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Abstract. Consider the spatial three-body problem, in the regime where one body
revolves far away around the other two, in space, the masses of the bodies being arbi-
trary but fixed; in this regime, there are no resonances in mean motions. The so-called
secular dynamics governs the slow evolution of the Keplerian ellipses. We show that
it contains a horseshoe and all the chaotic dynamics which goes along with it, corre-
sponding to motions along which the eccentricity of the inner ellipse undergoes large,
random excursions. The proof goes through the surprisingly explicit computation of the
homoclinic solution of the first order secular system, its complex singularities and the
Melnikov potential.

1 Introduction

The question of the stability of the Solar System is the oldest open problem in Dynamical
Systems. A number of works have shown striking instability mechanisms in the three-
body problems, e.g. oscillatory orbits and close to parabolic motion [Ale69, Sit60, LS80a,
LS80b, GMS13, DKdlRS14], chaotic dynamics near double or triple collisions [Bol06,
Moe89] (see also [Mos01]). But scarce mathematical mechanisms have been described
regarding more astronomical regimes, which would be plausible for subsystems of solar
or extra-solar systems. One of them [FGKR15] shows the existence of global instabilities
along mean motion (i.e. Keplerian) resonances.

In this paper, we focus on secular resonances. Numerical evidence has long been
suggesting that such resonances are a major source of chaos in the Solar system [LR93,
Las08, FS89]. For example, astronomers have established that Mercury’s eccentricity is
chaotic and can increase so much that collisions with Venus or the Sun become possible,
as a result from an intricate network of secular resonances [BLF12]. On the other hand,
that Uranus’s obliquity (97o) is essentially stable, is explained, to a large extent, by the
absence of any low-order secular resonance [BL10, LR93]. It is the goal of this paper
to provide a simple instability mechanism in the secular dynamics of the three-body
problem.

∗PSL Research University (Université Paris-Dauphine / CEREMADE & Observatoire de Paris /
IMCCE), jacques.fejoz@dauphine.fr.
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2 The secular Hamiltonian in the lunar regime

Consider three point masses undergoing the Newtonian attraction in space. Call m0, m1

and m2 the masses and (qj , pj)j=1,2,3 ∈ (R3 × R
3)3 the Jacobi coordinates. Recall that

these coordinates are the symplectic coordinates defined by





q0 = x0

q1 = x1 − x0

q2 = x2 − σ0x0 − σ1x1,





p0 = y0 + y1 + y2

p1 = y1 + σ1y2

p2 = y2,

where xi are the positions of the masses in R
3, yi their linear momenta, 1/σ0 = 1+m1/m0

and 1/σ1 = 1+m0/m1. After having symplectically reduced the system by the symmetry
of translations (resctricting without loss of generality to p0 = 0 and quotienting by q0),
the Hamiltonian depends only on (qj , pj)j=1,2 and equals

FKep + Fper,





FKep =
∑

j=1,2

(
p2j
2µj

− µjMj

‖qj‖

)

Fper =
(
µ2M2

‖q2‖ − m0m2

‖q2+σ1q1‖ − m1m2

‖q2−σ0q1‖

)
,

where the reduced masses are defined by

Mj =

j∑

k=0

mk, µ−1
1 = M−1

0 +m−1
1 , µ−1

2 = M−1
1 +m−1

2 . (1)

FKep is the integrable Hamiltonian of two uncoupled Kepler problems and induces a
“Keplerian” action of the 2-torus, while Fper is the so-called perturbing function.

In this paper, we consider the asymptotic regime (sometimes called lunar or hierar-
chical or stellar) where the masses are fixed, while body 2 revolves far away around the
other two. In particular, each of the two terms of FKep is negative, the outer eccentricity
is bounded away from 1, and the semi major axes a1 of q1 and a2 of q2 satisfy

a1 = O(1) ≪ a2 → ∞.

In this regime Fper is smaller than FKep and therefore we are in a nearly integrable
setting. Indeed, the expansion of Fper in powers of ‖q1‖/‖q2‖ ≪ 1 is

Fper = −µ1m2

‖q2‖
∑

n≥2

σnPn(cos ζ)

(‖q1‖
‖q2‖

)n

, (2)

where the Pn’s are the Legendre polynomials, and σn = σn−1
0 +(−1)nσn−1

1 , n ≥ 2. Note
that the perturbing function is of the order of 1/a32.

This Hamiltonian can be expressed in the Delaunay coordinates (ℓj , Lj , gj , Gj , θj ,Θj)j=1,2,
where

• ℓj are the mean anomalies

• Lj = µi

√
Miai

• gj are the arguments of the pericenters

• Gj are the angular momenta
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• θj are the longitudes of the (ascending) nodes

• Θj are the vertical components of the angular momenta.

These variables are action-angle coordinates for FKep. Moreover, the degeneracy of the
two body problem implies that all these variables are first integrals of FKep, except the
mean anomalies ℓj , which perform a rigid rotation on the Keplerian ellipses. In the lunar
regime, since a1/a2 ≪ 1, the third Kepler Law implies that the two frequencies of this
rotation belong to different time scales.

For the full Hamiltonian FKep + Fper, we have three time scales: those of the two
mean anomalies plus that of the evolution of the former first integrals whose dynamics
is now non-trivial but much slower than those of the two mean anomalies.

The fact that there are two fast angles and that moreover they have frequencies
of different order implies that one can apply the standard normal form theory: the
resonances between mean motions are of very high order and thus negligible (see, in this
context, [Féj02]). Thus, performing an arbitrary number k of steps of global non-resonant
normal forms shows that, for every integer k, there is a local change of coordinates a−3

2 -
close to the identity which transforms the Hamiltonian into

F = FKep + Fsec +O(a−k−1
2 ), (3)

where Fsec is the secular Hamiltonian1 of order k, which satisfies

Fsec =

∫

T2

Fper dℓ1 dℓ2 +O

(
1

a2

)
, (4)

obtained by averaging out the mean anomalies ℓj at successive orders; T2 is the orbit of
the Keplerian action defined by FKep, parameterized by the mean anomalies ℓ1 and ℓ2
of the two planets. The secular Hamiltonian descends to the quotient by the Keplerian
action of T2, and induces a Hamiltonian system on the space of pairs of Keplerian ellipses
with fixed semi major axes, describing the slow evolution of the Keplerian ellipses due
to the perturbation.

In this paper, we primarily consider the principal part of the Hamiltonian F of
equation (3), i.e. FKep + Fsec. We establish the phase portrait of the secular system, in
particular with a (well known) hyperbolic periodic orbit located at inclined and nearly
circular ellipses. The main results of the paper are the following. We prove that this
periodic orbit posesses transversal homoclinic points (Corollary 4.2) and that the secular
system posesses a horseshoe (Theorem 4.3), and therefore chaotic motions. As a by-
product, we prove that the secular system is non-integrable. The results we obtain are
valid for any value of the masses of the three bodies.

To prove these results, we take advantage of the fact that the first order in 1/a2 of
the secular Hamiltonian is integrable. We explicitely determine the homoclinic solution
to the hyperbolic periodic orbit of this first order (Lemma 3.1). Then, we show that
the Melnikov potential associated with this homoclinic orbit has non-degenerate critical
points (Proposition 4.1), from what it follows that the secular homoclinic solution splits
for the full secular system, as well as for the full initial system.

The result we present in this paper is a step towards proving the existence of unstable
orbits in the three body problem in the lunar regime, for any value of the masses of the
bodies, in the sense of Arnold diffusion. By “unstable orbits” here we mean orbits such
that one of the three bodies undergoes a large change in the semi major axis of the
associated osculating ellipse. This is explained more precisely in Section 4.1.

