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Contents

1. Hamiltonian systems 1

2. Quasiperiodic motions 3

3. A more geometric viewpoint 6

4. Perturbation series 9

5. Statement of the invariant torus theorem of Kolmogorov 12

6. The action of a group of symplectomorphisms 13

7. A property of infinitesimal transversality 14

8. The local transversality property 15

Appendix. A fixed point theorem 16

References 17

KAM theory is the perturbative theory, initiated by Kolmogorov, Arnold and Moser in
the 1950’s, of quasiperiodic motions in conservative dynamical systems. These notes are
a short introduction to the subject.

References of particular value are the book [4] on Hamiltonian systems, the papers
[29, 32] on KAM theory, and the book [5] for applications in celestial mechanics. More
detailed accounts with various viewpoints can be found in [1, 7, 8, 11, 12, 14, 16, 27, 28,
31, 33] and references therein.

1. Hamiltonian systems

Let H be a smooth function on an open set M of Tn×Rn = {(θ, r)}, with Tn = Rn/Zn.
The Hamiltonian vector field of H is

XH :

{
θ̇j = ∂rjH

ṙj = −∂θjH, j = 1, ..., n.
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M is called the phase space for reasons coming from thermodynamics, which almost
everybody has forgotten. Hamiltonian vector fields have been introduced and studied
by Lagrange [25], Cauchy [9] and Hamilton [21, 22].

The projection of XH on each plane of conjugate coordinates (θj, rj) is orthogonal to the
projection (∂θjH, ∂rjH) of the Euclidean gradient ∇H. While the Euclidean gradient
points towards the direction of steepest ascent of H, XH is tangent to the energy levels
of H, or, equivalently, H is a first integral of XH :

H ′ ·XH =
∂H

∂θ
θ̇ +

∂H

∂r
ṙ = 0.

Example 1 (Pendulum) The Hamiltonian equations of

H(θ, r) =
r2

2
− cos θ

are equivalent to the classical equation θ̈ = − sin θ of a frictionless pendulum, as given
by the theorem of the angular momentum. Jacobi introduced the transcendant elliptic
functions in order to solve those equations. However, since the integrale curves of XH

are contained in level sets of H, one recovers the behavior of the pendulum (up to the
time-parametrization) by an algebraic computation. Of course, in higher dimension the
conservation of energy is not sufficiant anymore to find the integral curves.

Example 2 (Particle in a potential) Consider a particle of position x moving in a force
potential U(x) in R3. Newton’s equation

ẍ = −∇U(x)

is equivalent to Hamilton’s equations associated with the Hamiltonian

H(x, ẋ) =
ẋ

2
+ U(x)

(here the phase space is rather R3 × R3).

Example 3 (Hamilton-Jacobi equations) Consider a general first-order scalar partial
differential equation, i.e. a relation

H(θ, u′(θ), u(θ)) = 0,

where θ is the space variable (in Tn as well as in any other manifold of dimension n,
say N), u is the unknown function, u′ is the derivative of u, and H is a function over
M = T ∗V × R = {(θ, r, u)}. Let V be some submanifold of M of dimension n − 1.
The theory of characteristics (see [3]) tells us that the 1-graph of a local solution can be
obtained by flowing V along the integral curves of the vector field





θ̇ = ∂rH

ṙ = −∂θH − r∂uH

u̇ = r · ∂rH,

provided that V satisfies some adequate transversality property. An important case is
when H does not depend on the value u of the unknown, i.e. H is defined T ∗V . Then
the above vector field descends to the Hamiltonian vector field of H. So, solving the
above PDE reduces locally to integrating XH .
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On the other hand, we will see that KAM theory yields (very particular) solutions to
the Hamilton-Jacobi equation associated with a Hamiltonian.

Failing to have other first integrals than the Hamiltonian itself, generic Hamiltonian
systems have some more subtle invariants. For example, they conserve the volume in
phase space:

divXH =
∑

j

(
∂θ̇j
∂θj

+
∂ṙj
∂rj

)
=
∑

j

(
∂2H

∂θj∂rj
−

∂2H

∂rj∂θj

)
= 0

(the volume can actually be seen as a first integral of the variational equation associated
with XH). We see that not only is the divergence equal zero, but each of the n terms
separately are equal to zero. This is the sign that Hamiltonian vector fields have a
stronger invariance property —namely they preserve a “symplectic form”—, which we
will describe later.

2. Quasiperiodic motions

An important and simple class of Hamiltonians is that of integrable Hamiltonians, which
do not depend on the angle θ. In such cases, the vector field becomes

θ̇ =
∂H

∂r
(r) ≡ cst, ṙ = 0,

and the flow

ϕt(θ, r) =

(
θ + t

∂H

∂r
(r), r

)
.

The phase space is foliated in invariant tori r = cst, in restriction to which the flow is
quasiperiodic (=linear), of frequency vector ∂H

∂r
(r).

A vector r being fixed, let α := ∂H
∂r

(r) ∈ Rn and consider the flow

ϕt : T
n → T

n, θ 7→ θ + tα.

Lemma 1. The frequency vector α is a topological conjugacy invariant up to the action
of the discrete group GLn(Z) : if two linear flows θ+ tα and θ+ tβ, with α, β ∈ Rn, are
topologically conjugate, there exists A ∈ GLn(Z) such that β = Aα (and, if the conjugacy
preserves the orientation, A ∈ SLn(Z)).

