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ABSTRACT. We study invariant manifolds of conformal symplectic
dynamical systems on a symplectic manifold (M,w) of dimension
> 4. This class of systems is the 1-dimensional extension of symplec-
tic dynamical systems for which the symplectic form is transformed
colinearly to itself.

In this context, we first examine how the w-isotropy of an invari-
ant manifold N relates to the entropy of the dynamics it carries.
Central to our study is Yomdin’s inequality, and a refinement ob-
tained using that the local entropies have no effect transversally to
the characteristic foliation of N.

When (M,w) is exact and N is isotropic, we also show that A
must be exact for some choice of the primitive of w, under the condi-
tion that the dynamics acts trivially on the cohomology of degree 1
of A/. The conclusion partially extends to the case when a one-sided
orbit of N has compact closure.

We eventually prove the uniqueness of invariant submanifolds N
when M is a cotangent bundle, provided that the dynamics is isotopic
to the identity among Hamiltonian diffeomorphisms. In the case of
the cotangent bundle of the torus, a theorem of Shelukhin allows us to
conclude that N is unique even among submanifolds with relatively
compact orbits.
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1. INTRODUCTION

Let (M??,w) be a symplectic manifold. Symplectic dynamical systems
form a class of infinite codimension. We will study conformal symplectic
dynamics, a now classical extension of symplectic dynamicsﬂ where the
symplectic form may change in its own direction:

Definition 1.
e A diffeomorphism f : M < is conformal symplectic if f*w =aw
for some a > 0 (conformality ratio) ]

e A complete vector field X on M is conformal symplectic if Lxw =
aw, where Ly is the Lie derivative, for some o € R (conformality

rate) ]

Such dynamics encapsulate mechanical systems whose friction force is
proportional to velocity, in which case a < 1 or a < 0.

In this paper we will focus on the non-symplectic case, i.e. a # 1 and
a # 0. Of course, time reversal changes a in 1/a and « in —a.

For such a dynamics, the volume form w”? is monotonic. So if such
a dynamics exists on M, M cannot be closed and has infinite volume.
Moreover, when the dynamics is given by a vector field X, the symplectic
form satisfies w = éLXw =d (éz Xw) and is exact. Hence conformal
vector fields exist only on exact symplectic manifolds. Yet this is not the

case for conformal diffeomorphisms (see an example in Proposition .

Vaisman [20] and others have defined local conformal symplectic structures on a
manifold M. There is a corresponding notion of dynamics preserving the structure,
thus extending our setting.

2As Libermann noticed [10]: if f*w = aw for some smooth function a, aw being
closed we have da A w = 0, which implies, if M has dimension > 4, that a is constant.

3Then the flow () of X is conformal symplectic and ¢*w = e w.
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Also, if a vector field X is conformal symplectic of conformality rate
a and if Z is the Liouville vector field associated with the 1-form \ =
—éixw ie., 1zw = A, then X + aZ is symplectic. Thus, when w is exact,
conformal symplectic vector fields form a 1-dimensional extension of the
space of symplectic vector fields.

When (M, w) is exact, there exists a l-parameter subgroup C of the
set of conformal symplectic diffeomorphims such that the group of con-
formal symplectic diffeomorphisms is {f o g;(f,g) € C x 8} where S is
the set of symplectic diffeomorphisms. When M is not exact, let R be
the subgroup of R* of conformality ratios of conformal symplectic diffeo-
morphisms of M. This subgroup can be trivial, e.g. when M is compact
(all conformal symplectic diffeomorphism are symplectic).

Questions. Can R be strictly between {1} and R%? Assuming that
R = R?%, does there exist a continuous 1-parameter family of conformal
symplectic diffeomorphisms indexed by its conformality ratio in R%?

An important case is that of cotangent bundles (M = T*Q w =
—d)), where Q is a manifold and A is the canonical Liouville 1-form.
A continuous-time example is the flow exp(tZ))(¢,p) = (¢,e 'p) of the
Liouville vector field Z, defined by iz, (—dA) = X and a discrete-time
example is f = exp Zy : (¢,p) — (¢, ap), a = e~!. These two examples of
conformal symplectic dynamics have a very simple behaviour:

e there is a global attractor A;
e the w-limit set of every orbit is a point of A.

More generally, consider a discounted Tonelli vector field X on T*Q
of negative rate «; by definition it satisfies ixw = dH + a) for some
Hamiltonian H which is superlinear in the fiber direction and whose
Hessian in the fiber direction is positive definite. It has been shown that
the flow of such a vector field has a global attractor [12].

In the general setting, many natural questions are open, for example:

Questions. Which conditions ensure the existence of a global attractor?
And provided that the global attractor exists (necessarily having zero
volume), what can be said of its size?

As a first step, in this article we focus on the case of invariant sub-
manifolds (with a digression on the case of submanifolds with compact
orbit), although the study of dissipative twist maps proves that there can
exist invariant subsets that are not submanifolds [9].

First, we explore the isotropy of invariant submanifolds. This question
is akin to its analogue in symplectic dynamics, where both negative and
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positive results have been proven in particular for invariant tori carrying
minimal quasiperiodic flows.

We start by providing an example where an invariant submanifold is a
hypersurface and hence non-isotropic (Propositions 1| and [2in section .
There exist similar examples due to McDuff, [I3] and Geiges [4], 5], but
our example is somewhat more explicit. We do not know if there exist
examples of invariant non-insotropic submanifolds that are invariant by
a conformally symplectic dynamics on a cotangent bundle. An even more
difficult question is to determine whether such submanifolds may exist
for discounted Tonelli flows on cotangent bundles. In this case and when
dim M > 4, the global attractor never separates M and hence cannot
be a hypersurface.

In turn, we show some positive results regarding the isotropy of in-
variant submanifolds. If the invariant submanifold is a surface, isotropy
follows from a simple argument using the growth of the area. In higher
dimension, a first result follows from Yomdin’s theory [22] [7]. Propo-
sition [4 of section [2] states that if a smoothf] conformal diffeomorphism
[+ M © with conformality rate a has an invariant smooth submanifold
N < M such that the topological entropy of fy is less than |log(a)],
then N is isotropic.

But Yomdin’s proof can be improved in the setting of diffeomorphisms
which are conformal with respect to a presymplectic form. Here, we prove
that the so-called local entropies have no effect on the volume growth
transversally to the characteristic foliation of N (section [3)). It follows
that if a conformal symplectic C3-diffeomorphism of conformality ratio
a has an invariant C3-manifold on which w has constant rank 2¢ and
such that the entropy of fiy is smaller than ¢|logal, N is isotropic. In
particular, if an invariant submanifold carries a minimal dynamics (every
orbit is dense) with zero entropy, it is isotropic (corollary [2).

This new result assumes less regularity than the former one (C? in-
stead of smooth in Proposition {4f) but requires that the symplectic form
restricted to the submanifold has constant rank.

A related result is [2, 2.2.1], where the authors prove that if a C*
conformal dynamics has a C! invariant torus on which the dynamics is
C! conjugate to a rigid rotation, then this torus is isotropic. This results
is a direct consequence of Proposition [4, Corollary [2 of section [3] doesn’t
imply this result because our result require more regularity, and on the
other hand our result applies when a C® dynamics is C° conjugated to a
transitive rotation.

