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Abstra
t: This arti
le is a review of two related 
lassi
al topi
s of Hamiltonian

systems and 
elestial me
hani
s. The �rst item deals with the existen
e and 
on-

stru
tion of a
tion-angle 
oordinates, whi
h we des
ribe emphasizing the role of

the natural adiabati
 invariants \

H




p dq". The se
ond item is the 
onstru
tion and

properties of the Poin
ar�e 
oordinates in the Kepler problem, adapting the prin-


iples of the former item, in an attempt to use known �rst integrals more dire
tly

than Poin
ar�e did.

1 A
tion-angle 
oordinates

1.1 Main statement and 
omments

Let (M;!) be a symple
ti
 manifold of dimension 2n and F : M ! B be a �bration

whose �bers M

b

, b 2 B, are Lagrangian,

1


ompa
t and 
onne
ted submanifolds

of M . Roughly speaking, the theorem of the a
tion-angle 
oordinates says that

lo
ally in the neighborhood of a base point, the universal model for F is the


anoni
al proje
tion

F

o

: M

o

= B

o

� T

n

! B

o

; (I; �) 7! I;

1

Sometimes, su
h a �bration is 
alled a (redu
ible) real polarization of M [49℄.
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where B

o

is a domain of R

n

, T

n

= R

n

=Z

n

is the n-torus and M

o

is endowed with

the standard symple
ti
 form !

o

=

P

j

dI

j

^ d�

j

. All maps 
onsidered here are

smooth.

Theorem 1. For every b 2 B, there exist a neighborhood B(b) of b in B, a domain

B

o

of R

n

, a di�eomorphism I : B(b) ! B

o

and a symple
ti
 di�eomorphism

(I; �) : M j

B(b)

!M

o

above I, i.e. su
h that the following diagram 
ommutes:

M j

B(b)

(I;�)

//

F

��

M

o

F

o

��

B(b)

I

//
B

o

:

The 
oordinates I and � are respe
tively 
alled a
tion and angle 
oordinates.

Example 1. Let F = (F

1

; :::; F

n

) : M ! R

n

be a family of n independent Hamil-

tonians in involution:

(

fF

j

; F

j

g = 0 (8i; j)

rkF

0

(x) = n (8x 2M);

su
h that the levels of F are 
ompa
t and 
onne
ted. Any of the 
omponents F

i

's

is then often 
alled an integrable Hamiltonian system.

2

Due to a 
lassi
al theorem

of Ehresman [17, 32℄, F is a �bration. The tangent spa
e of its �bers is generated

by the Hamiltonian ve
tor �elds of F

i

, i = 1; :::; n. Sin
e the F

i


ommute, �bers

are Lagrangian and the hypotheses of the theorem are satis�ed.

The history of a
tion-angle 
oordinates has known several stages, whi
h 
an be

sket
hed as follows.

� Early versions of Liouville [36℄ or Ja
obi [25℄ fo
us on the possibility of lo-


al integration of a Hamiltonian system (or, more generally, of an ordinary

di�erential equation) by quadrature. They single out the hypothesis of n


ommuting independent �rst integrals, but they do not provide a a topolog-

i
al des
ription of the quasiperiodi
 tori foliation of the phase spa
e.

� In the 
ourse of the 19th 
entury, astronomers �ll this gap, realizing the

importan
e and the non-generi
ity of the foliation of the phase spa
e in

\multiply periodi
" solutions,

3

in parti
ular in integrable approximations of

the planetary problem [43℄.

2

In addition to the integrability of di�erential equations by quadrature, integrability may also

refer to Pfa� systems satisfying the hypotheses of the Frobenius theorem or, more generally, to

geometri
 stru
tures satisfying some 
atness 
ondition [45℄. Also, some authors speak of 
om-

pletely integrable Hamiltonian systems, while they keep the phrase (non 
ompletely) integrable

for Hamiltonian systems with any intermediate number k 2 f1; :::; ng of �rst integrals, thus being

not integrable...

3

Today, su
h solutions are generally 
alled `quasiperiodi
. Yet some authors rather 
all them


onditionally periodi
, keeping the adje
tive \quasiperiodi
" for 
onditionally periodi
 with an

irrational frequen
y ve
tor [7℄.
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� Several versions of the theorem of the a
tion-angle 
oordinates, in the early

20th 
entury, are related to adiabati
 invariants and the Bohr{Sommerfeld

quantization (see remark 3). They are due to Gibbs-Hertz [47, Bd 1, p. 535℄

(adiabati
 invarian
e of the volume), Burgers [11℄ (adiabati
 invarian
e of

the

H

p

i

dq

i

for de
oupled systems) and others. Poin
ar�e [30℄ suggests to re-

pla
e the Bohr{Sommerfeld rule of quantization by a rule whi
h is invariant,

substituting an integral invariant for the p

i

dq

i

's; he also raises the issue of

the question of the uniqueness of the system of adiabati
 invariants (see also

Einstein's quantization [18℄). Epstein dis
usses how degenera
y indu
es am-

biguity in the 
hoi
e of adiabati
 invariants and thus in quantization [19℄.

Levi-Civita [34℄ and Mineur [39℄ seemingly prove the modern statement on

a
tion-angle 
oordinates.

� Landau-Lips
hitz treats of adiabati
 invariants in a way 
lose to Mineur [29℄.

Arnold uses a more modern geometri
 language [3, 6℄.