Proof. Assume two linear flows θ + tα and θ + tβ, with α, β ∈ Rn, are topologically
conjugate: there exists a homeomorphism h of Tn such that h(θ + tα) = h(θ) + tβ. At
the expense of substituting h(θ)− h(0) for h(θ), we may assume that h(0) = 0.

Let H : Rn → Rn be the unique lift of h such that H(0) = 0. Now, the equality
H(θ + tα) = H(θ) + tβ holds for θ = t = 0 and, by continuity, for θ ∈ Rn and t ∈ R.

Moreover, there exists a matrix A ∈ GLn(Z) such that H(θ + k) = H(θ) + Ak for all
θ ∈ Rn and k ∈ Zn; A is invertible because H is. Hence V := A−1H − id : Rn → Rn is a
Zn-periodic vector field. In terms of V , the conjugacy hypothesis at θ = 0 asserts that

L(tα+ V (tα)) = LV (0) + tβ (∀t ∈ R),
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i.e.

L(V (tα)− V (0)) = t(β − Lα).

Since the left hand side is bounded, necessarily β = Lα. �

The action of GLn(Z) is closely related to the arithmetic properties of frequency vectors ;
see [34, 2.2.3] for n = 2.

Proposition 1. The following properties are equivalent :

(1) The vector α is non resonant: k · α 6= 0 for all k ∈ Zn \ {0}
(2) The flow (ϕt) of the constant vector field α is ergodic: invariant continuous

functions (f(θ + tα) ≡ f(θ) for all t ∈ R and θ ∈ Tn) are constant
(3) For every continuous function f on Tn, the time average of f exists, is constant

and equals the space average of f :

lim
T→+∞

1

T

∫ T

0
f(θ + tα) dt =

∫

Tn

f(θ) dθ.

(4) Every trajectory of (ϕt) is dense on Tn.

More general classes of functions than continuous ones can be considered, but we lazily
stick here to the most convenient setting for our purpose. See [6, 20, 23] for further
results on ergodicity.

Proof. (1) ⇒ (2) Suppose that α is non resonant and let f ∈ C0(T1) be invariant:
f = f ◦ ϕt for all t. The k-th Fourier coefficient of f ◦ ϕt is

f̂ ◦ ϕt(k) =

∫

Tn

e−i2πk·θ f(θ + tα) dθ.

The change of variable θ′ = θ + tα shows that

f̂ ◦ ϕt(k) = ei2πk·αtf̂(k).

By uniqueness, for all k ∈ Zn \ {0} we see that f̂(k) = 0. Hence f is constant.

(2) ⇒ (1) Conversely, suppose that k · α = 0 for some k ∈ Zn \ {0}. Then f(θ) = ei2πk·θ

is invariant and not constant, hence the flow is not ergodic.

(1) ⇒ (3) Call f̄ the space-average of f . We will show the conclusion by taking more
and more general functions.

– If f is constant, f̄(θ) ≡ f̄ trivially. If f(θ) = ei2πk·θ for some k ∈ Zn \ {0}, direct
integration shows that

1

T

∫ T

0
f(θ + tα) dθ =

1

T
ei2πk·θ

ei2πk·αT − 1

ik · α
→T→+∞ 0 = f̄ .

The expression k · α in the denominator is the first occurence of the so-called small
denominators, which are the source of many difficulties in perturbation theory.

– If f is a trigonometric polynomial, the same conclusion holds by linearity.
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– Let now f be continuous. Let ǫ > 0. By the theorem of Weierstrass, there is a
trigonometric polynomial P such that

max
θ∈Tn

|f(θ)− P (θ)| ≤ ǫ.

For such a P , we have shown that there is a time T0 such that if T ≥ T0,
∣∣∣∣
1

T

∫ T

0
P (θ + tα) dθ − P̄

∣∣∣∣ ≤ ǫ.

Using the two latter inequalities, we see that

∣∣∣∣
1

T

∫ T

0
f(θ + tα) dt − f̄

∣∣∣∣

≤
1

T

∫ T

0
|f(θ + tα)− P (θ + tα)| dt +

∣∣∣∣
1

T

∫ T

0
P (θ + tα) dt− P̄

∣∣∣∣+ |P̄ − f̄ | ≤ 3ǫ.

So, again 1
T

∫ T

0 f(θ + tα) dθ tends to 0.

(3) ⇒ (1) Suppose α is resonant: k · α = 0 for some k ∈ Zn \ {0}, and let f(θ) = ei2πk·θ.
The space average of f equals 0, while

1

T

∫ T

0
ei2πk·(θ+αt) dt = ei2πk·θ.

So there exists a non constant continuous function whose time and space averages do
not match.

(1) ⇒ (4) Suppose that one trajectory is not dense: there exist a point θ ∈ Tn and
an open ball B ⊂ Tn such that the curve t 7→ θ + tα will never visit B. Let f be a
continuous function whose support lies inside B and whose integral is > 0. The space
average of f is > 0, while its time average is 0. Hence α is resonant.