Second, we examine the question of exactness. In this purpose, in
section {4 we assume that (M,w = —d)\) is exact. Define the Liouville

4Smooth means C®.
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class of an isotropic embedding in M as the cohomology class of the form
induced by A. The embedding is called exact when this class vanishes.
The action of conformal symplectic diffeomorphisms on Liouville classes
depends on a notion of exactness for the diffeomorphisms themselves.
Let f: M < be a conformal symplectic diffeomorphism of conformality
ratio a. The form f*\ — al is closed.

Definition 2. The diffeomorphism f is A conformal exact symplectic
(CES) if f*\ — a) is exact.

It is Hamiltonian if f is the time-one map of the flow of a non au-
tonomous conformal Hamiltonian vector field X; (meaning that iy,w =

a; A+ dH; for all t).

These definitions depend of the chosen primitive of the symplectic
form. We prove in appendix |B| that there is always a choice of primitive
for which f is exact. Alternatively, we also show that f is symplecti-
cally conjugate to a diffeomorphism which is exact with respect to the
initial A (see appendix . Hence we state our results for exact conformal
symplectic dynamics (see section 4| for more comprehensive statements).

Our main result here is that if f is an exact conformal symplectic
diffeomorphism and if S is a strongly f-invariant submanifold (in the
sense that j o f(S) = j(S) and f acts trivially on H'(5(S),R)), j is
exact.

When L is a Lagrangian submanifold that is H—isotopidﬂ to a graph in
M =T*Q and f is CS isotopicﬁ to Id g, we obtain the same conclusion
when assuming only that the orbit of £ is bounded. For example, the
submanifolds that are H-isotopic to the zero section and contained in an
attractor satisfy this hypothesis.

Question. Is it possible to obtain similar results without assuming that
the Lagrangian submanifold is H-isotopic to a graph? On other mani-

folds?

Third, in section 6, we raise the question of the uniqueness of a invari-
ant Lagrangian submanifolds in a cotangent bundle (7% Q, —d\). Indeed,
let f:T*Q O be a CES diffeomorphism that is CH isotopi(ﬂ to Idpsg.
We show that there exists at most one submanifold of 7*Q that is H-
isotopic to the zero section and invariant by f. Key to the proof is the
Viterbo distance of Lagrangian submanifolds which are H-isotopic to the
zero section, and the fact that this distance is monotonic with respect to
the action of f.

5By H-isotopic, we mean isotopic among Hamiltonian diffeomorphisms.

6By CS isotopic, we mean isotopic among conformal symplectic diffeomorphisms.

"By CH-isotopic, we naturally mean isotopic among conformally Hamiltonian
diffeomorphisms
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A recent result of Shelukhin even allows us to show the following. Let
[ T*T"™ © be a CES diffeomorphism that is CH-isotopic to Idpsrn.
Then there exists at most one submanifold £ which is H-isotopic to the
zero section and such that

U f¥(L) is relatively compact.
keZ

Hence when it exists, £ is invariant by f.

For discounted Tonelli flows, it was known that there is at most one
invariant exact Lagrangian graph because this corresponds to the unique
weak KAM solution [12]. But we give in Section [7] an example of such
a dynamics with an invariant H-isotopic to a graph submanifold that is
not a graph, hence even in this case our uniqueness result is new.

2. IsoOTROPY

The so-called Mané example [11] (see subsection shows that any
flow defined on a closed manifold Q can be achieved as the restriction of
a Tonelli conformal Hamiltonian flow to the zero section of T*Q. In this
case, the zero section is an invariant Lagrangian submanifold.

The following example, which is very similar to an example of [5], is
key to this section. It shows that a closed submanifold which is invariant
by a conformal symplectic dynamics may be non w-isotropic. In the
remaining of the section, we will give some general conditions under
which the submanifold must be w-isotropic.

Proposition 1. There exists a conformal symplectic vector field X on a
4-dimensional symplectic manifold (M, w), with a 3-dimensional invari-
ant submanifold L (hence L is not isotropic).

Moreover, the submanifold L is the global attractor for the flow (¢;) of
X, (yc) is conjugate to the suspension of an Anosov automorphism of T?
with 2-dimensional stable and unstable foliations, and (¢y ) is transitive
with entropy equal to |a|, where « is the conformality rate of X.

Remarks 3. (1) In our example, £ is coisotropic, but it is easy to
extend this example to an invariant submanifold which is neither
isotropic nor coisotropic. Indeed, let Y be a conformal symplectic
vector field on a symplectic manifold (N, w’) with a periodic orbit
~. Then the sum X @Y admits £ x v as an invariant submanifold
that is neither isotropic nor coisotropic in M x N if dim N > 4.

(2) The submanifold £ is the maximal (among compact subsets) at-
tractor of the dynamics.

(3) Replacing the vector field X by bX for b € R, we can achieve any
positive value for the entropy.
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Questions. We don’t know if it is possible to build a non-isotropic ex-
ample on a cotangent bundle endowed with its usual symplectic form
or, even stronger, if a similar example exists on such a manifold among
Tonelli flows.

Proof of Proposition[]. We consider an Anosov automorphism A : T? ©
induced by a matrix <Z 2) € SL(2,7Z) with eigenvalues 0 < A_ <1 <

Ay = /\% and eigenvectors v4. An example of such an automorphism is
Alz,y) = 2z + y,x + y), with eigenvalues A_ = %‘?’ <1land A\, =
M > 1]

5 .

Following [I], we define a suspension T of the diffeomorphism by using
the following relation on T? x R (writing £ = (x,y)):

V(€ 2) eT? xR, (€,2) ~ F(£, 2) := (A€, 2z — 1).

Denote by a- the linear forms on R? such that a(vt) = 1 and a4 (vs) =
0. Observe that a; 0 A = Afa4. Rescale the forms a4 in the z-direction
in order to get F-invariant forms on T? x R: define

Bi(&2) = (Mi) ax(§),
so that
F*By = (M) oz o A= (As) ax = B

Hence [+ is F-invariant and defines a 1-form on the quotient manifold
N = (T? x R)/ ~. We use the same notation for these 1-forms. Then

(1) dBy =In Ay dz A B

We consider the vector field X = (0,0,1) on A. The lift of its flow to
T? x R is defined by

By(&,2) = (&2 +1)
hence the first return map to {z = 0} is ®1(£,0) = (A&, 0) and is conju-

gate to A. The flow (®;) is a suspension of A and has the same Lyapunov

exponents as A.
We endow the manifold M = N x R with the 1-form

A=p_+sb;
where s is the R-coordinate. We define €2 = dA. By , we have
Q=df_+dsn By +sdfy =dzn(InA_f_+sln\,5,) +ds A Sy

Thus Q"2 = 2InA_dz A 4 Ads A B+ + 0 and Q is a symplectic form.
We define on M the vector field Y = X + 2In A_0s. Its flow is

Vi€, 2,8) = (B4(€,2), (A-) ™).
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Hence A x {0} is the global attractor for (¢;). We have
rQ=dz A (A () B+ (A)"s) A (M) B ) +
(A)*ds A (A)'B4.
As A_A\+ =1, we finally obtain
Y =\ Q.
U

There are also examples of conformal symplectic diffeomorphisms on
a non-exact symplectic manifold that have a non-isotropic invariant sub-
manifold on which the restricted dynamics is Anosov.

Proposition 2. There exists a conformal symplectic diffeomorphism f
on a 6-dimensional symplectic manifold (M, w),with a 4-dimensional in-
variant submanifold L (so L is not isotropic).