� Some unne
essary hypotheses, su
h as the fun
tional independen
e of the

a
tion variables and the exa
tness of the symple
ti
 form, are removed

in [16, 26, 37℄, with variants [7, 24, 35℄. Usually these proofs build some

angle 
oordinates by straightening the period latti
e of the 
ow of the �rst

integrals, and then de�ne the a
tion variables as the variables whi
h are

symple
ti
ally 
onjugate to the angles. In order to prove integrability by

quadrature, one eventually needs to show how these 
oordinates relate to

the natural adiabati
 invariants (e.g., see [16℄).

� Generalizations in several dire
tions: re�ned integrability properties [4, 27℄,

geometri
 quantization [49℄, globalness and monodromy of the a
tion [15,

16℄, singular �brations [33℄, or, non-
ommuting integrals (the question then

interestingly relates to weak KAM theory) [12℄.

Here we will review the proof of theorem 1 in the lines of Duistermaat and

Guillemin-Sternberg [16, 24℄, with only minor di�eren
es aiming at pra
ti
al 
om-

putations, in relation to the se
ond se
tion of this arti
le.

1.2 Toral a
tions

Lemma 1. Let V be a real ve
tor spa
e of �nite dimension n, a
ting on a 
ompa
t


onne
ted manifold X of dimension n. The a
tion is transitive if and only if it is

in�nitesimally transitive, in whi
h 
ase X is di�eomorphi
 to T

n

.

For all x 2 X, let �

x

: V ! X, v 7! �

x

(v) = v�x. Re
all that the a
tion is transitive

if the orbit �

x

(V ) is the entire X for all x 2 X, and that it is in�nitesimally

transitive if �

0

x

(0) : V ! T

x

X (derivative of �

x

at v = 0) is an isomorphism for all

x 2 X.
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Proof. By the de�nition of an a
tion, if x 2 X and v 2 V we have �

x

(v + h) =

v � �

x

(h) for all h 2 V . Hen
e, by di�erentiating with respe
t to h,

�

0

x

(v) = v

0

(x) � �

0

x

(0)

and, sin
e v

0

(x) is an isomorphism, �

0

x

(0) is an isomorphism if and only if, for all

v, �

0

x

(v) is one.

So, if the a
tion is in�nitesimally transitive, by the inverse fun
tion theorem, the

orbit �

x

(V ) of x is open. Sin
e X is 
ompa
t, X is 
overed by a �nite union of

orbits. Sin
e X is 
onne
ted, there 
an only be one orbit. Thus the a
tion is

transitive.

Conversly, if the a
tion is not in�nitesimally transitive, due to the remark above,

�

0

x

(v) is invertible for no v 2 V , so the whole orbit �

x

(V ) 
onsists of 
riti
al values

of �

x

and, by Sard's theorem, has measure zero. So, the a
tion is not transitive.

Assume again that the a
tion is transitive. Let x and y be any two points of X.

Sin
e the a
tion is transitive, the stabilizers of x and y are 
onjugate. Sin
e V

is an Abelian group, the stabilizers agree. Let L � V be the 
ommon stabilizer

of points of X. As already mentioned, due to the in�nitesimal transitivity of the

a
tion, �

x

is a lo
al di�eomorphism in the neighborhood of v 7! v �x for every x and

v. Hen
e L has only isolated points, hen
e L is dis
rete. So, L is a latti
e [8, 46℄.

Sin
e X is 
ompa
t, L is a maximal latti
e. So, V=L is 
ompa
t, hen
e an n-torus.

Sin
e X is di�eomorphi
 to V=L, X itself is an n-torus.

The above stabilizer L is 
alled the period latti
e of the a
tion.

Example 2. Let �

1

; :::; �

n

be n ve
tor �elds on X, 
ommuting and everywhere

independent:

(

[�

i

; �

j

℄ = 0 (8i; j)

Span (�

1

(x); :::; �

n

(x)) = T

x

X (8x 2 X):

Then the \joint 
ow of the �

i

's"

R

n

�X ! X; (v; x) 7! �

�

v

(x) = '

�

1

v

1

Æ � � � Æ '

�

n

v

n

(x);

where '

�

i

v

i

is the time-v

i

of the 
ow of �

i

, is an in�nitesimally transitive a
tion.

1.3 Lagrangian �brations

We now aim at proving theorem 1. Let F : M ! B be as in the statement.

Lemma 2 ([24℄). There is a transitive a
tion of T

�

B on M and �bers of F are

n-tori.

Proof. Let b 2 B and x 2M

b

. The 
otangent map F

�

(x) : T

�

b

B ! T

�

x

M 
omposed

with the isomorphism T

�

x

M ! T

x

M indu
ed on the left by ! (inverse of X

x

7!
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i(X

x

)!) allows us to asso
iate to a 
otangent ve
tor �

b

2 T

�

b

B a ve
tor

^

�

x

tangent

to M at every point x in the �ber of b, 
hara
terized by the equation

i(

^

�

x

)! = F

�

(x) � �

b

:

Sin
e the 1-form F

�

(x) � �

b

vanishes on verti
al ve
tors, it indu
es an element of

the normal bundle N

�

x

(M

b

) = T

�

x

M=KerT

x

F of the �ber at x. Sin
e the �ber is

Lagrangian (otherwise said, equal to its own !-orthgogonal), ! identi�es N

�

x

(M

b

)

with the verti
al tangent spa
e T

x

(M

b

). So,

^

�

x

is verti
al and the map

T

�

b

B ! T

x

(M

b

); �

b

7!

^

�

x

is an isomorphism. Sin
e the �bers are 
ompa
t, the ve
tor �eld

^

� 
an be expo-

nentiated into a �bered di�eomorphism, whi
h we will simply denote by �.

