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Abstract4

Chirikov’s celebrated criterion of resonance overlap has been widely used5

in celestial mechanics and Hamiltonian dynamics to detect global instability,6

but is rarely rigourous. We introduce two simple but fairly general Hamilto-7

nian systems, each depending on two parameters measuring respectively the8

distance to resonance overlap and non-integrability. Within some thin region9

of the parameter plane, classical perturbation theory shows the existence of10

global instability and symbolic dynamics, thus illustrating Chirikov’s crite-11

rion.12

1 Heuristic introduction – resonance overlapping13

Let H : T×R×T→ R be a time-dependent Hamiltonian of class C∞, periodic in
time, of the form

H(x, y, t) = H0(y) + εF (x, y, t). (1)

When ε = 0, the time-one map φ of the flow of H is integrable and the level14

curves of the coordinate y are all invariant. Curves whose rotation number H ′0(y)15

is rational or have good rational approximations disappear for generic Fourier16

coefficients of F , as Poincaré noticed [27]. In place of some of those resonant curves,17

periodic orbits originate, usually by elliptic/hyperbolic pairs. (More generally, non-18

smooth invariant graphs known as Aubry-Mather sets can be found as the support19

of minimizing measures.) For systems of one and a half degree of freedom, like20

ours (or two degrees of freedom), elliptic orbits are surrounded by elliptic ”eyes”,21

where some kind of stability prevails over long time intervals (see [3] and references22
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therein). Simultaneously, as KAM theory proves, a positive Lebesgue measure of1

Diophantine invariant curves persist [21, 22]. As ε increases, more invariant curves2

disappear. (Some new invariant curves also show up, although these ones are3

harder to detect.) Persisting invariant curves are obstructions to large deviations4

in the y direction. Note that, in higher dimension, Lagrangian invariant tori do5

not separate the phase space anymore and allow the dynamics for slow, non-local6

instability, called Arnold diffusion [1, 7]. Arnold diffusion is notoriously difficult7

to show.8

As ε keeps increasing, the seeming sizes of resonant eyes grow. As long as9

the separatrices of two resonances are well apart, invariant curves separating the10

two zones confine orbits on one side or the other, and the the system behaves as11

if the two resonances did not interact: in each zone, the dynamics is reasonably12

described by an integrable approximation retaining only the harmonics responsible13

for the opening of the relevant eye. Chirikov has conjectured that an orbit will14

start moving between two resonance eyes in a chaotic and unpredictable manner15

“as soon as these unperturbed resonances overlap” [6, 7]. For a modern reference,16

with applications to celestial mechanics, see Morbidelli’s book [19, Chap. 6 and17

Section 9.2 in particular]. Indeed, as soon as the separatrices of the two resonances18

get close to each other, the dynamics is no more described by two adjacent one-19

resonance integrable models and, as Morbidelli puts it, “an initial condition in20

the overlapping region does not know which resonance it belongs to, and hesitates21

about which guiding trajectory it should follow”. The criterion has been used for22

magnetically confined plasmas (as in Chirikov’s initial work or Escande’s review23

[11]), the Solar System (e.g. [20, 19, 24, 26]), space debris [4], transport and24

turbulence in fluid mechanics [9], as well as particle dynamics in accelerators,25

microwave ionization of Rydberg atoms, etc. (see [14] and references therein).26

Defining the closeness of two resonance eyes, or their overlap, is not a simple27

matter, since generically separatrices split and thus do not precisely circumscribe28

an ”eye”. Physicists speak of a ”stochastic layer” at the border, but little is29

really known about dynamics in this layer, apart from the horseshoe (a set of zero-30

measure) given by the Birkhoff-Smale theorem [23]. Moreover, there is a whole web31

of resonances, and, for each resonance, there are infinitely many ways to choose32

integrable approximations describing the opening of the corresponding eye. All33

this makes Chirikov’s criterion imprecise. For a further analysis of why Chirikov’s34

criterion fails in general, see for example [2, 5, 17].35

Key to instability is the destruction of invariant curves. The precise mecha-36

nism remains mysterious, despite extensive efforts (e.g. [13, 16]). One attempt to37

describe whether invariant curves persist or not, which has been quite successful38

for practical purposes, is Greene’s criterion, which analyzes the stability of ac-39

