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Abstract: This article is a review of two related classical topics of Hamiltonian
systems and celestial mechanics. The first item deals with the existence and con-
struction of action-angle coordinates, which we describe emphasizing the role of
the natural adiabatic invariants “ fv pdq”. The second item is the construction and
properties of the Poincaré coordinates in the Kepler problem, adapting the prin-
ciples of the former item, in an attempt to use known first integrals more directly
than Poincaré did.

1 Action-angle coordinates

1.1 Main statement and comments

Let (M, w) be a symplectic manifold of dimension 2n and F': M — B be a fibration
whose fibers M, b € B, are Lagrangianﬂ compact and connected submanifolds
of M. Roughly speaking, the theorem of the action-angle coordinates says that
locally in the neighborhood of a base point, the universal model for F' is the
canonical projection

F°:M°=DB°xT"— B°, (I,0) I,

'Sometimes, such a fibration is called a (reducible) real polarization of M [49)].
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where B° is a domain of R”, T" = R"/Z" is the n-torus and M?° is endowed with
the standard symplectic form w’ = Zj dI; A df;. All maps considered here are
smooth.

Theorem 1. For every b € B, there exist a neighborhood B(b) of b in B, a domain
B° of R", a diffeomorphism I : B(b) — B° and a symplectic diffeomorphism
(I,0) : M|y — M° above I, i.e. such that the following diagram commutes:

o)
M|B(b) —— M

g

B(b) —— B°.

The coordinates I and 6 are respectively called action and angle coordinates.

Ezxample 1. Let F = (F,...,F,) : M — R” be a family of n independent Hamil-
tonians in involution:

{F],F]} =0 (Vi,j)

rk F'(x) =n (Voz € M),

such that the levels of F' are compact and connected. Any of the components F;’s
is then often called an integrable Hamiltonian system. Due to a classical theorem
of Ehresman [17, [32], F is a fibration. The tangent space of its fibers is generated
by the Hamiltonian vector fields of Fj;, ¢ = 1,...,n. Since the F; commute, fibers
are Lagrangian and the hypotheses of the theorem are satisfied.

The history of action-angle coordinates has known several stages, which can be
sketched as follows.

e Early versions of Liouville [36] or Jacobi [25] focus on the possibility of lo-
cal integration of a Hamiltonian system (or, more generally, of an ordinary
differential equation) by quadrature. They single out the hypothesis of n
commuting independent first integrals, but they do not provide a a topolog-
ical description of the quasiperiodic tori foliation of the phase space.

e In the course of the 19th century, astronomers fill this gap, realizing the
importance and the non-genericity of the foliation of the phase space in
“multiply periodic” solutionsE in particular in integrable approximations of
the planetary problem [43].

2In addition to the integrability of differential equations by quadrature, integrability may also
refer to Pfaff systems satisfying the hypotheses of the Frobenius theorem or, more generally, to
geometric structures satisfying some flatness condition [45]. Also, some authors speak of com-
pletely integrable Hamiltonian systems, while they keep the phrase (non completely) integrable
for Hamiltonian systems with any intermediate number k € {1, ...,n} of first integrals, thus being
not integrable...

3Today, such solutions are generally called ‘quasiperiodic. Yet some authors rather call them
conditionally periodic, keeping the adjective “quasiperiodic” for conditionally periodic with an
irrational frequency vector [7].



e Several versions of the theorem of the action-angle coordinates, in the early
20th century, are related to adiabatic invariants and the Bohr—Sommerfeld
quantization (see remark [3). They are due to Gibbs-Hertz [47, Bd 1, p. 535]
(adiabatic invariance of the volume), Burgers [I1] (adiabatic invariance of
the § p; dg; for decoupled systems) and others. Poincaré [30] suggests to re-
place the Bohr—Sommerfeld rule of quantization by a rule which is invariant,
substituting an integral invariant for the p; dg;’s; he also raises the issue of
the question of the uniqueness of the system of adiabatic invariants (see also
Einstein’s quantization [I8]). Epstein discusses how degeneracy induces am-
biguity in the choice of adiabatic invariants and thus in quantization [19].
Levi-Civita [34] and Mineur [39] seemingly prove the modern statement on
action-angle coordinates.

e Landau-Lipschitz treats of adiabatic invariants in a way close to Mineur [29].
Arnold uses a more modern geometric language [3, [6].