(4) ⇒ (1) Suppose α is resonant: k · α = 0 for some k ∈ Zn \ {0}. We will show that
there is a small ball B centered at θo := k/2 (mod Zn) which the trajectory t 7→ tα
never visits. Indeed, let θ be in such a ball B of small radius. Does there exist t ∈ R

such that tα = θ in Tn? Equivalently, does there exist t ∈ R and ℓ ∈ Zn such that
α = θ + ℓ? Taking the dot product of the equation with k yields 0 = k · θ + k · ℓ. But
k · ℓ ∈ Z, while k · θ ∈]0, 1[ provided the radius of B is small enough (depending on k).
This shows that there is no such t ∈ R. �

If we think for instance to two planets revloving around the Sun with frequencies α1 and
α2, that the frequency vector α = (α1, α2) be resonant means that the two planets will
regularly find themselves in the same relative position. Hence, their mutual attraction,
which is small due to their small masses compared to the mass of the Sun, instead of
averaging out, will pile up. This is all the more true that the order |k| := |k1|+ · · ·+ |kn|
of the resonance is small. As a general rule, perturbation theory rather studies what
happens away from resonances, and at some distance away from them in the phase space
(all the farther that they have low order).
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3. A more geometric viewpoint

In the study of differential equations, Poincaré has shifted the interest of mathemati-
cians from particular solutions to geometric properties of the phase flow, considering
all solutions simultaneously. Technically, the latter strategy often consists in computing
normal forms, i.e. simple expressions of the vector field in well chosen coordinates.

One of the primary interests of the Hamiltonian formalism is that all the information
on a Hamiltonian vector field is contained in a function. It is easier to compute changes
of coordinates for functions than for vector fields. But in order to preserve the simple
relation between the Hamiltonian function and its vector field, only some special changes
of coordinates should be used, namely those diffeomorphisms φ : M → M such that the
direct image by φ of the Hamiltonian vector field of H ◦φ equals the Hamiltonian vector
field of H:

φ∗XH◦φ = XH .

In dimension 2, we have seen that XH preserves the area. So, certainly φ should preserve
the area form ω = dθ ∧ dr.

Let us introduce a coordinate-free definition of XH . Let

ω =
∑

1≤j≤n

dθj ∧ drj .

This geometric structure is called the symplectic form of the phase space M . It is
the field of 2-forms (antisymmetric bilinear forms) which maps two velocities (θ̇, ṙ) and

(Θ̇, Ṙ) (tangent vectors of M at some point (θ, r)) to

ω((θ̇, ṙ), (Θ̇, Ṙ)) =
∑

1≤j≤n

det

(
θ̇j Θ̇j

ṙj Ṙj

)
,

i.e. to the sum of the oriented areas of the projections on planes of conjugate coordinates
(θj , rj), of the parallelogram generated by the two velocity vectors. An excellent and
straightforward introduction to differential forms can be found in Arnold’s book [4].

If X = (θ̇, ṙ) is a vector field,

ω(X, ·) =
∑

1≤j≤n

(θ̇j drj − ṙj dθj),

so the Hamiltonian vector field can be defined by the following equation.

Lemma 2. The Hamiltonian vector field of H is characterized by the implicit equation
ω(XH , ·) = dH.

Hence the only eligible transformations φ are be the ones which preserve ω, in the sense
that

ω = φ∗ω,

where φ∗ω(X,Y ) := ω(φ′ ·X,φ′ · Y ) for all pairs of tangent vectors X and Y at a point.
Such transformations are called symplectic or canonical.
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A fundamental operation on differential forms is the exterior derivative. It extends the
usual differential of functions to differential forms of any degree p:

d
∑

i1<···<p

ρi1,...,ip(θ)dθi1 ∧ · · · ∧ dθip =
∑

i1<···<p

dρi1,...,ip(θ) ∧ dθi1 ∧ · · · ∧ dθip .

It can be defined intrinsically (and implicitely) by the Stokes formula
∫

V

dρ =

∫

∂V

ρ,

where V is an oriented manifold with boundary of dimension deg ρ + 1, and ∂ is the
boundary oparator. That ∂2 = ∅, entails that d is a cohomology operator: d2 = 0.
Again, see [4] for a self-contained introduction to differential forms.

Remark 4 Using the exterior derivative, Maxwell’s first two equations of electromag-
netism boil down to

dF = 0,

where F is the electro-magnetic 2-form in the 4-dimensional space-time [19].

Example 5 Let ρ =
∑

1≤i≤n ρi(θ) dθi be a closed 1-form on Tn, closed meaning dρ = 0.

(If n = 3 and ρ is identified to a vector field, dρ is an intrinsic version of the curl of ρ.)
The diffeomorphism

φ : (θ, r) 7→ (θ, r + ρ(θ))

satisfies

φ∗ω − ω =
∑

1≤i≤n

dθi ∧ dρi(θ) = −dρ = 0,

and thus is symplectic.

Example 6 Let ϕ be a diffeomorphism of Tn. Define its lift to Tn × Rn by

φ : (θ, r) 7→ (ϕ(θ), r · ϕ′(θ)−1).

This diffeomorphism preserves the 1-form λ = r · dθ:

φ∗λ = r · ϕ′(θ)−1 · ϕ′(θ) · dθ = λ,

hence the symplectic form ω = −dλ also:

φ∗ω = −φ∗dλ = −dφ∗λ = −dλ = ω.

Proposition 2. If (φt) is the flow of a Hamiltonian vector field XH , φ∗
tω = ω for all

t ∈ R (wherever the flow is defined).

This property is an essential feature of Hamiltonian flows. It implies the the volume dθ1∧
· · ·∧dθn∧dr1∧· · ·∧drn (= the n-th exterior power of ω, up to a multiplicative constant)
is preserved. Yet it is only in the 1980’s that Gromov’s celebrated non-squeezing theorem
pointed out some specifically symplectic properties [18, 26].