2



−π 0 π
−1

0

1

2

−π 0 π −π 0 π

Figure 1: Level curves of hε for ε = 1
2
, 1, 3

2

cumulating periodic orbits. This criterion has been partly justified [10, 12, 15].1

Renormalization should also be a important tool for the full picture [5].2

We will not address this difficult issue directly, but rather aim at illustrating
Chirikov’s criterion on a simple, rigorous example. Consider the Hamiltonian

hε(x, y) =
y2

2
− y3

3
− ε

12
cosx (2)

on T × R, where ε is a real parameter. We view it as a modification of the twist
Hamiltonian y2/2 in the class of “classical” Hamiltonians (sums of a kinetic part
depending only on y and a potential part depending only on x) involving only the
lowest degree term and lowest order harmonic creating two resonance eyes close
to each other. In this sense, hε is a simple but somewhat general model family
whose perturbations are eligible to Chirikov’s criterion of resonance overlapping.
As a variant we also consider the doubly periodic Hamiltonian

h′ε(x, y) = cos y − ε cosx (3)

on T2, for which the instability is similar locally, but also more global due to the3

double periodicity.4

Interestingly, the Hamiltonian h0 (cubic in the actions) has a twistless curve5

(where the unperturbed frequency map y 7→ y(1 − y) has a fold singularity).6

Greene’s criterion has been applied to this twistless curve in the article [8]. Also,7

Hamiltonians similar to h′ε have been studied notably by Zaslavsky in [28], as8

examples displaying “stochastic webs” with spatial patterns.9

2 An illustration of the overlapping principle10

We will now describe a case akin to the resonance overlap phenomenon for (time11

dependent perturbations of) the Hamiltonians (2) and (3), where one can quite12
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explicitly see the transition from complete integrability to resonance overlapping.1

The key point in these examples is that the two parameters controlling the distance2

of resonance eyes and the non-integrability are decoupled. The same overlapping3

of resonances behavior would take place if cos x in (2) and (3) would be replaced4

by any potential V (x) with unique non-degenerate maximum and minimum (a5

generic condition). We state the results just for the models (2) and (3) for the6

sake of simplicity.7

The phase portraits of Hamiltonians hε and h′ε defined above are shown in Fig-
ures 1 and 2 for different values of the parameter ε. The interesting bifurcation
value for us will be ε = 1, so henceforth we will assume that ε > 0. Both Hamil-
tonians (2) and (3) are integrable but do not have global action-angle coordinates
(as they would for ε = 0) –namely, they have separatrices which create “eyes”
of width O(

√
ε) in the (x, y)-coordinates. Also, they possess hyperbolic critical

points at {
((2k + 1)π, 0) and (2kπ, 1) for h0

(2kπ, 2k′π) and ((2k + 1)π, (2k′ + 1)π) for h′0
(4)

for every k, k′ ∈ Z. The two Hamiltonians undergo a bifurcation (sometimes called8

a heteroclinic reconnection) when the energy levels of the two families of hyperbolic9

points coincide, namely for ε = 1.10

For 0 < ε < 1, the separatrices attached to the hyperbolic critical points are11

graphs over the x direction. This implies that there are invariant curves separat-12

ing the saddles having different y components. At the bifurcation value, the net13

of separatrices changes its topology by creating heteroclinic connections between14

saddles with different y component. In particular, all smooth invariant curves sep-15

arating the two resonance eyes of hε break down, and the Hamiltonian h′ε does not16

have any invariant smooth curve over the x- or y-axes.17
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Consider the perturbed Hamiltonians{
hε,µ(x, y, t) = y2

2
− y3

3
− ε cosx+ µf(x, y, t)

h′ε,µ(x, y, t) = cos y − ε cosx+ µf(x, y, t)
(5)

where f(x, y, t) is a C∞ time-periodic perturbation, 2π-periodic in t (and possibly,1

but not necessarily in x and y). The parameter ε measures the size of resonant2

eyes, while µ measures the distance to the integrable approximations hε and h′ε. A3