e Some unnecessary hypotheses, such as the functional independence of the
action variables and the exactness of the symplectic form, are removed
in |16 26, 37], with variants [7, 24, 35]. Usually these proofs build some
angle coordinates by straightening the period lattice of the flow of the first
integrals, and then define the action variables as the variables which are
symplectically conjugate to the angles. In order to prove integrability by
quadrature, one eventually needs to show how these coordinates relate to
the natural adiabatic invariants (e.g., see [16]).

e Generalizations in several directions: refined integrability properties [4, 27],
geometric quantization [49], globalness and monodromy of the action [153]
[16], singular fibrations [33], or, non-commuting integrals (the question then
interestingly relates to weak KAM theory) [12].

Here we will review the proof of theorem [ in the lines of Duistermaat and
Guillemin-Sternberg [16], 24], with only minor differences aiming at practical com-
putations, in relation to the second section of this article.

1.2 Toral actions

Lemma 1. Let V' be a real vector space of finite dimension n, acting on a compact
connected manifold X of dimension n. The action is transitive if and only if it is
infinitesimally transitive, in which case X is diffeomorphic to T".

Forallz € X,let p, : V — X, v — p,(v) = v-x. Recall that the action is transitive
if the orbit p, (V') is the entire X for all x € X, and that it is infinitesimally
transitive if p/,(0) : V — T, X (derivative of p, at v = 0) is an isomorphism for all
reX.



Proof. By the definition of an action, if x € X and v € V we have p,(v + h) =
v - pz(h) for all h € V. Hence, by differentiating with respect to h,

P(v) = v'(z) - p(0)

and, since v'(x) is an isomorphism, p/.(0) is an isomorphism if and only if, for all
v, p.(v) is one.

So, if the action is infinitesimally transitive, by the inverse function theorem, the
orbit p, (V) of z is open. Since X is compact, X is covered by a finite union of
orbits. Since X is connected, there can only be one orbit. Thus the action is
transitive.

Conversly, if the action is not infinitesimally transitive, due to the remark above,
pl.(v) is invertible for no v € V', so the whole orbit p, (V") consists of critical values
of p, and, by Sard’s theorem, has measure zero. So, the action is not transitive.

Assume again that the action is transitive. Let z and y be any two points of X.
Since the action is transitive, the stabilizers of x and y are conjugate. Since V'
is an Abelian group, the stabilizers agree. Let L C V be the common stabilizer
of points of X. As already mentioned, due to the infinitesimal transitivity of the
action, p, is a local diffeomorphism in the neighborhood of v — v-x for every z and
v. Hence L has only isolated points, hence L is discrete. So, L is a lattice [, [46].
Since X is compact, L is a maximal lattice. So, V/L is compact, hence an n-torus.
Since X is diffeomorphic to V/L, X itself is an n-torus. O

The above stabilizer L is called the period lattice of the action.

Example 2. Let &,...,&, be n vector fields on X, commuting and everywhere
independent:

{[@,@] =0 (Vi)
Span (& (z), ...,&(z)) =T, X (Vz € X).

Then the “joint flow of the &;’s”
R'x X = X, (0,2) = 6(2) = o 00 71 (@),

where gogl is the time-v; of the flow of &;, is an infinitesimally transitive action.

1.3 Lagrangian fibrations

We now aim at proving theorem [Il Let F': M — B be as in the statement.

Lemma 2 ([24]). There is a transitive action of T*B on M and fibers of F are
n-tori.

Proof. Let b € B and x € M,. The cotangent map F*(x) : T B — T, M composed
with the isomorphism TXM — T, M induced on the left by w (inverse of X, —



i(X,)w) allows us to associate to a cotangent vector §, € Ty B a vector (3, tangent
to M at every point x in the fiber of b, characterized by the equation

i(Br)w = F*(x) - By.

Since the 1-form F*(z) - f§, vanishes on vertical vectors, it induces an element of
the normal bundle N} (M,) = TiM/Ker T, F of the fiber at z. Since the fiber is
Lagrangian (otherwise said, equal to its own w-orthgogonal), w identifies N} (M,)
with the vertical tangent space T, (Mj). So, 3, is vertical and the map

Ty B — To(My), By Ba

is an isomorphism. Since the fibers are compact, the vector field B can be expo-
nentiated into a fibered diffeomorphism, which we will simply denote by £.

