` 1
1´a

ηpjpπppqqq, then τ´1
k ˝ fkpLq is H-isotopic to the zero

section and then admits a generating function and a graph selector that is
(see e.g. [14] p 98 and references herein) a Lipschitz function uk : Q Ñ R
that is C1 on an open subset Uk of Q with full Lebesgue measure such
that

@q P Uk, dukpqq P τ´1
k ˝ fk

pLq.

Using Fubini theorem, we find a loop γk that is C1 close to γ and such
that

‚ γk is smooth and isotopic to γ;
‚ for Lebesgue almost s P T, we have γkpsq P Uk.

As uk ˝ γk is Lipschitz and then absolutely continuous, we have

0 “

ż

T

dpuk ˝ γkq

ds
psqds.

Because γkpsq P U0 for almost every s, we deduce

0 “

ż

T
dukpγkpsqq.γ1

kpsqds

and because γk is homotopic to γ and akν ` 1
1´a

j˚η is closed,
ż

T

´

akνpγkpsqq`
1

1 ´ a
ηpjpγkpsqqq`dukpγkpsqq

¯

.γ1
kpsqds “ ak

ż

γ

ν`
1

1 ´ a

ż

γ

j˚η

As the loops γk are C1-close to γ, there exists a constant K that is a
upper bound for all the }γ1

kpsq}. Hence there is a subset Ek with non-
zero Lebesgue measure of T such that for every s P Ek, we have
(4)

}akνpγkpsqq`
1

1 ´ a
ηpjpγkpsqqq`dukpγkpsqq} ě

ak

2K

ˇ

ˇ

ˇ

ż

γ

ν
ˇ

ˇ

ˇ
´

1

p1 ´ aqK
|

ż

γ

η
ˇ

ˇ

ˇ
.

Moreover, for almost every s P T, we have

dukpγkpsqq P τ´1
k ˝ fk

pLq

i.e.

(5) akνpγkpsqq `
1

1 ´ a
ηpjpγkpsqqq ` dukpγkpsqq P fk

pLq.

We deduce from (4) and (5) that there is p P fkpLq such that

}p} ě
ak

2K

ˇ

ˇ

ˇ

ż

γ

ν
ˇ

ˇ

ˇ
´

1

p1 ´ aqK
|

ż

γ

η
ˇ

ˇ

ˇ
.

□

Question. Is the hypothesis on H-isotopy to the zero section necessary?
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6. Uniqueness

We work on the cotangent bundle pT ˚Q,´dλq of a closed orientable
manifold.
Viterbo introduced in the seminal paper [17], see also [19], the spectral
distance γ that is defined on the set of H-isotopic to the zero-section
Lagrangian submanifolds.
We will recall the main results of this theory and apply this to prove that
if two submanifolds L, L1 are H-isotopic to the zero section and if pφtq is
a CH flow of T ˚Q, then

either γpφtpLq, φtpL1
qq

tÑ`8
ÝÝÝÝÑ `8 or γpφtpLq, φtpL1

qq
tÑ´8
ÝÝÝÝÑ `8.

Using a recent result due to Shelukhin, [15], we will deduce that for
certain manifolds Q, e.g. tori Tn, there is at most one H-isotopic to the
zero section submanifold whose orbit is compact and when it exists, this
submanifold is in fact invariant.

6.1. On Viterbo spectral distance γ. If L, L1 are H-isotopic to the
zero section submanifolds of T ˚Q, they have quadratic at infinity gener-
ating functions S : Q ˆ Rk Ñ R and S 1 : Q ˆ Rk1

Ñ R.
We recall that a generating function S for L is such that

‚ if we use the notation pq, ξq P Q ˆ Rk, on ΣS “

´

BS
Bξ

¯´1

p0q, BS
Bξ

has maximal rank;
‚ the map jS : ΣS ãÑ T ˚Q defined by jSpq, ξq “ BS

Bq
pq, ξq is an

embedding and its image is L.
The generating function is quadratic at infinity is there exists a non-
degenerate quadratic form Q : Rk Ñ R such that outside a compact
subset of Q ˆ Rk, we have Spq, ξq “ Qpξq.
The function S a S 1 :M ˆ Rk ˆ Rk1

Ñ R is defined by

pS a S 1
qpq, ξ, χq “ Spq, ξq ´ S 1

pq, χq.