Moreover, the submanifold L is the global attractor for f, fic is conju-
gated to a hyperbolic automorphism of T* with 2-dimensional stable and
unstable foliations, and fiz is transitive with entropy equal to —loga,
where a is the conformality ratio of f.
3-v5)

2

Question. In our example we have a = ( ) . In fact we can replace

this number by the square of the largest eigenvalue of any Anosov auto-
morphism of T2. We don’t know if we can achieve other constants by a
conformal symplectic diffeomorphisms of the same symplectic manifold.

Proof. We consider the hyperbolic toral automorphism 7' : T? — T? that
is defined by T'(01,6,) = (261 + 62,0, + 63). The associated linear map
has eigenvalues \ = %5 <land M7t = % > 1. Let p = @ The
unstable direction is spanned by (1, p) and the stable one by (1, —%). The
topological entropy is —log A (see [§]).

Then the product map F = (T,T) : (01,04,05,04) € T? x T? —
(T'(01,02),T(05,04)) has topological entropy equal to —2log A\. We en-
dow T* with the closed 2-form  that is defined by

Q= (d92 —pd91) VAN (d(94 —pd@g).

Observe that the kernel of €2 is the direction of the unstable foliation.
Obviously, F*Q = A2Q. Now, we consider the subbundle

M = {(977‘) e T XR4§T2 =pr; and 1y =p7“3}

of T4 xR*. This bundle corresponds to the tangent bundle to the unstable
foliation in the identification of TT* with T* x R*.
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We denote by €2y the closed 2-form on M that is equal to 7*2 where
7:(0,r) e M — 0 e T*and by , the restriction of the usual symplectic
form df A dr of T*T* to M:

Q= (dfy — pdby) A (dby — pdbs)
Qp = £(ds + %d91) A (dry + %drl) + +(dfy + %d@g) A (dry + %d’l"g).

Let then w = £, + €5 be the chosen symplectic form on M.
3
If we define f : M — M by f(0,r) = (T(0), (%) r), then we have

f*Ql = *F*Q) = )\291
£ = Qs = A2,

So finally f : M — M is a conformal symplectic diffeomorphism such
that f*w = Mw and f*(T* x {0}) = T* x {0}, where T* x {0} is not
isotropic and the topological entropy of fira o) is —2log A. U

Let us come back to the general case of a C' conformal symplectic
diffeomorphism f of a symplectic manifold (M, w), of conformality ratio
a # 1.

Proposition 3. A C! closed submanifold L of even dimension which is
wvariant by f is nowhere symplectic. In particular, if L is a surface, it
18 1s0tropic.

Proof. Assume the conformality ratio a of f is # 1 and an f-invariant sub-
manifold £ has dimension 2¢. Let Q = w*, so that f*Q = a*Q. Choose a
finite atlas A = {(U;, ;) }1<i<n of £, endow £ with a Riemannian metric

and define

|D®; (v

Q
19| 2,00 = SUPges uy,..upeTs (0} |||u(ful-.- e
1

D27 2,0 = SUPwereyfoy a

Then, SU Q) is bounded over open subsets U of L:

o

Now, let U be any open set of L. For n € Z, f"U is an open subset of £

and
J Q- a J Q.
U U

Since a is assumed # 1, SUQ must thus be zero. Hence the 2/-form
induced by €2 vanishes identically, whence the conclusion. O

N
<0 ol 1D dLch
i=1®i(Ui)
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If £ has any dimension, the same conclusion holds provided some con-
straint on the topological entropy ent (fiz) of the dynamics carried by L.
Define the spectral radius of a self-map g as

1
rad (Dg) = limsup | Dg"|%.
n—+00
Proposition 4. Let f be a conformal diffeomorphism of (M,w), i.e.
such that f*w = aw with a €]0,1[. Let L be an invariant closed subman-
ifold. Assume one of the following hypothesis.

(1) The diffeomorphism f is smooth, L is smooth and

ent (fiz) < —log(a);
(2) The diffeomorphism f and L are C" for some r > 1 and

ent (fiz) + log™ (Rad(Dflzl)Q/r) < —log(a).
Then L is w-isotropic.

Proof. We assume that £ is invariant and not isotropic. There exists a
constant k£ > 0 such that on £, we have |w| < k|vol| where vol is the 2-
dimensional volume form induced by the Riemannian metric. We choose
in £ a small piece S of symplectic surface (whose tangent space intersects
the characteristic bundle of £ only in 0). Then w(f~"(S)) = a "w(S) £ 0
and then

limsup%log )vol(ffn(S)‘ > J%%(l@g@(f”(‘?)ﬂ —logk) = —log(a).

n—0o0
The conclusion follows from Yomdin’s inequality, which we have recalled
in appendix [A] O

Remark 4. This statement implies in particular that if £ is an invariant
submanifold by a conformal flow (¢;) then

e if £ and (¢¢) are C* and if ¢y, is C' conjugate to a rotation on a
torus for some t £ 0, then L is isotropic; indeed, in this case, the
entropy vanishes and the spectral radius of Df is 1. A simpler
proof of this statement is given in [2].

e if £ and (y;) are smooth and if ¢y, is C° conjugate to a rotation
on a torus for some t #+ 0, then L is isotropic; indeed, in this case,
the entropy vanishes.

3. ENTROPY

The purpose of this section is to improve regularity in Proposition [}
We will start by giving an abstract result on a manifold endowed with a
form with constant rank and then we will give an application to invariant
submanifolds of conformal symplectic dynamics.

Let
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e N ™ be a compact Riemannian C? manifold and d its distance

e F be a C? foliation induced by a subbundle F' of TA of rank
p<n—1

e () be an (n — p)-form on N which induces a volume on submani-
folds transverse to F

e f be a C'-diffeomorphism of A/ preserving F and such that

ff =00
for some b > 1.
Theorem 5. The topological entropy of f satisfies
ent f = Inb.

Proof. Key to the proof is the refined distance dz on N defined by

oo if x and y are not on the same leaf

dr(z,y) = {

distance from x to y along their common leaf otherwise.

Lemma 1. There exist € > 0 and K > 0 such that for every x,y € N
(3) dr(x,y) <e =dz(r,y) < Kd(z,y).
Replacing the Riemannian metric d by %d, we will asssume that ¢ = 1.

Proof of Lemma [l We choose € > 0 that is strictly less than the radius
of injectivity of the metric d restricted to every leaf and introduce

D= {(I,y) ENXN;d.F<'T7y) <‘€}'

This set is closed and due to our choice of €, dr is continuous on D. If
we use the notation

A= {(z,2);x €N},
then the continuous function de is bounded on the complement of every
neighbourhood of A in D.
The exponential maps for the Riemannian form ¢ and for the Rie-
mannian form gr restricted to the leaves are tangent along the tangent
bundle to the leaves, hence

AT

(z,y)—>A d(!ﬂ, y)
U

For every € N, let U™ be a submanifold through  of dimension
n — p, transverse to F and homeomorphic to a ball, such that its normal
bundle is trivial. Let V, be a tubular neighborhood of U, of the form

Vx = Uyel/{m{z EN7 d]:(y,Z) < EJ:}‘
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We choose U,, and €, < 1 small enough so that V, has a product structure.
Furthermore, let

Wx = Uyeuz{z EN, d]-‘(Q, Z) < ex/Z}

Let Fy, be the foliation induced on W, by F. (Due to the product
structure, leaves of Fyy_ are of the form W, n L,, where L, is the leaf
through z of the foliation induced on V,.) The neighborhood W, has the
property that for any two points y and z of W,, if dx(y, z) < €,/2 then
y and z must belong to the same leaf of Fy,; indeed, if y and z do not
lie on the same leaf of Fy,, their distance must be > €, since any path
from y to z along a leaf of F runs twice across V,\W.,.