For this construction to define an action, we need that, if 3, 5, € T, B, their
associated diffeomorphisms commute. Let h; and hs be functions on B such that

B; = hi(b), i =1,2. If x € M,,
(hio F)'(z) = F*(x) - 8,

hence, the vector field X
Bi(x) = Xpep, ()

is the restriction of a Hamiltonian vector field and, since fibers are Lagrangian,
1B, Bale = {F 1, F*ho}y = wo(Xpen,, Xpep,) = 0.

We have thus defined an action of 7, B on the fiber M,, for all b € B. The action
is infinitesimally transitive. Hence, according to lemma Il the action is transitive
and fibers of F' are n-tori. . O

A first consequence of lemma[] (and its proof) is the existence of local Lagrangian
submanifolds of M which are transverse to the fibers.

Lemma 3. If 5 is a 1-form on B,
ffw=w+ F*dp

where on the left hand-side [ is thought of as a diffeomorphism of M. Conse-
quently, there exists a section of F' whose image is Lagrangian.

Proof. 1f 8 is a 1-form on B,

Brw=w+ /1 (tB)" Lywdt
0

1
=w+ / (tB)* di(f)w dt (Cartan formula)
0
1
=w+ / (tB)* F*dp dt (by definition of 3)
0
=w+ F*dp (because F o (t3) = F).



Now, let 0y : B — M be a section of F. There is a 1-form S on B such that
oyw = df. From lemma[2] and using the fact that F o oy = id,

((=B) o 0p)*'w = o5(w — F*dB) = 0.
So, the section o = (—f) - 0y is Lagrangian. O

The next lemma is a key step towards understanding the structure of M. We
endow 7™ B with its canonical symplectic form, which we denote by w°.

Remark 1. In the construction of lemma 2] we may replace F' by the canonical
projection m : T*B — B. If g € T; B, the vertical vector field B" along the fiber of
b is defined by i(Bo)w" = r* - . If one identifies the tangent space at v € T;B of
Ty B with T; B, f3° identifies with /3, seen as a constant vertical vector field. Thus
B” exponentiates (despite the fiber being not compact) into a diffeomorphism £°
of T;B, which is just the vertical translation:

By =B+
Lemma 4. Let o be a Lagrangian section of F'. The map
X:T*B— M, [y By-o(b)
15 symplectic.
T*B
7B

S
LA

b

Proof. Let us first prove that y is symplectic at some point (b, 0) of the zero-section
0p of T*B. The tangent space of T*B at (b, 0) splits into its horizontal and vertical
subspaces, T(4,0)0p and T(;0) T, B, both Lagrangian. The derivative x’ maps these
subspaces respectively to the tangent spaces at o(b) of the image of o and of the
fiber M,, both of which are Lagrangian too. So it is enough to check that

X*W(Ba U) = wo(ﬁa u)

with 3 € Tp0)Ty B = Ty B and u € T(;5)0p = Ty B. For such vectors 3 and u, on
the one hand we hav

w’(B,u) =B - u.

“Here we choose between the two possible signs of the canonical symplectic form.




On the other hand, we have

X B=Ppy and X -u=0""u,

hence

X'w(B,u) = w(Brwy, 0 - u)
=F"B- (0" u) (by definition of 3)
=p-u (using that F oo =id ).

Let us now consider any point v € T;"B not necessarily on the zero-section. First
notice that

Box(y)=p-(y-a(b))
=(B+7)-0(b)
= x 0 [°(7).

Now, if 4 and v are two vectors tangent to T*B at v, they are of the form

u=7"-u, and v=9" 1

with uy, v tangent to T*B at (b,0), and

X w(u,v) = (x07°) w(ui, v1)
= (70 x) w(u1,v1)
=y'wx - u, X' - v1)
=w(X ur, X )+ Frdy(x' -, X on) (lemma [3])
= w’(ur, v1) + 7 dy(u1, v1)
(x is symplectic along O and F o y = )

= w’(u,v) (lemma [3] and remark [T).

O

Remark 2. The Poincaré lemma relative to a fiber M, shows that w is exact (al-
though H2(M,R) = H2(T",R) is not trivial if n > 2)J3

Let A be a primitive of w and 7(b), ..., 7,(b) be smooth generators of the funda-
mental group of M, with basepoint o(b), varying smoothly with b € B. Define T

by
Ii:j[ N, i=1,..m, (1)
¥ (b)

and 6 as the (multi-valued) dual variables of I such that # = 0 on o(B).