Observe that

LXL1
“ t

BS

Bq
pq, ξq; dpSaS 1

qpq, ξ, χq “ 0u “ t
BS 1

Bq
pq, χq; dpSaS 1

qpq, ξ, χq “ 0u.

The function SaS 1 is not quadratic at infinity, but it satisfies conditions
of Proposition 1.6. of [18] that ensure that it can be replaced by such
a function, which we also denote by S a S 1. There exists a compact set
K Ă Q ˆ Rk ˆ Rk1

such that

@pq, ξ, χq R K, pS a S 1
qpq, ξ, χq “ Qpξ, χq
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where Q is a non degenerate quadratic form on Rk ˆ Rk1

. We denote by
m its index. Moreover, there exist a, b P R such that

K X

´

tpS a S 1
q ě bu Y tpS a S 1

q ď au

¯

“ H.

For c P R, we denote by Ec and F c the sublevels

Ec
“ tpq, ξ, χq; pS a S 1

qpq, ξ, χq ď cu and F c
“ tpξ, χq;Qpξ, χq ď cu.

As (S a S 1qpq, ξ, χq and Qpξ, χq are equal on Ea and outside Eb, we have

@c Rsa, br, Ec
“ Q ˆ F c.

Hence, by Kunneth theorem [3], there is an isomorphism

K : HpF b,Fa
q b HpQq Ñ HpEb, Ea

q.

AsQ is a non-degenerate quadratic form with indexm, we haveHppF b,Faq “

t0u for p ­“ m and HmpF b,Faq “ RC is one dimensional. We deduce an
isomorphism

T : RC b H˚
pQq Ñ H˚`m

pEb, Ea
q.

Then, if α P H˚pQq is non-zero,

cpα, S a S 1
q “ inftt P ra, bs, j˚

t pC b αq ­“ 0u

where jt : pE t, Eaq Ñ pEb, Eaq is the inclusion. The number cpα, S a S 1q

is then a critical value of S a S 1 that continuously depend on S and S 1

for the uniform C0 distance.
Viterbo proved that cpα, S a S 1q depends only on L and L1 and not on
the choice of generating functions. It is then denoted by cpα,L,L1q.
If µ is the orientation class of Q, the distance γpL,L1q is defined by

γpL,L1
q “ cpµ,L,L1

q ´ cp1,L,L1
q.

Theorem 14. Let f : M ý be a CES diffeomorphism that is CH-
isotopic to IdT˚Q. Let L, L1 be two distinct submanifolds of T ˚Q which
are H-isotopic to the zero section, then

either γpfn
pLq, fn

pL1
qq

nÑ`8
ÝÝÝÝÑ `8

or γpf´n
pLq, f´n

pL1
qq

nÑ`8
ÝÝÝÝÑ `8.

Corollary 7. Let f : M ý be a CES diffeomorphism that is CH-isotopic
to IdT˚Q. Then there exists at most one H-isotopic to the zero section
submanifold of T ˚Q that is invariant by f .

Proof of Theorem 14. This is direct application of the following result of
which we provide a proof.
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Lemma 3. Let L, L1 be two H-isotopic to the zero section submanifolds
of T ˚Q. Let pϕtq be an isotopy of exact conformal symplectic diffeomor-
phisms of T ˚Q such that ϕ0 “ IdT˚Q and ϕ˚

t ω “ aptqω. Then

γpϕtpLq, ϕtpL1
qq “ aptqγpL,L1

q.

Proof. As the distance γ continuously depends on the generating func-
tions, we only need to prove the results for submanifolds L and L1 whose
intersections are all transverse. In this case, there is only a finite number
of critical points and critical values for S a S 1. If x, y P L X L1, we de-
note by ∆px, y,L,L1q the difference of the corresponding critical values
of S a S 1, i.e.

∆px, y,L,L1
q “

´

S ˝ j´1
S pyq ´ S 1

˝ j´1
S1 pyq

¯

´

´

S ˝ j´1
S pxq ´ S 1

˝ j´1
S1 pxq

¯

.