1
Secular, means century in Latin. This term governs the slow dynamics (as opposed to the fast,

Keperian dynamics), on a long time scale, symbolically one century.
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2.1 The quadrupolar and octupolar Hamiltonians

The first two terms of the expansion (2) of Fper with respect to a1/a2, after averaging,
yield the quadrupolar and octupolar Hamiltonians:2

Fsec = −µ1m2 (Fquad + (σ0 − σ1)Foct) +O

(
a41
a52

)
, (5)

with

Fquad =
a1

2

8 a23 (1− e22)
3/2

((
15 e1

2 cos2 g1 − 12 e1
2 − 3

)
sin2 i+ 3 e1

2 + 2
)

(6)

and

Foct = −15

64

a31
a42

e1e2

(1− e22)
5/2

× (7)





cos g1 cos g2



G2

1

L2
1

(
5 sin2 i(−7 cos2 g1 + 6)− 3

)

− 35 sin2 g1 sin
2 i+ 7




− sin g1 sin g2 cos i



G2

1

L2
1

(
5 sin2 i(7 cos2 g1 − 4) + 3

)

+ 35 sin2 g1 sin
2 i− 7








.

this is a standard computation (see [Féj02] for the reduction to integrating trigonometric
polynomials), and we have used the following notations:





ej = eccentricities

gj = arguments of pericenters

i = mutual inclination.

The Hamiltonians Fquad and Foct do not depend on the order k of averaging in the
expression (3) (i.e., due to the special dependence of FKep and Fper in L2, these first two
terms of the normal form are not modified by second and higher order averaging).

Recall that we want to analyze the secular Hamiltonian Fsec for any value of the
masses, so that parameters mi, µi and Mi are just given constants satisfying (1).

Recall that (ℓj , Lj , gj , Gj , θj ,Θj)j=1,2 denote the Delaunay variables. Jacobi’s classi-
cal elimination of the node consists in considering a codimension-3 submanifold of fixed,
vertical angular momentum, and quotienting by horizontal rotations. The reduced man-
ifold has dimension 8, on which the Keplerian and eccentric variables (ℓj , Lj , gj , Gj)j=1,2

induce symplectic coordinates. After averaging out the mean motions we are left with the
symplectic coordinates (gj , Gj)j=1,2, and the variables Lj may be treated as parameters.

The variables Li are given by Li = µi

√
Miai. Therefore, in the lunar regime we have

L1 ∼ 1 and L2 ≫ 1. Recall that the eccentricity of the ellipse is given in terms of the
Delaunay coordinates by

ei =

√
1− G2

i

L2
i

. (8)

2More generally, the n-th order term is called 2n-polar, because, in electrostatic, this term is the
dominating term of the potential of a system of 2n well chosen charged particles.
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Since we want the outer body to describe non-degenerate ellipses, we even assume G2 ∼
L2. Since we are doing a perturbative analysis in L−1

2 , we define the new variable

Γ = C −G2, where C = δL2 and δ > 0 is a fixed constant.

The coordinates
(g1, G1, γ,Γ) = (g1, G1,−g2, C −G2), (9)

are symplectic; we also call them Delaunay coordinates (as opposed to some radically
different coordinates used later). Now these variables are bounded as a2, L2 → ∞ (recall
that C ∼ G2 → ∞). At the first order in L−1

2 , the mutual inclination i satisfies

cos2 i =
(C2 −G2

1 −G2
2)

2

4G2
1G

2
2

=
(C2 −G2

1 − (C − Γ)2)2

4G2
1(C − Γ)2

=
Γ2

G2
1

+O
(
L−1
2

)
. (10)

Now we express the secular Hamiltonian in these new variables and expand it in inverse
powers of L2. Recall that variables Lj are parameters, as well as the norm C of the
angular momentum.

Lemma 2.1. The secular Hamiltonian (5) has the form

Fsec = α0 + α1L
−6
2

(
H0 + L−1

2 H1 + (σ0 − σ1)L
−2
2 H2 +O(L−3

2 )
)
. (11)

with

H0 =

(
1− G2

1

L2
1

)[
2− 5

(
1− Γ2

G2
1

)
sin2 g1

]
− Γ2

L2
1

(12)

In the coordinates (g1, G1, γ,Γ), Fquad and hence H0 and H1 do not depend on γ.
We do not compute H1 explicitly, here. The reason is that H1 does not break the
integrability of H0 and therefore does not play any role in the Melnikov analysis. In
contrast, the Hamiltonian H2 does break integrability (as it will follow from our study),
and is computed in Section 5.

Proof of Lemma 2.1. Formula (8) implies

1

G2
1

=
e21
G2

1

+
1

L2
1

.

Hence, using (10),

sin2 i = 1− Γ2

G2
1

+O
(
L−1
2

)
= 1− Γ2 e

2
1

G2
1

− Γ2

L2
1

+O
(
L−1
2

)
. (13)

Besides,

e2 =

√
1− G2

2

L2
2

=

√
1− C2

L2
1

+O
(
L−1
2

)

is a first integral of the first order approximation of Fquad. Hence, expanding in powers
of L−1

2 , Fquad can be written as

Fquad(g1, G1,Γ) = α1L
−6
2 (H0(g1, G1,Γ) + 2) +O(L−1

2 )

with

α1 = − L4
1M2µ

6m2

8M2
1µ

3
1(1− e22)

3/2
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and

H0 =
(
5e21 cos

2 g1 − 4e21 − 1
)
sin2 i+ e21

∣∣
L−1
2 =0

(using (6))

= e21

[(
5 cos2 g1 − 4

)(
1− Γ2

G2
1

)
+

Γ2

G2
1

+ 1

]
− Γ2

L2
1

(using (10) and (13))

= e21

[
2− 5

(
1− Γ2

G2
1

)
sin2 g1

]
− Γ2

L2
1

.

Factorization (12) follows.

3 The quadrupolar phase portrait

According to (6), the quadrupolar Hamiltonian Fquad and thus H0 do not to depend
on γ. This happy coincidence (which does not repeat itself for the next order term
Foct) makes Fquad integrable. This has been extensively used (see [Zha14] and references
therein). Here, we may thus think of Γ as a parameter.

Complex singularities of solutions of Fquad are hard to determine in general. In
our regime, the first order of the quadrupolar Hamiltonian, H0, can be factorized as
described in equation (12) (up to the additive constant −Γ2/L2

1), which dramatically
simplifies our study.

The Hamiltonian H0 is analytic on a neighborhood of the cylinder

(g1, G1) ∈ T
1× ]0, L1[

in T
1 × R. Since it is π-periodic with respect to g1, we may focus on the domain

0 ≤ g1 ≤ π, 0 ≤ G1 ≤ L1, keeping in mind that the Delaunay coordinates blow up
circular ellipses (G1 = L1).

Hamilton’s vector field is



ġ1 =

2G1

L2
1

[
5
(
1− Γ2

G2
1

)
sin2 g1 − 2

]
− 10

(
1− G2

1

L2
1

)
Γ2

G3
1

sin2 g1

Ġ1 = 5
(
1− G2

1

L2
1

)(
1− Γ2

G2
1

)
sin 2g1.

The second component Ġ1 vanishes if and only if (assuming G1 > 0)

G1 ∈ {|Γ|, L1} or g1 = 0 (mod π/2).

If G1 = |Γ|, ġ1 cannot vanish. Moreover, G1 ∈ ]0, L1[ . Let

Γ̃ =

√
1− Γ2

L2
1

∈ ]0, 1[. (14)

The equilibrium points thus satisfy the following equations:

• If G1 = L1 (circular ellipse),

sin2 g1 =
2

5Γ̃2
. (15)

Assuming that

|Γ| < L1

√
3

5
, (16)
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whence Γ̃2 ≥ 2
5 (this condition is satisfied if the inner ellipse has a large eccentricity

or an inclination close to π/2), within the g1-interval [0, π[, there are two solutions
gmin
1 ∈]0, π/2[ and gmax

1 symmetric with respect to π/2, which are located on the
energy level H0 = −Γ2/L2

1.