FIGURE 1. Construction of the finite covering of A

Let W,,, ..., W,, be a finite subcovering of N'. Denote W,, by W;,
and let € = min; €,,/2. So, the following property holds:

(*) For every i = 1,..., I and y, z € W, such that dr(y, 2) <€, y and
z belong to the same leaf of the foliation Fyy, induced by F on
Wi.
Moreover, since f~! and JF are continuous and f preserves JF, there
exists 1 < € such that

(**) For every x,y € N such that dz(x,y) <n, de(f'z, fly) <e.

According to Lebesgue covering lemma, there exists < n/K such that
every ball of radius @ is inside at least one of the W;’s.

Let (Q;)1<j<s be a decomposition of A into cubes (or compact sub-
manifolds with boundaries) such that each cube is contained in a ball of
radius < 6.

Let S be a submanifold of N of dimension n — p, included into some
cube ); and transverse to F. S must lie into some W,. For any W,
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containing S, § meets each leaf of Fyy, at isolated points. By narrowing
S, we may assume that S meets each leaf of Fyy, at one point at most.
We claim that

(***) For every k and ji, ..., jr € {1, ..., J},
FHS) A fFHQy) n - 0 Qy,

meets each leaf of any W, containing ();, at one point at most.

Let j € {1,....,J}. Then & = f(S) n Q; is also transverse to the
foliation. Let z,y € S’ be on a common leaf of Fyy,, with Q; < W,,. Since
such leaves have a diameter < 1 (due to our choice €, < 1), using EL
we see that

dr(z,y) < Kd(z,y) < Kdiam Q; < K6 <7

Using (**), dz(f 'z, f~'y) < e. But using (*), f~'z and f~'y belong to
the same leaf of Fyy, . So, by the constructing property of Wj,, f “lr =
f~ly and z = y. By induction, (***) holds.

If S €« W, we have

‘Q (fk(S) M fk_l(de) M- ij)‘ < max{|Q(u1)|, XS] ‘Q(UI)H = M7

uniformly with respect to k. Let

Ny = {1, -, dw)s FHS) 0 fF7HQ)) n o 0 Qy # B}

Then
b* QS| < NpM,
hence
1 1. Q2
ElnNk = Eln | ](\j)‘ + Inb,
hence the wanted inequality. U

Now assume that w is a presymplectic formﬂ of N of (even) rank 2¢> 2

and
ffo=aw, a>1.
The kernel of w is a uniquely integrable subbundle F' of corank 2¢. Setting
Q) = w’ and b = a brings us back to the prior setting.
Corollary 1. The topological entropy of [ : N O satisfies
rank (w)
2

Let us now return to our usual setting, where (M, w) is a symplectic
manifold.

ent f > Ina.

8Recall the metric was changed in order to have ¢ = 1 in .
9A presymplectic form is a a closed 2-form with constant rank.
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Corollary 2. Let f : M D be a C® conformal symplectic diffeomorphism

such that f*w = aw with a > 1. Suppose that N is an invariant C3

submanifold such that the induced form wy on N has constant rank.

Then

rank (wiy)
2

in particular, if the entropy of finx vanishes, N is isotropic.

ent fin = Ina;

Note that if A is a compact submanifold such that fi is minimalm
wyn has constant rank and so the corollary applies.

Proof. As N is C3, its tangent bundle is C?. Then Frobenius Theorem
applies to F' = ker w NE and the characteristic foliation F exists. 0

4. LIOUVILLE CLASS OF INVARIANT SUBMANIFOLDS

In this section we assume that (M,w = —d)) is an exact symplectic
manifold. The goal is to prove that, given a conformal dynamics, there
is only one Liouville class that an isotropic invariant submanifold may
have.

4.1. Action of conformal dynamics on Liouville classes.

Definition 6. Let j : § < M be an isotropic embedding.

e Its Liouville class [j] € H'(S,R) is the cohomology class of the
induced form j*A\.

e It is exact if its Liouville class vanishes.

So, the notion of exactness is independent of the embedding with a
given image.

When M = T*Q is the cotangent bundle of a closed manifold endowed
with its tautological 1-form A and £ is a Lagrangian submanifold of
T*Q that is homotopic to the zero section Z, the restriction to L of the
canonical projection 7 : T*Q — Q is a homotopy equivalence between
L and Q and induces an isomorphism between H'(L,R) and H'(Q,R).
Denoting by jz : £ < T*Q the canonical injection defined by j.(z) = x,
the Liouville class of the submanifold £ is the cohomological class

[£] = | (me), (23) | € H'(Q.R).

In this case, we may thus update the definition of Liouville classes.

0By definition, it is minimal if every orbit is dense

HThe infinitesimal integrability condition is well known: if X,Y are sections of F
and Z is a section of TN, 0 = dw(X,Y, Z) = —w([X,Y], Z), which shows that [X,Y]
itself is a section of F'.
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Definition 7. Let £ be a Lagrangian submanifold of 7*Q that is homo-
topic to the zero section, the Liouville class [£] of £ is the cohomology
class on @ whose pull back by 7| is the cohomology class of Ajr..

The following straightforward proposition explains that the group of
conformal dynamics acts on the set of Liouville classes of isotropic em-
beddings that are homotopic to a given isotropic embedding of a given
manifold S by homotheties (translations when the dynamics is symplec-
tic).

Proposition 5. Let f: M < be a conformal diffeomorphism with con-
formality ratio a. Then n = f*\ —a\ is a closed 1-form.

Let jo : & — M be an isotropic embedding. For every isotropic em-
bedding j : & — M that is homotopic to jo, the Liouville class of the
isotropic embedding foj:S — M is

Lf o 4] = alj] + [ign].

Proof. We have dn = —f*w + af*w = 0 and 7 is closed.
For v : T <— M, let us compute

[f o 41[] =f(foj)*A=f

v Y

PN = f 7+ a))

o

:fj*n+aj A = alj1 + [l o]

= aljllv] + [nlljo 7] = alj]lv] + [i*nllv]-
U

Definition 8. A diffeomorphism f : M < is A conformal Hamiltonian
(CH) if there exists an isotopy (f;)swe[o,1] such that fo = Ida, fi = f and
two functions H : [0,1] x M — R and « : [0, 1] — R such that

V(t,z) € [0,1] x M, ijw = a(t)A+ 0. H(t, x).

Remark 9. A diffeomorphism f : M O is conformal Hamiltonian if
and only if there exists an isotopy (f;)seqo,1] of CES diffeomorphisms such
that fo = IdM and f1 = f

Definition 10. The flow (¢;) associated to the vector field X on M is A
conformal Hamiltonian if there exists a € R and H : M — R such that
ixw=a\+ dH.

Remark 11. A flow is a flow of A conformal exact symplectic diffeomor-
phisms if and only if it is A conformal Hamiltonian.

To describe the behavior of Lagrangian submanifolds of T*Q that are
H-isotopic to a graph, we first need the following invariance result.
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Proposition 6. Let (L;) be an isotopy of Lagrangian submanifolds of
T*Q such that Lo = Z. Then Ly is H-isotopic to a graph.