For this 
onstru
tion to de�ne an a
tion, we need that, if �

1

; �

2

2 T

�

b

B, their

asso
iated di�eomorphisms 
ommute. Let h

1

and h

2

be fun
tions on B su
h that

�

i

= h

0

i

(b), i = 1; 2. If x 2M

b

,

(h

i

Æ F )

0

(x) = F

�

(x) � �

i

;

hen
e, the ve
tor �eld

^

�

i

(x) = X

F

�

h

i

(x)

is the restri
tion of a Hamiltonian ve
tor �eld and, sin
e �bers are Lagrangian,

[

^

�

1

;

^

�

2

℄

x

= fF

�

h

1

; F

�

h

2

g

x

= !

x

(X

F

�

h

1

; X

F

�

h

2

) = 0:

We have thus de�ned an a
tion of T

b

B on the �ber M

b

, for all b 2 B. The a
tion

is in�nitesimally transitive. Hen
e, a

ording to lemma 1, the a
tion is transitive

and �bers of F are n-tori. .

A �rst 
onsequen
e of lemma 2 (and its proof) is the existen
e of lo
al Lagrangian

submanifolds of M whi
h are transverse to the �bers.

Lemma 3. If � is a 1-form on B,

�

�

! = ! + F

�

d�

where on the left hand-side � is thought of as a di�eomorphism of M . Conse-

quently, there exists a se
tion of F whose image is Lagrangian.

Proof. If � is a 1-form on B,

�

�

! = ! +

Z

1

0

(t�)

�

L

^

�

! dt

= ! +

Z

1

0

(t�)

�

di(

^

�)! dt (Cartan formula)

= ! +

Z

1

0

(t�)

�

F

�

d� dt (by de�nition of

^

�)

= ! + F

�

d� (be
ause F Æ (t�) = F ):

5



Now, let �

0

: B ! M be a se
tion of F . There is a 1-form � on B su
h that

�

�

0

! = d�. From lemma 2, and using the fa
t that F Æ �

0

= id,

((��) Æ �

0

)

�

! = �

�

0

(! � F

�

d�) = 0:

So, the se
tion � = (��) � �

0

is Lagrangian.

The next lemma is a key step towards understanding the stru
ture of M . We

endow T

�

B with its 
anoni
al symple
ti
 form, whi
h we denote by !

o

.

Remark 1. In the 
onstru
tion of lemma 2, we may repla
e F by the 
anoni
al

proje
tion � : T

�

B ! B. If � 2 T

�

b

B, the verti
al ve
tor �eld

^

�

o

along the �ber of

b is de�ned by i(

^

�

o

)!

o

= �

�

� �. If one identi�es the tangent spa
e at 
 2 T

�

b

B of

T

�

b

B with T

�

b

B,

^

�

o

identi�es with �, seen as a 
onstant verti
al ve
tor �eld. Thus

^

�

o

exponentiates (despite the �ber being not 
ompa
t) into a di�eomorphism �

o

of T

�

b

B, whi
h is just the verti
al translation:

�

o

� 
 = � + 
:

Lemma 4. Let � be a Lagrangian se
tion of F . The map

� : T

�

B !M; �

b

7! �

b

� �(b)

is symple
ti
.

0B

F

σ

π

B

T ∗

b
B

βMb

T ∗B

b

χ

u

M

Proof. Let us �rst prove that � is symple
ti
 at some point (b; 0) of the zero-se
tion

0

B

of T

�

B. The tangent spa
e of T

�

B at (b; 0) splits into its horizontal and verti
al

subspa
es, T

(b;0)

0

B

and T

(b;0)

T

�

b

B, both Lagrangian. The derivative �

0

maps these

subspa
es respe
tively to the tangent spa
es at �(b) of the image of � and of the

�ber M

b

, both of whi
h are Lagrangian too. So it is enough to 
he
k that

�

�

!(�; u) = !

o

(�; u)

with � 2 T

(b;0)

T

�

b

B = T

�

b

B and u 2 T

(b;0)

0

B

= T

b

B. For su
h ve
tors � and u, on

the one hand we have

4

!

o

(�; u) = � � u:

4

Here we 
hoose between the two possible signs of the 
anoni
al symple
ti
 form.
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On the other hand, we have

�

0

� � =

^

�

�(b)

and �

0

� u = �

0

� u;

hen
e

�

�

!(�; u) = !(

^

�

�(b)

; �

0

� u)

= F

�

� � (�

0

� u) (by de�nition of

^

�)

= � � u (using that F Æ � = id ):

Let us now 
onsider any point 
 2 T

�

b

B not ne
essarily on the zero-se
tion. First

noti
e that

� Æ �(
) = � � (
 � �(b))

= (� + 
) � �(b)

= � Æ �

o

(
):

Now, if u and v are two ve
tors tangent to T

�

B at 
, they are of the form

u = 


o0

� u

1

and v = 


o0

� v

1

with u

1

; v

1

tangent to T

�

B at (b; 0), and

�

�

!(u; v) = (� Æ 


o

)

�

!(u

1

; v

1

)

= (
 Æ �)

�

!(u

1

; v

1

)

= 


�

!(�

0

� u

1

; �

0

� v

1

)

= !(�

0

� u

1

; �

0

� v

1

) + F

�

d
(�

0

� u

1

; �

0

� v

1

) (lemma 3)

= !

o

(u

1

; v

1

) + �

�

d
(u

1

; v

1

)

(� is symple
ti
 along 0

B

and F Æ � = �)

= !

o

(u; v) (lemma 3 and remark 1):

Remark 2. The Poin
ar�e lemma relative to a �ber M

b

shows that ! is exa
t (al-

though H

2

(M;R) = H

2

(T

n

;R) is not trivial if n � 2).