Then if η1 is a path in L joining x to y and η2 a path in L1 joining y to
x, the difference of the two corresponding critical values of S a S 1 is

∆px, y,L,L1
q “

ż

η1_η2

λ.

We can always choose η1 and η2 that are homotopic with fixed ends.
Then, if D is a disc with boundary η1 _ η2, we have

∆px, y,L,L1
q “

ż

D
ω.

The intersection points of ϕtpLq and ϕtpL1q are the points ϕtpxq with
x P L X L1. For x, y in L X L1, we have

∆pϕtpxq, ϕtpyq, ϕtpLq, ϕtpL1
qq “

ż

ΦtpDq

ω “ aptq

ż

D
ω “ aptq∆px, y,L,L1

q.

Hence t ÞÑ 1
aptq

´

cpµ, ϕtpLq, ϕtpL1qq ´ cp1, ϕtpLq, ϕtpL1qq

¯

is a continuous

map that takes its values in a fixed finite set, it has to be constant. □

□

6.2. An application of a result of Shelukhin.

Theorem 15. Let f : T ˚Tn ý be a CES diffeomorphism that is CH-
isotopic to IdT˚Tn. Then there exists at most one H-isotopic to the zero
section submanifold L such that

ď

kPZ

fk
pLq is relatively compact.

Hence when it exists, L is invariant by the f .

Proof. In [15], Shelukhin defines a notion of string-point invertible man-
ifold. The tori Tn are examples of such manifolds. His result implies



24 M.-C. ARNAUD & J. FEJOZ

Theorem (Shelukhin,[15]). Let g be a Riemannian metric on Tn. Then
there exists a constant Cpgq such that for all exact Lagrangian submani-
folds L0, L1 contained in the unit codisk bundle D˚pgq Ă T ˚Tn, we have
γpL0,L1q ď Cpgq.

The Liouville vector field Zλ that is defined by iZλ
ω “ λ satisfies

LZλ
ω “ dλ “ ´ω.

Hence its flow pφλ
t q is conformal symplectic with

´

φλ
t

¯

˚
ω “ e´tω and

even exact conformal symplectic because it preserves the zero section
(and then the zero Liouville class). We have seen in Lemma 3 that φλ

t

alters the distance γ up to the scaling factor e´t.
Observe also that this flow is a homothety the fiber direction: φλ

t ppq “

e´tp. Hence the image of the unit codisk bundle D˚pgq by φt is the codisk
bundle D˚

e´tpgq with radius e´t.
Let us introduce the following notation for K Ă T ˚Tn.

δgpKq “ mintr ě 0;K Ă D˚
r pqqu.

Finally, we have that for every H-isotopic to the zero section submanifolds
L, L1 of T ˚Tn,

(6) γpL,L1
q ď 2CpgqmaxtδgpLq, δgpL1

qu.

If now L and L1 are two distinct H-isotopic to the zero section subman-
ifolds of T ˚Tn and f : T ˚Tn ý is a CES diffeomorphism that is CH
isotopic to IdT˚Tn , we deduce from Theorem 14 that

either γpfn
pLq, fn

pL1
qq

nÑ`8
ÝÝÝÝÑ `8

or γpf´n
pLq, f´n

pL1
qq

nÑ`8
ÝÝÝÝÑ `8.

By (6), one of the two sets
ď

kPZ

fk
pLq;

ď

kPZ

fk
pL1

q.

is not relatively compact. We deduce that there is at most one L H-
isotopic to the zero section such that

ď

kPZ

fk
pLq is relatively compact.

When L is H-isotopic to the zero-section, fpLq is also H-isotopic to the
zero-section because f is CH-isotopic to IdT˚Tn , see Corollary 3. More-
over, the orbits of L and fpLq coincide. This implies that L “ fpLq.

□
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7. Examples

7.1. Mañé example. This example was introduced by Mañé in the
Hamiltonian setting, [11]. It can be extended to the conformal symplec-
tic setting. For every vector field X of a closed manifold Q, it provides
a conformal Hamiltonian Tonelli flow of T ˚Q such that the zero section
is invariant and the flow restricted to this zero section is conjugated to
the flow of X.

