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Abstract. Consider a map which possesses a normally hyperbolic invariant manifold of any even di-

mension with transverse homoclinic channels. We develop a topological shadowing argument to prove
the existence of Arnold diffusion along the invariant manifold, shadowing some iterations of the inner

dynamics carried by the invariant manifold and the outer dynamics induced by the stable and unstable

foliations. In doing so, we generalise an idea of Gidea and de la Llave in [27], based on the method of
correctly aligned windows and a so-called transversality-torsion argument. Our proof permits that the

dynamics on the invariant manifold satisfy only a non-uniform twist condition, and, most importantly
for applications, that the splitting of separatrices be small in certain directions and thus the associated

drift in actions very slow; diffusion occurs in the directions of the manifold having non-small splitting.

Furthermore we provide estimates for the diffusion time.

1. Introduction

Arnold diffusion, as first exposed in [1] has become a major subject of study for nearly integrable
Hamiltonian systems. This mechanism epitomises how an integrable (“stable”) system can become un-
stable, with actions varying slowly (as permitted by Nekhoroshev’s theorem) but substantially, as opposed
to what would happen for an integrable perturbation [7, 14]. A key idea has been to focus on a normally
hyperbolic invariant cylinder. The cylinder is indeed a more robust object than individual hyperbolic
invariant tori that may lie inside the cylinder and which Arnold initially used. Another key addition
to Arnold’s mechanism is the random iteration of the dynamics carried by the cylinder and the “outer”
dynamics obtained at the limit by following unstable and stable leaves of the cylinder (see figure 1). Both
these ideas appear in Moeckel’s work [37]. These ideas were formalised by Delshams, de la Llave and
Seara with the invention of the scattering map which encodes the outer dynamics. This allowed them to
solve the large gap problem, when two (primary) invariant tori are too far away for their unstable and
stable manifolds to meet [15]. In these last decades, this approach has been successfully implemented
by a number of authors, using either a geometric description [15, 17, 25, 26, 40, 41] or a variational
one [10, 11].

Another step consists in dealing with the a priori stable case, where the normally hyperbolic cylinder
appears with the perturbation itself [2, 3, 9, 11, 29, 36]. In this article we deal with the a priori unstable
case only.

One of the main difficulties lies in proving the existence of orbits shadowing random iterations of the
inner and outer maps. Shadowing results can be achieved using different tools: variational methods (see,
for instance, [4, 5, 6]), modern versions of the Lambda lemma [24, 28, 39], or with topological techniques
such as the the correctly aligned windows method.

The advantge of the topological methods is that they require relatively little information regarding
the dynamics on the normally hyperbolic invariant cylinder. In particular, no knowlege of invariant
quasiperiodic tori is expected. As far as the authors know, correctly aligned windows were imagined by
Conley and Easton [13], and the first application of the correctly aligned windows method to Arnold
diffusion problems is the paper [27]. In this paper, Gidea and de la Llave use the method of correctly
aligned windows to prove the existence of diffusion orbits in a priori unstable Hamiltonian systems and
to construct orbits with an unbounded growth of energy for the Mather problem (that is a geodesic flow
with a time dependent potential). This second model is usually said to be a priori chaotic. In both
settings the normally hyperbolic invariant cylinder is two-dimensional. Moreover, they assume that the
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induced dynamics on the cylinder satisfies a twist property, and the twist is uniform with respect to the
perturbative parameter.

The purpose of this paper is to generalise [27] from several points of view:

• The normally hyperbolic cylinder may be of any (even) dimension.

More importantly:

• The twist property satisfied by the inner dynamics may be weak, i.e. the twist may vanish when
the perturbative parameter goes to 0.

• We may split the actions between two groups, faster actions and slower actions, and ignore
the latter. Indeed, proving “partial transversality” of the invariant manifolds of the normally
hyperbolic cylinder along the fast ones is enough to achieve drift in these directions whereas the
slow directions can be treated as a black box, with no control of their instability rate.

These improvements are crucial since such behaviour is exhibited naturally in physical models, partic-
ularly in models with multiple time scales as happens often, for instance, in Celestial Mechanics.

Many of the known shadowing mechanisms rely on rather strong assumptions, both on the inner dy-
namics in the cylinder and on the transversality of the associated stable and unstable invariant foliations.
Often such hypotheses are difficult to verify when multiple time scales are present. The results presented
in this paper are quite flexible and can be applied to rather general multiple time scale settings.

In particular, consider an analytic nearly integrable Hamiltonian system with multiple time scales such
that some of the angles perform fast non-resonant rotation and therefore its conjugate actions are very
slow whereas some other angles are not fast. It is well known that, in the fast directions, the transversality
between the invariant manifolds is exponentially small and therefore very difficult to analyze. At the same
time, thanks to averaging theory, one can make the dynamics in the conjugate actions much slower. The
results in this paper allow us to obtain diffusing orbits along the actions conjugated to the slow angles
even if one does not have “full transversality” of the invariant manifolds, i.e. no transverality in the fast
directions (see Theorem 2.12 below).

All the improvements achieved in the present paper are needed to construct diffusing orbits in the 4
Body Problem along secular resonances. In the companion paper [12], the authors prove the existence of
orbits of the 4 body problem in both the planetary regime (one massive body and three bodies with small
mass) and hierarchical regime (bodies increasingly separated) such that one of the bodies has osculating
eccentricity and drifting inclination with no constraint; indeed, it is even possible for this body to undergo
a change in inclination of 180 degrees, thus going from being prograde to retrograde. This is the first
analytical result of unstable motions in an N body problem in the planetary regime.

Secular resonances are those given by the secular angles, that is the angles which are constant for
the two body problem: the argument of the perihelion and the longitude of the ascending node of each
of the bodies. Such angles are much slower than the mean anomalies of the bodies which perform
fast rotation. Therefore, we are exactly in the multiple time-scale setting described above. In [12], we
are able to construct diffusing orbits in the actions conjugated to the secular angles, i.e. the osculating
eccentricities and mutual inclinations of the bodies, without having to control the dynamics on semimajor
axis directions.
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2. Set-up, Assumptions, and Results

2.1. Definitions. Let M be a Cr manifold of dimension d where r ≥ 1. Let F ∈ Diff1(M), and let Λ be
a submanifold of M .
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Definition 2.1. We call Λ a normally hyperbolic invariant manifold for F if Λ is F -invariant, and there
are

(1) 0 < λ− < λ+ < λ0 < 1 < µ0 < µ− < µ+

and an invariant splitting of the tangent bundle

TΛM = TM ⊕ Es ⊕ Eu

such that:

λn−∥v∥ ≤ ∥DFn(x)v∥ ≤ λn+∥v∥ for all x ∈ Λ, v ∈ Es
x, n ∈ N

µn
−∥v∥ ≤ ∥DFn(x)v∥ ≤ µn

+∥v∥ for all x ∈ Λ, v ∈ Eu
x , n ∈ N

λ
|n|
0 ∥v∥ ≤ ∥DFn(x)v∥ ≤ µ

|n|
0 ∥v∥ for all x ∈ Λ, v ∈ TxΛ, n ∈ Z.

(2)

The results presented in this paper also apply to the case where Λ is a manifold with boundary, in
which case Λ may be invariant (i.e. the boundaries are invariant), or only locally invariant: points may
escape through the boundary, in the sense that there is a neighbourhood V of Λ such that orbits of points
in Λ stay in Λ until they leave V .

This definition guarantees the existence of stable and unstable invariant manifolds W s,u(Λ) ⊂ M
defined as follows. The local stable manifold W s

loc(Λ) is the set of points in a small neighbourhood
of Λ whose forward iterates never leave the neighbourhood, and tend exponentially to Λ. The local
unstable manifold Wu

loc(Λ) is the set of points in the neighbourhood whose backward iterates stay in the
neighbourhood and tend exponentially to Λ. We then define

W s(Λ) =

∞⋃
i=0

F−i (W s
loc(Λ)) , Wu(Λ) =

∞⋃
i=0

F i (Wu
loc(Λ)) .

On the stable and unstable manifolds we have the strong stable and strong unstable foliations, the leaves
of which we denote by W s,u(x) for x ∈ Λ. For each x ∈ Λ, the leaf W s(x) of the strong stable foliation is
tangent at x to Es

x, and the leaf Wu(x) of the strong unstable foliation is tangent at x to Eu
x . Moreover

the foliations are invariant in the sense that F i (W s(x)) = W s
(
F i(x)

)
and F i (Wu(x)) = Wu

(
F i(x)

)
for each x ∈ Λ and i ∈ Z. We thus define the holonomy maps πs,u : W s,u(Λ) → Λ to be projections
along leaves of the strong stable and strong unstable foliations. That is to say, if x ∈ W s(Λ) then there
is a unique x+ ∈ Λ such that x ∈ W s(x+), and so πs(x) = x+. Similarly, if x ∈ Wu(Λ) then there is a
unique x− ∈ Λ such that x ∈Wu(x−), in which case πu(x) = x−.

Now, suppose that x ∈ (W s(Λ) ⋔Wu(Λ))\Λ is a transverse homoclinic point such that x ∈W s(x+)∩
Wu(x−). We say that the homoclinic intersection at x is strongly transverse if

TxW
s(x+)⊕ Tx (W

s(Λ) ∩Wu(Λ)) = TxW
s(Λ),

TxW
u(x−)⊕ Tx (W

s(Λ) ∩Wu(Λ)) = TxW
u(Λ).

(3)

In this case we can take a sufficiently small neighbourhood Γ of x in W s(Λ) ∩Wu(Λ) so that (3) holds
at each point of Γ, and the restrictions to Γ of the holonomy maps are bijections onto their images. We
call Γ a homoclinic channel (see Figure 1). We can then define the scattering map as follows [16].

Definition 2.2. Let y− ∈ πu (Γ), let y = (πu|Γ)
−1

(y−), and let y+ = πs(y). The scattering map
S : πu(Γ) → πs(Γ) is defined by

S = πs ◦ (πu)
−1

: y− 7−→ y+.

Suppose now that the smoothness r ofM and F is at least 2, suppose the normally hyperbolic invariant
manifold Λ is a Cr submanifold ofM , and suppose instead of condition (1) we have the stronger condition

(4) 0 < λ− < λ+ < λr0 < 1 < µr
0 < µ− < µ+

on the hyperbolicity parameters. This large spectral gap condition implies Cr−1 regularity of the strong
stable and strong unstable foliations [34], which in turn implies that the scattering map S is Cr−1 [16].
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Figure 1. The scattering map S takes a point x− ∈ Λ, follows the unique leaf of the
strong unstable foliation passing through x− to the point x in the homoclinic channel Γ,
and from there follows the unique leaf of the strong stable foliation passing through x to
the point x+ on Λ.