5

Let � be a primitive of ! and 


1

(b); :::; 


n

(b) be smooth generators of the funda-

mental group of M

b

with basepoint �(b), varying smoothly with b 2 B. De�ne I

by

I

i

=

I




i

(b)

�; i = 1; :::; n; (1)

and � as the (multi-valued) dual variables of I su
h that � = 0 on �(B).

5

This is assumed in [6℄ and shown using a �rst version of the a
tion-angle variables in [16℄. IfX

is Lagrangian, this also follows from the fa
t that the only symple
ti
 invariant of a neighborhood

of X is the di�eomorphism 
lass of X itself [38, 48℄.
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Lemma 5. If B is simply 
onne
ted, the variables (I; �) indu
e a
tion-angle 
o-

ordinates M ! R

n

�T

n

, whi
h form a di�eomorphism lo
ally in the neighborhood

of any �ber of F .

Theorem 1 follows from this lemma, by setting B

o

= I(M).

Proof. If J = (J

1

; :::; J

n

) : B ! R

n

is a 
oordinate system over B, the natural

symple
ti
 
oordinates asso
iated with J over T

�

B is (J; '), with '

i

= �=�J

i

, i.e.

'

i

(�

b

) = �

b

�

�

�J

i

�

�

�

�

b

; i = 1; :::; n; �

b

2 T

�

b

B:

We want to 
ompute the 
oordinates I

i

in terms of su
h well 
hosen 
oordinates

(J; '), in order to see that (1) the I

i

's are independent, (2) (I; �) is symple
ti
 and

(3) � is T

n

-valued.

Sin
e the map � is a lo
al di�eomorphism everywhere, the set L = �

�1

(�(B))

of elements of T

�

B a
ting trivially on M is a submanifold of dimension n (with


ountably many 
onne
ted 
omponents). Besides, � being symple
ti
 and �(B)

being Lagrangian, L itself is Lagrangian. Due to lemma 1, the tra
e of L on a

�ber T

�

b

B is a maximal latti
e L

b

.

Let b 2 B. Using �, lift the loops 


i

(b) (i 2 f1; :::; ng), to paths ~


i

(b) in T

�

b

B

starting at (b; 0) and ending at some points �

i

(b) 2 T

�

b

B. Sin
e (


1

(b); :::; 


n

(b)) is

a basis of the fundamental group of M

b

, the so-de�ned (�

1

(b); :::; �

n

(b)) is a basis

of L

b

over Z. When now b is varied, the 
ove
tors �

i

(b) extend to uniquely de�ned

1-forms �

1

; :::; �

n

, whose disjoint images are n 
onne
ted 
omponents of L. Sin
e

L is Lagrangian, the 1-forms �

i

are 
losed: there are fun
tions J

1

; :::; J

n

over B

su
h that

�

i

= dJ

i

; i = 1; :::; n:

That the �

i

's form a basis of the latti
e subbundle entails that the J

i

's are inde-

pendent, and thus form a 
oordinate system over B. De�ne the dual 
oordinates

'

1

; :::; '

n

(as above for I and �), by letting '

i

be the tangent ve
tor �eld '

i

= �=�J

i

over B.

De�ne the primitive

�

o

=

X

1�i�n

J

i

d'

i

:

of the symple
ti
 form !. Sin
e � is symple
ti
, �

�

�� �

o

is 
losed in T

�

B, hen
e

exa
t: �

�

� � �

o

= dS, for B is simply 
onne
ted by assumption. Note that

S :M ! R is L-periodi
, and, for every i = 1; :::; n, the fun
tion

S(I; '+ �=�'

i

)� S(I; ')

is 
onstant equal to some 


i

2 R.

Sin
e for a given b 2 B the �ber T

�

b

B is Lagrangian, the integral

I

1

(b) =

Z

~


1

(b)

�

�

�

8



depends on ~


1

(b) only through its homotopy 
lass, and we may repla
e ~


1

(b) by

the path with the same endpoints

~


1

(b) = (J(b); ('

1

; 0; :::; 0))

0�'

1

�1

;

and similarly for I

2

; :::; I

n

. Thus, for i = 1; :::; n,

I

i

(b) =

Z

~


i

(b)

o

�

�

�

=

Z

~


i

(b)

o

(�

o

+ dS)

= J

i

(b) + 


i

:

Consequently, I

i

di�ers from J

i

by a mere 
onstant and �

i

= '

i

Æ �

�1

(mod Z

n

),

where �

�1

stand for any inverse bran
h of �.

Remark 3 (Adiabati
 invariants). The a
tion 
oordinates I

i

de�ned by (1) play an

important role in 
lassi
al dynami
s be
ause of their adiabati
 invarian
e, i.e. their

invarian
e under in�nitesimally slow perturbations [40℄. They also play a 
ru
ial

role in the Sommerfeld quantization, whi
h is explained by Ehrenfest's \adiabati


hypothesis": quantities whi
h are to be quantized must be adiabati
ally invariant,

be
ause, on perturbing the system, these quantities would have to remain integral

multiples of the Plan
k 
onstant [41℄.

There are numerous examples illustrating theorem 1, for example in the book [7℄.

Examples 
losely related to next se
tion's topi
 are the Delaunay 
oordinates

(see [13, 44℄, or [22, Appendix℄

6

for a 
loser viewpoint), or a
tion-angle 
oordi-

nates of the non-Newtonian Kepler problem [23℄.