Corollary 3. Let (g:)eo,1] be an isotopy of conformal symplectic diffeo-
morphisms such that gy = Ildrso. Let L be a Lagrangian submanifold of
T*Q that is H-isotopic to a graph. Then g,(L) is H-isotopic to a graph.
If moreover L is H-isotopic to the zero-section and the isotopy is confor-
mal Hamiltonian, then g,(L) is H-isotopic to the zero-section.

Proof of Proposition [, We will prove

Lemma 2. Assume that L is H-isotopic to the zero section and that
(Lt)te[—e,2 15 an isotopy of exact Lagrangian submanifolds such that Ly =
L. Then there exists a neighbourhood N of 0 in [—¢, ] such that for every
te N, L, is H-isotopic to the zero section.

Proof of Lemma[3. We use Weinstein tubular neighbourhood Theorem,
[21]. Let 7 be a symplectic tubular of £, i.e. there exists a neighbourhood
U of the zero section in T*L and a symplectic embedding ¢ : U —
T*Q with image 7 that is Id; on £. As & maps the exact Lagrangian
submanifold £ of T* L onto the exact Lagrangian submanifold £ of T* 0O,
then @ is exact symplectic.

This implies that every submanifold ¢~ (£;) is exact Lagrangian. More-
over, there exists a neighbourhood A of 0 in [—¢,¢] such that for every
t e N, ¢~ %(L;) is a graph. Hence this is the graph of an exact 1-
form du;. Then ¢~ '(L;) is the image by the time-1 Hamiltonian flow

of H = —% om. Using a bump function, we can assume that H has
support in ¢/, and then the time-1 map of the Hamiltonian H o ¢ maps
L onto L;. O

We now prove Proposition [6] Let us firstly deal with the case when all
the £;s are exact. We introduce

{t €[0,1];Vs € [0,t],9s(L) is H — isotopic to the zero section}.

Lemma [2| and the transitivity of the relation of H-isotopy imply that this
set is closed and open in [0, 1], hence equal to [0, 1].

Now we just assume that (£;) is an isotopy of Lagrangian submanifolds
of T*Q such that £y = Z. We choose an arc (1;)s[o,1] of closed 1-forms
on Q whose cohomology class [n:] = [£:] is the Liouville class of L.
We denote by T; : T*Q O the symplectic diffeomorphisms such that
Ti(p) = p+ nom(p). Then LF = T_,(L;) defines a homotopy of exact
Lagrangian submanifolds of 7% Q. A result of the first part of the proof
is that L] is H-isotopic to the zero section, i.e. there exists a H-isotopy
(&¢)te[0,1] such that ¢y = Id and ¢1(Z) = L}. Hence £, = T\ (LT) is H
isotopic to the graph of 7, via the H-isotopy

(Vt)iero] = (Th o @y 0 Tfl)te[o,l]'
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Proof of Corollary[3. We assume that (g;)sejo1] is an isotopy of confor-
mal symplectic diffeomorphisms such that gy = Idrxgo and that £ is a
Lagrangian submanifold of 7T#Q that is H-isotopic to a graph. Then
there exist a closed 1-form 7 on Q and a H-isotopy (h¢)sefo,1] such that
ho = Idr«g and £ = hy(graph(n)). We introduce the symplectic diffeo-
morphisms (7})epo,1] of T*Q that are defined by Ti(p) = p + tn o 7(q).
Then

(’Ct)te[(),l] = (Qt ohto Tt(Z))te[o,u

is a isotopy of Lagrangian submanifolds such that £, = Z and £, =
91(L). A result of Proposition [6] is that ¢;(£) is H-isotopic to a graph.

If moreover L is H-isotopic to the zero-section and the isotopy is con-
formal Hamiltonian, then all the maps ¢; o h; o T; are conformal Hamil-
tonian and thus every manifold L, is exact Lagrangian. The conclusion
is a result of the second part of Corollary [3] O

4.2. Liouville classes of invariant submanifolds. Let j, : S — M
be an isotropic embedding. We denote by J(jo) the set of isotropic
embeddings j : § — M that are homotopic to jj.

A consequence of Proposition [5] is

Proposition 7. Let f : M O be a conformal diffeomorphism. Let
j € J(jo) be an isotropic embedding which is strongly f-invariant in
the sense that

. () = f o 4(S)

e [ acts trivially on H*(§(S),R).

Then j may have only one Liowville class, that we denote by [£¢(T (jo))]-
In particular, when f is CES, then [£¢(J (jo))] = 0 and j has to be ezxact.

Proof. Let 5 : § «— M be such an embedding. With the notations of
Proposition [f], we have

Lf o 4] = alj] + [jgn].

Let us denote by i : j(S) < M the canonical injection. As f acts
trivially on on H'(j(S),R), we have

[fodl = [(of o)A = 5[ (V)] = A1 =[]

and finally [j] has to be the only fixed point of the homothety that maps
i1 o al] + [ign]- -

As a consequence:
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Proposition 8. Let f: M O be a A CES diffeomorphism. Then every
invariant isotropic submanifold S such that fis acts trivially on H*(S)
15 ezact.

Corollary 4. Let X be a CS vector field on M with flow (p;). Let
Jo : S — M be an isotropic embedding. We denote by J(jo) the set of
isotropic embeddings j : S — M that are homotopic to jo. Then there
is only one Liouville class that we denote by [(x(J)], that an isotropic
embedding j € J(jo) such that

Vi e R, ¢:((S)) = J(S)
may have.
In particular, when X is CH, then [{x(J)] = 0.

Corollary 5. Let f: T*Q O be a CS-diffeomorphism that is homotopic
to Idr«g. Then there is only one Liouville class that we denote by [(f],
that a homotopic to the zero section and f-invariant submanifold may
have.

Proof of corollary[j. Let jo : @ — T*Q be the canonical injection onto
the zero-section.

We assume that £ is an f-invariant submanifold that is isotopic to the
zero section. Because

e 7| defines an homotopy equivalence between £ and Q;

e 7 defines an homotopy equivalence between T*Q and Q;

e f is homotopic to Idrsg,

then f acts trivially on H'(L, R).

Let (1) be an isotopy of diffeomorphisms of 7*Q such that 1y = Idr«g
and ¢1(Z) = L. Then ¢ o jo € J(jo) and a result of Proposition [7] is
that [¢1 © jo] = [£¢(T (jo))].

Moreover, if iy : £ — T*Q is the canonical injection, we have
[¢1 0 o] = [iz o1 0 jo] = [(¥10J0)" (izA)]-

Observe that 17 o jo : @ — L is an homotopy equivalence such that and
7o (1 0 jo) acts trivially on H'(Q,R). We deduce that

[1 0 o] = [(¢1 ©50)* (12 A)] = [m=(izA)] = [£]-
and then [L] = [(¢(T (jo))]- O

5. LIOUVILLE CLASS OF LAGRANGIAN SUBMANIFOLDS OF T*Q WITH
COMPACT ORBITS

The goal of this section is to prove that, given a conformal dynamics
on T*Q, there is only one Liouville class that a Lagrangian submanifold

with compact orbit may have.
We assume that M = T*Q and that f : M < is CS-isotopic to Id .
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We suppose that j : Q@ — M is a Lagrangian embedding such that
j(Q) = L is H-isotopic to a graph and has compact orbit (for example is
contained in some compact attracting set).