We will use proposition 2 in order to build symplectic diffeomorphisms close to the
identity.
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Proof. The proof is straightforward with the standard toolbox of exterior calculus:

φ∗
tω − ω =

∫ t

0

d

ds
(φ∗

sω) ds by the fundamental formula of calculus

=

∫ t

0
φ∗
s(LXH

ω) ds by definition of the Lie derivative LX .

The Cartan homotopy formula says that LXH
ω = diXH

ω+iXH
dω, where iXω := ω(X, ·).

Since ω has constant coefficients, dω = 0. Since iXH
ω = dH and d2 = 0, diXH

ω = d2 = 0.
Hence φ∗

tω = ω. �

We have seen some of the ergodic properties of quasiperiodic flows with a non resonant
frequency vector. Let us mention here an important property of invariant tori carrying
ergodic quasiperiodic flows. This property says how such tori are embedded in the phase
space with respect to the symplectic structure.

Proposition 3 (Herman). Let T be an invariant embedded torus in M , carrying an
ergodic quasiperiodic flow. Then T is isotropic, i.e. the 2-form induced on T vanishes.

Proof. Let j : Tn →֒ M be a parametrization of T = j(Tn) such that the induced flow
on Tn is φt(θ) = θ + tα, α ∈ Rn non resonant. Let Ω be the induced 2-form on Tn:

Ω = j∗ω =
∑

1≤k<l≤n

Ωkl(θ) dθk ∧ dθl.

We want to show that Ω = 0. Since (φt) is a translation,

φ∗
tΩ(θ) =

∑
Ωkl(θ + tα) dθk ∧ dθl.

Since all trajectories are dense and φ∗
tΩ = Ω for all t ∈ R, the functions Ωkl are constant

on Tn.

But ω has a primitive, and so has Ω: Ω = dΛ, whith Λ := −j∗(
∑

k rk dθk). Integrate Ω
on 2-tori Tkl ⊂ Tn obtained by fixing all coordinates θm, m = 1, ..., n, but θk and θl:

∫

Tkl

Ω =

∫

T2

Ωkl dθk dθl = Ωkl (∀k, l).

On the other hand, by Stokes formula, this integral equals 0. So Ω = 0. �

If in addition T is a perturbation of Tn × {0}, it is the graph of a 1-form ρ over Tn (up
to the identification of the cotangent bundle of Tn to Tn × Rn). The proposition then
asserts that ρ is closed.

Exercise 7 Let T be an isotropic submanifold of dimension n in Tn × Rn (T is then
said Lagrangian). Show that it is invariant by the flow of a Hamiltonian H if and only
if it lies in a level of H.
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4. Perturbation series and the averaging principle

Consider a Hamiltonian H(θ, r) on a neighborhood of Tn × {0} in Tn × Rn. We will
assume that H depends formally on some parameter ǫ and that, when ǫ = 0, H does
not depend on the angles:

H(θ, r) = H0(r) + ǫH1(θ, r) + ǫ2H2(θ, r) + · · · .

Can we eliminate the dependance of H1 on θ by a change of coordinates ǫ-close to the
identity, and can we then similarly deal with higher order terms?

In order to try to do so, let us consider some auxiliary Hamiltonian ǫF , with flow φt.
We would like to choose F so that φ∗

1H = H ◦ φ1 does not depend on θ, up to second
order terms in ǫ.

Recall that
d

dt

∣∣∣∣
t=0

φ∗
tH = H ′ ·XF = XF ·H,

where XF is seen as a derivation operator, and that more generally

d

dt
φ∗
tH =

d

ds

∣∣∣∣
s=0

φ∗
t+sH = φ∗

t (XF ·H).

By Taylor’s formula (applied to the function t 7→ φ∗
tH between t = 0 and t = 1),

φ∗
1H = H + ǫXF ·H + ǫ2

∫ 1

0
(1− t)φ∗

t (X
2
F ·H) dt.

Expanding H in powers of ǫ yields

φ∗
1H = H0(r) + ǫ (H1 +XF ·H0) +O(ǫ2).

Split H1 into

H1(θ, r) = H̄1(r) + H̃1(θ, r), H̄1 =

∫

Tn

H(θ, r) dθ.

We would like to find F so that

H̃1 +XF ·H0 = 0,

or, equivalently, since XF = ∂rF · ∂θ − ∂θF · ∂r,

∂rH0 · ∂θF = H̃1.

In general H̄1(r) is not equal to 0. This means that the frequency vector on the torus
Tn × {r} is modified by terms of order 1 in ǫ. Since it is a conjugacy invariant, it is
hopeless to try to eliminate H̄1 (and, indeed, XF ·H0 has zero average).

Among the partial derivatives of the unknown F , the above equation involves only the
derivatives with respect to θ. So r can be considered as a fixed parameter. The equation
then becomes a first order linear partial differential equation with constant coefficients.
Let α = ∂rH0(r) ∈ Rn. Let Lα be the Lie derivative operator in the direction of the
constant vector field α :

Lα : f 7→ Lαf = α · ∂θf =
∑

1≤j≤n

αj
∂f

∂θj
,
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defined for functions f on Tn of various possible classes of regularity.

Let F be the set of formal Fourier series on Tn with no constant term.

Lemma 3. If α is non resonant and g ∈ F , there is a unique f ∈ F such that Lαf = g.