®This is assumed in [6] and shown using a first version of the action-angle variables in [16]. If X
is Lagrangian, this also follows from the fact that the only symplectic invariant of a neighborhood
of X is the diffeomorphism class of X itself [38], [48].



Lemma 5. If B is simply connected, the variables (I,0) induce action-angle co-
ordinates M — R™ x T™, which form a diffeomorphism locally in the neighborhood
of any fiber of F.

Theorem [I] follows from this lemma, by setting B® = I(M).

Proof. It J = (J1,...,J,) : B — R" is a coordinate system over B, the natural
symplectic coordinates associated with J over T*B is (J, ), with ¢; = 8/0.J;, i.e.

0
i,

©i(Bs) = By i=1,.,n, B €T;B.

We want to compute the coordinates I; in terms of such well chosen coordinates
(J, ), in order to see that (1) the I;’s are independent, (2) (7, #) is symplectic and
(3) 0 is T"-valued.

Since the map x is a local diffeomorphism everywhere, the set L = x~'(o(B))
of elements of T*B acting trivially on M is a submanifold of dimension n (with
countably many connected components). Besides, x being symplectic and o(B)
being Lagrangian, L itself is Lagrangian. Due to lemma [I the trace of L on a
fiber Ty B is a maximal lattice Lj.

Let b € B. Using ¥, lift the loops v;(b) (i € {1,...,n}), to paths 3;(b) in T)}B
starting at (b,0) and ending at some points 3;(b) € T, B. Since (y1(b), ..., va(b)) is
a basis of the fundamental group of M,, the so-defined (/31(b), ..., Bn(b)) is a basis
of Ly over Z. When now b is varied, the covectors 3;(b) extend to uniquely defined
1-forms Sy, ..., 8,, whose disjoint images are n connected components of L. Since
L is Lagrangian, the 1-forms ; are closed: there are functions .Ji,...,.J, over B
such that

BZ:dJZ, 1= 1,,77,

That the ;’s form a basis of the lattice subbundle entails that the .J;'s are inde-
pendent, and thus form a coordinate system over B. Define the dual coordinates
©1, .-, n (as above for I and 0), by letting ¢; be the tangent vector field ¢; = 9/0J;
over B.

Define the primitive

N = Z sz(;pz

1<i<n

of the symplectic form w. Since x is symplectic, x*A — A? is closed in T*B, hence
exact: x*A — A = dS, for B is simply connected by assumption. Note that
S : M — R is L-periodic, and, for every i = 1, ..., n, the function

is constant equal to some ¢; € R.

Since for a given b € B the fiber T B is Lagrangian, the integral

L(b) = / YA
71(b)
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depends on 7 (b) only through its homotopy class, and we may replace 7, (b) by
the path with the same endpoints

71(b) = (J(b), (21,0, .-,0))o<p <1,

and similarly for I, ..., I,,. Thus, fori=1,...,n,

¥i (b)°

/ (A° + dS)
i (b)°

Consequently, I; differs from .J; by a mere constant and 6; = ¢; o x~' (mod Z"),
where y~! stand for any inverse branch of . O

Remark 3 (Adiabatic invariants). The action coordinates I; defined by (II) play an
important role in classical dynamics because of their adiabatic invariance, i.e. their
invariance under infinitesimally slow perturbations [40]. They also play a crucial
role in the Sommerfeld quantization, which is explained by Ehrenfest’s “adiabatic
hypothesis”: quantities which are to be quantized must be adiabatically invariant,
because, on perturbing the system, these quantities would have to remain integral
multiples of the Planck constant [41].

There are numerous examples illustrating theorem [, for example in the book [7].
Examples closely related to next section’s topic are the Delaunay coordinates
(see [13| [44], or [22] Appendix]@ for a closer viewpoint), or action-angle coordi-
nates of the non-Newtonian Kepler problem [23].

2 The Poincaré coordinates

The Poincaré variables are symplectic coordinates in the phase space of the Kepler
problem, in the neighborhood of horizontal circular motions. Determining such
coordinates departs from the abstract setting of the first section in two respects:

e The Kepler problem is super-integrable in the sense that it has more in-
dependent (non commuting) first integrals than degrees of freedom, so the
dynamics is degenerate and does not determine in itself a full set of coordi-
nates.

e The action of rotations is degenerate at circular Keplerian ellipses, in the
sense that dH A dC' = 0 with the notations below.