In variables (x, y) such that

sin2 g1 =
2

5Γ̃2
(1 + x) and G1 = L1(1− y)

(which are local coordinates in the neighborhood of either one of the two above
singularities), we have

H0 + Γ2/L2
1 = 4xy +O3(x, y);

thus the two singularities are hyperbolic.

• If g1 = 0 (mod π), G1 = 0 (collision ellipse) is an equilibrium point of the regular-
ized Hamiltonian vector field G3

1XF 0
quad

.

• If g1 = π/2 (mod π),
3G4

1 − 10Γ2G2
1 + 5L2

1Γ
2 = 0

(two pairs of opposite real solutions).

g1

G1

L1

Γ

π/20 π

separatrix

Figure 1: Phase portrait of the reduced quadrupolar dynamics

We focus on the first two hyperbolic singularities, with G1 = L1, henceforth assuming
that condition (16) is satisfied, with, say,

Γ > 0. (17)

Lifted to the full secular phase space, these critical points become the periodic orbits

Z0
min,max(t, γ0) =

(
gmin,max
1 , L1, γ

0 + γ1(t),Γ
)
, (18)

where γ0 is just the initial condition for the variable γ and

γ1(t) = −2
Γ

L2
1

t. (19)
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The whole circle G1 = L1 corresponds to circular motion. Along this circle the Delaunay
variables are singular. Thus, in a neighborhood of circular motion it is more reliable to
use the Poincaré variables

{
ξ =

√
2(L1 −G1) cos g1

η = −
√
2(L1 −G1) sin g1.

(20)

Those secular coordinates are symplectic. The Poincaré variables transform the Hamil-
tonian H0 into

H̃0(ξ, η) = −Γ2

L2
1

+
1

L1

[
2ξ2 −

(
3− 5

Γ2

L2
1

)
η2
]
+O2

(
ξ2 + η2

)
(21)

and the line segment {G1 = L1} blows down to a single hyperbolic periodic orbit

(ξ, η, γ,Γ) =
(
0, 0, γ0 + γ1(t),Γ

)

in the secular space.
As it has explained above, in the (g1, G1)-plane there are two hyperbolic fixed points

for g1 ∈ [0, π] and two more for g1 ∈ [π, 2π]. On the line G1 = L1, there are heteroclinic
connections between them. All these objects blow down to the critical point (ξ, η) =
(0, 0) in Poincaré variables. Moreover, there are two separatrix connections in the region
G1 < L1, one between the critical points with g1 ∈ [0, π] and the other one between the
critical points with g1 ∈ [π, 2π]. Even ifH0 is well defined for G1 > L1, the corresponding
solutions are spurious. In the secular space, we obtain a hyperbolic critical point at
(ξ, η) = (0, 0) with two homoclinic orbits forming a figure eight.

The main technical goal of this paper is to show that these separatrices split when
one considers the complete secular Hamiltonian of arbitrary order k. We focus on the
homoclinic on which g1 ∈ [0, π]. We use both Delaunay and Poincaré variables, but we
need to keep in mind that the Delaunay variables are not defined on the secular space
proper along circular inner ellipses (G1 = L1). Note the same orbit is homoclinic for the
secular Hamiltonian (21) and heteroclinic after blow up (see (12)).

The expression of the energy (12) yields the following characterization of this orbit,
where the interval ]gmin

1 , gmax
1 [⊂ ]0, π[ is defined by the inequality (recall (14))

sin2 g1 >
2

5Γ̃2
. (22)

We introduce the following constants

χ =

√
2

3

|Γ|
L1

1√
1− 5

3
Γ2

L2
1

> 0 and A2 = 30

√
10

3

|Γ|3
L1

√
1− 5

3

Γ2

L2
1

. (23)

Lemma 3.1. Assume conditions (16)–(17). The Hamiltonian H0 given in (12) has a
heteroclinic solution which tends to the periodic orbits Z0

min and Z0
max in (18) in backward

and forward times respectively. Its orbit is defined by the equation

(
1− Γ2

G2
1

)
sin2 g1 =

2

5
, (24)

with range g1 ∈ ]gmin
1 , gmax

1 [⊂ ]0, π[. Its time parameterization is given by

Z0(t, γ0) = (gh1 (t), G
h
1(t), γ

h(t),Γ) (25)
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with

cos gh1 (t) = −
√

3

5

sinhA2t√
χ2 + (1 + χ2) sinh2A2t

(26)

Gh
1(t) = |Γ|

√
5

3

√
1 +

3

5

L2
1

Γ2
sinh2A2t (coshA2t)

−1 (27)

γh(t) = γ0 + γ1(t) + γ2(t), γ2(t) = arctan
(
χ−1 tanhA2t

)
, (28)

where γ0 ∈ T is the arbitrary value of the γ coordinate at initial time and γ1 has been
introduced in (19).

In the γ-component of the separatrix, the angle −γ0 is the (arbitrary) argument
of the outer pericenter at the symmetry center of the separatrix g1 = π/2 (recall the
change of coordinates (9)). The term γ1(t) is the rotational part and the term γ2(t) is
the transient part of γh(t).

Remark 3.2. The assumed condition (16) implies that ∂ΓH0 6= 0 in a neighborhood
of the heteroclinic orbit. Therefore, one can rephrase Lemma 3.1 as the existence of a
heteroclinic orbit in each energy level H0(g1, G1, γ,Γ) = h for any h < 0 (recall that by
the expression of H0 in (12) the heteroclinic orbits always have negative energy).

Proof. On the separatrix, we have

ġ1 = 10Γ2 1−G2
1/L

2
1

G3
1

sin g21.

Using (24) and (22), one can eliminate G1 by

G1 =
|Γ|

√
5 sin g1√

3− 5 cos2 g1
, (29)

and get a closed differential equation

ġ1 = A1

(
1− 5

3(1 + χ2) cos2 g1
)√

1− 5
3 cos

2 g1

sin g1
(30)

where χ has been defined in (23) and

A1 = 30
√
3Γ2

(
1− 5

3

Γ2

L2
1

)
> 0.

Note that, due to Γ 6= 0 and (22), ġ1 6= 0 along the separatrix. So, one can separate
variables and, choosing g1 = π/2 at t = 0 yields

A1t =

∫ g1

π/2

sin g1 dg1
(
1− 5

3(1 + χ2) cos2 g1
)√

1− 5
3 cos

2 g1

.

The variable cos g1 ∈
]
−

√
3√

5(1+χ2)
,

√
3√

5(1+χ2)

[
is a coordinate on the separatrix. Let x

be defined by √
5

3
cos g1 = cosx ∈

]
0,

1

(1 + χ2)

[
.
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Then

A1t =

√
3

5

∫ arccos
√

5
3
cos g1

π/2

dx

1− (1 + χ2) cos2 x

=
1

2χ

√
3

5
ln

tanx− χ

tanx+ χ
, with cosx =

√
5

3
cos g1.

One can check that the constant A2 defined in (23) satisfies A2 =
√

5
3A1χ. The equation

can be solved for tanx, which yields tanx = −χ coth(A2t). This equality, jointly with

cos g1 =

√
3

5
cosx =

√
3

5

±1√
1 + tan2 x

,

gives formula (26). Using (29), the G1-component of the separatrix given in (27) can be
easily obtained. Finally, only the γ-component remains to be computed. But, along the
separatrix solution, γ̇ = ∂ΓH0. Using (12), (26) and (29),

γ̇ =10
Γ

G2
1

(
1− G2

1

L2
1

)
sin2 g1 − 2

Γ

L2
1

=
4Γ

L2
1χ

2

(
1− 5

3
(1 + χ2) cos2 g1

)
− 2

Γ

L2
1

=
4Γ

L2
1

1(
(1 + χ2) cosh2A2t− 1

) − 2
Γ

L2
1

.