Hamiltonian of the form (1) is obtained by taking µ . ε. The goal of the present4

work is to illustrate Chirikov’s criterion within a thin region in the parameter5

plane, defined by |ε− 1| . µ.6

For µ small enough, hε,µ and h′ε,µ have hyperbolic periodic orbits ε-close to the7

saddles of hε and h′ε respectively. Melnikov Theory [18] implies that the separa-8

trices of hε and h′ε usually break down.9

Lemma 1. Fix ε > 0. For a generic f there exists µ0 > 0 such that for all10

µ ∈ (0, µ0) all the separatrices of the Hamiltonians hε and h′ε break down and the11

resulting invariant manifolds intersect transversally.12

Note that this result is significantly different for ε 6= 1 and ε = 1 since the13

separatrices for hε are different in both cases. Moreover, since we are interested14

in ε close to 1 and depending on µ, one can also prove the following more precise15

lemma, which is also a consequence of Melnikov Theory (ibid.).16

Lemma 2. Fix δ > 0 small. For a generic f there exists µ0 > 0 such that for all17

µ ∈ (0, µ0) and ε ∈ [1− δ, 1 + δ] all the separatrices of the Hamiltonians hε and h′ε18

break down and the corresponding invariant manifolds intersect transversally.19

As a consequence, for ε > 0 (dependent or independent of µ) all homoclinic20

separatrix connections associated with the periodic orbits of hε,µ and h′ε,µ split.21

Nevertheless, it says nothing about possible heteroclinic connections between dif-22

ferent periodic orbits.23

Proposition 1. There exist constants C1, C2, µ0 > 0 such that for any µ ∈ (0, µ0),24

1. for ε < C1 < 1, heteroclinic connections between the periodic orbits µ-close25

to the the saddles (4) with different y-component is not possible.26

2. for ε > 1 − C2µ, hε,µ possesses transversal heteroclinic connections between27

the same periodic orbits as there are for the case ε = 1 and µ = 0.28
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Statement 1 is a direct consequence of KAM Theorem. Indeed, the Hamilto-1

nian hε,µ possesses KAM invariant curves which are a graph over the base y = 02

and “separate” the saddles in (4) with different y-component. Statement 2 of3

this proposition is a direct consequence of Lemma 2 and classical perturbative4

arguments.5

This result can be seen as the process of overlapping resonances in a non-6

integrable Hamiltonian system. In Regime 1 KAM curves prevent overlapping7

between the considered resonances: dynamics is confined between the invariant8

curves. In contrast, in Regime 2 all KAM curves break down and there is overlap-9

ping between resonances.10

Note that here we are only considering the strongest resonances, corresponding11

to ẋ = 0. Certainly, the Hamiltonians hε,µ and h′ε,µ possess many more at ẋ ∈ Q12

but they are much weaker (so we would need µ much smaller in order to apply the13

same arguments).14

Proposition 1 has several consequences. Constant C2 > 0 refers to Proposi-15

tion 1.16

Corollary 1. For ε > 1 − C2µ and µ > 0 small enough, both hε,µ and h′ε,µ have17

a compact invariant subset carrying symbolic dynamics with random excursions in18

the y direction, of amplitude uniform with respect to both µ and ε.19

Indeed, consider for example the four saddle points (±π,±π) of h′ε. In the20

neighborhood of these equilibria, a classical construction leads to a subshift of21

four symbols by using the concatenation of heteroclinic connections through (0, 0),22

(±2π, 0) and (0,±2π). This subshift is not a full shift, since for instance one23

cannot go directly from (neighborhoods of) (π, π) to (−π,−π) without passing24

through neighborhoods of either the other two, but these obvious obstructions are25

the only obstructions. One actually gets subshifts of arbitrarily many symbols by26

considering neighborhoods of correspondingly many saddles.27

In Regime 1 of Proposition 1, one also certainly has symbolic dynamics but it28

is confined in the vertical direction by the KAM curves.29

The Lambda lemma [25] implies the following for h′ε,µ.30

Corollary 2. Let y+ > y−, µ > 0 small enough and ε > 1−C2µ. The Hamiltonian31

h′ε,µ has orbits which travel from y = y− to y = y+. Moreover, one can achieve32

such transition in time T ∼ (y+ − y−) | lnµ|.33

This behavior is not possible in Regime 1 due to KAM curves. Note that this34

behavior is still not possible for the Hamiltonian hε,µ for µ > 0 small enough35

and ε > 1 − C2µ since it has invariant curves surrounding the two overlapped36

resonances.37
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3 Numerics1

So-described instabilities easily show numerically; see Figure 3. Despite the ex-2

ponential divergence of solutions, approximate computations in the above two3

regimes are justified by the Lambda lemma, which entails that computed pseudo-4

orbits are shadowed by true orbits of h′ε,µ.5
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namical models and the onset of chaos in space debris. Int. Jour. Non-Lin.2