Proof. By asumption g is a formal series of the form

g =
∑

k∈Zn\{0}

gke
i2πk·θ

and we look for a series f of the same form, satisfying
∑

k

i2πk · αfke
i2πk·θ =

∑

k

gke
i2πk·θ.

The unique solution is given by the coefficients

fk =
gk

i2πk · α
(∀k ∈ Z

n \ {0}).

�

For s > 0, let

T
n
s := {θ ∈ C

n/Zn, max
1≤j≤n

|Im θj| ≤ s}

be the complex extension of Tn of width s. Let A(Tn
s ) be the set of real holomorphic

functions from (a neighborhood of) Tn
s to C. Endowed with the supremum norm

|f |s := sup
θ∈Tn

s

|f(θ)|,

it is a Banach space [15, 6.3].

In order for the operator L−1
α to send analytic function to analytic functions, one needs

some quantitative arithmetic condition preventing α from being too close to any low
order resonance —how close depending of the order.

Definition 8 For γ, τ > 0, α ∈ Rn is (γ, τ)-Diophantine if

∀k ∈ Z
n \ {0} |k · α| ≥

γ

|k|τ
, |k| := |k1|+ · · · + |kn|.

Let Dγ,τ be the set of all such vectors, and Dτ = ∪γ>0Dγ,τ .

The following facts hold:

• Dirichlet’s theorem: Dτ 6= ∅ ⇔ τ ≥ n− 1.
• If τ = n − 1, Dτ is locally uncountable, has Hausdorf dimension n, but has
n-dimensional Lebesgue measure zero.

• If τ > n−1, Rn \Dτ has n-dimensional Lebesgue measure zero. So, the measure
of Dγ,τ tends to the full measure as γ tends to 0. On the other hand, the trace
of Dγ,τ on the unit sphere is a Cantor set.

See [2, 29, 30, 34] and references therein for proofs and additional facts.
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Proposition 4. Assume that α ∈ Dγ,τ and let 0 < s < s+ σ. If g ∈ A(Tn
s+σ), there is

a unique function f ∈ A(Tn
s ) such that Lαf = g. Besides,

|f |s ≤ Cγ−1σ−n−τ |g|s+σ,

where the number C depends only on the dimension n and the exponent τ .

This estimate calls for a comment. We have already mentionned Cauchy’s Mémoire
presented to the Accademia delle Scienze di Torino on October 11, 1831, where he
introduced and studied the so-called equations of Hamilton [9]. In the same Mémoire in
Celestial Mechanics [10] (!), Cauchy proved the remarkable formula

f(z) =
1

2πi

∫

C

f(ζ)

ζ − z
dζ,

where f is a holomorphic function in some complex domain containing a disc centered at z
and bounded by the circle C. This formula plays an essential rôle here. By differentiating
with respect to z, we get

f ′(z) =
1

2πi

∫

C

f(ζ)

(ζ − z)2
dζ.

It follows that if f ∈ A(Tn
s+σ), then

|f ′|s ≤ σ−1|f |s+σ.

More generally, any differential operator of the first order will satisfy a similar kind of
estimate. In particular,

|Lαf |s ≤ C|α|σ−1|f |s+σ, with |α| := max
1≤j≤n

|αj |.

The operator Lα is typical of KAM theory in that both Lα and its inverse behave like
differential operators, due to small denominators.

Proof. Let g(θ) =
∑

k∈Zn\{0} gk e
ik·θ be the Fourier expansion of g. The unique formal

solution to the equation Lαf = g is given by f(θ) =
∑

k∈Zn\{0}
gk
i k·α ei k·θ.

Since g is analytic, its Fourier coefficients decay exponentially: we find

|gk| =

∣∣∣∣
∫

Tn

g(θ) e−ik·θ dθ

2π

∣∣∣∣ ≤ |g|s+σe
−|k|(s+σ)

by shifting the torus of integration to a torus Im θj = −sign(kj)(s + σ).

Using this estimate and replacing the small denominators k · α by the estimate defining
the Diophantine property of α, we get

|f |s ≤
|g|s+σ

γ

∑

k

|k|τ e−|k|σ

≤
2n|g|s+σ

γ

∑

ℓ≥1

(
ℓ+ n− 1

ℓ

)
ℓτ e−ℓ σ ≤

4n|g|s+σ

γ (n− 1)!

∑

ℓ

(ℓ+ n− 1)τ+n−1 e−ℓ σ,
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where the latter sum is bounded by
∫ ∞

1
(ℓ+ n− 1)τ+n−1e−(ℓ−1)σ dℓ = σ−τ−nenσ

∫ ∞

nσ

ℓτ+n−1e−ℓ dℓ

< σ−τ−nenσ
∫ ∞

0
ℓτ+n−1e−ℓ dℓ

= σ−τ−nenσΓ(τ + n).

Hence f belongs to A(Tn
s ) and satisfies the wanted estimate. �

So, we may define F (θ, r) := L−1
α H̃1(θ, r) for a fixed value of r chosen so that α =

∂H0/∂r(r) ∈ Dγ,τ . As well, we may define partial derivatives of F with respect to r at
any order, so as to define not only the trace of a function F on Tn ×{r}, but the whole
infinite jet of a function along this torus; for instance at the first order, we may set

∂F

∂r
(r) := L−1

α

∂H̃1

∂r
(θ, r).