Remark 2.3. In general, the scattering map is not globally defined. The homoclinic intersection of
invariant manifolds can give rise to very complicated domains of definition of the scattering map, and the
general case is that there are many branches Sα of the map defined on sets Uj ⊂ Λ. The sets Uj may or
may not overlap, and the scattering map may have singularities on ∂Uj. While the results of this paper
apply to the general case, we simply write S : U → Λ to denote the scattering map to avoid awkward
notation.

Suppose the map F depends smoothly on a small parameter ϵ, and the derivatives are uniformly
bounded. Note that the invariant objects Λ and W s,u (Λ) persist for all sufficiently small values of ϵ.
We point out these objects may vary with ϵ, but, to simplify notation, we do not explicitly write ϵ as a
subscript or argument. Indeed, as ϵ varies, the perturbed (ϵ > 0) normally hyperbolic invariant manifold
can be written as a graph over the unperturbed (ϵ = 0) manifold as a result of Fenichel theory, and so
we can continue to use the coordinates from the original unperturbed manifold [21, 22, 23].

Suppose the scattering map S is defined relative to a homoclinic channel Γ for all sufficiently small
ϵ > 0. We allow for the possibility that the angle between W s,u(Λ) along the homoclinic channel Γ goes
to 0 as ϵ → 0. Denote by α(v1, v2) the angle between two vectors v1, v2 in the direction that yields the
smallest result (i.e. α(v1, v2) ∈ [0, π]). For x ∈ Γ, let

αΓ(x) = inf α(v+, v−)

where the infimum is over all v+ ∈ TxW
s(Λ)⊥ and v− ∈ TxW

u(Λ)⊥ such that ∥v±∥ = 1.

Definition 2.4. For σ ≥ 0, we say that the angle of the splitting along Γ is of order ϵσ if there is a
positive constant C (independent of ϵ) such that

αΓ(x) ≥ Cϵσ

for all x ∈ Γ.

Suppose now that the normally hyperbolic invariant manifold Λ is diffeomorphic to Tn × [0, 1]n, and
denote by (q, p) ∈ Tn× [0, 1]n smooth coordinates on Λ. Suppose the maps F , and thus f := F |Λ, depend
on the small parameter ϵ.
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Definition 2.5. We say that f : Λ → Λ is a near-integrable twist map if there is some k ∈ N such that

(5) f :

{
q̄ = q + g(p) +O(ϵk)

p̄ = p+O(ϵk)

where

detDg(p) ̸= 0

for all p ∈ [0, 1]n, and where the higher order terms are uniformly bounded in the C1 topology. If the
higher order terms are 0 then f is an integrable twist map.

Remark 2.6. The assumption that detDg(p) ̸= 0 is sometimes referred to as a local twist property; see
for example Section 4, Chapter 23 of [33]. Note that we do not require convexity.

It follows from the definition that if f : Λ → Λ is a near-integrable twist map, then there exist twist

parameters T+ > T̃− > 0 such that

(6) T̃−∥v∥ ≤ ∥Dg(p)v∥ ≤ T+∥v∥

for all p ∈ [0, 1]n and all v ∈ Rn. We can always choose T+ to be independent of ϵ. Our formulation of

the problem allows the parameter T̃− to depend on ϵ: there is τ ∈ N0 and a strictly positive constant T−
(independent of ϵ) such that T̃− = ϵτT−.

Definition 2.7. Suppose f : Λ → Λ is a near-integrable twist map. Denote by T+ > T̃− = ϵτT− > 0 the
twist parameters. We say that f satisfies:

• A uniform twist condition if τ = 0;
• A non-uniform twist condition (of order ϵτ ) if τ > 0, and the order ϵk of the error terms in the

definition of the near-integrable twist map f is such that k > τ .

In the coordinates (q, p), we may define a foliation of Λ, the leaves of which are given by

(7) L(p∗) = {(q, p) ∈ Λ : p = p∗} .

If f : Λ → Λ is a near-integrable twist map in the sense of Definition 2.5, then each leaf of the foliation
is almost invariant under f , up to terms of order ϵk, where k is as in Definition 2.5.

Suppose we have a scattering map S defined on an open set U in Λ, and suppose the large spectral
gap condition (4) holds, so S is C1.

Definition 2.8. Fix some υ ≥ 0. We say that the scattering map S is transverse to leaves along leaves,
and that the angle of transversality is of order ϵυ (with respect to the leaves (7) of the foliation of Λ) if
there are c, C > 0 such that for all p∗0 ∈ [0, 1]n and all p∗ ∈ [0, 1]n satisfying ∥p∗ − p∗0∥ < c ϵυ we have

S (L(p∗0) ∩ U) ⋔ L(p∗) ̸= ∅

and there is x ∈ S (L(p∗0) ∩ U) ⋔ L(p∗) such that

inf α(v0, v) ≥ Cϵυ

where the infimum is taken over all v0 ∈ TxS (L(p∗0) ∩ U) and v ∈ TxL(p∗) such that ∥v0∥ = ∥v∥ = 1.

See Figure 2 for an illustration of the meaning of Definition 2.8 in dimension 2. The statement of
this definition is designed to be convenient for our applications (see [12]); however the conclusions of our
theorems (Theorems 2.10 and 2.12) could survive significant loosening of this definition.

Remark 2.9. In the statements of Theorems 2.10 and 2.12 we will give conditions on the parameter
σ from Definition 2.4, the parameters k and τ from Definitions 2.5 and 2.7 and the parameter υ from
Definition 2.8 which must be satisfied in order to obtain diffusion; see equations (8) and (9).
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Figure 2. The figure illustrates Definition 2.8 in dimension 2. The image of the leaf
L(p∗0) under the scattering map intersects transversely every leaf L(p∗) in a neighbour-
hood of L(p∗0) of size c ϵυ.

2.2. Statement of Theorem 2.10. Let M be a Cr manifold of dimension 2(m + n) where r ≥ 4 and
m,n ∈ N. Suppose F ∈ Diff4(M) has a normally hyperbolic invariant manifold Λ ⊂ M of dimension 2n
satisfying the large spectral gap condition (4). Suppose dimW s(Λ) = dimWu(Λ) = m + 2n. Suppose
F depends smoothly on a small parameter ϵ, and its derivatives are uniformly bounded. We make the
following further assumptions.

[A1] The stable and unstable manifoldsW s,u(Λ) have a strongly transverse homoclinic intersection along
a homoclinic channel Γ, and so we have an open set U ⊆ Λ and a scattering map S : U → Λ. The
angle of the splitting along Γ is of order ϵσ.

[A2] The inner map f = F |Λ is a near-integrable twist map with error terms of order ϵk satisfying a
non-uniform (or uniform) twist condition of order ϵτ (see Definitions 2.5 and 2.7).

[A3] The scattering map S is transverse to leaves along leaves (with respect to the leaves (7) of the
foliation of Λ), and the angle of transversality is of order ϵυ.

Theorem 2.10. Fix η > 0, let ϵ > 0 be sufficiently small, and suppose

(8) k ≥ 2 (ρ+ τ) + 1

where

(9) ρ = max{2σ, 2υ, τ}.

Choose {p∗j}∞j=1 ⊂ [0, 1]n such that

S (Lj ∩ U) ∩ Lj+1 ̸= ∅,

and S (Lj ∩ U) is transverse to Lj+1, where Lj = L(p∗j ). Suppose the distance between Lj and Lj+1 is
of order ϵυ for each j. Then there are {zi}∞i=1 ⊂M and ni ∈ N such that

zi+1 = Fni(zi)

and

d(zi,Li) < η.

Moreover, the time to move a distance of order 1 in the p-direction is bounded from below by a term of
order

(10) ϵ−ρ−τ−υ.

Remark 2.11. Note that we do not assume symplecticity of the map F . We do, however, assume some
properties displayed by symplectic maps; for example, the even dimension of the phase space and of the
stable and unstable manifolds.
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2.3. Statement of Theorem 2.12. Let M be a Cr manifold of dimension 2(m + n) where r ≥ 4 and
m,n ∈ N, and denote by z coordinates on M . Let Σ = Tℓ1 × [0, 1]ℓ2 for some ℓ1, ℓ2 ∈ N0, and denote

by (θ, ξ) ∈ Tℓ1 × [0, 1]ℓ2 coordinates on Σ. Write M̃ = M × Σ. In what follows the coordinate z can be
considered the “essential” variables, whereas θ and ξ are the “fast angles” and “slow actions” respectively.

Suppose Ψ ∈ Diff4
(
M̃

)
such that

Ψ(z, θ, ξ) = (G(z, θ, ξ), ϕ(z, θ, ξ))

where G ∈ C4
(
M̃,M

)
, and ϕ ∈ C4

(
M̃,Σ

)
. Suppose Ψ depends on a small parameter ϵ. We make the

following assumptions on Ψ.

[B1] There is some L ∈ N such that

G(z, θ, ξ) = G̃(z; ξ) +O
(
ϵL

)
where the higher order terms are uniformly bounded in the C4 topology, and for each ξ ∈ [0, 1]ℓ2

the map

G̃(·; ξ) : z ∈M 7−→ G̃(z; ξ) ∈M

satisfies the assumptions [A1-3] of Theorem 2.10.
[B2] Moreover, the map ϕ has the form

ϕ :

{
θ̄ = ϕ1(z, θ, ξ)

ξ̄ = ϕ2(z, θ, ξ) = ξ +O
(
ϵL

)
where the higher order terms are uniformly bounded in the C4 topology.

Results from [16] imply that Ψ has a normally hyperbolic invariant manifold Λ̃ that is O
(
ϵL

)
close in

the C4 topology to Λ×Σ where Λ ⊂M is the normally hyperbolic invariant manifold of G̃(·; ξ). Moreover

there is an open set Ũ ⊂ Λ̃ and a scattering map S̃ : Ũ → Λ̃ such that the z-component of S̃(z, θ, ξ) is
O
(
ϵL

)
close in the C3 topology to S (z; ξ) where S (·; ξ) : U → Λ is the scattering map corresponding to

G̃(·; ξ).
We use the coordinates (q, p, θ, ξ) on Λ̃ where (q, p) are the coordinates on Λ and (θ, ξ) are the coor-

dinates on Σ. Notice that the sets

L̃ (p∗, ξ∗) =
{
(q, p, θ, ξ) ∈ Λ̃ : p = p∗, ξ = ξ∗

}
= L (p∗)× Tℓ1 × {ξ∗}

for p∗ ∈ [0, 1]n and ξ∗ ∈ [0, 1]ℓ2 define the leaves of a foliation of Λ̃, where L(p∗) are the leaves of the
foliation of Λ defined by (7).