Theorem 12. Let f : M O be a diffeomorphism that s CS-isotopic
to Ida, and let L be a Lagrangian submanifold that is isotopic to the
zero section among Lagrangian submanifolds and such that | ., f*(L)
is relatively compact, then [L] = {;.

Corollary 6. Let (¢;) be the flow of the conformal symplectic vector field
X and let L be a Lagrangian submanifold that is isotopic to the zero
section among the Lagrangian submanifolds of T*Q such that | J,.x ©:(L)
is relatively compact, then [L] = lx.

Remark 13. We give a proof of Theorem [12| that uses the notion of
graph selector. If Q (as T™) satisfies that every element of H'(Q,R)\{0}
contains a non-vanishing 1-form, we can give a simpler proof. Indeed, in
the proof, we are reduced to prove that if we have a sequence (L,) of
Lagrangian submanifolds such that [£,] = a™([Lo] — {f) + ¢; tends to
infinity as n — oo, then | J, .y £ is not relatively compact. If n = f*A—\
and the 1-form v4 on Q is non-vanishing and represents [Ly] — ¢y, then
L, and the graph of ﬁ'r; + a"vy intersect. As 14 doesn’t vanish, we can
conclude.

Proof of Theorem[14. We endow Q with a Riemannian metric and denote
by |.|| the norm on TQ. Changing f into f~!, we can assume that a > 1.
As fis CS, then f*\ —a\ = n is closed, We deduce from the proof of
Proposition [7| that {; = ﬁ[j *n] where j is the canonical injection from
Q@ in T*Q) = M on the zero section.

Then f* is also CS with

(F5)" A =" = Za’”lf]) (F*x— Za’wlff

Suppose ad absurdum that [£] is not ¢;. Let v be a closed 1-form on Q
such that ¢; + [v] = [£]. There is a loop v : T — Q such that 87 v &+ 0.

As f is CS-isotopic to Idxs and by transitivity of the relation of CS-
isotopy, f* is also CS-isotopic to Idy,. Hence by Corollary , fE(L) is
H-isotopic to a Lagrangian graph. The submanifold £ is H-isotopic to the
graph of t=-j*n+v. A result of Proposition 3| is that f*(L) is H-isotopic
to the graph of

1 1

ak(mj*nJrl/ Z kjljn—al/+1—jn
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If we denote by 7 : M < the symplectic diffeomorphisms 74(p) = p +
afv(m(p)) + £=n(j(x(p))), then 7, o f*(L) is H-isotopic to the zero
section and then admits a generating function and a graph selector that is
(see e.g. [14] p 98 and references herein) a Lipschitz function uy : @ — R
that is C' on an open subset U}, of Q with full Lebesgue measure such
that

Vg € Uy, dug(q) € Tk_l o fk(ﬁ)

Using Fubini theorem, we find a loop 73 that is C* close to v and such
that

e 7 is smooth and isotopic to ~;
e for Lebesgue almost s € T, we have (s) € Uy.

As wuy oy is Lipschitz and then absolutely continuous, we have

d(ux © Vi)
0= LT(s)ds.

Because vi(s) € Uy for almost every s, we deduce

0= j du (11(5)) 7 (5)ds

and because 7;, is homotopic to v and a*v + 1 j *n is closed,

| (a’wm(smﬁn<m<s>>>+dum<s>>).m;(s)ds e B

v

As the loops 7 are C'-close to v, there exists a constant K that is a
upper bound for all the |[v;(s)|. Hence there is a subset Ej with non-
zero Lebesgue measure of T such that for every s € Fj, we have

()
e e e | e

Moreover, for almost every s € T, we have

dup(yi(s)) € 7, o fH(L)
1.e.
6)  dulls) + 1%77<j<w<s>>> +dug(n(s)) € (L),
We deduce from (4]) and ( . ) that there is p € f¥(£) such that

> 57| [ - 7=z [ o

Question. Is the hypothesis on H-isotopy to the zero section necessary?

O
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6. UNIQUENESS

We work on the cotangent bundle (7%Q, —d\) of a closed orientable
manifold.
Viterbo introduced in the seminal paper [17], see also [19], the spectral
distance vy that is defined on the set of H-isotopic to the zero-section
Lagrangian submanifolds.
We will recall the main results of this theory and apply this to prove that
if two submanifolds £, £’ are H-isotopic to the zero section and if (¢;) is

a CH flow of T*Q, then

either  7(p:(L), (L)) =55 +0 o Y(@i(L), pr(L)) =5 oo

Using a recent result due to Shelukhin, [15], we will deduce that for
certain manifolds Q, e.g. tori T", there is at most one H-isotopic to the
zero section submanifold whose orbit is compact and when it exists, this
submanifold is in fact invariant.

6.1. On Viterbo spectral distance v. If £, £ are H-isotopic to the
zero section submanifolds of T*Q, they have quadratic at infinity gener-
ating functions S : Q x R¥ - R and 5’ : Q@ x R¥ — R.

We recall that a generating function S for £ is such that

—1
e if we use the notation (¢,€) € Q@ x R* on X5 = (%) (0), %

has maximal rank;
e the map js : Yg — T*Q defined by js(q,&) = %(q,f) is an
embedding and its image is L.

The generating function is quadratic at infinity is there exists a non-
degenerate quadratic form @ : R¥ — R such that outside a compact
subset of @ x R¥, we have S(q,&) = Q(&).

The function SO S’ : M x RF x R¥ — R is defined by

(S©5(g, € x) = 5(g,€) — S'(a, x)-
Observe that

0S oS’
Lol = {a—q(q,é);d(S@S’)(%f,x) =0} = {a—q(q,x);d(S@S’)(q,f,x) = 0}.
The function S© S’ is not quadratic at infinity, but it satisfies conditions
of Proposition 1.6. of [I§] that ensure that it can be replaced by such
a function, which we also denote by S © S’. There exists a compact set
K < Q x R* x R¥ such that

V(g.€,x) ¢ K,(S©5) (¢, & x) = Q(€, x)
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where @ is a non degenerate quadratic form on R*¥ x R¥. We denote by
m its index. Moreover, there exist a,b € R such that

K n <{(S@S’) > u{(Sos) < a}) - .
For c € R, we denote by £°¢ and F° the sublevels

E={(0.&x) (S0 5)(¢:§,x) <c} and F°={(&x); Q& x) < c}.
As (S© 9")(q,&,x) and Q(€, x) are equal on £ and outside £, we have
Ve ¢la,b[,E¢ = Q x F°.

Hence, by Kunneth theorem [3], there is an isomorphism
K:H(F, F)YQ H(Q) — H(E" £).
As @ is a non-degenerate quadratic form with index m, we have HP (F°, F?) =
{0} for p £ m and H™(F°, F¢) = RC is one dimensional. We deduce an
isomorphism
T :RC® H*(Q) — H*™ (& £).

Then, if a € H*(Q) is non-zero,

c(a, SO S') = inf{t € [a,b], 5 (C ® a) & 0}

where j; : (€8, E) — (£°,E) is the inclusion. The number c(a, S © ')
is then a critical value of S © S’ that continuously depend on S and S’
for the uniform C° distance.

Viterbo proved that c¢(a, S © S’") depends only on £ and £’ and not on
the choice of generating functions. It is then denoted by c(a, £, L').