Borel’s lemma asserts that such an infinite jet along Tn × {r} extends to a smooth
function. Better, one can show using Whitney’s extension theorem that all such jets
taken together with r varying among values for which the frequency is (γ, τ)-Diophantine:

∂H0

∂r
(r) ∈ Dγ,τ ,

extend to a smooth function F . We have thus eliminated the dependence of H1 on θ
along all (γ, τ)-Diophantine tori.

By repeating the procedure, we may do so at any finite order in ǫ. The theorem of
Kolmogorov consists in showing the existence of a similar analyic normalization at the
infinite order, under some non-degeneracy asumption, as we will now see.

5. Statement of the invariant torus theorem of Kolmogorov

Let H be the space of germs along Tn
0 := Tn × {0} of real analytic Hamiltonians in

Tn×Rn = {(θ, r)} (Tn = Rn/Zn), endowed with the usual, inductive limit topology (see
section 6). The vector field associated with H ∈ H is

~H : θ̇ = ∂rH, ṙ = −∂θH.

For α ∈ Rn, let Kα be the affine subspace of Hamiltonians K ∈ H such that K|Tn
0
is

constant (i.e. Tn
0 is invariant) and ~K|Tn

0
= α:

Kα = {K ∈ H, ∃c ∈ R, K(θ, r) = c+ α · r +O(r2)}, α · r = α1r1 + · · · + αnrn,

where O(r2) are terms of the second ordrer in r, which depend on θ.

Let also G be the space of germs along Tn
0 of real analytic symplectomorphisms G in

Tn × Rn of the following form:

G(θ, r) = (ϕ(θ), (r + ρ(θ)) · ϕ′(θ)−1),
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where ϕ is an isomorphism of Tn fixing the origin (meant to straighten the flow on an
invariant torus), and ρ is a closed 1-form on Tn (meant to straighten an invariant torus).

In the whole paper we fix α ∈ Rn Diophantine (0 < γ ≪ 1 ≪ τ ; see [29]):

|k · α| ≥ γ|k|−τ (∀k ∈ Z
n \ {0}), |k| = |k1|+ · · ·+ |kn|

and
Ko(θ, r) = co + α · r +Qo(θ) · r2 +O(r3) ∈ Kα

such that the average of the quadratic form valued function Qo be non-degenerate:

det

∫

Tn

Qo(θ) dθ 6= 0.

Theorem 9 (Kolmogorov [24, 13]). For every H ∈ H close to Ko, there exists a unique
(K,G) ∈ Kα×G close to (Ko, id) such that H = K◦G in some neighborhood of G−1(Tn

0 ).

See [29, 32] and references therein for background. The functional setting below is related
to [17].

6. The action of a group of symplectomorphisms

Define complex extensions Tn
C
= Cn/Zn and Tn

C
= Tn

C
× Cn, and neighborhoods (0 <

s < 1)

T
n
s = {θ ∈ T

n
C, max

1≤j≤n
|Im θj | ≤ s} and Tn

s = {(θ, r) ∈ Tn
C, max

1≤j≤n
max (|Im θj|, |rj |) ≤ s}.

For complex extensions U and V of real manifolds, denote by A(U, V ) the Banach space
of real holomorphic maps from the interior of U to V , which extend continuously on U ;
A(U) := A(U,C).

• Let Hs = A(Tn
s ) with norm |H|s := sup(θ,r)∈Tn

s
|H(θ, r)|, such that H = ∪sHs be their

inductive limit.

Fix s0. There exist ǫ0 such that Ko ∈ Hs0 and, for all H ∈ Hs0 such that |H−Ko|s0 ≤ ǫ0,

(1)

∣∣∣∣det
∫

Tn

∂2H

∂r2
(θ, 0) dθ

∣∣∣∣ ≥
1

2

∣∣∣∣det
∫

Tn

∂2Ko

∂r2
(θ, 0) dθ

∣∣∣∣ 6= 0.

Hereafter we assume that s is always ≥ s0. Set K
α
s = {K ∈ Hs ∩Kα, |K −Ko|s0 ≤ ǫ0},

and let ~Ks ≡ R⊕O(r2) be the vector space directing Kα
s .

• Let Ds be the space of isomorphisms ϕ ∈ A(Tn
s ,T

n
C
) with ϕ(0) = 0 and Zs be the space

of bounded real holomorphic closed 1-forms on Tn
s . The semi-direct product Gs = Zs⋊Ds

acts faithfully and symplectically on the phase space by

(2) G : Tn
s → Tn

C, (θ, r) 7→ (ϕ(θ), (ρ(θ) + r) · ϕ′(θ)−1), G = (ρ, ϕ),

and, to the right, on Hs by Hs → A(G−1(Tn
s )), K 7→ K ◦G.

• Let ds := {ϕ̇ ∈ A(Tn
s )

n, ϕ̇(0) = 0} with norm |ϕ̇|s := maxθ∈Tn
s
max1≤j≤n |ϕ̇j(θ)|, be the

space of vector fields on Tn
s which vanish at 0. Similarly, let |ρ̇|s = maxθ∈Tn

s
max1≤j≤n, |ρ̇j(θ)|
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on Zs. An element Ġ = (ρ̇, ϕ̇) of the Lie algebra gs = Zs ⊕ ds (with norm |(ρ̇, ϕ̇)|s =
max(|ρ̇|s, |ϕ̇|s)) identifies with the vector field

(3) Ġ : Tn
s → C

2n, (θ, r) 7→ (ϕ̇(θ), ρ̇(θ)− r · ϕ̇′(θ)),

whose exponential is denoted by exp Ġ. It acts infinitesimally on Hs by Hs → Hs,
K 7→ K ′ · Ġ.