Theorem 2.12. Fix η > 0 and K ∈ N and let ϵ > 0 be sufficiently small. Choose N ∈ N satisfying

N ≤ 1

ϵK
,

ξ∗1 ∈ Int
(
[0, 1]ℓ2

)
so that G̃(·; ξ∗1) satisfies assumptions [A1-3], and p∗1, . . . , p

∗
N ∈ [0, 1]n as in Theorem

2.10 such that

S (Lj ∩ U ; ξ∗1) ∩ Lj+1 ̸= ∅

and S (Lj ∩ U ; ξ∗1) is transverse to Lj+1, where Lj = L(p∗j ). Suppose the distance between Lj and Lj+1 is

of order ϵυ for each j, and L > 0 is sufficiently large, depending on K. Then there are ξ∗2 , . . . , ξ
∗
N ∈ [0, 1]ℓ2

such that, with L̃j = L̃
(
p∗j , ξ

∗
j

)
, there are w1, . . . , wN ∈ M̃ and ni ∈ N such that the ξ component of w1

is ξ∗1 ,

wi+1 = Ψni(wi),

and

d
(
wi, L̃i

)
< η
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where ρ, σ, τ are as in the statement of Theorem 2.10. Moreover, the time to move a distance of order 1
in the p-direction is of order

(11) ϵ−ρ−τ−υ.

Remark 2.13. Note that the transition chain obtained in Theorem 2.12 is only of finite length, while
the one obtained in Theorem 2.10 may be infinite. By increasing K (and therefore L) we may choose
this transition chain in Theorem 2.12 to be as long as we like, polynomially in ϵ−1. If we made further
assumptions regarding the evolution of the variables θ, ξ, it may be possible to use cone conditions to
construct infinite transition chains as in [8]. However, as the results of the current paper are intended
to be applied in [12], and as in that paper we are not able to obtain further information regarding the
evolution of these variables, long but finite transition chains suffice.

Remark 2.14. The parameter L in assumption [B1] can be thought of, in terms of applications, as the
order of averaging. In celestial mechanics models, for example, there are often fast angles (denoted here
by θ) that can be averaged out of the Hamiltonian function up to terms of order ϵL for any L ≥ 0. As
such, the conjugate momenta (denoted here by ξ) are constant up to terms of order ϵL. In this way, the
parameter L can typically be chosen in applications to be as large as is required.

Theorem 2.12 provides a shadowing argument along the invariant manifolds of a normally hyperbolic
invariant cylinder relying on long sequences of almost invariant leaves of a foliation. Often in Arnold
diffusion results, one wants only to fix the initial and final points and not the whole sequence of leaves.
The following corollary contains such a statement, and is a direct consequence of the assumed hypotheses
and Theorem 2.12.

Corollary 2.15. Fix η > 0, constants ρ, τ and υ satisfying (8) and p∗ini, p
∗
fin ∈ [0, 1]n. Then, for any

L ≥ 1 large enough and ϵ > 0 small enough there exists ξ∗1 ∈ Int
(
[0, 1]ℓ2

)
, N ∈ N and {p∗k}Nk=1 such that

• p∗1 = p∗ini, p
∗
N = p∗fin,

• S (Lj ∩ U ; ξ∗1) ∩ Lj+1 ̸= ∅ and S (Lj ∩ U ; ξ∗1) is transverse to Lj+1, where Lj = L(p∗j )
• The distance between Lj and Lj+1 is of order ϵυ for each j.

Moreover, there are ξ∗2 , . . . , ξ
∗
N ∈ [0, 1]ℓ2 , w1, . . . , wN ∈ M̃ such that the ξ component of w1 is ξ∗1 and

natural numbers and ni ∈ N satisfying and

n1 ≤ n2 ≤ . . . ≤ nN ≲ ϵ−ρ−τ−υ.

such that

wi+1 = Ψni(wi), and d
(
wi, L̃i

)
< η

where L̃j = L̃
(
p∗j , ξ

∗
j

)
.

2.4. Heuristic Description of the Proof of Theorems 2.10 and 2.12. The key idea of the proof is
the construction of a sequence of correctly aligned windows in a neighbourhood of the normally hyperbolic
invariant cylinder and homoclinic channel. A window is a product of two rectangles, with each boundary
component identified as belonging either to an entry set or to an exit set. Whether a boundary component
belongs to the entry set or the exit set is a free choice; indeed, one can even choose the entry set to be
empty, and the exit set to be the entire topological boundary of the window, or vice versa. Informally,
two windows W1 and W2 are correctly aligned under a map f if f(W1) and W2 fully overlap in such a
way that the image of the exit set of W1 under f does not intersect W2, and the entry set of W2 does
not intersect f(W1). The crux of this idea is that, if we have a (finite, infinite, or even doubly infinite)
sequence of windows {Wn} such that Wn is correctly aligned with Wn+1 under f for each n, then there
is a trajectory {xn} of f passing through this sequence of windows, in the sense that f(xn) = xn+1 and
xn ∈Wn for each n (see Section 3 for the formal definition and references).

The strategy of the proof, therefore, is to construct explicitly such a sequence of correctly aligned
windows. This requires a suitable coordinate system in a neighbourhood of the normally hyperbolic
manifold Λ (see Section 4.1) in which the map takes a particular form that allows us to see the twist
condition. First we show how to construct a “short sequence” of correctly aligned windows (see Section
5.1), beginning in a neighbourhood of a point xn in the homoclinic channel, approaching a point y ∈ Λ
along the stable manifoldW s(Λ), moving around Λ for a (potentially large, depending on the order of the
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twist condition) number of iterates, and departing along the unstable manifold Wu(Λ) towards another
point xn+1 in the homoclinic channel. This part of the construction uses only normal hyperbolicity and
the twist condition [A2].

The next step is to show that, given two such short sequences of correctly aligned windows, we can
combine them at a homoclinic point xn to obtain longer sequences (see Section 5.2). The difficulty here
is that the windows at the homoclinic point xn are expressed in different coordinates: one system of
coordinates is obtained by iterating the coordinates near Λ forward along the unstable manifold Wu(Λ),
and the other by iterating the coordinates near Λ backward along the stable manifoldW s(Λ). In order to
guarantee that the windows near xn are correctly aligned, we need to obtain estimates on the coordinate
transformation between these two systems. This step uses: [A1], the transversality of the stable and
unstable manifolds at the homoclinic point xn; and [A3], the transversality of images under the scattering
map of leaves of the foliation of Λ.

The final part of the proof of Theorem 2.10 consists in choosing the aspect ratios (i.e. the size of the
constituent rectangles) of each window in the sequence in order to guarantee that the sequence can be
continued indefinitely. This is done in Section 5.3.

In order to prove Theorem 2.12, we show that under conditions [B1] and [B2], the conditions [A1-3]
of Theorem 2.10 are satisfied by a truncated version of the map. This allows us to consider the sequence
of windows Wn in M constructed in the proof of Theorem 2.10; we then extend these windows to the

extended phase space M̃ = M × Σ by taking the product of Wn with two new rectangles Θn,Ξn where
Θn × Ξn ⊂ Σ. In the Θn,Ξn directions, we choose the exit set to be empty and the entry set to be the
entire topological boundary, and we just increase the size of the rectangles Θn,Ξn at each step. This
guarantees the correct alignment of the windowsWn×Θn×Ξn at each step under iterates of the truncated
map. Finally we show that the error terms of the full map do not spoil the correct alignment; this is true
for finite sequences of windows, and it is not clear that it can be extended to infinite sequences.

The structure of the paper is as follows. In Section 3 we define windows, and what it means for them
to be correctly aligned, and we state several necessary theorems regarding correct alignment. In Section
4 we establish a suitable system of coordinates in a neighbourhood of Λ, we show how it can be iterated
along the stable and unstable manifolds to a homoclinic point, and we obtain estimates on the map in
these coordinates. In Section 5 we prove Theorem 2.10, and finally Theorem 2.12 is proved in Section 6.

3. Correctly Aligned Windows

We follow the exposition in [27] (itself based on [30, 31, 32, 42]; see also the appendix of [28]), which
elaborates on ideas introduced in [18, 19, 20].

3.1. Definitions and Main Ideas. Let M be a manifold of dimension m. A window is a subset of M
that is a product of C0 rectangles.

Definition 3.1. Let m1,m2 ∈ N0 such that m1 +m2 = m.

• A set W ⊂M is an (m1,m2) window if there is an open neighbourhood V of W in M , an open

neighbourhood V̂ of [0, 1]m1 × [0, 1]m2 in Rm, and a homeomorphism χ : V̂ → V such that

W = χ ([0, 1]m1 × [0, 1]m2) .

• Moreover there is a choice of entry set

(12) W+ = χ ([0, 1]m1 × ∂[0, 1]m2)

and exit set

(13) W− = χ (∂[0, 1]m1 × [0, 1]m2) .

Remark 3.2. We say that there is a choice of entry and exit sets as we could equally have chosen (13)
to be the entry set and (12) to be the exit set. In practice, every time we define a window we explicitly
state our choice of its entry and exit sets, but we use the definitions (12) and (13) for the purposes of
this exposition.
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Definition 3.3. For j = 1, 2 let Wj ⊂ M be an (m1,m2) window with parametrisation χj : V̂j → Vj,
and let f ∈ C0(M,M) such that f (V1) ⊆ V2. Let

f̂ = χ−1
2 ◦ f ◦ χ1 : V̂1 −→ V̂2.

Then W1 is correctly aligned with W2 under f if there is a homotopy

H : [0, 1]× V̂1 −→ V̂2

such that:

(1) We have

H(0, ·) = f̂ ,

H
(
[0, 1], χ−1

1

(
W−

1

))
∩ χ−1

2 (W2) = ∅,

H
(
[0, 1], χ−1

1 (W1)
)
∩ χ−1

2

(
W+

2

)
= ∅.

(2) If m1 = 0 then f(W1) ⊂ Int(W2). If m1 > 0 then there is y ∈ [0, 1]m2 such that the map
Ay : [0, 1]m1 −→ Rm1 defined by

Ay(x) = π1 (H(1, (x, y)))

satisfies

Ay (∂[0, 1]
m1) ⊂ Rm1 \ [0, 1]m1 , deg (Ay, 0) ̸= 0

where π1 : Rm1×Rm2 → Rm1 is the canonical projection onto the first component, and deg (Ay, 0)
is the Brouwer degree of the map Ay at 0.

In part 2 of the definition, whenever m1 > 0, if instead we have that there is a linear map A : Rm1 → Rm1

such that H(1, (x, y)) = (Ax, 0) for all x ∈ [0, 1]m1 , y ∈ [0, 1]m2 , and A (∂[0, 1]m1) ⊂ Rm1 \ [0, 1]m1 , then
we say that W1 is linearly correctly aligned with W2 under f .