2 The Poin
ar�e 
oordinates

The Poin
ar�e variables are symple
ti
 
oordinates in the phase spa
e of the Kepler

problem, in the neighborhood of horizontal 
ir
ular motions. Determining su
h


oordinates departs from the abstra
t setting of the �rst se
tion in two respe
ts:

� The Kepler problem is super-integrable in the sense that it has more in-

dependent (non 
ommuting) �rst integrals than degrees of freedom, so the

dynami
s is degenerate and does not determine in itself a full set of 
oordi-

nates.

� The a
tion of rotations is degenerate at 
ir
ular Keplerian ellipses, in the

sense that dH ^ dC = 0 with the notations below.

6

This appendix is really on the Delaunay 
oordinates, and does not prove the analyti
ity of

the Poin
ar�e 
oordinates.

9



The Poin
ar�e variables are the 
loser to being a
tion-angle 
oordinates in this

situation. Despite being of prime importan
e in perturbation theory [2, 14, 21, 43℄

(see also more 
ompli
ated, Deprit-like 
oordinates of the N -body problem in [14,

42℄), they have few 
omplete des
riptions in the literature (see [9, 10, 13, 44℄

for proofs at various levels of pre
ision), all of whi
h are based on Poin
ar�e's


omputation, through the Delaunay 
oordinates.

7;8

This 
omputation requires a

good deal of intuition {whi
h Poin
ar�e did not la
k.

Here we aim at providing a slightly more dire
t 
onstru
tion (although symple
-

ti
ity is always more simple to 
he
k by relating the Poin
ar�e 
oordinates to the

Delaunay 
oordinates), trying to �nd out the de�nition of the 
oordinates at the

same time as proving their properties.

In the sequel, we will set T

n

= R

n

=2�Z

n

(as opposed to R

n

=Z

n

as in the �rst

se
tion) for the sake of 
onvenien
e.

2.1 Reminder on the plane Kepler problem

We start with the plane problem be
ause it is an interesting intermediate step, with

simpler 
omputations. In this se
tion, we re
all some elementary (non symple
ti
)

fa
ts.

Consider the equation

�q = �

q

r

3

; q 2 C n f0g; r = jqj; (2)

referen
es are so numerous that we give up advising any one of them. The phase

spa
e is the set f( _q; q)g = C � (C n f0g).

� The angular momentum

C = Im(�q _q) = x _y � y _x

is preserved, as in any 
entral for
e problem (Kepler's se
ond law).

� The e

entri
ity ve
tor

E =

q

r

+ iC _q

too is preserved, this time in 
ontrast to other 
entral for
es than Newton's.

The equation of an orbit 
an be obtained by eliminating the velo
ity from

C and E:

Re (

�

Eq) = r � C

2

(3)

whi
h is the equation of the 
oni
 with a fo
us at the origin (Kepler's �rst

law), of e

entri
ity � = jEj and with dire
trix D : Re (

�

Eq) + C

2

= 0.

7

In the �rst edition of [1℄, the Delaunay and Poin
ar�e 
oordinates are wrongly found non

symple
ti
!

8

In the unpublished note [20℄ on the plane Poin
ar�e 
oordinates, it is wrongly 
laimed that

the analyti
ity of the Poin
ar�e 
oordinates was not proved by Poin
ar�e. Poin
ar�e did prove that

the inverse map is analyti
 (and in parti
ular, that the Hamiltonian is an analyti
 fun
tion of

the Poin
ar�e 
oordinates), whi
h, due to the inverse fun
tion theorem, is equivalent to proving

that the 
oordinate map itself is analyti
.

10



� The Hamiltonian

H =

j _qj

2

2

�

1

r

(denoted H by Lagrange in referen
e to Huygens [28℄) too is a �rst integral.

The dynami
s is that of the Hamiltonian ve
tor �eld of H with respe
t to

the standard symple
ti
 form, ! = Re (d�p ^ dq).

Be
ause of the symmetry about the origin, it is useful to swit
h to polar 
oordi-

nates. The 
otangent map of the \polar 
oordinate" map (r; �) 7! q = r e

i�

is the

di�eomorphism

9

Pol : R

2

�R

+

�

�T ! C �(C nf0g); (R;�; r; �) 7! ( _q; q) =

��

R + i

�

r

�

e

i�

; r e

i�

�

:

The (pull-ba
ks by Pol of the) �rst integrals are

H =

R

2

2

+

�

2

2r

2

�

1

r

; C = � and E = e

i�

�

1�

�

2

r

+ i�R

�

: (4)

The polar representation of E is

E =

p

1 + 2H�

2

e

ig

; (5)

where the argument g is easily 
omputed when R = 0: it is the argument of the

peri
enter of the 
oni
 (when the 
oni
 is a 
ir
le and the peri
enter thus not

de�ned, E = 0 is well de�ned, of 
ourse).

From now on, we restri
t to negative energies. If a is the semi major axis, r varies

between a(1 � �) and a(1 + �). These two extremal values are the roots of the

quadrati
 equation H =

C

2

2r

2

�

1

r

, so their sum and produ
t are

2a = �

1

2H

and a

2

(1� �

2

) = �

C

2

2H

:

Hen
e, using (5),

H = �

1

2a

; C =

p

a(1� �

2

); and E = � e

ig

; (6)

we will use that these fun
tions are analyti
.