6This appendix is really on the Delaunay coordinates, and does not prove the analyticity of
the Poincaré coordinates.



The Poincaré variables are the closer to being action-angle coordinates in this
situation. Despite being of prime importance in perturbation theory [2] 14} 21], [43]
(see also more complicated, Deprit-like coordinates of the N-body problem in [14],
42]), they have few complete descriptions in the literature (see [9], 10, 13| [44]
for proofs at various levels of precision), all of which are based on Poincaré’s
computation, through the Delaunay coordinates.ﬁﬁ This computation requires a
good deal of intuition —which Poincaré did not lack.

Here we aim at providing a slightly more direct construction (although symplec-
ticity is always more simple to check by relating the Poincaré coordinates to the
Delaunay coordinates), trying to find out the definition of the coordinates at the
same time as proving their properties.

In the sequel, we will set T" = R"/27xZ" (as opposed to R"/Z™ as in the first
section) for the sake of convenience.

2.1 Reminder on the plane Kepler problem

We start with the plane problem because it is an interesting intermediate step, with
simpler computations. In this section, we recall some elementary (non symplectic)
facts.

Consider the equation
" q
§=—73 acC\{0}, r=lqf (2)

references are so numerous that we give up advising any one of them. The phase
space is the set {(¢,q)} = C x (C\ {0}).

e The angular momentum
C=1Im(q4) = zy — yi
is preserved, as in any central force problem (Kepler’s second law).

e The eccentricity vector
E=24icq
r

too is preserved, this time in contrast to other central forces than Newton’s.
The equation of an orbit can be obtained by eliminating the velocity from
C and E: )

Re (Eq) =r — C? (3)
which is the equation of the conic with a focus at the origin (Kepler’s first
law), of eccentricity ¢ = |E| and with directrix D : Re (Eq) + C? = 0.

"In the first edition of [I], the Delaunay and Poincaré coordinates are wrongly found non
symplectic!

8In the unpublished note [20] on the plane Poincaré coordinates, it is wrongly claimed that
the analyticity of the Poincaré coordinates was not proved by Poincaré. Poincaré did prove that
the inverse map is analytic (and in particular, that the Hamiltonian is an analytic function of
the Poincaré coordinates), which, due to the inverse function theorem, is equivalent to proving
that the coordinate map itself is analytic.
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e The Hamiltonian

_ P 1

2 r

(denoted H by Lagrange in reference to Huygens [28]) too is a first integral.
The dynamics is that of the Hamiltonian vector field of H with respect to
the standard symplectic form, w = Re (dp A dg).

H

Because of the symmetry about the origin, it is useful to switch to polar coordi-
nates. The cotangent map of the “polar coordinate” map (r,0) — q¢ = r e is the
diffeomorphis

Pol : R* xR} xT — Cx (C\{0}), (R,0,7,0)+ (4,q) = ((R + 29> ew,rei0> :

,
The (pull-backs by Pol of the) first integrals are

R 0 1 : 0?2
H=—"+-——-- C=0 and F=¢"(1-—"—4iOR). (4)
2 2r2  r r

The polar representation of F is
E=+V1+2H0%eY, (5)

where the argument ¢ is easily computed when R = 0: it is the argument of the
pericenter of the conic (when the conic is a circle and the pericenter thus not
defined, E = 0 is well defined, of course).

From now on, we restrict to negative energies. If @ is the semi major axis, r varies

between a(l — €) and a(1 + €). These two extremal values are the roots of the
. . 2 .

quadratic equation H = & — %, so their sum and product are

o2
1 C?
% = —— 2] _ ) = _ |
o=—gp wd a(l-c)=—op
Hence, using (5,

1

~55 C=+a(l—¢), and E =cee"; (6)
a

we will use that these functions are analytic.

H =

Now, according to Kepler’s second law, the area swept by ¢ grows with constant
speed C'/2. Since the area of the ellipse is mab = ma?y/1 — €2, the following relation
holds between the period 7" and the elliptic elements:

ra*y1 — e? e
T 2

and, thanks to the remarkable disappearance of the eccentricity (use (6])), so does
Kepler’s third law:
T = 27a®>.