Remark 3.4. Observe that the property of two windows being linearly correctly aligned is stronger than
simply being correctly aligned, in the sense that linearly correct alignment implies correct alignment (see
Proposition 2 of [27]). This becomes useful when we consider products of windows (see Section 3.2).

The following result (Corollary 12 of [42]), whimsically characterised as the property that ‘one can see
through a sequence of correctly aligned windows’, is the main point of this technique.

Theorem 3.5. Let {Wi}i∈Z be a collection of (m1,m2) windows in M , and {fi}i∈Z ⊂ C0(M,M) a
collection of continuous mappings such that Wi is correctly aligned with Wi+1 under fi for each i ∈ Z.
Then we can find {zi}i∈Z ⊂M such that

zi ∈Wi, fi(zi) = zi+1

for all i ∈ Z.

The property of two windows being correctly aligned under a map is stable under perturbation in the
sense of the next result (Theorem 13 of [42]).

Theorem 3.6. Suppose W1,W2 ⊂ M are (m1,m2) windows such that W1 is correctly aligned with W2

under a map f ∈ C0(M,M). Then there is an open neighbourhood U of f in C0(M,M) with respect to

the compact-open topology such that W1 is correctly aligned with W2 under f̃ for all f̃ ∈ U .
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3.2. Products of Windows. Suppose Mj is a manifold of dimension kj for j = 1, 2, and suppose the
manifold

(14) M =M1 ×M2

is equipped with the product topology. For j = 1, 2 let Wj ⊂Mj be an (mj , nj) window with parametri-

sation χj : V̂j → Vj where mj , nj ∈ N0 such that kj = mj + nj . Suppose moreover

W+
j = χj ([0, 1]

mj × ∂[0, 1]nj ) , W−
j = χj (∂[0, 1]

mj × [0, 1]nj ) .

Now, the sets V̂ = V̂1 × V̂2 ⊂ Rk1 × Rk2 and V = V1 × V2 ⊂ M are open in the product topology, and

W =W1 ×W2 ⊂ V . Define χ : V̂ → V by

χ(x, y) = (χ1(x), χ2(y))

where x ∈ V̂1, y ∈ V̂2. Define the entry and exit sets of W to be

(15)

{
W+ =

(
W+

1 ×W2

)
∪
(
W1 ×W+

2

)
W− =

(
W−

1 ×W2

)
∪
(
W1 ×W−

2

)
.

It can thus be seen that W is an (m1 +m2, n1 + n2) window in M with parametrisation χ : V̂ → V . In
this case we say that W is the product of the windows W1,W2, and we write W =W1 ×W2.

Suppose now that f ∈ C0(M,M), and for (x, y) ∈M1 ×M2 we write

f(x, y) = (f1(x, y), f2(x, y))

where fj(x, y) ∈Mj . The following result was proved in [27].

Theorem 3.7. Let W = W1 ×W2, W̃ = W̃1 × W̃2 be (m1 +m2, n1 + n2) windows in M = M1 ×M2.
Suppose

(i) W1 is linearly correctly aligned with W̃1 under f1(·, y) for each y ∈M2; and

(ii) W2 is linearly correctly aligned with W̃2 under f2(x, ·) for each x ∈M1.

Then W is correctly aligned with W̃ under f .

Remark 3.8. In general, the manifolds M in our work have the structure (14) only locally. However
this is enough to apply Theorem 3.7, since two windows being correctly aligned under a map is a local
property.

4. Coordinates and Estimates

4.1. A Suitable System of Coordinates. Suppose we are in the setting of Theorem 2.10, so M is a
Cr manifold of dimension 2(m+n), and F ∈ Diffr(M) has a normally hyperbolic invariant manifold Λ ≃
Tn× [0, 1]n inM satisfying [A1-3]. In order to construct correctly aligned windows, we need estimates for
the map in a neighbourhood of the invariant manifolds W s,u(Λ). This requires an appropriate system of
coordinates in which the twist property of the inner map F |Λ is apparent; Fenichel coordinates (described
below; see [35]) provide a starting point for the coordinate transformation. However, when we express
the map F in Fenichel coordinates, there are error terms that complicate the estimates. We therefore
seek a further coordinate transformation in which these error terms can be ignored. There is an analogue
of the Hartman-Grobman Theorem for normally hyperbolic invariant manifolds, which says that there
is a neighbourhood of Λ in which F is topologically conjugate to its so-called normal map [38]. These
coordinates would be ideal for obtaining local estimates in a neighbourhood of the cylinder (as in Section
5.1), but later we need to analyse how the images of this coordinate chart fit together at a homoclinic
point if we iterate it backwards (resp. forwards) along the stable (resp. unstable) manifold of Λ (see
Section 5.2). This analysis requires a continuous second derivative; since the coordinates provided by [38]
are purely topological, we instead follow Section 5.1 of [27] to construct a suitable system of coordinates
that are as smooth as required.

Denote by (q, p) the coordinates on Λ. Assuming Λ is a Cr submanifold of M , and the spectral gap
is of size r we can introduce, as in [35], Cr−1 coordinates (s, u, q, p) in a neighbourhood U0 of Λ, where
s, u belong to a neighbourhood of the origin in Rm such that:
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• W s
loc(Λ) = {u = 0};

• Wu
loc(Λ) = {s = 0};

• W s
loc(q0, p0) = {u = 0, (q, p) = (q0, p0)}; and

• Wu
loc(q0, p0) = {s = 0, (q, p) = (q0, p0)}.

In these coordinates the map F takes the form

F :


(q̄, p̄) = f(q, p) +Nc(s, u, q, p)

s̄ = As(q, p) s+Ns(s, u, q, p)

ū = Au(q, p)u+Nu(s, u, q, p)

where f = F |Λ, As(q, p) = DF (q, p)|Es , Au(q, p) = DF (q, p)|Eu , and

Nc(0, u, q, p) = 0 = Nc(s, 0, q, p), Ns(0, u, q, p) = 0 = Nu(s, 0, q, p).

In this paper we study the dynamics only in a small neighbourhood of the invariant manifoldsW s,u(Λ).

Therefore we can replace F by a map F̃a defined as follows. Choose a function ψ ∈ C∞(R) such that
ψ(x) = 1 if |x| ≤ 1 and ψ(x) = 0 if |x| ≥ 2, and let ψa(x) = ψ(ax). We then define the map

(16) F̃a :


(q̄, p̄) = f(q, p) + ψa

(
s2 + u2

)
Nc(s, u, q, p)

s̄ = As(q, p)s+ ψa

(
s2 + u2

)
Ns(s, u, q, p)

ū = Au(q, p)u+ ψa

(
s2 + u2

)
Nu(s, u, q, p).

Note that the map F̃a is only Cr−1, since the coordinates (s, u, q, p) are Cr−1. Moreover the normally
hyperbolic invariant manifold Λ is a Cr−1 submanifold, and the spectral gap remains of size r. The map

F̃a agrees with F whenever s2 + u2 ≤ a−1. Furthermore the error terms of F̃a are uniformly small in C0,
and can be made as small as necessary by increasing a. We thus guarantee, by choosing a large enough,

that the map F̃a is globally defined on Tn × [0, 1]n × R2m, since we have effectively set the error terms
equal to 0 outside the domain of definition of Nc, Ns, Nu. Fix some sufficiently large a once and for all,

and define Φ = F̃a.
Since Φ is defined globally, the local unstable manifold Wu

loc(Λ) extends to a global unstable manifold

W̃u(Λ) =
⋃∞

n=0 Φ
n (Wu

loc (Λ)). On W̃u(Λ) we have the strong unstable foliation, each leaf W̃u(q, p) of
which is uniquely determined by a point (q, p) ∈ Λ in the usual way (see Section 2.1 for definitions).

Since W̃u (Λ) = {s = 0}, the variables (u, q, p) define coordinates on W̃u (Λ). Now, it follows from (16)

that the stable manifold Ws = W s
(
W̃u (Λ)

)
of the unstable manifold W̃u (Λ) is the entire phase space

Λ × R2m. Moreover Ws admits a Cr−2 foliation by the leaves Ws(u, q, p) = W s(0, u, q, p). Notice that

the restriction of Φ to W̃u (Λ) is

Φ|
W̃u(Λ)

:

{
(q̄, p̄) = f(q, p)

ū = Au(q, p)u+ ψa

(
u2

)
Nu(0, u, q, p).

We can now take a coordinate s′ on each Ws(u, q, p) so that (s′, u, q, p) are Cr−2 coordinates in a
neighbourhood of Λ, and

(17) Φ :


(q̄, p̄) = f(q, p)

s̄′ = As(q, p)s
′ + Ñs(s

′, u, q, p)

ū = Au(q, p)u+ ψa

(
u2

)
Nu(0, u, q, p)

where Ñs is globally small, and Ñs(0, u, q, p) = 0. Since F agrees with Φ in a neighbourhood of Λ, it
also takes the form (17) in (s′, u, q, p) coordinates. From now on we drop the prime notation and write
(s, u, q, p) for this system of coordinates.

We have thus constructed Cr−2 coordinates in a neighbourhood of Λ in which there are no error terms
in the central directions, and the error terms in the hyperbolic directions are small: let δs, δu > 0 such
that

sup
(s,u,q,p)

∥∥∥Ñs(s, u, q, p)
∥∥∥ ≤ δs∥s∥, sup

(u,q,p)

∥∥ψa

(
u2

)
Nu(0, u, q, p)

∥∥ ≤ δu∥u∥
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where we denote by ∥x∥ = maxi=1,...,m |xi| the maximum norm. Since a is sufficiently large, δs, δu are
sufficiently small. Due to the normal hyperbolicity estimates (2), we find that

λ̃−∥s∥ ≤
∥∥∥As(q, p)s+ Ñs(s, u, q, p)

∥∥∥ ≤ λ̃+∥s∥

µ̃−∥u∥ ≤
∥∥∥Au(q, p)u+ ψa

(
u2

)
N(0, u, q, p)

∥∥∥ ≤ µ̃+∥u∥

where λ̃± = λ± ± δs and µ̃± = µ± ± δu. Since δs,u are sufficiently small, we still have

0 < λ̃− < λ̃+ < λr0 < 1 < µr
0 < µ̃− < µ̃+.

In this way we can use the linear estimates (2) for the nonlinear map F in the hyperbolic directions. We
now drop the tilde notation, and simply write λ±, µ± for these adjusted hyperbolicity parameters. The
following section deals with estimates in the central directions.

Remark 4.1. Since the coordinates (s, u, q, p) are Cr−2, and since we require the coordinate transforma-
tion near a homoclinic point (see Section 5.2) to have two continuous derivatives, we take r ≥ 4 in the
statement of Theorem 2.10.