Since 4Γ
L2
1χA2

= 4Γ
√
3

L2
1χ

2A
√
5
= 1, equation (28) follows.

4 Splitting of separatrices

Lemma 3.1 shows that the Hamiltonian H0 in (6) has a heteroclinic connection (homo-
clinic in the secular space for the Hamiltonian (21)).

The next term in the asymptotic expansion of the secular Hamiltonian given in
Lemma 2.1 does not depend on γ and therefore does not break integrability. For the
amended Hamiltonian, according to classical perturbation theory, the hyperbolic periodic
orbit and the homoclinic orbit persist. Moreover, the periodic orbit remains at (ξ, η) =
(0, 0). Thus, in Delaunay coordinates, there are two hyperbolic periodic orbits, which
are of the form

{
Zε
min(t, γ

0) = (gmin +O(ε), L1, γ
0 + γ1(t) +O(ε),Γ)

Zε
max(t, γ

0) = (gmax +O(ε), L1, γ
0 + γ1(t) +O(ε),Γ),

where ε = L−1
2 . We can choose the time origin so that

Zε
min,max(0, γ

0) = (gmin,max +O(ε), L1, γ
0,Γ).

The second order H2 in Lemma 2.1 depends on γ and therefore may (and will) break
integrability. If we consider this Hamiltonian in Poincaré coordinates (20), it posesses a
hyperbolic critical orbit O(L−2

2 )-close to (ξ, η) = (0, 0).
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To show that H2 makes the stable and unstable invariant manifolds of this periodic
orbit split, we use the classical Poincaré-Melnikov Theory [Mel63]. More precisely, here
we define the Poincaré-Melnikov potential

Lε(γ0) =

∫ +∞

0
H2 ◦ Zε(t, γ0)−H2 ◦ Zε

max(t, γ
0) dt

+

∫ 0

−∞
H2 ◦ Zε(t, γ0)−H2 ◦ Zε

min(t, γ
0) dt,

similarly to [DG00]), but taking into account the fact that the first order perturbation
does not break integrability.

In other words, we consider as an integrable system H0 = H0+ εH1 and as a pertur-
bation H1 = H2 (see Lemma 2.1 and recall that we have taken ε = L−1

2 ). In Lemma 3.1
we have obtained the parameterization Z0 of the separatrix (see (25)). For the Hamil-
tonian H0, we have a parameterization of the separatrix Zε(t, γ0) = Z0(t, γ0) + O(ε).
The time origin can be chosen so that

Zε(0, γ0) =

(
π

2
,Γ

√
5

3
+O(ε), γ0,Γ

)
,

(recall that by Lemma 5.1, Z0(0, γ0) = (π/2,Γ
√
5/3, γ0,Γ)).

In order to determine the splitting of separatrices, we consider the section g1 = π/2
which is transversal to the flow locally in the neigborhood ot the unperturbed separatrix.
It is still transversal to the perturbed stable and unstable invariant manifolds. We
measure the splitting in this section. The distance between the invariant manifolds is
parameterized by γ0, the value of the γ coordinate when t = 0.

Melnikov Theory ensures that the transversal homoclinic points in the section g1 =
π/2 are ε2 = L−2

2 -close to the non-degenerate critical points of the Poincaré-Melnikov
potential. Expanding the potential in powers of ε, we get Lε(γ0) = L(γ0) +O(ε) with

L(γ0) =
∫ +∞

0
H2 ◦ Z0(t, γ0)−H2 ◦ Z0

max(t, γ
0) dt

+

∫ 0

−∞
H2 ◦ Z0(t, γ0)−H2 ◦ Z0

min(t, γ
0) dt.

Moreover, since H2 has a factor e1 (see (7)) it vanishes over the periodic orbits Z0
min,max.

Thus, using (18) and (25), the potential reads

L(γ0) =
∫ +∞

−∞
H2(g

h
1 (t), G

h
1(t), γ

h(t),Γ) dt

=

∫ +∞

−∞
H2(g

h
1 (t), G

h
1(t), γ

0 + γ1(t) + γ2(t),Γ) dt.

(31)

Melnikov theory then implies that, ε-close to non-degenerate critical points of L, there
exist transversal homoclinic points in the section g1 = π/2. The potential L naturally
depends on parameters L1 and Γ, which vary in the (non-empty) open set

O =
{
(L1,Γ) : L1 > 0, 0 < Γ < L1

√
3/5
}
⊂ R

2. (32)

Let us write
L(γ0) = LL1,Γ(γ

o).

The next proposition shows that L necessarily has non-degenerate critical points, except
maybe for exceptional values of the parameters.
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Proposition 4.1. There exists a non constant real analytic function L+ : O → C such
that the potential (31) is of the form

LL1,Γ(γ
0) = L+

L1,Γ
eiγ0 + L+

L1,Γe
−iγ0 .

In particular, outside an analytic subset of O of empty interior, L+ does not vanish and
thus L (as a function of γ0) has non-degenerate critical points.

This proposition is proven in Section 5, where the function L+ is computed explicitly
(see formula (38)). It is easier to describe the dynamics when the dimension is as low as
possible, so let us carry out the symplectic reduction of the flow by time. Since γ̇ 6= 0,
define the Poincaré section Σγ0 = {γ = γ0} within some fixed energy level, and the
corresponding return map, induced by the Hamiltonian (11),

Pγ0 : Σγ0 −→ Σγ0

for which the Poincaré coordinates (ξ, η) may be used (see (20)). This map has a
hyperbolic fixed point L−2

2 -close to the origin with one dimensional stable and unstable
invariant manifolds. The classical Melnikov theory applied to the Melnikov potential
obtained in Proposition 4.1 entails the following corollary and theorem. Note that the
circle g1 = π/2 locally corresponds to the line ξ = 0 (see (20)).

Corollary 4.2. Fix (L0
1,Γ

0) ∈ O (defined in (32)) such that L+
L0
1,Γ

0 6= 0 and let γ∗0
be a non-degenerate critical point of L+

L0
1,Γ

0. For L2 large enough, there exists some

γ̃∗0 = γ∗0 +O(L−1
2 ) such that the Poincaré map Pγ̃∗

0
has a transversal homoclinic point in

the line {ξ = 0} ⊂ Σγ̃∗
0
.

Recall that all Poincaré maps are conjugate. Therefore, this corollary implies that
there are transversal homoclinic points for Pγ0 for all γ0 ∈ T.

The transversality of invariant manifolds given by the corollary a priori refers to the
secular Hamiltonian obtained after one step of averaging. Nevertheless, the conclusion
holds for the Poincaré maps of the secular Hamiltonian of any finite order. Indeed, higher
order averaging only modifies higher orders of the asymptotic expansion of the splitting,
while transversality at the first order was entailed by the first order of the expansion, as
given by the Poincaré-Melnikov potential. Hence, by considering the analytic set defined
by the condition L+

L0
1,Γ

0 6= 0 at all orders of averaging, one gets the main result, where

we restrict to some fixed compact set

K ⊂ O =
{
(L1,Γ) : L1 > 0, 0 < Γ < L1

√
3/5
}
⊂ R

2.

Theorem 4.3. Fix any γ0 ∈ T. There is an analytic set Ko of full measure in K such
that, for parameters (L0

1,Γ
0) in Ko, for L2 large enough, the Poincaré maps Pγ0 : Σγ0 7→

Σγ0 of the secular systems of all orders posess a horseshoe.

4.1 Splitting of separatrices for the non-averaged Hamiltonian

As explained in Remark 3.2, for the secular Hamiltonian we have a hyperbolic periodic
orbit at each energy level within a compact interval of such levels. These periodic orbits
form a normally hyperbolic invariant cylinder. Corollary 4.2 implies that the invariant
manifolds of this cylinder intersect transversally.