We will also use three classical angles, defined when the ellipse is not circular{d

9 Another way to compute the conjugate variable of 6 is to think of © as the momentum
i(X) pdq of the rotational vector field X.
1ONotations here follow Poincaré’s quite closely.
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Figure 1: Eccentric, mean and true anomalies (u, v, £)

e the mean anomaly ¢ is the angle which is proportional to the area, counting
from the pericenter (Kepler’s second law says that ¢ increases linearly with
time)

e the eccentric anomaly u is defined on figure [I]

e the true anomaly v =20 —g.

Elementary geometry yields Kepler’s fundamental equation
¢ =u—esinu, (7)

which shows that ¢ is a transcendant function of ¢ (see Newton’s proof in [5]), that
u does vary around the whole circle, etc.

We will need one more fact. The anomalies u, v or ¢ are not analytic, nor even
defined, at circular motions. In contrast, the eccentric longitude w = u + g is
analytic. Indeed, elementary geometry again shows that

rcosv = a(cosu — €)
rsinv = ayv1 — e€2sinu.

Solving these two equations for cosu and sinu allows us to express trigonometric
functions of w in terms of v = # — g: for example,
r

cosw = (— cos(f —g) + 6) cos g —
a

’
a1 — e?

r e
=— |:C089—|— <— — 1) (congCOSG—i—cosgsingsin@) + €cos g;

Va® Va

sin(f — g)sing

12



the right hand side is real analytic because % —1=vV1—-€e—-1=0(), and
FE = €e¥ is analytic. The function sinw can be seen to be real analytic similarly.

So, w is real analytic.

2.2 Plane Poincaré variables

Consider the plane Kepler problem with negative energy and, say, positive angular
momentum. The phase space is diffeomorphic to R?* x T! and has coordinates
(R,r,0,60) and symplectic form w = dR A dr + d© A db.

Keplerian action variable A First consider the problem reduced by rotations,
in the symplectic space K = {(R,r)} ~ R?, with the angular momentum © as a
parameter. The reduced Hamiltonian H = Hg(R,r) has an elliptic singularity at
(R,r) = (0,0?), corresponding to circular motions. Locally outside the singularity,
the energy H and the time ¢ (counted from some section of the flow of H, which
we do not want to specify at this stage) form some symplectic coordinates. We
would like to switch to some coordinates (A, \) where the action is a well chosen
function of H, so that the dual coordinate A be an angle, defined modulo 27:

dH A dt = dA A d),
where A = A(H) and X = #5¢. Hence,

2
dH A dt = “ZN/(H) dH A dt,

T
or 3/2
A’:£:a3/2: _L
27 2H ’
or, if we choose the primitive vanishing at H = —o0,
1

A= ﬁ(—H)_l/2 = Va.

Up to now, A, is only determined up to the addition of a first integral.

Remark 4. The above computation of A’ can be recovered from the expression of

the action coordinate given in the previous section (up to a factor 27 due to the

fact that we then took circles of length 1). Indeed, denoting by X; the (globally

defined) Hamiltonian vector field of ¢, by (¢g) its flow (with “time” H) , and by
1

Hy = 555 the value of the Hamiltonian at circular motions,
1

A,(H) = %Xt . f ¢*I<{7H0R dr
H=Hj,
1
Y H=1H,
1
27 Jy—m,
T

Or , Lx, R dr)

4w, (dt +dix,Rdr) (Cartan formula)
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The Keplerian action variable A lifts to an analytic variable in the non-reduced
phase space (analyticity follows from (@)).

Eccentric variable F' One could check that the symplectic transformation
(R,r) — (A, ) in the reduced space lifts to an essentially unique symplectic
transformation (R,r,©,60) — (A, A\, Fy, F») in the full phase space, possibly using
a generating function. But this computation is more involved than necessary (a
similar computation is made in [23] in the non-Newtonian two-body problem at
the second order in the eccentricity). We will make a much shorter computation,
completed by geometric arguments.

Consider the space £ of Keplerian ellipses of fixed energy H < 0. For an ellipse
in the plane, to be Keplerian means that it is oriented and has a focus at the
origin. In addition to that, Keplerian ellipses in £ have a fixed semi major axis.
Including degenerate ellipses corresponding to collision orbits of eccentricity 1, £
is diffeomorphic to S?. Outside the poles { N, S} corresponding to circular ellipses,
it bears the coordinates (0O, g), where ¢ is the argument of the pericenter. Since
the flow of ©® = C consists of rigid rotations in the plane, the Poisson bracket of
© and g is {©, g} = 1, hence the symplectic form induced from w on £\ {N, S} is
we = dO A dg.