We also require a system of coordinates near the homoclinic channel. Denote by U the neighbourhood

of Λ in which we have the (s, u, q, p) coordinates, by Û the neighbourhood of Tn × [0, 1]n × {0} in

Tn × [0, 1]n × R2m to which the (s, u, q, p) variables belong, and by h : U → Û the C2 coordinate
transformation constructed above. Let x ∈ Γ ⊂ (W s(Λ) ⋔Wu(Λ)) \ Λ be a transverse homoclinic point.
Then there are N± ∈ N such that

FN+(x) ∈W s
loc(Λ) ∩ U , F−N−(x) ∈Wu

loc(Λ) ∩ U .
Choose a neighbourhood V of x in M such that FN+(V ) ⊂ U and F−N−(V ) ⊂ U . We define two

coordinate systems (s+, u+, q+, p+) and (s−, u−, q−, p−) on V via the diffeomorphisms h± : V → Û
defined by

h+ = Φ−N+ ◦ h ◦ FN+ , h− = ΦN− ◦ h ◦ F−N− .

From (s+, u+, q+, p+) coordinates to (s, u, q, p) coordinates, the map FN+ acts as ΦN+ , in the sense that

h ◦ FN+ ◦
(
h+

)−1
= ΦN+ .

Similarly from (s−, u−, q−, p−) coordinates to (s, u, q, p) coordinates, the map F−N− acts as Φ−N− , in
the sense that

h ◦ F−N− ◦
(
h−

)−1
= Φ−N− .

4.2. Estimates on the Shearing of a Window by the Twist Map. Recall the inner map f = F |Λ
is given by (5), and we assume moreover the twist condition (6), where T̃− = ϵτT− for some τ ∈ N0. We
use the maximum norm:

(18) ∥x∥ = max
i=1,...,n

|xi|.

Fix R > 0 with the following property. For any p0, p ∈ [0, 1]n we can write

g(p) = g(p0) +Dg(p0)(p− p0) +R∗(p
0, p)

where R∗
(
p0, p

)
is a remainder term of order O

(∥∥p− p0
∥∥2). Then the constant R is chosen so that

(19)
∥∥R∗

(
p0, p

)∥∥ ≤ R
∥∥p− p0

∥∥2
for all p0, p ∈ [0, 1]n.

Define a window W = [Q× P ] ⊂ Λ where

Q = [a, a+ γ]n ⊂ Tn, P = [b, b+ δ]n ⊂ [0, 1]n.

Choose the exit set W− to be, say,

W− = Q× ∂P.
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The following estimates apply equally if the exit set is chosen to be in the q-direction.
For each j = 1, . . . , n define

B0
j = [b, b+ δ]j−1 × {b} × [b, b+ δ]n−j , B1

j = [b, b+ δ]j−1 × {b+ δ} × [b, b+ δ]n−j

and let

E0
j = Q×B0

j , E1
j = Q×B1

j

be the corresponding components of the exit set, in the sense that

W− =

n⋃
j=1

(
E0

j ∪ E1
j

)
.

Suppose now that N ∈ Z, and suppose we take an iterate fN (W ) of W . Define

∆N
j = min

(q0,p0)∈E0
j

min
(q1,p1)∈E1

j

∥∥π ◦ fN (q1, p1)− π ◦ fN (q0, p0)
∥∥

and

ΩN = max
(q0,p0),(q1,p1)∈W

∥∥π ◦ fN (q1, p1)− π ◦ fN (q0, p0)
∥∥

where π : Tn × [0, 1]n → Tn is the canonical projection. The following lemma gives lower and upper
bounds on the shearing of the window W under fN .

Lemma 4.2. There is a positive constant C such that

(20) ∆N
j ≥ ϵτ |N |T−δ − |N |Rδ2 − γ − C|N |2ϵk

and

(21) ΩN ≤ γ + |N |T+δ + C|N |2ϵk

where ϵτ is the order of the twist condition, ϵk is the order of the error terms in the definition (5) of f ,
and the positive constant R is defined by (19).

Proof. We establish (20) for the case j = 1 as the remaining cases are analogous. Fix q0, q1 ∈ Q and
p0∗, p

1
∗ ∈ [b, b+ δ]n−1. Define

p0 = (b, p0∗), p1 = (b+ δ, p1∗)

Notice that

∥p1 − p0∥ = δ.

Write

(q̄j , p̄j) = fN (qj , pj)

for j = 0, 1 so that

q̄j = qj +Ng(pj) +O
(
N2ϵk

)
, p̄j = pj +O(Nϵk).

Let C be a uniform upper bound on the terms of order ϵk. Then we have∥∥q̄1 − q̄0
∥∥ ≥ |N |

∥∥g(p1)− g(p0)
∥∥−

∥∥q1 − q0
∥∥− C|N |2ϵk

≥ |N |
∥∥Dg(p0)(p1 − p0) +R∗(p

0, p1)
∥∥− γ − C|N |2ϵk

≥ ϵτ |N |T−δ − |N |Rδ2 − γ − C|N |2ϵk.

In order to prove (21), fix (qj , pj) ∈W and let (q̄j , p̄j) = fN (qj , pj) for j = 0, 1. Then∥∥q̄1 − q̄0
∥∥ ≤

∥∥q1 − q0
∥∥+ |N |

∥∥g(p1)− g(p0)
∥∥+ C|N |2ϵk

≤ γ + |N |T+δ + C|N |2ϵk.

□
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5. Proof of Theorem 2.10

Denote by L1, . . . ,LN a sequence of leaves of the foliation of Λ with transverse homoclinic connections,
as in the statement of Theorem 2.10. Let xi ∈ Γ be a point in the homoclinic channel such that πs(xi) ∈ Li

and πu(xi) ∈ Li+1. The proof of Theorem 2.10 is divided into 3 parts. In the first part of the proof, we
show how to construct a short chain of correctly aligned windows beginning at the homoclinic point xi,
moving near to Li, and ending at the homoclinic point xi+1. In the second part of the proof we show
that we can continue the sequence of windows across a transverse homoclinic intersection in order to glue
together two short sequences. In the final part of the proof, it is shown that we can consistently choose
the aspect ratios of the windows in a way that allows us to continue the sequence indefinitely.

5.1. Construction of a Short Sequence of Correctly Aligned Windows. Throughout the proof
we use the coordinates (s, u, q, p) constructed in Section 4.1 near the normally hyperbolic invariant man-
ifold Λ, as well as the coordinates (s+, u+, q+, p+) and (s−, u−, q−, p−), defined in Section 4.1, near the
homoclinic channel Γ.

This part of the proof is performed in 3 steps. In the first step, we construct a window Wi in

(s+, u+, q+, p+) coordinates centred at xi ∈ Γ, and a window W̃i in (s, u, q, p) coordinates centred at

fNi(ysi ) where ysi = πs(xi) such that Wi is correctly aligned with W̃i under FNi for some Ni ∈ N. In

the second step, we construct a window Ŵi in (s, u, q, p) coordinates centred at fNi+Ki(ysi ) such that

W̃i is correctly aligned with Ŵi under F
Ki for some Ki ∈ N. In the third step, we construct a window

W ′
i in (s−, u−, q−, p−) coordinates, centred at the transverse homoclinic point xi+1 ∈ Γ such that Ŵi is

correctly aligned with W ′
i under FMi for some Mi ∈ N.

In each step, the windows are defined as a product of two constituent windows. We ensure that the
windows we construct are correctly aligned by ensuring that the constituent windows are linearly correctly
aligned (see Definition 3.3 and Theorem 3.7). In the hyperbolic directions (i.e. the s, u variables) we
simply use the normal hyperbolicity estimates (2). In the centre directions (i.e. the q, p variables) we use
the shearing estimates provided by Lemma 4.2. Moreover at each step we state the entry and exit sets of
the constituent windows, in which case the entry and exit sets of the product of these windows is given
by (15).

Finally, let us define the centre of a window W in (s, u, q, p) coordinates. Suppose we define a window

W = [S × U ]× [Q× P ]

where S,U,Q, P is a rectangle in s, u, q, p respectively, and suppose the rectangles have size

|S| = max
s1,s2∈S

∥s1 − s2∥ = α, |U | = max
u1,u2∈U

∥u1 − u2∥ = β,

|Q| = max
q1,q2∈Q

∥q1 − q2∥ = γ, |P | = max
p1,p2∈P

∥p1 − p2∥ = δ,

where the maximum norm ∥.∥ is defined by (18). The centre of W is the point

c0 = (s0, u0, q0, p0)

such that

S =
[
s01 −

α

2
, s01 +

α

2

]
× · · · ×

[
s0m − α

2
, s0m +

α

2

]
,

U =

[
u01 −

β

2
, u01 +

β

2

]
× · · · ×

[
u0m − β

2
, u0m +

β

2

]
,

Q =
[
q01 −

γ

2
, q01 +

γ

2

]
× · · · ×

[
q0n − γ

2
, q0n +

γ

2

]
,

P =

[
p01 −

δ

2
, p01 +

δ

2

]
× · · · ×

[
p0n − δ

2
, p0n +

δ

2

]
.

5.1.1. Step 1. Define a window Wi, centred at the homoclinic point xi ∈ Γ and given in (s+, u+, q+, p+)
coordinates by

Wi = [Si × Ui]× [Qi × Pi]
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where Si, Ui, Qi, Pi are rectangles in s+, u+, q+, p+ respectively, with sizes

|Si| = αi, |Ui| = βi, |Qi| = γi, |Pi| = δi.

We choose the exit sets to be

[Si × Ui]
− = Si × ∂Ui, [Qi × Pi]

− = Qi × ∂Pi.

Now choose Ni ∈ N such that FNi(xi) ∈ W s
loc(Λ) ∩ U where U is the neighbourhood of Λ in which

(q, p, s, u) coordinates are defined. Let

νi = dW s(Λ)(xi, y
s
i ),

where dW s(Λ) is the distance measured along the stable manifold, and ysi = πs(xi). Then

νiλ
Ni
− ≤ dW s(Λ)(F

Ni(xi), F
Ni(ysi )) ≤ νiλ

Ni
+

and moreover by (2) and Lemma 4.2:

• In the s-direction, Wi is contracted by FNi to a size between αiλ
Ni
− and αiλ

Ni
+ ;

• In the u-direction, Wi is expanded by FNi to a size between βiµ
Ni
− and βiµ

Ni
+ ;

• In the q-direction, Wi is sheared by the twist map to a size at most γi +NiT+δi + CNiϵ
k; and

• In the p-direction, the change is ±CNiϵ
k.

(a) (b)

Figure 3. Step 1. The dashed edges represent exit sets.