Mech., 90:147–163, 2017.3

[5] C. Chandre and H.R. Jauslin. Renormalization-group analysis for the transi-4

tion to chaos in hamiltonian systems. Physics Reports, 365(1):1–64, 2002.5

[6] B. V. Chirikov. Resonance processes in magnetic traps. Journal of Nu-6

clear Energy. Part C, Plasma Physics, Accelerators, Thermonuclear Research,7

1(4):253, 1960.8

[7] B. V. Chirikov. A universal instability of many-dimensional oscillator systems.9

Physics Reports, 52(5):263 – 379, 1979.10

[8] D. del Castillo Negrete, J. M. Greene, and P. J. Morrison. Area preserving11

nontwist maps: periodic orbits and transition to chaos. Physica D, 91(1–2):1–12

23, 1996.13

[9] D. del Castillo Negrete and P. J. Morrison. Chaotic transport by rossby waves14

in shear flow. Physics of Fluids A: Fluid Dynamics, 948:940–965, 1993.15

[10] A. Delshams and R. de la Llave. KAM theory and a partial justification of16

Greene’s criterion for nontwist maps. SIAM J. Math. Anal., 31(6):1235–1269,17

2000.18

[11] D. F. Escande. Contributions of plasma physics to chaos and nonlinear dy-19

namics. Plasma Physics and Controlled Fusion, 58(11):113001, 2016.20

[12] C. Falcolini and R. de la Llave. A rigorous partial justification of Greene’s21

criterion. Journal of Statistical Physics, 1997(3–4):609–643, 1992.22

[13] G. Forni. Construction of invariant measures supported within the gaps of23

aubry–mather sets. Ergodic Theory and Dynamical Systems, 16(1):51–86,24

1996.25

[14] A. J. Lichtenberg and M. A. Lieberman. Regular and chaotic dynamics, vol-26

ume 38 of Applied Mathematical Sciences. Springer-Verlag, New York, second27

edition, 1992.28

[15] R. S. MacKay. Greene’s residue criterion. Nonlinearity, 5(1):161, 1992.29

[16] J. N. Mather. Destruction of invariant circles. Ergodic Theory and Dynamical30

Systems, 8(8*):199–214, 1988.31

9



[17] J.D. Meiss. Differential Dynamical Systems. Mathematical Modeling and1

Computation. SIAM, 2007.2

[18] V. K. Melnikov. On the stability of the center for time periodic perturbations.3

Trans. Moscow Math. Soc., 12:1–57, 1963.4

[19] A. Morbidelli. Modern celestial mechanics : aspects of solar system dynamics.5

Taylor and Francis, London, 2002.6

[20] A. Morbidelli and M. Guzzo. The Nekhoroshev theorem and the asteroid7

belt dynamical system. Celestial Mech. Dynam. Astronom., 65(1-2):107–136,8

1996/97.9

[21] J. Moser. A rapidly convergent iteration method and non-linear differential10

equations. II. Ann. Scuola Norm. Sup. Pisa (3), 20:499–535, 1966.11

[22] J. Moser. A rapidly convergent iteration method and non-linear partial dif-12

ferential equations. I. Ann. Scuola Norm. Sup. Pisa (3), 20:265–315, 1966.13

[23] J. Moser. Stable and random motions in dynamical systems. Princeton Land-14

marks in Mathematics. Princeton University Press, Princeton, NJ, 2001. With15

special emphasis on celestial mechanics, Reprint of the 1973 original, With a16

foreword by Philip J. Holmes.17
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1892.26

[28] G. M. Zaslavsky, R. Z. Sagdeev, D. A. Usikov, and A. A. Chernikov. Weak27

chaos and quasi-regular patterns, volume 1 of Cambridge Nonlinear Science28

Series. Cambridge University Press, Cambridge, 1991. Translated from the29

Russian by A. R. Sagdeeva.30

10


	Heuristic introduction – resonance overlapping
	An illustration of the overlapping principle
	Numerics