In Section 5 we consider L1 and L2 as constants. One can lift the dynamics to the
extended phase space, with the additional Keplerian coordinates (ℓ1, L1, ℓ2, L2). Then,
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the cylinder gets enlarged by four extra dimensions: (L1, L2), which are just constants
of motion, and (ℓ1, ℓ2), which are performing a rigid rotation.

This extended system, after rescaling, is just the first order of (3), that is

F0 = FKep + Fsec.

Call Λ the cylinder of this Hamiltonian. Now one would like to analyze Hamiltonian
(3), that is, the full (non averaged) three-body problem. The first step is to prove the
persistence of the invariant cylinder when L2 is large enough, using that the reminder
is O(L−k

2 ) for some k ∈ N. Since we are in a singular perturbation regime, the classi-
cal theory of persistence of normally hyperbolic invariant manifolds [Fen72] cannot be
applied directly. However, now there are results which deal with singularly perturbed
problems and which can be applied to the present setting [Yan09, GdlLT15]. Note that
we can do global averaging up to high order. Therefore, one does not need to face the
problems in [BKZ11] and the obtained cylinder can be as smooth as needed. Call Λ̃ the
perturbed cylinder.

In this setting, one can expect Arnold diffusion i.e., orbits whose action components
drift by a large amount, uniformly with respect to large L2’s. Since

• G1 is prescribed by Λ̃ and the homoclinic channel,

• G2 (resp. L1) is constrained by the conservation of the angular momentum (resp.
the energy),

one would expect to obtain orbits with drift in L2, that is in the semi major axis of the
outer body. This is a remarkable feature, since semi major axes are known to be very
stable when two of the three masses are very small [Nie96].

To obtain unstable orbits one usually combines two types of dynamics. The “inner
dynamics” is the dynamics of Hamiltonian (3) in restriction to the cylinder Λ̃. The “outer
dynamics” is the so-called scattering map [DdlLS08], obtained as the following limit.
Assume that the invariant manifolds of Λ̃ split transversally along a homoclinic chanel.
Consider a homoclinic orbit in the chanel, which is asymptotic to the trajectory of some
point x− ∈ Λ̃ as t → −∞ and to the trajectory of some other point x+ ∈ Λ̃ as t → +∞.
Then, we say that the scattering map S maps x− to x+. hat S be a map (as opposed to
a more general correspondance) is proved in [DdlLS08] under general hypotheses which
are satisfied here. Note that this map depends on the chosen homoclinic chanel and
therefore it may not be defined globally –usually it is multivaluated. Provided that
these two maps do not have common invariant circles, by iterating them in a random
order, one gets pseudo-orbits which have the wanted unstable behavior. A shadowing
argument then permits to approximately realize these pseudo-orbits as real orbits of the
system.

Understanding both the inner and outer dynamics is certainly not easy for Hamil-
tonian (3). Concerning the inner dynamics, Jefferys and Moser [JM66] have used KAM
theory to show that this cylinder contains quasiperiodic hyperbolic tori which form a
positive measure set. There should be a very rich dynamics in the complement of these
tori in the cylinder. In particular, since the Hamiltonian restricted to the cylinder has
three degrees freedom, there may exist Arnold diffusion in the cylinder itself.

Concerning the outer dynamics, one needs first to prove that the invariant manifolds
of the cylinder Λ̃ split transversally and then derive some precise dynamical behavior
for the scattering map, as in [DdlLS08]. The analysis in the present paper allows us to
perform only the first step.
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Theorem 4.4. Fix L+
1 > L−

1 > 0. Consider the Hamiltonian (3) with L1 ∈ [L−
1 , L

+
1 ]

and L2 ≥ L0
2. If L0

2 is large enough,

1. there exists a normally hyperbolic invariant cylinder Λ̃,

2. the invariant manifolds of the cylinder Λ̃ intersect transversally along a homoclinic
chanel, which is diffeomorphic to Λ̃,

3. and there exists a scattering map S : Λ̃ −→ Λ̃ associated to this homoclinic chanel.

Note that, in the above statement, the cylinder is invariant in the sense that the vector
field is tangent to the cylinder, but orbits may escape from its boundary (sometimes one
rather refers to these manifolds as weakly invariant).

Proof. As explained above, the persistence of the invariant cylinder can be obtained
by the available results of persistence of normally hyperbolic invariant cylinders in the
singular perturbation setting [Yan09, GdlLT15].

For the other statements, we may use the results in Proposition 4.1 and [DdlLS08].
Using the expression of Fsec in (5), one can split the Hamiltonian (3) as F = H0 +H1

with H0 = FKep − µ1m2Fquad and H1 = F −H0. Therefore,

H1 =− µ1m2(σ0 − σ1)Foct +O

(
a41
a52

)

− µ1m2(σ0 − σ1)Foct +O
(
L−5
2

)
.

and therefore satisfies H1 = O(L−2
2 ).

Let us abuse notation and assume thatH0 andH1 are expressed in the variables given
in (9) and that time has been suitably scaled. As we have explained the Hamiltonian H0

has as normally hyperbolic invariant cylinder. Recall that L1, L2 and Γ are first integrals
of H0. Thus, the dynamics in this cylinder is foliated by three dimensional invariant tori.
Let us define Y0 ≡ Y0(t, ℓ

0
1, L

0
1, ℓ

0
2, L

0
2, γ

0,Γ0) the trajectory on the invariant tori L = L0
i ,

and Γ = Γ0 in the cylinder with initial condition in the (ℓ1, ℓ2, γ) variables given by
(ℓ01, ℓ

0
2, γ

0).
Since H0 is integrable, the stable and unstable invariant manifolds of the cylin-

der agree, and form a homoclinic manifold. The latter is given (at the first order) by
the homoclinic of the quadrupolar Hamiltonian obtained in Lemma 3.1 in the space
(g1, G1, γ,Γ). Recall that for H0 the variables L1 and L2 are first integrals. The
dynamics of the variables ℓ1 and ℓ2 is close to a rigid rotation and can be easily
deduced. These homoclinic manifold can be parameterized by time t and the coor-
dinates of the cylinder Y ≡ Y (t, ℓ01, L

0
1, ℓ

0
2, L

0
2, γ

0,Γ0). Note that Y can be asymp-
totic to different points in the cylinder as t −→ ±∞. There exist smooth functions
(ℓ±1 , ℓ

±
2 , γ

±) = (ℓ±1 , ℓ
±
2 , γ

±)(ℓ01, L
0
1, ℓ

0
2, L

0
2, γ

0,Γ0) such that

Y (t, ℓ01, L
0
1, ℓ

0
2, L

0
2, γ

0,Γ0)− Y0(t, ℓ
±
1 , L

0
1, ℓ

±
2 , L

0
2, γ

±,Γ0) −→ 0

as t −→ ±∞.
Then, to prove that the invariant manifolds split and that one can define the scat-

tering map of the full Hamiltonian H0+H1, one may apply the results in [DdlLS08] (see
also [DdlLS06]). Define the Poincaré-Melnikov potential

L̃(ℓ01, L0
1, ℓ

0
2, L

0
2, γ

0,Γ0) =

∫ 0

−∞
H1 ◦ Y −H1 ◦ Y −

0 dt+

∫ +∞

0
H1 ◦ Y −H1 ◦ Y +

0 dt,
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where Y stands for Y (t, ℓ01, L
0
1, ℓ

0
2, L

0
2, γ

0,Γ0) and Y ±
0 for Y0(t, ℓ

±
1 , L

0
1, ℓ

±
2 , L

0
2, γ

±,Γ0).
Consider the function

τ 7→ L̃(ℓ01 + ω1τ, L
0
1, ℓ

0
2 + ω2τ, L

0
2, γ

0 + ω3τ,Γ
0) (33)

where ω = (ω1, ω2, ω3) is the frequency vector associated with the torus L = L0
i , and

Γ = Γ0. Results in [DdlLS08] imply that each non-degenerate critical point of this
function gives rise to a transversal intersection of the invariant manifolds. The non-
degeneracy of the critical point allows us to define a local scattering map.