Define a window W̃i centred at fNi(ysi ) ∈ Λ and given in (s, u, q, p) coordinates by

W̃i =
[
S̃i × Ũi

]
×

[
Q̃i × P̃i

]
where S̃i, Ũi, Q̃i, P̃i are rectangles in s, u, q, p respectively, and where we choose the exit sets to be[

S̃i × Ũi

]−
= S̃i × ∂Ũi,

[
Q̃i × P̃i

]−
= Q̃i × ∂P̃i.

If we choose the sizes of the constituent rectangles to be∣∣∣S̃i

∣∣∣ = α̃i,
∣∣∣Ũi

∣∣∣ = β̃i,
∣∣∣Q̃i

∣∣∣ = γ̃i,
∣∣∣P̃i

∣∣∣ = δ̃i
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where

α̃i > (αi + 2νi)λ
Ni
+ ,(22)

β̃i < βiµ
Ni
− ,(23)

γ̃i > γi +NiT+δi + CN2
i ϵ

k,(24)

δ̃i < δi − CNiϵ
k,(25)

then Wi is correctly aligned with W̃i under F
Ni by Theorem 3.7. In Section 5.3 we explain how to choose

αi, βi, γi, δi and Ni so that inequalities (22), (23), (24), (25) are solvable.

Remark 5.1. The reason νi carries a factor of 2 in (22) is the following. Since the hyperbolic rectangle
of FNi (Wi) lies to one side of {s = 0} (see Figure 3 (a)) we must choose α̃i so that α̃i

2 is greater

than the distance from {s = 0} to the outermost point on FNi (Wi) in the s-direction, which is at most

λNi
+

(
αi

2 + νi
)
.

5.1.2. Step 2. Take a forward iterate FKi

(
W̃i

)
of W̃i that brings the centre f

Ni (ysi ) of W̃i to f
Ni+Ki (ysi ).

Define a window Ŵi centred at fNi+Ki (ysi ), and given in (s, u, q, p) coordinates by

Ŵi =
[
Ŝi × Ûi

]
×
[
Q̂i × P̂i

]
where Ŝi, Ûi, Q̂i, P̂i are rectangles in s, u, q, p respectively, and where we choose the exit sets to be[

Ŝi × Ûi

]−
= Ŝi × ∂Ûi,

[
Q̂i × P̂i

]−
= ∂Q̂i × P̂i.

(a) (b)

Figure 4. Step 2. The dashed edges represent exit sets.

Notice that the exit set of Ŵi is not in the same direction as the exit set of W̃i. Under the iteration

FKi , the window W̃i is deformed, by (2) and Lemma 4.2, as follows:

• In the s-direction, W̃i is contracted by FKi to a size between α̃iλ
Ki
− and α̃iλ

Ki
+ ;

• In the u-direction, W̃i is expanded by FKi to a size between β̃iµ
Ki
− and β̃iµ

Ki
+ ;

• In the q-direction, W̃i is sheared by the twist map to a size at least ϵτKiT−δ̃i−KiRδ̃
2
i −γ̃i−CKiϵ

k;
and

• In the p-direction, the change is ±CKiϵ
k.
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If we choose the sizes of the constituent rectangles of Ŵi to be∣∣∣Ŝi

∣∣∣ = α̂i,
∣∣∣Ûi

∣∣∣ = β̂i,
∣∣∣Q̂i

∣∣∣ = γ̂i,
∣∣∣P̂i

∣∣∣ = δ̂i

where

α̂i > α̃iλ
Ki
+ ,(26)

β̂i < β̃iµ
Ki
− ,(27)

γ̂i < ϵτKiT−δ̃i −KiRδ̃
2
i − γ̃i − CK2

i ϵ
k,(28)

δ̂i > δ̃i + CKiϵ
k,(29)

then W̃i is correctly aligned with Ŵi under F
Ki by Theorem 3.7. In Section 5.3 we explain how to choose

α̃i, β̃i, γ̃i, δ̃i and Ki so that inequalities (26), (27), (28), (29) are solvable.

5.1.3. Step 3. Let xi+1 ∈ Γ be a point in the homoclinic channel for which there are yui ∈ Li and
ysi+1 ∈ Li+1 such that πu(xi+1) = yui and πs(xi+1) = ysi+1. Define a window W ′

i centred at xi+1 and
given in (s−, u−, q−, p−) coordinates by

W ′
i = [S′

i × U ′
i ]× [Q′

i × P ′
i ]

where we choose the exit sets to be

[S′
i × U ′

i ]
−
= S′

i × ∂U ′
i , [Q′

i × P ′
i ]
−
= ∂Q′

i × P ′
i .

Suppose we choose the sizes of the constituent rectangles of W ′
i to be

|S′
i| = α′

i, |U ′
i | = β′

i, |Q′
i| = γ′i, |P ′

i | = δ′i.

We take an iterate FMi

(
Ŵi

)
of Ŵi for some Mi ∈ N, and require that FMi

(
Ŵi

)
is correctly aligned

with W ′
i under FMi . Observe that this is equivalent to W ′

i being correctly aligned with Ŵi under F
−Mi ,

but with the roles of entry and exit sets in the definition of correctly aligned windows reversed.

(a) (b)

Figure 5. Step 3. The dashed edges represent exit sets.

We can write yui = (qui , p
u
i ) and f

Ni+Ki(ysi ) = (qsi , p
s
i ). Let

(30) ω′
i = ∥qsi − qui ∥ , ν′i = dWu(Λ)(xi+1, y

u
i )
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where dWu(Λ) is the distance measured along the unstable manifold. Then

ν′iµ
−Mi
+ ≤ dWu(Λ)(F

−Mi(xi+1), F
−Mi(yui )) ≤ ν′iµ

−Mi
− ,

and moreover, by (2) and Lemma 4.2:

• In the s-direction, W ′
i is expanded by F−Mi to a size between α′

iλ
−Mi
+ and α′

iλ
−Mi
− ;

• In the u-direction, W ′
i is contracted by F−Mi to a size between β′

iµ
−Mi
+ and β′

iµ
−Mi
− ;

• In the q-direction, W ′
i is sheared by the twist map to a size at most γ′i +MiT+δ

′
i + CMiϵ

k; and
• In the p-direction, the change is ±CMiϵ

k.

If we choose α′
i, β

′
i, γ

′
i, δ

′
i such that

α′
iλ

−Mi
+ > α̂i,(31)

(β′
i + 2ν′i)µ

−Mi
− < β̂i,(32)

γ′i +MiT+δ
′
i + CM2

i ϵ
k + 2ω′

i < γ̂i,(33)

δ′i − CMiϵ
k > δ̂i,(34)

then Ŵi is correctly aligned withW ′
i under F

Mi by Theorem 3.7. In Section 5.3 we explain how to choose

α̂i, β̂i, γ̂i, δ̂i and Mi so that inequalities (31), (32), (33), (34) are solvable.

Remark 5.2. With regards to the factor of 2 carried both by ν′i in (32) and by ω′
i in (33), compare

Remark 5.1 with Figure 5.

5.2. Continuing the Sequence Across a Transverse Homoclinic Intersection. So far, we have

shown how to construct short sequences of windowsWi, W̃i, Ŵi,W
′
i beginning at the transverse homoclinic

point xi, passing near Li, and ending at another transverse homoclinic point xi+1. We now want to show

that this short sequence can be connected to the next short sequence Wi+1, W̃i+1, Ŵi+1,W
′
i+1, which

amounts to proving that W ′
i is correctly aligned with Wi+1 under the identity mapping. Both of these

windows are centred at xi+1, but the difficulty is that W ′
i is defined in the (s−, u−, q−, p−) coordinates

obtained by carrying the (s, u, q, p) coordinates from a neighbourhood of Li out along Wu(Λ) to a
neighbourhood of xi+1, whereas Wi+1 is defined in the (s+, u+, q+, p+) coordinates obtained by carrying
the (s, u, q, p) coordinates from a neighbourhood of Li+1 back along W s(Λ) to a neighbourhood of xi+1.

Define the window Wi+1 centred at xi+1 and given in (s+, u+, q+, p+) coordinates by

Wi+1 = [Si+1 × Ui+1]× [Qi+1 × Pi+1]

where the exit sets are

[Si+1 × Ui+1]
−
= Si+1 × ∂Ui+1, [Qi+1 × Pi+1]

−
= Qi+1 × ∂Pi+1

and where the sizes of the constituent rectangles are

|Si+1| = αi+1, |Ui+1| = βi+1, |Qi+1| = γi+1, |Pi+1| = δi+1.

The following lemma gives conditions under which W ′
i is correctly aligned with Wi+1 under the identity

mapping.

Lemma 5.3. There are nonnegative constants Cj for j = 1, . . . , 8 where C4, C7 > 0 and a constant
R′ > 0 such that, if

αi+1 > C1ϵ
σα′

i + C2β
′
i +R′ζ2i ,(35)

βi+1 <− C3α
′
i + C4ϵ

σβ′
i −R′ζ2i ,(36)

γi+1 > C5γ
′
i + C6ϵ

υδ′i +R′ζ2i ,(37)

δi+1 < C7ϵ
υγ′i − C8δ

′
i −R′ζ2i ,(38)

where

(39) ζi = max {α′
i, β

′
i, γ

′
i, δ

′
i}

then W ′
i is correctly aligned with Wi+1 under the identity mapping.
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Proof. Recall we assume that the stable and unstable manifolds W s,u (Λ) have equal dimension m+ 2n,
where we denote by m the dimension of the s, u variables, and by n the dimension of the q, p variables. By
[A1], the angle between s− and u+ at xi+1 is of order ϵσ, as is the angle between u− and s+. Moreover,
by [A3], the angle between q− and q+ at xi+1 is of order ϵυ, as is the angle between p− and p+. It
follows that there is a well-defined coordinate transformation ϕ : (s−, u−, q−, p−) 7→ (s+, u+, q+, p+) in a
neighbourhood of xi+1, and the linearisation of ϕ at xi+1 is of the form

(40) Dϕ(xi+1) =

(
A 0
0 B

)
where

(41) A =

(
ϵσA1 A2

A3 ϵσA4

)
, B =

(
B1 ϵυB2

ϵυB3 B4

)
.

Here each matrix Aj is of dimension m ×m, each matrix Bj is of dimension n × n, and A1, A4, B2, B3

are invertible.
Recall the maximum norm ∥.∥ is defined by (18). Fix R′ > 0 with the following property. We can

write

(42) ϕ(x) = ϕ(xi+1) +Dϕ(xi+1) +R′
∗(x)

where R′
∗(x) is a remainder term of order O

(
∥x− xi+1∥2

)
. Then the constant R′ is chosen so that

(43) ∥R′
∗(x)∥ ≤ R′ ∥x− xi+1∥2

for all x in some neighbourhood of xi+1. Notice moreover that, since W ′
i is centred at xi+1, we have

(44) ∥x− xi+1∥ ≤ ζi
2

for all x ∈W ′
i , where ζi is defined by (39).