Now, a

ording to Kepler's se
ond law, the area swept by q grows with 
onstant

speed C=2. Sin
e the area of the ellipse is �ab = �a

2

p

1� �

2

, the following relation

holds between the period T and the ellipti
 elements:

�a

2

p

1� �

2

T

=

C

2

and, thanks to the remarkable disappearan
e of the e

entri
ity (use (6)), so does

Kepler's third law:

T = 2�a

3=2

:

We will also use three 
lassi
al angles, de�ned when the ellipse is not 
ir
ular:

10

9

Another way to 
ompute the 
onjugate variable of � is to think of � as the momentum

i(X) p dq of the rotational ve
tor �eld X .

10

Notations here follow Poin
ar�e's quite 
losely.
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Figure 1: E

entri
, mean and true anomalies (u; v; `)

� the mean anomaly ` is the angle whi
h is proportional to the area, 
ounting

from the peri
enter (Kepler's se
ond law says that ` in
reases linearly with

time)

� the e

entri
 anomaly u is de�ned on �gure 1

� the true anomaly v = � � g.

Elementary geometry yields Kepler's fundamental equation

` = u� � sinu; (7)

whi
h shows that q is a trans
endant fun
tion of ` (see Newton's proof in [5℄), that

u does vary around the whole 
ir
le, et
.

We will need one more fa
t. The anomalies u, v or ` are not analyti
, nor even

de�ned, at 
ir
ular motions. In 
ontrast, the e

entri
 longitude w = u + g is

analyti
. Indeed, elementary geometry again shows that

(

r 
os v = a(
os u� �)

r sin v = a

p

1� �

2

sinu:

Solving these two equations for 
os u and sinu allows us to express trigonometri


fun
tions of w in terms of v = � � g: for example,


osw =

�

r

a


os(� � g) + �

�


os g �

r

a

p

1� �

2

sin(� � g) sin g

=

r

p

a�

�


os � +

�

�

p

a

� 1

�

�


os

2

g 
os � + 
os g sin g sin �

�

�

+ � 
os g;
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the right hand side is real analyti
 be
ause

�

p

a

� 1 =

p

1� �

2

� 1 = O(�

2

), and

E = �e

ig

is analyti
. The fun
tion sinw 
an be seen to be real analyti
 similarly.

So, w is real analyti
.

2.2 Plane Poin
ar�e variables

Consider the plane Kepler problem with negative energy and, say, positive angular

momentum. The phase spa
e is di�eomorphi
 to R

3

� T

1

and has 
oordinates

(R; r;�; �) and symple
ti
 form ! = dR ^ dr + d� ^ d�.

Keplerian a
tion variable � First 
onsider the problem redu
ed by rotations,

in the symple
ti
 spa
e K = f(R; r)g ' R

2

, with the angular momentum � as a

parameter. The redu
ed Hamiltonian H = H

�

(R; r) has an ellipti
 singularity at

(R; r) = (0;�

2

), 
orresponding to 
ir
ular motions. Lo
ally outside the singularity,

the energy H and the time t (
ounted from some se
tion of the 
ow of H, whi
h

we do not want to spe
ify at this stage) form some symple
ti
 
oordinates. We

would like to swit
h to some 
oordinates (�; �) where the a
tion is a well 
hosen

fun
tion of H, so that the dual 
oordinate � be an angle, de�ned modulo 2�:

dH ^ dt = d� ^ d�;

where � = �(H) and � =

2�

T

t. Hen
e,

dH ^ dt =

2�

T

�

0

(H) dH ^ dt;

or

�

0

=

T

2�

= a

3=2

=

�

�

1

2H

�

3=2

;

or, if we 
hoose the primitive vanishing at H = �1,

� =

1

p

2

(�H)

�1=2

=

p

a:

Up to now, �, is only determined up to the addition of a �rst integral.

Remark 4. The above 
omputation of �

0


an be re
overed from the expression of

the a
tion 
oordinate given in the previous se
tion (up to a fa
tor 2� due to the

fa
t that we then took 
ir
les of length 1). Indeed, denoting by X

t

the (globally

de�ned) Hamiltonian ve
tor �eld of t, by (�

H

) its 
ow (with \time" H) , and by

H

0

=

1

2�

2

the value of the Hamiltonian at 
ir
ular motions,

�

0

(H) =

1

2�

X

t

�

I

H=H

0

�

�

H�H

0

Rdr

=

1

2�

I

H=H

0

�

�

H�H

0

L

X

t

Rdr)

=

1

2�

I

H=H

0

�

�

H�H

0

(dt+ di

X

t

Rdr) (Cartan formula)

=

T

2�

:

13



The Keplerian a
tion variable � lifts to an analyti
 variable in the non-redu
ed

phase spa
e (analyti
ity follows from (6)).

E

entri
 variable F One 
ould 
he
k that the symple
ti
 transformation

(R; r) 7! (�; �) in the redu
ed spa
e lifts to an essentially unique symple
ti


transformation (R; r;�; �) 7! (�; �; F

1

; F

2

) in the full phase spa
e, possibly using

a generating fun
tion. But this 
omputation is more involved than ne
essary (a

similar 
omputation is made in [23℄ in the non-Newtonian two-body problem at

the se
ond order in the e

entri
ity). We will make a mu
h shorter 
omputation,


ompleted by geometri
 arguments.

Consider the spa
e E of Keplerian ellipses of �xed energy H < 0. For an ellipse

in the plane, to be Keplerian means that it is oriented and has a fo
us at the

origin. In addition to that, Keplerian ellipses in E have a �xed semi major axis.