If 1 is the orientation class of Q, the distance v(£, L') is defined by

WL, LY) = c(p, £, L) — (1, L, L)

Theorem 14. Let f : M < be a CES diffeomorphism that is CH-
isotopic to Idpxg. Let L, L' be two distinct submanifolds of T*Q which
are H-isotopic to the zero section, then

either  ~y(f™(L), f*(L')) =5 +0

or A(f"(L), fM(L)) S +oo.

Corollary 7. Let f : M © be a CES diffeomorphism that is CH-isotopic
to Idpxo. Then there exists at most one H-isotopic to the zero section
submanifold of T*Q that is invariant by f.

Proof of Theorem[1]]. This is direct application of the following result of
which we provide a proof.
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Lemma 3. Let L, L' be two H-isotopic to the zero section submanifolds
of T*Q. Let (¢;) be an isotopy of exact conformal symplectic diffeomor-
phisms of T*Q such that ¢g = Idp+g and ¢fw = a(t)w. Then

Y(Be(L), 31(L) = a(t)y(L, L)

Proof. As the distance v continuously depends on the generating func-
tions, we only need to prove the results for submanifolds £ and £’ whose
intersections are all transverse. In this case, there is only a finite number
of critical points and critical values for S©S’. If x,y € L n L', we de-
note by A(z,y, L, L") the difference of the corresponding critical values
of S© Y, ie.

Aley, £,£) = (Sojs'(y) = 50 js' ) = (Sods' (@) = 80 j5'(@)).

Then if 7, is a path in £ joining = to y and 79 a path in £’ joining y to
x, the difference of the two corresponding critical values of S © S’ is

A(x,y, L, L) = f A

nvn2
We can always choose 7; and 7, that are homotopic with fixed ends.
Then, if D is a disc with boundary n; v 75, we have

A(z,y, L, L) = J w.

D

The intersection points of ¢;(£) and ¢;(L’) are the points ¢;(z) with
xeLnL' Forx yin LN L' wehave

AGu(), d1(y), n(L), 6i(L) = f L=l L“’ — a(t) Ay, L, L),

P

Hence t — ﬁ(e(,u, oe(L), 0e(L) — (1, 0:(L), gbt(ﬁ/))) is a continuous

map that takes its values in a fixed finite set, it has to be constant. [

O

6.2. An application of a result of Shelukhin.

Theorem 15. Let f : T*T" © be a CES diffeomorphism that is CH-
1sotopic to Idp«rn. Then there exists at most one H-isotopic to the zero
section submanifold L such that

U f¥(L) is relatively compact.
keZ
Hence when it exists, L is invariant by the f.

Proof. In [15], Shelukhin defines a notion of string-point invertible man-
ifold. The tori T™ are examples of such manifolds. His result implies
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Theorem (Shelukhin,[15]). Let g be a Riemannian metric on T™. Then
there exists a constant C(g) such that for all exact Lagrangian submani-
folds Ly, Ly contained in the unit codisk bundle D*(g) < T*T", we have
v(Lo, £1) < C(g).

The Liouville vector field Z that is defined by iz, w = A satisfies
Ly w=d\=—w.

Hence its flow (') is conformal symplectic with (gp?) w = e 'w and
ES

even exact conformal symplectic because it preserves the zero section
(and then the zero Liouville class). We have seen in Lemma [3| that ¢;
alters the distance v up to the scaling factor e~*.

Observe also that this flow is a homothety the fiber direction: )} (p) =
e~'p. Hence the image of the unit codisk bundle D*(g) by ¢; is the codisk
bundle D*_,(g) with radius e™".

Let us introduce the following notation for K < T*T".
dy(K) = min{r = 0; K < D}(q)}.
Finally, we have that for every H-isotopic to the zero section submanifolds
L, L of T*T™,
(6) (L, L") < 2C(g) max{d,(L),d,(L")}.
If now £ and £’ are two distinct H-isotopic to the zero section subman-

ifolds of T*T™ and f : T*T™ © is a CES diffeomorphism that is CH
isotopic to Idp«rn, we deduce from Theorem [14] that

either ~(f™(L), fM(L)) =55 1o

or y(fTML), fTHL)) S oo
By (), one of the two sets
U@ e
keZ keZ
is not relatively compact. We deduce that there is at most one £ H-
isotopic to the zero section such that
U f¥(L) is relatively compact.
keZ

When L is H-isotopic to the zero-section, f(L£) is also H-isotopic to the
zero-section because f is CH-isotopic to Idpst», see Corollary |3l More-
over, the orbits of £ and f(£) coincide. This implies that £ = f(L).

O
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7. EXAMPLES

7.1. Mané example. This example was introduced by Mané in the
Hamiltonian setting, [I1]. It can be extended to the conformal symplec-
tic setting. For every vector field X of a closed manifold Q, it provides
a conformal Hamiltonian Tonelli flow of T*Q such that the zero section
is invariant and the flow restricted to this zero section is conjugated to
the flow of X.

Let Q be a closed manifold endowed with a Riemannian metric, 7% Q is
endowed with its tautological 1-form A and the symplectic form w = —dA.
We denote by |.| the norm on the fibers of 7*Q that is dual to the
Riemanninan norm of Q and by p, a point of 7*Q above g € Q.

If X is a vector field on Q, we denote by px the 1-form on O that is
dual to X via the Riemannian scalar product. We define the Hamiltonian

1
= Slpx (@)

Hx(pg) = 5lps + px(a)

Since the zero-section Z = {p = 0} is contained in the zero-energy

level and is Lagrangian, Z is invariant by the Hamiltonian flow of Hx.

The restriction to Z of the vector field is dual via w to the derivative of

H in the fiber direction, so if we denote by #: T*M — T, M the duality
that is defined by the Riemannian metric, we have

qz = ﬁ(p +pX(Q))|Z = fipx(q) = X(q).

Hence on the zero-section, the vector field is X.

In the conformal Hamiltonian setting, we add « times the Liouville
vector field to the Hamiltonian vector field Xy of H, for some a € R.
Since the Liouville vector field vanishes on Z, the dynamics remains
conjugate to X.

Remark 16. The global attractor may differ from the zero section. For
example, X may have an attractive fixed point whose unstable manifold
is not contained in the Z, in which case the global attractor is not a
submanifold either.

7.2. An example of a Tonelli Hamiltonian that has an invariant
Lagrangian submanifold that is not a graph. The example we are
about to describe is inspired by an example of Le Calvez [9].

Let 3 > 0 be a positive number and let « € (3,23). On T*R = R? let
H be the quadratic Tonelli Hamiltonian

H(z,y) = y* — Bay.
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Y

T

\

Consider the sum of the Hamiltonian vector field of H and of o times
the Liouville vector field —y 0,

(7) {x'z —fBx + 2y

y=(8—a)y.

: - . (=B 2 1Yy .
The matrix of this linear system is < 0 B—a) Hence ) 18 an

eigenvector for the eigenvalue —f3 and 3 i o | 1s an eigenvector for the
2

eigenvalue 5 — a. As a € (3,20), (0,0) is an attracting fixed point and

the line R (é) is the strong stable eigenspace. Every solution that is not

contained in an eigenspace is contained in a curve whose equation is

_B_
x y+ Kly|==7

20—«
where K # 0, and then is not a graph if 2(0).y(0) > 0.

Let us choose two large real numbers B > A > 0 and let V : R —
[—1,0] be a function with support in [—B, B] such that Vj_4 4 = —1,
VI-B,—4] is non-increasing and V|4 p] is non-decreasing. Then we add
V(z) to H(x,y) and the equations become

r=—0x+ 2y
® {y — Vi(a)+ (- ay.