There are a′i, b
′
i ∈ Rm and c′i, d

′
i ∈ Rn such that

S′
i =

[
a′i,1, a

′
i,1 + α′

i

]
× · · · ×

[
a′i,m, a

′
i,m + α′

i

]
,

U ′
i =

[
b′i,1, b

′
i,1 + β′

i

]
× · · · ×

[
b′i,m, b

′
i,m + β′

i

]
,

Q′
i =

[
c′i,1, c

′
i,1 + γ′i

]
× · · · ×

[
c′i,n, c

′
i,n + γ′i

]
,

P ′
i =

[
d′i,1, d

′
i,1 + δ′i

]
× · · · ×

[
d′i,n, d

′
i,n + δ′i

]
.

For each j = 1, . . . ,m define

Ihj,0 =
[
b′i,1, b

′
i,1 + β′

i

]
× · · · ×

{
b′i,j

}
× · · · ×

[
b′i,m, b

′
i,m + β′

i

]
,

Ihj,1 =
[
b′i,1, b

′
i,1 + β′

i

]
× · · · ×

{
b′i,j + β′

i

}
× · · · ×

[
b′i,m, b

′
i,m + β′

i

]
,

and for each k = 1, . . . , n define

Ick,0 =
[
c′i,1, c

′
i,1 + γ′i

]
× · · · ×

{
c′i,k

}
× · · · ×

[
c′i,n, c

′
i,n + γ′i

]
,

Ick,1 =
[
c′i,1, c

′
i,1 + γ′i

]
× · · · ×

{
c′i,k + γ′i

}
× · · · ×

[
c′i,n, c

′
i,n + γ′i

]
.

We then let

Eh
j,0 = S′

i × Ihj,0 ×Q′
i × P ′

i , Eh
j,1 = S′

i × Ihj,1 ×Q′
i × P ′

i

be the corresponding components of the exit set of W ′
i in the hyperbolic directions, and let

Ec
k,0 = S′

i × U ′
i × Ick,0 × P ′

i , Ec
k,1 = S′

i × U ′
i × Ick,1 × P ′

i
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be the corresponding components of the exit set ofW ′
i in the cylindrical directions. For each κ ∈ {s, u, q, p}

denote by Πκ : (s, u, q, p) 7→ κ the projection onto the κ coordinate. Define

∆h
j = min

z0∈Eh
j,0

min
z1∈Eh

j,1

∥Πu ◦ ϕ (z1)−Πu ◦ ϕ (z0)∥ ,(45)

Ωh
j = max

z0∈Eh
j,0

max
z1∈Eh

j,1

∥Πs ◦ ϕ (z1)−Πs ◦ ϕ (z0)∥ ,(46)

∆c
k = min

z0∈Ec
k,0

min
z1∈Ec

k,1

∥Πp ◦ ϕ (z1)−Πp ◦ ϕ (z0)∥ ,(47)

Ωc
k = max

z0∈Ec
k,0

max
z1∈Ec

k,1

∥Πq ◦ ϕ (z1)−Πq ◦ ϕ (z0)∥ .(48)

If we choose

(49) αi+1 > Ωh
j , βi+1 < ∆h

j , γi+1 > Ωc
k, δi+1 < ∆c

k

for each j = 1, . . . ,m and each k = 1, . . . , n then W ′
i is correctly aligned with Wi+1 under the map ϕ (see

Figure 6). Therefore, in what follows, we search for upper bounds for each Ωh
j ,Ω

c
k and lower bounds for

each ∆h
j ,∆

c
k. In fact, we compute bounds for Ωh

1 ,Ω
c
1 and ∆h

1 ,∆
c
1 as the estimates for other values of j, k

are analogous.
For j = 0, 1 let shj ∈ S′

i, q
h
j ∈ Q′

i, p
h
j ∈ P ′

i , and

u∗j ∈
[
b′i,2, b

′
i,2 + β′

i

]
× · · · ×

[
b′i,m, b

′
i,m + β′

i

]
.

Define uh0 =
(
b′i,1, u

∗
0

)
, uh1 =

(
b′i,1 + β′

i, u
∗
1

)
, and zhj =

(
shj , u

h
j , q

h
j , p

h
j

)
for j = 0, 1. Observe that all points

in Eh
1,j are of the form zhj . Moreover, notice that

(50)
∥∥uh1 − uh0

∥∥ = β′
i.

Due to (40) and (41), the hyperbolic part of Dϕ (xi+1)
(
zh1 − zh0

)
is

(51)

(
ϵσA1 A2

A3 ϵσA4

)(
sh1 − sh0
uh1 − uh0

)
=

(
ϵσA1

(
sh1 − sh0

)
+A2

(
uh1 − uh0

)
A3

(
sh1 − sh0

)
+ ϵσA4

(
uh1 − uh0

)) .
It follows from (42), (43), (44), (50), and (51) that∥∥Πs ◦ ϕ

(
zh1

)
−Πs ◦ ϕ

(
zh0

)∥∥ ≤
∥∥Πs

(
Dϕ (xi+1)

(
zh1 − zh0

))∥∥
+R′

(∥∥zh1 − xi+1

∥∥2 + ∥∥zh0 − xi+1

∥∥2)
≤
∥∥ϵσA1

(
sh1 − sh0

)
+A2

(
uh1 − uh0

)∥∥+
1

2
R′ζ2i

≤C1ϵ
σα′

i + C2β
′
i +R′ζ2i

and ∥∥Πu ◦ ϕ
(
zh1

)
−Πu ◦ ϕ

(
zh0

)∥∥ ≥
∥∥Πu

(
Dϕ (xi+1)

(
zh1 − zh0

))∥∥
−R′

(∥∥zh1 − xi+1

∥∥2 + ∥∥zh0 − xi+1

∥∥2)
≥

∥∥A3

(
sh1 − sh0

)
+ ϵσA4

(
uh1 − uh0

)∥∥− 1

2
R′ζ2i

≥ −
∥∥A3

(
sh1 − sh0

)∥∥+ ϵσ
∥∥A4

(
uh1 − uh0

)∥∥−R′ζ2i

≥ − C3α
′
i + C4ϵ

σβ′
i −R′ζ2i

where ζi is defined by (39), where Cj is the matrix norm of Aj for j = 1, 2, 3, and where C4 > 0 is such
that ∥A4v∥ ≥ C4 ∥v∥ for all v ∈ Rm. That we can choose such a strictly positive C4 follows from the
invertibility of A4. Combining the previous inequalities with (45), (46), and (49) yields (35) and (36).

Now, for j = 0, 1, let scj ∈ S′
i, u

c
j ∈ U ′

i , p
c
j ∈ P ′

i , and

q∗j ∈
[
c′i,2, c

′
i,2 + γ′i

]
× · · · ×

[
c′i,n, c

′
i,n + γ′i

]
.
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(a) (b)

Figure 6. The figure illustrates how the window W ′
i is transformed under the lineari-

sation Dϕ (xi+1) of the change of coordinates ϕ : (s−, u−, q−, p−) 7→ (s+, u+, q+, p+) at
the homoclinic point xi+1. In (a), we see how the hyperbolic rectangle is transformed
assuming [A1], i.e. that there is an angle of order ϵσ between the stable and unstable
manifolds at the homoclinic point xi+1. In (b), we see how the inner (cylindrical) rec-
tangle is transformed assuming [A3], i.e. that the angle between the image of a leaf Li

of the foliation under the scattering map and another leaf Li+1 is of order ϵυ. Note that
the rectangles are not centred at the origin. The dashed edges of the rectangles represent
the exit sets.

Define qc0 =
(
c′i,1, q

∗
0

)
, qc1 =

(
c′i,1 + γ′i, q

∗
1

)
, and zcj =

(
scj , u

c
j , q

c
j , p

c
j

)
for j = 0, 1. Then all points in Ec

1,j are
of the form zcj , and furthermore

(52) ∥qc1 − qc0∥ = γ′i

Due to (40) and (41), the cylindrical part of Dϕ (xi+1) (z
c
1 − zc0) is

(53)

(
B1 ϵυB2

ϵυB3 B4

)(
qc1 − qc0
pc1 − pc0

)
=

(
B1 (q

c
1 − qc0) + ϵυB2 (p

c
1 − pc0)

ϵυB3 (q
c
1 − qc0) +B4 (p

c
1 − pc0)

)
.

It follows from (42), (43), (44), (52), and (53) that

∥Πq ◦ ϕ (zc1)−Πq ◦ ϕ (zc0)∥ ≤ ∥Πq (Dϕ (xi+1) (z
c
1 − zc0))∥

+R′
(
∥zc1 − xi+1∥2 + ∥zc0 − xi+1∥2

)
≤∥B1 (q

c
1 − qc0) + ϵυB2 (p

c
1 − pc0)∥+

1

2
R′ζ2i

≤C5γ
′
i + C6ϵ

υδ′i +R′ζ2i
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and

∥Πp ◦ ϕ (zc1)−Πp ◦ ϕ (zc0)∥ ≥ ∥Πp (Dϕ (xi+1) (z
c
1 − zc0))∥

−R′
(
∥zc1 − xi+1∥2 + ∥zc0 − xi+1∥2

)
≥ ∥ϵυB3 (q

c
1 − qc0) +B4 (p

c
1 − pc0)∥ −

1

2
R′ζ2i

≥ ϵυ ∥B3 (q
c
1 − qc0)∥ − ∥B4 (p

c
1 − pc0)∥ −R′ζ2i

≥ C7ϵ
υγ′i − C8δ

′
i −R′ζ2i

where ζi is defined by (39), where Cj is the matrix norm of Bj for j = 5, 6, 8, and where C7 > 0 is such
that ∥B3v∥ ≥ C7 ∥v∥ for all v ∈ Rn. As above, the reason that we can choose C7 to be strictly positive
is due to the invertibility of B3. The previous inequalities combined with (47), (48), and (49) give (37)
and (38). □

5.3. Construction of Long Sequences of Correctly Aligned Windows. In this section we show
how to choose the aspect ratios of the windows at each step (see Table 1 for a summary) so that the
process can be continued indefinitely, completing the proof of Theorem 2.10.