Let Q be a closed manifold endowed with a Riemannian metric, T ˚Q is
endowed with its tautological 1-form λ and the symplectic form ω “ ´dλ.
We denote by }.} the norm on the fibers of T ˚Q that is dual to the
Riemanninan norm of Q and by pq a point of T ˚Q above q P Q.

If X is a vector field on Q, we denote by pX the 1-form on Q that is
dual to X via the Riemannian scalar product. We define the Hamiltonian

HXppqq “
1

2
}pq ` pXpqq}

2
´

1

2
}pXpqq}

2.

Since the zero-section Z “ tp “ 0u is contained in the zero-energy
level and is Lagrangian, Z is invariant by the Hamiltonian flow of HX .
The restriction to Z of the vector field is dual via ω to the derivative of
H in the fiber direction, so if we denote by 7 : T ˚

q M Ñ TqM the duality
that is defined by the Riemannian metric, we have

9q|Z “ 7
`

p ` pXpqq
˘

|Z “ 7pXpqq “ Xpqq.

Hence on the zero-section, the vector field is X.
In the conformal Hamiltonian setting, we add α times the Liouville

vector field to the Hamiltonian vector field XH of H, for some α P R.
Since the Liouville vector field vanishes on Z, the dynamics remains
conjugate to X.

Remark 16. The global attractor may differ from the zero section. For
example, X may have an attractive fixed point whose unstable manifold
is not contained in the Z, in which case the global attractor is not a
submanifold either.

7.2. An example of a Tonelli Hamiltonian that has an invariant
Lagrangian submanifold that is not a graph. The example we are
about to describe is inspired by an example of Le Calvez [9].

Let β ą 0 be a positive number and let α P pβ, 2βq. On T ˚R “ R2, let
H be the quadratic Tonelli Hamiltonian

Hpx, yq “ y2 ´ βxy.
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x

y

Consider the sum of the Hamiltonian vector field of H and of α times
the Liouville vector field ´y By:

(7)

#

9x “ ´βx ` 2y

9y “ pβ ´ αqy.

The matrix of this linear system is

ˆ

´β 2
0 β ´ α

˙

. Hence

ˆ

1
0

˙

is an

eigenvector for the eigenvalue ´β and

ˆ

1
β ´ α

2

˙

is an eigenvector for the

eigenvalue β ´ α. As α P pβ, 2βq, p0, 0q is an attracting fixed point and

the line R
ˆ

1
0

˙

is the strong stable eigenspace. Every solution that is not

contained in an eigenspace is contained in a curve whose equation is

x “
2

2β ´ α
y ` K|y|

β
α´β

where K ­“ 0, and then is not a graph if xp0q.yp0q ą 0.
Let us choose two large real numbers B ą A ą 0 and let V : R Ñ

r´1, 0s be a function with support in r´B,Bs such that V|r´A,As “ ´1,
Vr´B,´As is non-increasing and V|rA,Bs is non-decreasing. Then we add
V pxq to Hpx, yq and the equations become

(8)

#

9x “ ´βx ` 2y

9y “ ´V 1pxq ` pβ ´ αqy.

As the support of V 1 is in r´B,´As Y rA,Bs, the two vector fields are
equal in the complement of pr´B,´As Y rA,Bsq ˆ R. As V 1

|r´B,´As
ď 0,

the orbit on the x-axis for x ď ´B is pushed to the half plane y ą 0 and
then coincides with an orbit of (7) which tends to p0, 0q. In the same
way, the orbit that coincides with the x-axis for x ě B tends to p0, 0q

at `8 with an incursion into the half-plane y ă 0. Hence the union of
these two orbits and tp0, 0qu is an invariant curve Γ for (8) that is not a
graph.
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Now, let us choose D ą C ą B. Let X : R Ñ R be a vector field such
that

‚ @x P r´D`C
2
,´Bs Y rB, C`D

2
s, Xpxq “ ´βx;

‚ Xp´Dq “ XpDq “ 0 and all the derivatives of X are the same at
´D and D;

‚ p´D,´Bs (resp. rB,Dq) is a piece of unstable manifold of the
equilibrium ´D (resp. D).