Using the formula of H1, we see that

L̃ = L+O
(
L−2
2

)
.

where L is the Melnikov potential introduced in (31). Proposition 4.1 implies that, as
long as L+

L0
1,Γ

0 6= 0, the function L(γ0 − ω1τ) has non-degenerate critical points with

respect to τ . Thanks to the non-degeneracy, the function (33) has critical points, which
are O(L−2

2 )-close to those of L(γ0 − ω1τ). Each critical point of (33) gives rise to a
transversal intersections and to an associated scattering map.

Theorem 4.4 implies that Hamiltonian (3) fits in the classical framework of Arnold
diffusion along single resonances: a normally hyperbolic invariant cylinder whose in-
variant manifolds intersect transversally [DdlLS00, DdlLS06, BKZ11]. Nevertheless, the
results obtained in this paper are not enough to obtain unstable orbits drifting along
the cylinder. Indeed, we cannot derive formulas for the scattering map and therefore we
have no information about the outer dynamics beyond the fact that it is well defined.

The reason is the following. To prove that the invariant manifolds of the cylinder
split, it is enough to project them into a certain plane and see that they intersect
transversally in this plane. But, in order to build unstable orbits, one needs more precise
information on the scattering map. Namely, to derive a first order approximation of the
scattering map, one needs to analyze how the invariant manifolds of the cylinder split
in every direction (see [DdlLS08]), in particular in the L1 and L2 directions. This would
give the size of the possible jumps that the scattering map makes in these directions.
That is, how far can be two points in the cylinder which are connected by a heteroclinic
orbit. Since the mean anomalies ℓ1 and ℓ2 are rapidly oscillating in our regime, the
transversality in the conjugate directions L1 and L2 is exponentially small and therefore
very difficult to detect.

An intermediate step would be to tackle the 1-averaged Hamiltonian, where only
the fastest mean anomaly ℓ1 has been averaged out. Then, one has a three degree of
freedom Hamiltonian system with only one fast frequency. As a starter, we provide the
expression of the analogue to the quadrupolar term:

−µ1m2

‖q2‖

∫

T

σ2P2(cosζ)
‖q1‖2
‖q2‖3

dℓ1 =

− 3µ1m2

4 a21 r2
3




((
4 e1

2 + 1
)
sin2 g1 +

(
1− e1

2
)
cos2 g1

)
cos2 i sin2 (v2 + g2)+

10 e1
2 cos g1 sin g1 cos i cos (v2 + g2) sin (v2 + g2)+((

1− e1
2
)
sin2 g1 +

(
4 e1

2 + 1
)
cos2 g1

)
cos2 (v2 + g2)

−e1
2 − 2

3


 .

where v2 ≡ v2(G2, L2, ℓ2) is the eccentric anomaly.
Analyzing how the invariant manifolds split either for the full three-body problem or

for the 1-averaged Hamiltonian, and deriving formulas for the corresponding scattering
maps, would be the major step towards proving Arnold diffusion in the three body
problem in the lunar regime.
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5 Proof of Proposition 4.1

In Lemma 3.1, we have called (gh1 , G
h
1 , γ

h = γ0+γ1+γ2,Γh ≡ Γ) the separatrix solution.3

We compute the potential defined in (31). To this end, we expand it in Fourier series in
γ0. Since H2 is a trigonometric polynomial of degree 1 in γ (or equivalently in g2, see
equation (7)), it can be written as

H2(g1, G1, γ,Γ) = H+
2 (g1, G1,Γ)e

iγ +H−
2 (g1, G1,Γ)e

−iγ .

Because γh = γ0+γ1(t)+γ2(t) depends linearly on γ0, L(γ0) too has only two harmonics:

L(γ0) = L+eiγ
0

+ L−e−iγ0

, (34)

where

L± =

∫ ∞

−∞
H±

2 (gh1 (t), G
h
1(t),Γ)e

±i(γ1(t)+γ2(t))dt.

Since L is a real function, it is determined by, say, the positive harmonic L+ = L̄−.
As a first step, we parameterize the separatrix by g1 instead of t, using the following

lemma (where we omit the upper index h).

Lemma 5.1. The following identites are satisfied on the separatrix given by Lemma 3.1:




G1 = |Γ|
√

5
3

sin g1√
1− 5

3
cos2 g1

e1 =
√

2
3

Γ
L1χ

√
1− 5

3
(1+χ2) cos2 g1

1− 5
3
cos2 g1

cos i =
√

3
5

√
1− 5

3
cos2 g1

sin g1

sin i =
√

2
5

1
sin g1

cos γ2 =
√
1− 5

3 cos
2 g1

sin γ2 = −
√

5
3 cos g1.

The proof of this lemma is a direct consequence of Lemma 3.1 and formulas (8), (10),
(13). We can use this lemma to express the function F+ = H+

2 eiγ2 on the separatrix as
a function of g1.

Lemma 5.2. The function F+ can be written, on the separatrix, as a function of g1 as
F+ = 1

2(F1 + iF2) with





F1 = C1

√
1− 5

3
(1+χ2) cos g12

1− 5
3
cos g12

cos g1

(
1− 5

3

1− 11
7

Γ2

L2
1

1− 5
3

Γ2

L2
1

cos g21

)

F2 = C2

√
1− 5

3
(1+χ2) cos2 g1√
1− 5

3
cos2 g1




5
3
Γ2

L2
1

cos2 g1(9−11 cos2 g1)

1− 5
3
cos2 g1

+

21
5 − 5Γ2

L2
1

−
(
14− 11Γ2

L2
1

)
cos2 g1




and

C1 =
105

32

a31
a42

e2

(1− e22)
5/2

(
1− 5

3

Γ2

L2
1

)3/2

and C2 =
15

64

√
5

3

a31
a42

e2

(1− e22)
5/2

(
1− 5

3

Γ2

L2
1

)1/2

.

3The variable t used in section 3 is a rescaled time, since in Section 3 we have simplified the quadrupo-
lar Hamiltonian by some multiplicative constant, when replacing Fquad by H0.
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Proof. We have
H2 = Aocte1 (cos g1 cos γ A+ sin g1 sin γ cos i B)

where 


A =

G2
1

L2
1

(
5 sin2 i(−7 cos2 g1 + 6)− 3

)
− 35 sin2 g1 sin

2 i+ 7

B =
G2

1

L2
1

(
5 sin2 i(7 cos2 g1 − 4) + 3

)
+ 35 sin2 g1 sin

2 i− 7

and

Aoct = −15

64

a31
a42

e2

(1− e22)
5/2

.

Thus,

F+ =
Aocte1

2

[
(A cos g1 cos γ2 +B sin g1 sin γ2 cos i)

+ i (A cos g1 sin γ2 −B sin g1 cos γ2 cos i)
]
,

which we want to express in terms of g1. Using Lemma 5.1, the functions A and B can
be written as 



A = 5

3
Γ2

L2
1

1
1− 5

3
cos2 g1

(9− 11 cos2 g1)− 7

B = −5
3
Γ2

L2
1

1
1− 5

3
cos2 g1

(5− 11 cos2 g1) + 7.

Let {
S1 = e1(cos g1 cos γ2A+ sin g1 sin γ2 cos iB)

S2 = e1(cos g1 sin γ2A− sin g1 cos γ2 cos iB).