In
luding degenerate ellipses 
orresponding to 
ollision orbits of e

entri
ity 1, E

is di�eomorphi
 to S

2

. Outside the poles fN; Sg 
orresponding to 
ir
ular ellipses,

it bears the 
oordinates (�; g), where g is the argument of the peri
enter. Sin
e

the 
ow of � = C 
onsists of rigid rotations in the plane, the Poisson bra
ket of

� and g is f�; gg = 1, hen
e the symple
ti
 form indu
ed from ! on E n fN; Sg is

!

E

= d� ^ dg.

We will fo
us on the open hemisphere E

+

of E 
onsisting of dire
t, non-degenerate

ellipses; this domain is de�ned in E by the inequality � > 0.

11

Over E

+

, the

ex
entri
ity ve
tor E is a (
omplex-valued) real analyti
 
oordinate, unfortunately

not symple
ti
, sin
e, using the expression (5), we get

1

2i

d

�

E ^ dE = �

�

�

2

d� ^ dg: (8)

Let us �rst look to the 
ase � = 1. We will look for a real analyti
 symple
ti



oordinate F obtained by multiplying

�

E (not E be
ause of the negative sign in

(8)) by a positive real analyti
 fun
tion f of � 2 ℄0; 1℄:

F = f(�)

�

E: (9)

Dire
t 
omputation yields

1

2i

d

�

F ^ dF =

�

�f(�)

2

� (1� �

2

)f(�)f

0

(�)

�

d� ^ dg: (10)

The requirement that F be symple
ti
 is equivalent to imposing that the expression

in bra
kets equal 1. In the unknown ' = f

2

, the equation be
omes

(1� �

2

)'

0

(�) = 2(�'(�)� 1):

Solutions are of the form

'(�) =

2� + 


1��

2

; 
 2 R:

11

One 
an similarly de�ne dual Poin
ar�e 
oordinates over the hemisphere of negatively oriented

ellipses.
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The only solution analyti
 (and even 
ontinuous) at � = 1 
orresponds to 
 = �2

i.e., '(�) =

2

1+�

i.e., F =

p

2(1� �)e

�ig

. For a general value of the parameter

�, by homogeneity (F having the dimension of

p

� and � having that of �), one

gets

F =

p

2�

r

1�

�

�

e

�ig

=

p

2(���)e

�ig

: (11)

Lemma 6. The 
oordinate F is real-analyti
 and symple
ti
 over E

+

.

That F be symple
ti
 has already been proved. That it is analyti
 follows from

the formula

F =

s

2�

1 +

�

�

�

E:

Mean longitude � The variable F 
an be lifted to the full phase spa
e of the

plane Kepler problem. We need to show that the 
oordinates (�; �; F ) are analyti


and symple
ti
, provided that we make some adequate 
hoi
e of a real analyti


se
tion of the 
ow of � to de�ne � = ` + 
st; this 
hoi
e of 
onstant 
orresponds

to 
hoosing an analyti
 Lagrangian se
tion in lemma 3. De�ne � as the mean

longitude

� = `+ g;

this 
hoi
e is primarily motivated by the �rst argument given in the proof of the

following statement.

Lemma 7. The 
oordinate system (�; �; F ) is real analyti
 and symple
ti
 in the

neighborhood of dire
t 
ir
ular Keplerian motions.

Only � is not yet known to be analyti
. Adding g to Kepler'equation (7) yields

� = w � � sin(w � g) = w + Im(Ee

�iw

);

where both E and w are analyti
. So � is analyti
.

We need to show that the 
oordinate system is symple
ti
. By 
ontinuity, it is

enough to 
he
k this outside 
ir
ular motions. Re
all that the \symple
ti
 polar

map"

R

+

�

� T

1

! C ; (�; �) 7! z =

p

2� e

i�

(12)

is symple
ti
:

1

2i

F

�

(d�z ^ dz) = d�^ d�. So, the question redu
es to 
he
king that

(�; �;� � �;�g) is symple
ti
, or, equivalently, that the Delaunay 
oordinates

(�; `;�; g) are symple
ti
.

Sin
e the matrix of the symple
ti
 form is the inverse of the matrix of the Poisson

stru
ture, we will 
he
k that the Poisson bra
kets are given by the standard matrix.

We know that f�;�g = f�; `g = f�; gg = 1. Three Poisson bra
kets remain to

be 
he
ked:

� f�; `g = 0 be
ause the 
ow of � a
ts by diagonal rotations in the phase

spa
e.
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� f�; gg = 0 be
ause g is a �rst integral of H = H(�).

� f`; gg does require some 
omputation: a

ording to Ja
obi's identity,

f�; f`; ggg = f�; f`; ggg = 0;

so it is enough to prove that f`; gg = 0 on the 
odimension-2 submanifold

` = g = 0 (mod 2�), a se
tion of the L- and �-
ows. So, without loss of

generality we may thus assume that the body is on the major axis and that

the major axis itself is the �rst 
oordinate axis. Then the partial derivatives

of ` and g with respe
t of x or p

y

are zero, and

f`; gg =

 

�`

�x

|{z}

=0

�g

�p

x

�

�`

�p

x

�g

�x

|{z}

=0

!

+

 

�`

�y

�g

�p

y

|{z}

=0

�

�`

�p

y

|{z}

=0

�g

�y

!

= 0:

2.3 Reminder on the spatial Kepler problem

Now 
onsider the same equation as in (2) but with q = (x; y; z) 2 R

3

n f0g. We

will again restri
t to negative energy

H =

k _qk

2

�

1

r

and non 
ollision motions (q ^ _q 6= 0). Due to the equivarian
e of the equation by

orthogonal symmetries, a solution q(t) is drawn on the ve
tor plane generated by

q(0) and _q(0).