Constants γi, τi, ci, ti below do not depend on s or σ.

Lemma 0. If Ġ ∈ gs+σ and |Ġ|s+σ ≤ γ0σ
2, then exp Ġ ∈ Gs and | exp Ġ − id |s ≤

c0σ
−1|Ġ|s+σ.

Proof. Let χs = A(Tn
s )

2n, with norm ‖v‖s = maxθ∈Tn
s
max1≤j≤2n |vj(θ)|. Let Ġ ∈ gs+σ

with |Ġ|s+σ ≤ γ0σ
2, γ0 := (36n)−1. Using definition (3) and Cauchy’s inequality, we see

that if δ := σ/3,

‖Ġ‖s+2δ = max
(
|ϕ̇|s+2δ, |ρ̇+ r · ϕ̇′(θ)|s+2δ

)
≤ 2nδ−1|Ġ|s+3δ ≤ δ/2.

LetDs = {t ∈ C, |t| ≤ s} and F :=
{
f ∈ A(Ds × Tn

s )
2n, ∀(t, θ) ∈ Ds × Tn

s , |f(t, θ)|s ≤ δ
}
.

By Cauchy’s inequality, the Lipschitz constant of the Picard operator

P : F → F, f 7→ Pf, (Pf)(t, θ) =

∫ t

0
Ġ(θ + f(s, θ)) ds

is ≤ 1/2. Hence, P possesses a unique fixed point f ∈ F , such that f(1, ·) = exp(Ġ)− id

and |f(1, ·)|s ≤ ‖Ġ‖s+δ ≤ c0σ
−1|Ġ|s+σ, c0 = 6n.

Also, exp Ġ ∈ Gs because at all times the curve exp(tĠ) is tangent to Gs, locally a closed
submanifold of A(Tn

s ,T
n
C
) (the method of the variation of constants gives an alternative

proof). �

7. A property of infinitesimal transversality

We will show that locally ~Ks is tranverse to the infinitesimal action of gs on Hs+σ.

Lemma 1. For all (K, Ḣ) ∈ Kα
s+σ ×Hs+σ, there exists a unique (K̇, Ġ) ∈ ~Ks × gs such

that
K̇ +K ′ · Ġ = Ḣ and max(|K̇|s, |Ġ|s) ≤ c1σ

−t1 (1 + |K|s+σ) |Ḣ|s+σ.

Proof. We want to solve the linear equation K̇ +K ′ · Ġ = Ḣ. Write




K(θ, r) = c+ α · r +Q(θ) · r2 +O(r3)

K̇(θ, r) = ċ+ K̇2(θ, r), ċ ∈ R, K̇2 ∈ O(r2)

Ġ(θ, r) = (ϕ̇(θ), R+ S′(θ)− r · ϕ̇′(θ)), ϕ̇ ∈ χs, Ṙ ∈ Rn, Ṡ ∈ A(Tn
s ).

Expanding the equation in powers of r yields

(4)
(
ċ+ (Ṙ+ Ṡ′) · α

)
+ r ·

(
−ϕ̇′ · α+ 2Q · (Ṙ + Ṡ′)

)
+ K̇2 = Ḣ =: Ḣ0+ Ḣ1 ·r+O(r2),

where the term O(r2) on the right hand side does not depend on K̇2.
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Fourier series and Cauchy’s inequality show that if g ∈ A(Tn
s+σ) has zero average, there

is a unique function f ∈ A(Tn
s ) of zero average such that Lαf := f ′ · α = g, and

|f |s ≤ cσ−t|g|s+σ [29].

Equation (4) is triangular in the unknowns and successiveley yields:




Ṡ = L−1
α

(
Ḣ0 −

∫
Tn Ḣ0(θ) dθ

)

Ṙ = 1
2

(∫
Tn Q(θ) dθ

)−1 ∫
Tn

(
Ḣ1(θ)− 2Q(θ) · Ṡ′(θ)

)
dθ

ϕ̇ = L−1
α

(
Ḣ1(θ)− 2Q(θ) · (Ṙ + Ṡ′(θ))

)

ċ =
∫
Tn Ḣ0(θ) dθ − Ṙ · α

K̇2 = O(r2),

and, together with Cauchy’s inequality, the wanted estimate. �

8. The local transversality property

Let us bound the discrepancy between the action of exp(−Ġ) and the infinitesimal action

of −Ġ.

Lemma 2. For all (K, Ḣ) ∈ Kα
s+σ × Hs+σ such that (1 + |K|s+σ)|Ḣ |s+σ ≤ γ2σ

τ2 , if

(K̇, Ġ) ∈ ~K × gs solves the equation K̇ + K ′ ◦ Ġ = Ḣ (lemma 1), then exp Ġ ∈ Gs,

| exp Ġ− id |s ≤ σ and

|(K + Ḣ) ◦ exp(−Ġ)− (K + K̇)|s ≤ c2σ
−t2(1 + |K|s+σ)

2|Ḣ |2s+σ.

Proof. Set δ = σ/2. Lemmas 0 and 1 show that, under the hypotheses for some constant

γ2 and for τ2 = t1 + 1, we have |Ġ|s+δ ≤ γ0δ
2 and | exp Ġ− id |s ≤ δ.