We will focus on the open hemisphere £1 of £ consisting of direct, non-degenerate
ellipses; this domain is defined in £ by the inequality © > 0l Over ET, the
excentricity vector E is a (complex-valued) real analytic coordinate, unfortunately
not symplectic, since, using the expression (), we get

1 - ©

Let us first look to the case A = 1. We will look for a real analytic symplectic
coordinate F' obtained by multiplying F (not E because of the negative sign in
(8)) by a positive real analytic function f of © €]0, 1]:

F=f(O)FE. (9)

Direct computation yields
1 -
2_idF ANdF = [6f(@)2 -(1- @2)f(@)f'(@)] dO N dg. (10)

The requirement that F' be symplectic is equivalent to imposing that the expression
in brackets equal 1. In the unknown ¢ = f2, the equation becomes

(1-0%)¢'(0) =2(0¢(8) - 1).

Solutions are of the form
B 20 + ¢
11—

"' One can similarly define dual Poincaré coordinates over the hemisphere of negatively oriented
ellipses.

©(0) ceR
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The only solutlon analytic (and even contmuous) at © = 1 corresponds to ¢ = —2

ie., ¢(0) = 1+—® ie, FF=4/2(1- ~%9_ For a general value of the parameter
A, by homogeneity (F having the d1mens10n of v/A and © having that of A), one
gets

F=v2 —e = /2(A —O)e . (11)
Lemma 6. The coordinate F' is real—analytz'c and symplectic over ET.

That F' be symplectic has already been proved. That it is analytic follows from
the formula

Mean longitude A The variable F' can be lifted to the full phase space of the
plane Kepler problem. We need to show that the coordinates (A, A, F') are analytic
and symplectic, provided that we make some adequate choice of a real analytic
section of the flow of A to define A = ¢ + cst; this choice of constant corresponds
to choosing an analytic Lagrangian section in lemma [Bl Define A as the mean
longitude

A={l+g;

this choice is primarily motivated by the first argument given in the proof of the
following statement.

Lemma 7. The coordinate system (A, \, F) is real analytic and symplectic in the
neighborhood of direct circular Keplerian motions.

Only A is not yet known to be analytic. Adding g to Kepler’equation () yields
A =w — esin(w — g) = w + Im (Ee ™),
where both E and w are analytic. So A is analytic.

We need to show that the coordinate system is symplectic. By continuity, it is
enough to check this outside circular motions. Recall that the “symplectic polar
map”

R xT = C, (po) = z=1/2pe" (12)
is symplectic: 2% F*(dz Adz) = dp A d¢. So, the question reduces to checking that
(A, A\, A — ©,—g) is symplectic, or, equivalently, that the Delaunay coordinates
(A, 4,0, g) are symplectic.

Since the matrix of the symplectic form is the inverse of the matrix of the Poisson
structure, we will check that the Poisson brackets are given by the standard matrix.
We know that {A,0} = {A, ¢} = {©,g9} = 1. Three Poisson brackets remain to
be checked:

e {O,/} = 0 because the flow of © acts by diagonal rotations in the phase
space.
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e {A,g} =0 because g is a first integral of H = H(A).

e {/, g} does require some computation: according to Jacobi’s identity,

{A {6 g1} ={6,{t,g}} =0,

so it is enough to prove that {¢, g} = 0 on the codimension-2 submanifold
¢ =g =0 (mod 27), a section of the L- and ©-flows. So, without loss of
generality we may thus assume that the body is on the major axis and that
the major axis itself is the first coordinate axis. Then the partial derivatives
of £ and g with respect of z or p, are zero, and