Rede�ne the angular momentum and the e

entri
ity ve
tor respe
tively as

C = q ^ _q 2 R

3

^ R

3

� R

3

and

~

E =

q

r

+ i( _q)C;

with r = kqk and i( _q)C = ( _q � q) _q � _q

2

q.

We will need extensions of �e

ig

and of the e

entri
 longitude w in spa
e. Let

R
q

(�) 2 SO

3

be the rotation around a ve
tor q 2 R

3

of angle �, R
x

(�) =

R
(1;0;0)

(�), and similarly for rotations around the two other ve
tors of the 
anoni-


al basis of R

3

. When the orbital plane is not the \horizontal" plane (xy-plane),

de�ne

� the in
lination �, or the angle of the orbital plane with respe
t to the hori-

zontal plane,

� �, the oriented dire
tion of the as
ending node (half line from the 
enter of

attra
tion to the point of the Keplerian ellipse where z = 0 and _z > 0),

� the longitude of the node ', or the angle between the x-axis and �.
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Sin
e

~

E lies in the orbital plane, R
�

(��)

~

E is horizontal. The fortunate fa
t is that

this rotation matrix is an analyti
 fun
tion of q and _q. Indeed, using a 
lassi
al

de
omposition (see [31℄), we see that

R
�

(�) = R(')R(�=2)R(�=2)R(�')

=

0

�

1� 2�

2

2�� �2�


2�� 1� 2�

2

2�


2�
 �2�
 1� 2�

2

� 2�

2

1

A

;

where we have used the auxiliary notation

� =

C

x

2
kCk

; � = �

C

y

2
�

; 
 = 
os

�

2

=

r

1 + C

z

=�

2

; � = kCk:

Identifying R
�

(��)

~

E 2 R

2

�f0g to a 
omplex number, de�ne the analyti
 variable

E = R
�

(��)

~

E = � e

i(g+')

2 C :

Moreover, the 
omputation analogous to the one made in the plane shows that

now the e

entri
 longitude

w = u+ g + '

is analyti
.

2.4 Spatial Poin
ar�e 
oordinates

Horizontal variables The plane 
oordinates (�; �; F ) extend to real analyti


variables in a neighborhood of 
ir
ular 
oplanar Keplerian motions in the spatial

phase spa
e f( _q; q)g = R

3

� (R

3

n f0g), in the following manner:

� � =

p

a, where a is the semi major axis. Due to the invarian
e of the

Hamiltonian by rotations, the relation H = �

1

2a

still holds in spa
e, showing

that a and thus � are real analyti
.

� � = `+ g + '.

� F =

p

2(�� �) e

�i(g+')

=

q

2�

1+

�

�

�

E

Only � is not obviously analyti
. But, this follows from Kepler's equation 7, to

whi
h one 
an add g + ' (instead of g in the plane), to get

� = w � � sin(w � '� g) = w + Im(Ee

�iw

);

and from the fa
t that E and the e

entri
 longitude w are analyti
.
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Oblique variable The 
omplex-valued variable

� = C

x

+ iC

y

= �i

p

�

2

� �

2

e

i'

; with � = C

z

= �
os �;


an be added to (�; �; F ) to form an analyti
 
oordinate system in spa
e. Unfor-

tunately, (�; �; F;�) is not a symple
ti
 sin
e, in restri
tion to the tangent spa
e

generated by �=�z and �=� _z,

1

2i

d

�

� ^ d� = C

z

d _z ^ dz:

Looking for a symple
ti
 modi�
ation of � of the form G = f(�;�)

�

� by 
arrying

out an analogous 
omputation of the symple
ti
 form as after (9), using spheri
al


oordinates, one 
an �nd

G =

p

2(�� �) e

�i'

;

another way to build spatial 
oordinates from the plane ones is des
ribed in [50℄.

G is analyti
 be
ause

G =

p

2

i

�

�

p

�+ �

:

Theorem 2. The 
oordinate system (�; �; F;G) with

8

>

>

>

<

>

>

>

:

� =

p

a

� = `+ g + '

F =

p

2(���) e

�i(g+')

G =

p

2(�� �) e

�i'

is analyti
 and symple
ti
 in the neighborhood of dire
t 
ir
ular horizontal Keple-

rian motions.

Only the property of being sympleti
 remains to be proved. Sin
e the map (12) is

symple
ti
, by 
ontinuity it suÆ
es to show that the 
oordinate system

(�; �;�� �;�g � ';�� �;�')

(de�ned outside horizontal or 
ir
ular motions) is symple
ti
, or, equivalently, that

the Delaunay 
oordinates

(�; `;�; g;�; ')

are symple
ti
.

� Poisson bra
kets with �, � and � are all 0, ex
ept f�; `g = f�; gg =

f�; 'g = 1 (we know the 
ows of �, � and �).

� The three Poisson bra
kets between pairs of angles among `, g and ' vanish.

Indeed, as in the plane, the Ja
obi identity shows that it is enough to 
he
k

those Poisson bra
kets on the submanifold f` = g = ' = 0 (mod �)g. But

on this submanifold the partial derivatives of any of the angles with respe
t

to x, p

y

or p

z

vanish.

18



This 
ompletes the proof of theorem 2.

Thank you to A. Albouy and A. Chen
iner for their 
riti
al reviewing and to P.

Robutel for advertising the e

entri
 longitude to me. The author has been partially

supported by the Fren
h ANR (projet ANR-10-BLAN 0102 DynPDE).
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