Let H = K + Ḣ. Taylor’s formula says

Hs ∋ H ◦ exp(−Ġ) = H −H ′ · Ġ+

(∫ 1

0
(1− t)H ′′ ◦ exp(−tĠ) dt

)
· Ġ2

or, using the fact that H = K + K̇ +K ′ · Ġ,

H ◦ exp(−Ġ)− (K + K̇) = −(K̇ +K ′ · Ġ)′ · Ġ+

(∫ 1

0
(1− t)H ′′ ◦ exp(−tĠ) dt

)
· Ġ2.

The wanted estimate thus follows from the estimate of lemma 1 and Cauchy’s inequality.
�

Let Bs,σ = {(K, Ḣ) ∈ Kα
s+α×Hs+σ, |K|s+σ ≤ ǫ0, |Ḣ |s+σ ≤ (1+ǫ0)

−1γ2σ
τ2} (recall (1)).

According to lemmas 1-2, the map φ : Bs,σ → Kα
s ×Hs,

φ(K, Ḣ) = (K + K̇, (K + Ḣ) ◦ exp(−Ġ)− (K + K̇)),

satisfies, if (K̂, ̂̇H) = φ(K, Ḣ),

|K̂ −K|s ≤ c3σ
−t3 |Ḣ|s+σ, | ̂̇H|s ≤ c3σ

−t3 |Ḣ|2s+σ.
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Theorem 10 applies and shows that if H − Ko is small enough in Hs+σ, the sequence
(Kj , Ḣj) = φj(Ko,H −Ko), j ≥ 0, converges towards some (K, 0) in Kα

s ×Hs.

K

H

K̇

K̂ = K + K̇

H ◦ exp(−Ġ)

̂̇
H

Ḣ
K ′

◦ Ġ

Let us keep track of the Ġj ’s solving with the K̇j ’s the successive linear equations

K̇j +K ′
j · Ġj = Ḣj (lemma 1). At the limit,

K := Ko + K̇0 + K̇1 + · · · = H ◦ exp(−Ġ0) ◦ exp(−Ġ1) ◦ · · · .

Moreover, lemma 1 shows that |Ġj |sj+1
≤ c4σ

−t4
j |Ḣj|sj , hence the isomorphisms γj :=

exp(−Ġ0) ◦ · · · ◦ exp(−Ġj), which satisfy

|γn − id |sn+1
≤ |Ġ0|s1 + ...+ |Ġn|sn+1

,

form a Cauchy sequence and have a limit γ ∈ Gs. At the expense of decreasing |H −
Ko|s+σ, by the inverse function theorem, G := γ−1 exists in Gs−δ for some 0 < δ < s, so
that H = K ◦G.

Appendix. A fixed point theorem

Let (Es, | · |s)0<s<1 and (Fs, | · |s)0<s<1 be two decreasing families of Banach spaces with
increasing norms. On Es × Fs, set |(x, y)|s = max(|x|s, |y|s). Fix C, γ, τ, c, t > 0.

Let

φ : Bs,σ := {(x, y) ∈ Es+σ × Fs+σ, |x|s+σ ≤ C, |y|s+σ ≤ γστ} → Es × Fs

be a family of operators commuting with inclusions, such that if (X,Y ) = φ(x, y),

|X − x|s ≤ cσ−t|y|s+σ and |Y |s ≤ cσ−t|y|2s+σ.

In the proof of theorem 9, “|x|s+σ ≤ C” allows us to bound the determinant of
∫
Tn Q(θ)dθ

away from 0, while “|y|s+σ ≤ γστ” ensures that exp Ġ is well defined.

Theorem 10. Given s < s+ σ and (x, y) ∈ Bs,σ such that |y|s+σ is small, the sequence
(φj(x, y))j≥0 exists and converges towards a fixed point (ξ, 0) in Bs,0.

Proof. It is convenient to first assume that the sequence is defined and (xj , yj) :=
F j(x, y) ∈ Bsj ,σj

, for sj := s + 2−jσ and σj := sj − sj+1. We may assume c ≥ 2−t, so
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that dj := cσ−t
j ≥ 1. By induction, and using the fact that

∑
2−k =

∑
k2−k = 2,

|yj |sj ≤ dj−1|yj−1|
2
sj−1

≤ · · ·

≤ |y|2
j

s+σ

∏

0≤k≤j−1

d2
k+1

k

≤
(
|y|s+σ

∏

k≥0

d2
−k−1

k

)2j
=
(
c4tσ−t|y|s+σ

)2j
.

Given that
∑

n≥0 µ
2n ≤ 2µ if 2µ ≤ 1, we now see by induction that if |(x, y)|s+σ is

small enough, (xj, yj) exists in Bsj ,σj
for all j ≥ 0, yj converges to 0 in Fs and the

series xj = x0 +
∑

0≤k≤j−1(xk+1 − xk) converges normally towards some ξ ∈ Es with

|ξ|s ≤ C. �

These lecture notes were written for the Ciclo di Lezioni organized by Vivina Barutello,
Susanna Terracini and Veronica Felli at the Università di Bicocca in 2011, and for
the Jornades on interactions between dynamical systems and partial differential equa-
tions organized by Amadeu Delshams, Tere Seara and Xavier Cabre at the Universitat
Politècnica de Catalunya in 2013. Thank you to the organizers.
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[9] A. Cauchy. Extrait du Mémoire présenté à l’Académie de Turin (sans titre), Octo-
ber 11, 1831. http://www.accademiadellescienze.it/ TecaViewer/index.jsp?
RisIdr=TECA0000014562&keyworks=Cauchy.
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