Fix η > 0 as in the statement of Theorem 2.10. Let us first show how to choose α′
i, β

′
i, γ

′
i, δ

′
i so that

the inequalities of Lemma 5.3 are solvable; in particular, we require the right-hand side of inequalities
(36) and (38) to be positive. Define κ = max {σ, υ} and suppose we choose

α′
i = ϵ2κα∗, β′

i = γ′i = ϵκζ∗, δ′i = ϵ2κδ∗

where 

0 < ζ∗ <
1

R′ min {C4, C7} ,

0 < α∗ < min

{
ζ∗,

C4

C3
ζ∗

(
1− R′

C4
ζ∗

)}
,

0 < δ∗ < min

{
ζ∗,

C7

C8
ζ∗

(
1− R′

C7
ζ∗

)}
.

It follows that β′
i = γ′i = ζi, where ζi is defined by (39), and so the right-hand side of (36) is

−C3α
′
i + C4ϵ

σβ′
i −R′ (β′

i)
2 ≥ ϵ2κ

(
C4β∗ − C3α∗ −R′β2

∗
)
> 0.

Similarly, the right-hand side of (38) is

C7ϵ
υγ′i − C8δ

′
i −R′ (γ′i)

2 ≥ ϵ2κ
(
C7γ∗ − C8δ∗ −R′γ2∗

)
> 0.

Therefore we can choose βi+1, δi+1 > 0 of order O
(
ϵ2κ

)
, and αi+1, γi+1 > 0 of order O (ϵκ) (or larger,

but not smaller) so that inequalities (35), (36), (37), (38) are satisfied. Moreover, we choose

αi+1, βi+1, δi+1 < η.

Notice that βi+1, δi+1 can be chosen as small as we like.

“ ” ˜ ˆ ′

α 1 1 ϵ2κ ϵ2κ

β ϵ2κ ϵ2κ 1 ϵκ

γ ϵκ ϵκ 1 ϵκ

δ ϵ2κ ϵρ ϵ2κ ϵ2κ

Table 1. The order of the size of each rectangle at each step in the proof. In addition,
we choose the iterates Ni,Mi = O(1) and Ki = O(ϵ−ρ−τ ) to be sufficiently large.



24 ANDREW CLARKE, JACQUES FEJOZ, AND MARCEL GUÀRDIA

The next major constraint when choosing the aspect ratios is that γ̂i must be chosen in (28) to be
of order O(1), and we must be able to choose it as close to 1 as we like, for the following reason. By
assumption, there is a point z ∈ Li such that S(z) ∈ Li+1, and S (U ∩ Li) is transverse to Li+1 at S(z),

where S : U ⊆ Λ → Λ is a branch of the scattering map. It is essential that z ∈ Ŵi, and so we must be

able to choose Ŵi as wide as necessary in the q-direction. This requirement can be seen mathematically
in (33): if γ̂i does not dominate MiT+δ

′
i + CM2

i ϵ
k + 2ω′

i, then γ
′
i cannot be chosen to be positive.

Suppose we have δ̃i = ϵρδ∗ where ρ, δ∗ are to be determined. It follows from (25) that δ̃i = O
(
ϵ2κ

)
,

and so

(54) ρ ≥ 2κ.

Moreover, the first two terms on the right-hand side of (28) are

(55) Kiϵ
ρ+τδ∗

(
T− −Rδ∗ϵ

ρ−τ
)
.

Since we require that this is positive, we must have

(56) ρ ≥ τ

and δ∗ <
T−
R . It follows from (54) and (56) that the value ρ = max{2σ, 2υ, τ} defined in (9) suffices.

Now, for the right-hand side of (28) to be positive we require that (55) dominates γ̃i +CK2
i ϵ

k, which
is true whenever Ki = O (ϵ−ρ−τ ) is sufficiently large, where we have used (8). Due to (8), the inequality

(29) is also solvable for δ̂i = O(ϵ2κ). Therefore we can again choose δ′i > 0 in (34) to be of order O
(
ϵ2κ

)
.

Since we can choose δ̃i to be as small as we like (due to (25)), we can subsequently choose each δ̂i, δ
′
i in

(29), (34) respectively to be as small as required.
If we choose Mi = O(1), then (34) is solvable. Let us explain how to find γ̂i satisfying (33). If we

define T = R/Z, then ω′
i ≤ 1

2 , where ω
′
i is defined in (30). We may assume, by slightly shifting yui if

necessary (to some point ỹui such that S (ỹui ) lies in a sufficiently small O(η)-neighbourhood of Li+1),
that ω′

i <
1
2 . Notice that, by increasing Ki and shrinking γ̃i if necessary, we can choose γ̂i to be as close

to 1 as required. In this way we can find some positive γ′i = O(1) so that the left-hand side of (33) is less
than 1. Therefore (33) is solvable, and we can choose γ′i = O (ϵκ).

Suppose we choose Ni = O(1). Then, by (22), α̃i is of order 1. Since Ki = O (ϵ−ρ−τ ) and since
λ+ ∈ (0, 1), we can choose α̂i to be of order ϵ2κ in (26). Since Mi = O(1), we can in turn choose α′

i to
be of order ϵ2κ due to (31). Moreover, shrinking α̂i in (26) allows us to shrink α′

i in (31) if necessary.

Now, since βi is of order O
(
ϵ2κ

)
, so too is β̃i due to (23). Due to (27), since Ki = O (ϵ−ρ−τ ) and

since µ− > 1, we can choose β̂i of order 1. Finally, choosing Mi = O(1) large enough, we can ensure that

β̂i − 2ν′iµ
−Mi
− > 0 so that (32) is solvable by a positive choice of β′

i = O (ϵκ).
We have thus shown that these choices can be made consistently. Combining this construction with

Theorem 3.5 implies the existence of a trajectory {zi} as in Theorem 2.10. Since we choose Mi, Ni

to be of order O(1), Ki of order O (ϵ−ρ−τ ), the time taken to move from a neighbourhood of xi to a
neighbourhood of xi+1 is

Ni +Ki +Mi = O
(
ϵ−ρ−τ

)
.

In order to move a distance of order 1 in the p-direction, we must choose N consecutive leaves of the
foliation connected by the scattering map where N = O(ϵ−υ), and so the time is of order ϵ−ρ−τ−υ. This
concludes the proof of Theorem 2.10.

6. Proof of Theorem 2.12

Let the notation be as in the statement of Theorem 2.12, and fix η > 0. Denote by Σ̂ = Rℓ1 × [0, 1]ℓ2

the universal cover of Σ. Suppose we have lifted the dynamics to the covering space M̂ = M × Σ̂ of

M̃ . For convenience, we do not change the notation of the lifted mappings. Fix p∗1, . . . , p
∗
N ∈ [0, 1]n

and ξ∗1 ∈ Int
(
[0, 1]ℓ2

)
as in the statement of Theorem 2.12. Let F = G̃(·; ξ∗1) ∈ Diff4(M). By [B1], F

satisfies the assumptions of Theorem 2.10. Therefore, by the proof of Theorem 2.10, there are windows

W̃1, . . . , W̃N ⊂M and nj ∈ N such that

d (z,Lj) <
η

2
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for all z ∈ W̃j , and W̃j is correctly aligned with W̃j+1 under Fnj . For convenience we drop the tilde

notation and write simply Wj . By Theorem 3.6, there is a neighbourhood V of F in Diff4(M) such that

Wj is correctly aligned with Wj+1 under F̃nj for each j = 1, . . . , N − 1 and each F̃ ∈ V. Moreover, our
assumptions on F imply that there is a K > 0 such that the neighbourhood V is of order ϵK , in the sense
that there is some R > 0 independent of ϵ such that the ball of radius RϵK centred at F in Diff4(M) is
contained in V. Therefore there is some a∗ > 0 (that may depend on ϵ) such that if we define

Ξ∗ =
[
ξ∗1,1 − a∗, ξ∗1,1 + a∗

]
× · · · ×

[
ξ∗1,ℓ2 − a∗, ξ∗1,ℓ2 + a∗

]
⊂ Int

(
[0, 1]ℓ2

)
,

where ξ∗1 =
(
ξ∗1,1, . . . , ξ

∗
1,ℓ2,

)
, then G̃(·; ξ) ∈ V for all ξ ∈ Ξ∗. Moreover, if we choose L ∈ N large enough,

we may assume that G(·, θ, ξ) = G̃(·; ξ) +O(ϵL) ∈ V for all θ ∈ Rℓ1 , ξ ∈ Ξ∗.
For each j = 2, . . . , N let

Ωj =

j−1∑
k=1

nk.

Since L ∈ N is sufficiently large, we can find positive constants Cj (independent of ϵ) such that, if we let
Ξ1 = {ξ∗1}, and

Ξj =
[
ξ∗1,1 − CjΩjϵ

L, ξ∗1,1 + CjΩjϵ
L
]
× · · · ×

[
ξ∗1,ℓ2 − CjΩjϵ

L, ξ∗1,ℓ2 + CjΩjϵ
L
]

for j = 2, . . . , N , then

Ξj ⊂ Ξ∗

for each j = 1, . . . , N , and the ξ component of Ψnj (z, θ, ξ) lies in Int (Ξj+1) for each z ∈Wj , θ ∈ Rℓ1 , ξ ∈
Ξj .

Choose any ζ±1 ∈ R such that ζ−1 < ζ+1 , and consider the rectangle

Θ1 =
[
ζ−1 , ζ

+
1

]ℓ1 ⊂ Rℓ1 .

For each j = 2, . . . , N we can find ζ±j ∈ R such that ζ−j < ζ+j , and such that if

Θj =
[
ζ−j , ζ

+
j

]ℓ1
,

then the θ component of Ψnj (z, θ, ξ) lies in Int(Θj+1) for each z ∈Wj , θ ∈ Θj , ξ ∈ [0, 1]ℓ2 .
Now, for each j = 1, . . . , N choose the entry and exit sets of the rectangles Θj ,Ξj to be

Θ+
j = ∂Θj , Θ−

j = ∅, Ξ+
j = ∂Ξj , Ξ−

j = ∅.

Define

Wj =Wj ×Θj × Ξj ⊂ M̂

where the entry and exit sets W±
j are given by the product formula (15). Clearly the sets Wj are windows.

By construction, Wj is correctly aligned with Wj+1 under Ψnj for each j = 1, . . . , N since the error terms
are small (by assumption [B1]), and

(57) d
(
(z, θ, ξ), L̃j

)
< η

for each (z, θ, ξ) ∈ Wj if L is sufficiently large, where L̃j = L̃(p∗j , ξ∗j ) with p∗1, . . . , p
∗
N and ξ∗1 as chosen

earlier, and for some ξ∗2 , . . . , ξ
∗
N ∈ [0, 1]ℓ2 . Therefore, combining (57) and Theorem 3.5, we see that there

are w1, . . . , wN ∈ M̂ such that

wj+1 = Ψnj (wj)

and

d
(
wj , L̃j

)
< η.

Moreover the time estimate (11) follows from the time estimate (10).
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UNIVERSITÉ PARIS DAUPHINE, CEREMADE,
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