2.3 Reminder on the spatial Kepler problem

Now consider the same equation as in (2) but with ¢ = (z,y,2) € R® \ {0}. We
will again restrict to negative energy

and non collision motions (¢ A ¢ # 0). Due to the equivariance of the equation by
orthogonal symmetries, a solution ¢(¢) is drawn on the vector plane generated by

q(0) and ¢(0).
Redefine the angular momentum and the eccentricity vector respectively as
. 3 3 3 =~ q a
C=qNGeR AR’ =R’ and F=-=+1i(q)C,
r
with r = [l¢|| and i(¢)C = (¢ - ¢)¢ — ¢*¢-
We will need extensions of ee’ and of the eccentric longitude w in space. Let
R,(a) € SO; be the rotation around a vector ¢ € R® of angle o, R,(a) =
PR1,0,0) (), and similarly for rotations around the two other vectors of the canoni-

cal basis of R*. When the orbital plane is not the “horizontal” plane (zy-plane),
define

e the inclination 1, or the angle of the orbital plane with respect to the hori-
zontal plane,

e A, the oriented direction of the ascending node (half line from the center of
attraction to the point of the Keplerian ellipse where z = 0 and 2 > 0),

e the longitude of the node ¢, or the angle between the z-axis and A.

16



Since E lies in the orbital plane, % (—¢)E is horizontal. The fortunate fact is that
this rotation matrix is an analytic function of ¢ and ¢. Indeed, using a classical
decomposition (see [31]), we see that

Ra(t) = R(@)R(/2)R(/2)R (=)

1—2a® 2af —2ary
— | 208 1-282 28y ,
20y —2By 1 —2a%—2p?

where we have used the auxiliary notation

e e . fircje

Identifying %A (—1)E € R? x {0} to a complex number, define the analytic variable
E =Ra(—1)E = ec0t9) ¢ C.

Moreover, the computation analogous to the one made in the plane shows that
now the eccentric longitude
w=u+g+e

is analytic.

2.4 Spatial Poincaré coordinates

Horizontal variables The plane coordinates (A, A, F') extend to real analytic
variables in a neighborhood of circular coplanar Keplerian motions in the spatial
phase space {(¢,q)} = R® x (R* \ {0}), in the following manner:

e A = \/a, where a is the semi major axis. Due to the invariance of the
Hamiltonian by rotations, the relation H = —i still holds in space, showing
that a and thus A are real analytic.

e \=/+ g+ .

o F=./2(A-0)e7ilst¥) = /2 F

1+

Only A is not obviously analytic. But, this follows from Kepler’s equation [7, to
which one can add g + ¢ (instead of ¢ in the plane), to get

A =w — esin(w — ¢ — g) = w + Im (Ee ™),

and from the fact that F and the eccentric longitude w are analytic.
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Oblique variable The complex-valued variable
'=0C, +:Cy =—-ivVO? — P2 e, with ® =C, =0Ocos,

can be added to (A, A, F') to form an analytic coordinate system in space. Unfor-
tunately, (A, A, F,T') is not a symplectic since, in restriction to the tangent space
generated by 0/0z and 0/0%,

%dFAdF:(LdZAdm

Looking for a symplectic modification of I" of the form G = f(0, ®)I by carrying
out an analogous computation of the symplectic form as after (), using spherical

coordinates, one can find .
G=+20-9)e ",

another way to build spatial coordinates from the plane ones is described in [50].
G is analytic because B
v2 T

G=———.
T O+

Theorem 2. The coordinate system (A, \, F, G) with

A=/
A=l+g+o
F = 3(A = ©)-ils+9)

G=./2(0—d)e

s analytic and symplectic in the neighborhood of direct circular horizontal Keple-
rian motions.

Only the property of being sympletic remains to be proved. Since the map (I2)) is
symplectic, by continuity it suffices to show that the coordinate system

(Aa)‘aA_Ga_g_(Pa@_q)v_(P)

(defined outside horizontal or circular motions) is symplectic, or, equivalently, that

the Delaunay coordinates
(A'7 g? (—)7 g7 ®7 (IO)

are symplectic.

e Poisson brackets with A, © and ® are all 0, except {A, ¢} = {©,9} =
{®, ¢} =1 (we know the flows of A, © and ).

e The three Poisson brackets between pairs of angles among ¢, ¢ and ¢ vanish.
Indeed, as in the plane, the Jacobi identity shows that it is enough to check
those Poisson brackets on the submanifold {¢{ = g = ¢ = 0 (mod 7)}. But
on this submanifold the partial derivatives of any of the angles with respect
to , py or p, vanish.
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This completes the proof of theorem [2

Thank you to A. Albouy and A. Chenciner for their critical reviewing and to P.
Robutel for advertising the eccentric longitude to me. The author has been partially
supported by the French ANR (projet ANR-10-BLAN 0102 DynPDE).
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