Then,

S1 = − 14Γ

L1χ

√
2

3

(
1− 5

3

Γ2

L2
1

)
√

1− 5
3(1 + χ2) cos2 g1

1− 5
3 cos

2 g1
cos g1


1− 5

3

1− 11
7

Γ2

L2
1

1− 5
3
Γ2

L2
1

cos2 g1




and

S2 =−
√
10

3

Γ

L1χ

√
1− 5

3(1 + χ2) cos2 g1
√
1− 5

3 cos
2 g1

×

(
5

3

Γ2

L2
1

cos2 g1(9− 11 cos2 g1)

1− 5
3 cos

2 g1
+

21

5
− 5

Γ2

L2
1

−
(
14− 11

Γ2

L2
1

)
cos2 g1

)
.

Now we compute F+ as a function of t. Recall that the constant A2 was defined in
(23).

Lemma 5.3. The functions F1 and F2 on the heteroclinic (cf. Lemma 5.2), can be
written as functions of τ = A2t as




F1 = C̃1
sinh τ

1+sinh2 τ
· 7+6 sinh2 τ
χ2+(1+χ2) sinh2 τ

F2 = C2
1

cosh τ

[
21
5 − 5Γ2

L2
1

+

sinh2 τ
χ2+(1+χ2) sinh2 τ

(
Γ2

L2
1χ

2

9χ2+( 12
5
+9χ2) sinh2 τ

cosh2 τ
− 3

5

(
14− 11Γ2

L2
1

))]
,

with

C̃1 = − 15

16
√
10

a31
a42

e2

(1− e22)
5/2

Γ

L1

(
1− 5

3

Γ2

L2
1

)
.
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Proof. We compute each term as a function of τ . By (26), we have that

√
1− 5

3
(1 + χ2) cos g01(t) =

χ√
χ2 + (1 + χ2) sinh2 τ

and

1− 5

3
cos g01(t) = χ2 1 + sinh2 τ

χ2 + (1 + χ2) sinh2 τ
.

So, √
1− 5

3(1 + χ2) cos g01(t) cos g
0
1(t)

1− 5
3 cos g

0
1(t)

=
1

χ

√
3

5

sinh τ

1 + sinh2 τ
.

For the last term, we have


1− 5

3

1− 11
7

Γ2

L2
1

1− 5
3
Γ2

L2
1

cos2 g01(t)


 =

(
1− 5

3
Γ2

L2
1

)
χ2 +M sinh2 τ

(
1− 5

3
Γ2

L2
1

) (
χ2 + (1 + χ2) sinh2 τ

)

where

M =

(
1− 5

3

Γ2

L2
1

)
(1 + χ2)−

(
1− 11

7

Γ2

L2
1

)
.

Using the definition of χ in (23), we have that

(
1− 5

3

Γ2

L2
1

)
χ2 =

2

3

Γ2

L2
1

M =
4

7

Γ2

L2
1

.

Therefore,

1− 5

3

1− 11
7

Γ2

L2
1

1− 5
3
Γ2

L2
1

cos2 g01(t)


 =

2Γ2

21L2
1

(
1− 5

3
Γ2

L2
1

) 7 + 6 sinh2 τ

χ2 + (1 + χ2) sinh2 τ
.

Putting all these formulas together and defining

C̃1 =
2

21χ
C1

√
3

5

Γ2

L2
1

1

1− 5
3
Γ2

L2
1

.

we complete the proof.

The formulas of Lemma 5.3 allow us to compute the Poincaré - Melnikov potential
(34). We split it as as L+ = L1 + iL2 with

Lj =
1

2

∫

R

Fj(t)e
iγ1(t) dt, j = 1, 2. (35)

We first compute

L1 = C̃1

∫ ∞

−∞

sinh(A2t)

1 + sinh2(A2t)
· 7 + 6 sinh2(A2t)

χ2 + (1 + χ2) sinh2(A2t)
e
−i 2Γ

L2
1

t
dt

=
C̃1

A2

∫ ∞

−∞

sinh τ

1 + sinh2 τ
· 7 + 6 sinh2 τ

χ2 + (1 + χ2) sinh2 τ
e
−i 2Γ

A2L
2
1

τ
dτ.

18



using the residue theorem. First note that if we look at this integral along the path
τ = −iπ + σ, σ ∈ R, instead of the real line, we get

∫

−iπ+R

sinh τ

1 + sinh2 τ
· 7 + 6 sinh2 τ

χ2 + (1 + χ2) sinh2 τ
e
−i 2Γ

A2L
2
1

τ
dτ

= −e
− 2Γπ

A2L
2
1

∫

R

sinhσ

1 + sinh2 σ
· 7 + 6 sinh2 σ

χ2 + (1 + χ2) sinh2 σ
e
−i 2Γ

A2L
2
1

σ
dσ.

So, if we define the function

f1(τ) =
sinh τ

1 + sinh2 τ
· 7 + 6 sinh2 τ

χ2 + (1 + χ2) sinh2 τ
e
−i 2Γ

A2L
2
1

τ
, (36)

Cauchy’s integral formula shows

L1 = − 2πi

1 + e
− 2Γπ

A2L
2
1

∑
Residues (37)

where the summation stands over the residues of the function f1 in −π < Im τ < 0; the
negative sign comes from the index of the curve.

Lemma 5.4. The function f1 defined in (36) has three singularities in the region −π <
Im τ < 0 given by 




a−0 = −iπ2
a−1 = −i arcsin χ√

1+χ2

a−2 = −i

(
π + arcsin χ√

1+χ2

)

and the associated residues are




Res
(
f, a−0

)
= − 2Γ

A2
2

e
− πΓ

A2L
2
1

Res
(
f, a−1

)
= 7+χ2

2
√

1+χ2
e
− 2Γ

A2L
2
1

arcsin χ√
1+χ2

Res
(
f, a−2

)
= − 7+χ2

2
√

1+χ2
e
− 2Γ

A2L
2
1

(
π−arcsin χ√

1+χ2

)

.

Before proving the lemma, we proceed to deduce the value of the real part of the
Melnikov integral. The lemma shows that the sum of formula (37) is

∑
Residues = − 2Γ

A2L2
1

e
− πΓ

A2L
2
1 +

7 + χ2

2
√
1 + χ2

e
− 2Γ

A2L
2
1

arcsin χ√
1+χ2

(
1− e

− 2Γ

A2L
2
1

π
)
,

hence the function L1 introduced in (35) satisfies

L1 = − 2πi

1 + e
− 2Γπ

A2L
2
1

C̃1

A2




− 2Γ
A2L2

1

e
− πΓ

A2L
2
1 +

+ 7+χ2

2
√

1+χ2
e
− 2Γ

A2L
2
1

arcsin χ√
1+χ2

(
1− e

− 2Γ

A2L
2
1

π
)


 .

Proof of Lemma 5.4. The singularities are the solutions of

1 + sinh2 τ = 0 or either χ2 + (1 + χ2) sinh2 τ = 0.
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The first equation is just 1 + sinh2 τ = cosh2 τ = 0 and the only possible solution in
−π < Im τ < 0 is a−0 = −iπ/2. For the second equation, one can take τ = iσ. Then, it
is equivalent to

sinσ = ± χ√
1 + χ2

,

which gives the other two singularities.
Now we compute the residues. We start by a−0 . We compute the Laurent series of

each term in f . From the fact that

sinh τ = −i (1 +O2(τ + iπ/2))

one can easily deduce the following,

1

cosh2 τ
= − 1

(τ + iπ/2)2
(1 +O2(τ + iπ/2))

7 + 6 sinh2 τ = 1 +O2(τ + iπ/2)

χ2 + (1 + χ2) sinh2 τ = −1 +O2(τ + iπ/2).

Therefore

sinh τ

1 + sinh2 τ
· 7 + 6 sinh2 τ

χ2 + (1 + χ2) sinh2 τ
= − i

(τ + iπ/2)2
(1 +O2(τ + iπ/2)) .