As the support of V' is in [-B, —A] u [A, B], the two vector fields are
equal in the complement of ([-B,—A] u [4, B]) x R. As Vj_p 4, <0,
the orbit on the z-axis for x < —B is pushed to the half plane y > 0 and
then coincides with an orbit of (7)) which tends to (0,0). In the same
way, the orbit that coincides with the z-axis for + > B tends to (0,0)
at +00 with an incursion into the half-plane y < 0. Hence the union of
these two orbits and {(0,0)} is an invariant curve I" for (8) that is not a

graph.
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Now, let us choose D > C' > B. Let X : R — R be a vector field such
that
e Vze [_DTwa _B] U [Ba C-FTD]’X(‘/E) = —ﬁiL';
e X(—D) = X (D) = 0 and all the derivatives of X are the same at
—D and D;
e (—D,—B] (resp. [B,D)) is a piece of unstable manifold of the
equilibrium —D (resp. D).
Then X defines also a vector field on the circle Cp = [-D, D|/D ~ —D.
Let Hx be the Hamiltonian that is associated to X on T*R = R? via the
Mané construction

Hx(z,y) = %y(y +2X ().
Let us eventually define
K(z,y) = (1 —n(2))Hx(z,y) + n(z)(H(z,y) + V(z))

1 —nx
= LDy 42X (a) + ()52 — By + V().
where 7 : R — [0, 1] is a bump function with support in [—C, C] that
is equal to 1 on [—B, B]. The function K is also Hamiltonian on the
annulus Cp x R and, since
°K
Tz @y = (L= (@) + () = 1,
K is Tonelli.
Note the following;:

e ([-D,—B] v [B,D]) x {0} is in the zero level of K and then is
locally invariant by the Hamiltonian flow of K and also by the

conformal Hamiltonian flow ( %—K, —‘Z—K —ay);
y T
o KB pjxr = (H + V)|_B,B]xE-
Finally, the vector field (%, —%{ — ay) has an invariant curve that is

not a graph, which is the union of ([—D,—B] u [B, D]) x {0} and the
part of I' that is between x = —B and = = B.

APPENDIX A. YOMDIN’S INEQUALITY

Let £ be a a compact Riemannian C” manifold, S < £ be a compact
C" submanifold of dimension s and f : £ © be a (C"-diffeomorphism
(r = 1). (The general statement does not require f to be invertible.)

Define the logarithmic volume growth of fs as

1
logvol ( fis) = limsup - log [vol (f™(S)],

n—+0o0
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where vol is the s-dimensional Riemannian volume, and

rad (Df) = limsup |Df"|2",  |Df|x = sup |Df.].

n—-+aoo

Theorem 17 (Yomdin [22], Gromov [7]).
logvol (fis) < ent (f) + log™ (vad (Df)*")

(where log™ t = max(0,logt) ).
In particular, if L and f are smooth,

logvol (fis) < ent (fis) < ent f.

APPENDIX B. CONFORMAL DYNAMICS ARE EXACT

We assume that (M,w = —d\) is an exact symplectic manifold. We
prove that every conformal dynamics is symplectically conjugate to a
CES dynamics.

Our first result explains that every conformal dynamics on an exact
symplectic manifold is exact conformal with respect to some primitive of
the symplectic form.

Proposition 9. Let f : M O be a (CS) diffeomorphism that is homo-
topic to Idy and such that f*w = aw. Then there exists a primitive \q
of —w, namely
1 %
M= (= )
such that f is Ay CES. Hence is j : S — M is an isotropic embedding
such that j(S) is f invariant, j(S) is A1 ezact.

Proof of Proposition[9. We denote n = f*\ —aX. Then dn = —f*w +
aw = 0 and so 7 is closed. Observe that

1 1

A— = (A= ) = A,
SO Ap is a primitive of —w.
We have
f*A—a\ =n— 1 _a(f*n—an).

Because f is homotopic to Idy, f*n —n is exact and
1
AN —a\ = ——(n—f"n).
A —a) 1_@(77 f 77)

is exact. The conclusion comes from Proposition [§] for the 1-form A,
instead of A. O
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Proposition 10. Let f : M < be a conformal symplectic diffeomor-
phism that is homotopic to Idys and such that f*w = aw with a > 0
and a £ 1. Then n = f*\ — aX is a closed 1-form that is dual to a
symplectic vector field Y such that iyw = n. When Y is complete, there
exists a symplectically isotopic to Idng diffeomorphism g : M < such
that g*\ — X\ + ﬁn is exact and then go fog~ ! is A\ CES.

Proof. We denote n = f*\ —aX. Then dn = —f*w + aw = 0 and so
1 is closed. We denote by A; the primitive of w that was defined in
Proposition [0

Lemma 4. There exists a symplectic vector field X with flow (g;) such
that gi A — Ay is exact.

Proof. We consider the vector field X that is defined by ixw = ﬁn.

As n is closed, X is symplectic. As Y is asumed to be complete and

X = LY, the vector field X is also complete and defines a flow (g;).
Then we have

LxA = —ixw+d(ix)\) = —ﬁn +d(ixN).

If we denote by [.] the cohomology class, this gives

1
Lx\| =—
[LxA] 1— a[n]
le. dgi — A .
gy A — _ *
We deduce that for all ¢ we have gf\ — X\ + 1ﬁ—an is exact. In particular,
giA — A1 is exact. U

We now consider F = g; o f o g;*. We have
F*A = (7)o fogi(N) = (67") o f* (M + 1)
where 17 is exact by lemmalfd] By Proposition[d] o = f*\; —a); is exact
and we have
F*)\ = (gfl)*(a)\l + 1o + f*ul) =al\ + (91—1)*( —avy + s + f*yl).
d

Proposition 11. Let X be a conformal symplectic vector field on M
such that Lxw = aw with o € R*. The 1-form £ = ixw + a\ is closed
and the vector field X, defined by ix,w = &£ is symplectic. When X s
complete, there exists a symplectically isotopic to Idn, diffeomorphism
g : M O such that g*\ — \ + éf is exact. Then g*X is A\ conformal
Hamiltonian.

Proof. We have d¢ = Lxw — aw hence £ is closed.



30 M.-C. ARNAUD & J. FEJOZ

Lemma 5. There exists a primitive \y of —w, namely

1 1
)\1 = )\ — —f = ——in,
(0% (6

such that X is \y Hamiltonian.

Proof. The 1-form
ixw+al =ixw+ar—E=0
is exact. ]

Lemma 6. There ezists a symplectic vector field Y with flow (¢y) such
that YA — A1 is ezact.

Proof. We consider the vector field Y that is defined by iyw = éf . As
¢ is closed, Y is symplectic. As X is complete and Y = éXl, Y is also
complete and defines a flow. Then we have

Ly)\ = —iyw + d(Zy)\) = —éf + d(@y)\)

We deduce that the flow (1) of Y satisfies

d, . 1
SN = Al = —~[¢l.

Hence 9fA — Ay = A — A + 1¢ is exact. O

We denote g = 1/;. Let us prove that ¢* X is A conformal Hamiltonian.
Because ¢ is symplectic, we have

igrxw = g (ixw) = gx(€ — ).

Because g*\ — \; is exact, g, (f — aA) + ) is exact and igx xw + o) is
exact and so ¢g* X is conformal Hamiltonian.
O
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