Then X defines also a vector field on the circle CD “ r´D,Ds{D „ ´D.
Let HX be the Hamiltonian that is associated to X on T ˚R “ R2 via the
Mañé construction

HXpx, yq “
1

2
ypy ` 2Xpxqq.

Let us eventually define

Kpx, yq “ p1 ´ ηpxqqHXpx, yq ` ηpxq
`

Hpx, yq ` V pxq
˘

“
1 ´ ηpxq

2
ypy ` 2Xpxqq ` ηpxq

`

y2 ´ βxy ` V pxq
˘

,

where η : R Ñ r0, 1s is a bump function with support in r´C,Cs that
is equal to 1 on r´B,Bs. The function K is also Hamiltonian on the
annulus CD ˆ R and, since

B2K

By2
px, yq “ p1 ´ ηpxqq ` 2ηpxq ě 1,

K is Tonelli.
Note the following:

‚ pr´D,´Bs Y rB,Dsq ˆ t0u is in the zero level of K and then is
locally invariant by the Hamiltonian flow of K and also by the
conformal Hamiltonian flow pBK

By
,´BK

Bx
´ αyq;

‚ K|r´B,BsˆR “ pH ` V q|r´B,BsˆR.

Finally, the vector field pBK
By
,´BK

Bx
´ αyq has an invariant curve that is

not a graph, which is the union of pr´D,´Bs Y rB,Dsq ˆ t0u and the
part of Γ that is between x “ ´B and x “ B.

Appendix A. Yomdin’s inequality

Let L be a a compact Riemannian Cr manifold, S Ă L be a compact
Cr submanifold of dimension s and f : L ý be a Cr-diffeomorphism
(r ě 1). (The general statement does not require f to be invertible.)

Define the logarithmic volume growth of f|S as

logvol pf|Sq “ lim sup
nÑ`8

1

n
log |vol pfn

pSq| ,
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where vol is the s-dimensional Riemannian volume, and

rad pDfq “ lim sup
nÑ`8

}Dfn
}
1{n
8 , }Df}8 “ sup

x
}Dfx}.

Theorem 17 (Yomdin [22], Gromov [7]).

logvol pf|Sq ď ent pfq ` log`
`

rad pDfq
s{r
˘

(where log` t “ maxp0, log tq).
In particular, if L and f are smooth,

logvol pf|Sq ď ent pf|Sq ď ent f.

Appendix B. Conformal Dynamics are exact

We assume that pM, ω “ ´dλq is an exact symplectic manifold. We
prove that every conformal dynamics is symplectically conjugate to a
CES dynamics.

Our first result explains that every conformal dynamics on an exact
symplectic manifold is exact conformal with respect to some primitive of
the symplectic form.

Proposition 9. Let f : M ý be a (CS) diffeomorphism that is homo-
topic to IdM and such that f˚ω “ aω. Then there exists a primitive λ1
of ´ω, namely

λ1 “
1

1 ´ a
pλ ´ f˚λq

such that f is λ1 CES. Hence is j : S ãÑ M is an isotropic embedding
such that jpSq is f invariant, jpSq is λ1 exact.

Proof of Proposition 9. We denote η “ f˚λ ´ aλ. Then dη “ ´f˚ω `

aω “ 0 and so η is closed. Observe that

λ ´
1

1 ´ a
η “

1

1 ´ a

`

λ ´ f˚λq “ λ1,

so λ1 is a primitive of ´ω.
We have

f˚λ1 ´ aλ1 “ η ´
1

1 ´ a

`

f˚η ´ aη
˘

.

Because f is homotopic to IdM, f˚η ´ η is exact and

f˚λ1 ´ aλ1 “
1

1 ´ a

`

η ´ f˚η
˘

.

is exact. The conclusion comes from Proposition 8 for the 1-form λ1
instead of λ. □
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Proposition 10. Let f : M ý be a conformal symplectic diffeomor-
phism that is homotopic to IdM and such that f˚ω “ aω with a ą 0
and a ­“ 1. Then η “ f˚λ ´ aλ is a closed 1-form that is dual to a
symplectic vector field Y such that iY ω “ η. When Y is complete, there
exists a symplectically isotopic to IdM diffeomorphism g : M ý such
that g˚λ ´ λ ` 1

1´a
η is exact and then g ˝ f ˝ g´1 is λ CES.