For the exponential, we know have that

e
−i 2Γ

A2L
2
1

τ
= e

− πΓ

A2L
2
1 − i

2Γ

A2L2
1

e
− πΓ

A2L
2
1 (τ + iπ/2) +O2(τ + iπ/2).

From these two last expansions, we obtain the residue for a−0 = −iπ/2.
Now we compute the other two residues. We compute them at the same time. Note

that for i = 1, 2,

sinh a−i = −i
χ√

1 + χ2

and

cosh a−1 =
1√

1 + χ2
, cosh a−2 = − 1√

1 + χ2
.

Therefore

7 + 6 sinh2 τ =
7 + χ2

1 + χ2
+O1(τ − iπ/2)

χ2 + (1 + χ2) sinh2 τ = −2χi(τ − a−1 ) +O2(τ − a−1 )

χ2 + (1 + χ2) sinh2 τ = +2χi(τ − a−2 ) +O2(τ − a−2 )

and we have also

e
−i 2Γ

A2L
2
1

τ
= e

− 2Γ

A2L
2
1

arcsin χ√
1+χ2 +O1(τ − a−1 )

e
−i 2Γ

A2L
2
1

τ
= e

− 2Γ

A2L
2
1

(
π−arcsin χ√

1+χ2

)

+O1(τ − a−2 ).

With all these expansions, one can easily deduce the last two residues.
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Analogously, the function L2 introduced in (35), satisfies

L2 = −C2

A2

2πi

1 + e
− 2Γπ

A2L
2
1

∑
Residues,

where the sum stands over all residues in −π < τ < 0 of

f2(τ) =
e
−i 2Γ

A2L
2
1

τ

cosh τ

[
21

5
− 5

Γ2

L2
1

+

sinh2 τ

χ2 + (1 + χ2) sinh2 τ

(
Γ2

L2
1χ

2

9χ2 +
(
12
5 + 9χ2

)
sinh2 τ

cosh2 τ
− 3

5

(
14− 11

Γ2

L2
1

))]
.

Lemma 5.5. In the region −π < Im τ < 0, the function f2 has the same singularities
as f1, given in Lemma 5.4. Moreover, the associated residues are given by





Res
(
f2, a

−
0

)
= − i

5

(
21− 8Γ2

L2
1

+ 24 Γ4

A2
2L

6
1χ

2

)
e
− πΓ

A2L
2
1

Res
(
f2, a

−
1

)
= −i35

χ
(1+χ2)3/2

(
11Γ2

L2
1

− 7
)
e
− 2Γ

A2
2

arcsin χ√
1+χ2

Res
(
f2, a

−
2

)
= −i35

χ
(1+χ2)3/2

(
11Γ2

L2
1

− 7
)
e
− 2Γ

A2
2

(
π−arcsin χ√

1+χ2

)

Hence, the function L2 introduced in (35) satisfies

L2 = −C2

A2

2πi

1 + e
− 2Γπ

A2L
2
1




− i
5

(
21− 8Γ2

L2
1

+ 24 Γ4

A2
2L

6
1χ

2

)
e
− πΓ

A2
2 +

−i35
χ

(1+χ2)3/2

(
11Γ2

L2
1

− 7
)
e
− 2Γ

A2
2

arcsin χ√
1+χ2 +

−i35
χ

(1+χ2)3/2

(
11Γ2

L2
1

− 7
)
e
− 2Γ

A2
2

(
π−arcsin χ√

1+χ2

)




.

Proof of Lemma 5.5. We use the expansions obtained in the proof of Lemma 5.4. For
the last two residues, it is enough to use also that

Γ2

L2
1χ

2

9χ2 +
(
12
5 + 9χ2

)
sinh2 τ

cosh2 τ
=

33

5

Γ2

L2
1

+O
(
τ − a−i

)

for i = 1, 2. Then, using the expansions of Lemma 5.4, we can deduce the two last
residues.

Now we compute the residue at τ = a0. We split f2 into three parts f2 = h1+h2+h3
with 




h1(τ) =
(
21
5 − 5Γ2

L2
1

)
e
−i 2Γ

A2L
2
1

τ

cosh τ

h2(τ) = −3
5

(
14− 11Γ2

L2
1

)
sinh2 τ

χ2+(1+χ2) sinh2 τ
e
−i 2Γ

A2L
2
1

τ

cosh τ

h3(τ) =
Γ2

L2
1χ

2

9χ2+( 12
5
+9χ2) sinh2 τ

χ2+(1+χ2) sinh2 τ
sinh2 τ e

−i 2Γ

A2L
2
1

τ

cosh3 τ
.

Functions h1 and h2 have a pole of order one at τ = a−0 so one can proceed as for the
others singularies. However, h3 has a pole of order 3 and therefore, we need to compute
the expansion up to order 3 of each term in h2.

We use the expansions
{
sinh τ = −i− i

2y
2 +O4(y)

cosh τ = −iy − i
6y

3 +O5(y)
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where y = τ + iπ2 . We use this notation throughout the proof.
We start with h1 and h2. It can be easily seen that





Res
(
h1, a

−
0

)
= i
(
21
5 − 5Γ2

L2
1

)
e
− πΓ

A2L
2
1

Res
(
h2, a

−
0

)
= −i35

(
14− 11Γ2

L2
1

)
e
− πΓ

A2L
2
1

For h3 we use the following expasions

9χ2 +
(
12
5 + 9χ2

)
sinh2 τ

χ2 + (1 + χ2) sinh2 τ
sinh2 τ = −12

5
−
(
12

5
+

33

5
χ2

)
y2 +O4(y)

1

cosh3 τ
= − i

y3

(
1− y2

2
+O4(y)

)

e
−i 2Γ

A2L
2
1

τ
= e

− πΓ

A2L
2
1

(
1− i

2Γ

A2L2
1

y − 2Γ2

A2
2L

4
1

y2 +O4(y)

)
.

Putting together all these expansions one can deduce the residue

Res
(
h3, a

−
0

)
= i

Γ2

L2
1χ

2

(
33

5
χ2 − 24

5

Γ2

A2
2L

4
1

)
e
− πΓ

A2L
2
1

Now it only remains to add the three residues to obtain the residue of f2 at τ = a−0 .

Gathering what precedes, and letting

α =
πΓ

A2L2
1

, Γ̂ =
Γ

L1
, χ̂ =

χ√
1 + χ2

and β =
α

π
arcsin χ̂,

we obtain the following analytic expression:

L+ = − 2πi

A2 (1 + e−2α)




C̃1

(
−2α

π e−α+

+7+χ2

2χ sin βπ
α e−2β

(
1− e−2α

)
)

+C2




1
5

(
21− 8Γ̂2 + 24 Γ̂2α2

π2χ2

)
e−α+

+3
5

χ
(1+χ2)3/2

(
11Γ̂2 − 7

)
e−2β+

+3
5

χ
(1+χ2)3/2

(
11Γ̂2 − 7

)
e−2(α−β)







. (38)

In order to check that L+ is not constant, notice that, asymptotically when Γ tends to
0 (and L1 is kept constant), α = O(Γ−2) while β = O(Γ−1), so that the term in C̃1 e

−2β

dominates the others: for some C3(L1) and C4(L1) independant of Γ,

L+ ∼ C3(L1)

Γ2
exp

(
−2C4(L1)Γ +O(Γ−2)

)
.

Since the dominant term of the right hand side is a non constant function of Γ, Propo-
sition 4.1 is proved.
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Melnikov method for whiskered tori in Hamiltonian systems. J. Nonlinear
Sci., 10(4):433–476, 2000.

[DKdlRS14] A. Delshams, V. Kaloshin, A. de la Rosa, and T. Seara. Parabolic
orbits in the restricted three body problem. Preprint, available at
http://arxiv.org/abs/1501.01214, 2014.
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