Proof. We denote η “ f˚λ ´ aλ. Then dη “ ´f˚ω ` aω “ 0 and so
η is closed. We denote by λ1 the primitive of ω that was defined in
Proposition 9.

Lemma 4. There exists a symplectic vector field X with flow pgtq such
that g˚

1λ ´ λ1 is exact.

Proof. We consider the vector field X that is defined by iXω “ 1
1´a

η.
As η is closed, X is symplectic. As Y is asumed to be complete and
X “ 1

1´a
Y , the vector field X is also complete and defines a flow pgtq.

Then we have

LXλ “ ´iXω ` d
`

iXλ
˘

“ ´
1

1 ´ a
η ` d

`

iXλ
˘

.

If we denote by r.s the cohomology class, this gives

rLXλs “ ´
1

1 ´ a
rηs

i.e.
drg˚

t λ ´ λs

dt
“ ´

1

1 ´ a
rg˚

t ηs.

We deduce that for all t we have g˚
t λ ´ λ ` t

1´a
η is exact. In particular,

g˚
1λ ´ λ1 is exact. □

We now consider F “ g1 ˝ f ˝ g´1
1 . We have

F ˚λ “
`

g´1
1

˘˚
˝ f˚

˝ g˚
1 pλq “

`

g´1
1

˘˚
˝ f˚

`

λ1 ` ν1
˘

where ν1 is exact by lemma 4. By Proposition 9, ν2 “ f˚λ1 ´aλ1 is exact
and we have

F ˚λ “
`

g´1
1

˘˚`

aλ1 ` ν2 ` f˚ν1
˘

“ aλ `
`

g´1
1

˘˚`

´ aν1 ` ν2 ` f˚ν1
˘

.

□

Proposition 11. Let X be a conformal symplectic vector field on M
such that LXω “ αω with α P R˚. The 1-form ξ “ iXω ` αλ is closed
and the vector field X1 defined by iX1ω “ ξ is symplectic. When X1 is
complete, there exists a symplectically isotopic to IdM diffeomorphism
g : M ý such that g˚λ ´ λ ` 1

α
ξ is exact. Then g˚X is λ conformal

Hamiltonian.

Proof. We have dξ “ LXω ´ αω hence ξ is closed.
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Lemma 5. There exists a primitive λ1 of ´ω, namely

λ1 “ λ ´
1

α
ξ “ ´

1

α
iXω,

such that X is λ1 Hamiltonian.

Proof. The 1-form

iXω ` αλ1 “ iXω ` αλ ´ ξ “ 0

is exact. □

Lemma 6. There exists a symplectic vector field Y with flow pψtq such
that ψ˚

1λ ´ λ1 is exact.

Proof. We consider the vector field Y that is defined by iY ω “ 1
α
ξ. As

ξ is closed, Y is symplectic. As X1 is complete and Y “ 1
α
X1, Y is also

complete and defines a flow. Then we have

LY λ “ ´iY ω ` d
`

iY λ
˘

“ ´
1

α
ξ ` d

`

iY λ
˘

.

We deduce that the flow pψtq of Y satisfies

d

dt
rψ˚

t λ ´ λs “ ´
1

α
rξs.

Hence ψ˚
1λ ´ λ1 “ ψ˚

1λ ´ λ ` 1
α
ξ is exact. □

We denote g “ ψ1. Let us prove that g
˚X is λ conformal Hamiltonian.

Because g is symplectic, we have

ig˚Xω “ g˚

`

iXω
˘

“ g˚pξ ´ αλq.

Because g˚λ´ λ1 is exact, g˚

`

ξ ´αλ
˘

`αλ is exact and ig˚Xω`αλ is
exact and so g˚X is conformal Hamiltonian.

□
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Villars, Editeur, Paris 1967 ii+243 pp.

2. R.C. Calleja, A. Celletti & R. de la Llave, Local behavior near quasi-periodic
solutions of conformal symplectic systems. J. Dynam. Differential Equations 25
(2013), no. 3, 821–41.
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