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Summary.

We introduce the N -body problem of mathematical celestial mechanics, and dis-
cuss its astronomical relevance, its simplest solutions inherited from the two-body
problem (called homographic motions and, among them, homothetic motions and
relative equilibria), Poincaré’s classification of periodic solutions, symmetric so-
lutions and in particular choreographies such as the figure-eight solution, some
properties of the global evolution and final motions, Chazy’s classification in the
three-body problem, some non-integrability results, perturbations series of the
planetary problem and a short account on the question of its stability.
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1. Introduction

The problem is to determine the possible motions of N point particles of masses
m1, ..., mN , which attract each other according to Newton’s law of inverse squares.
The conciseness of this statement belies the complexity of the task. For although
the one and two body problems were completely solved by the time of Newton by
means of elementary functions, no similar solution to the N -body problem exists
for N ≥ 3.

The N -body problem is intimately linked to questions such as the nature of univer-
sal attraction and the stability of the Solar System. In the introduction of the New
Methods of Celestial Mechanics [147], Poincaré suggested that it aims at solving
“this major question to know whether Newton’s law alone explains all astronomi-
cal phenomena”. But since the N -body problem ignores such crucial phenomena
as tidal forces and the effects of general relativity, this model is now known to
be quite a crude approximation for our Solar System. So it is not useless in this
introduction to give some brief account of how the N -body problem has become
a central piece of celestial mechanics and remains so. For further background, we
refer to Chapters 1 and 13 of this volume.

Figure 1. A solution of the plane three-body problem, starting
from a double collision and leading to a hyperbolic escape

Hook’s and Newton’s discovery of universal attraction in the xvii century dramat-
ically modified our understanding of the motion of celestial bodies [2, 10, 12, 137,
140]. This law masterly reconciles two seemingly contradictory physical principles:
the principle of inertia, put forward by Galileo and Descartes in terrestrial mechan-
ics, and the laws of Kepler, governing the elliptical motion of planets around the
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Sun. In an additional tour de force, in his Philosophiae naturalis principia math-
ematica, Newton also estimated the first order effect on Mars of the attraction of
other planets.

The unforeseen consequence of Hook’s and Newton’s discovery was to question
the belief that the solar system be stable: it was no longer obvious that planets
kept moving immutably, without collisions or ejections. And symmetrically, the
question remained for a long time, whether universal attraction could explain
the irregularities of motion, due to the mutual attraction of the various celestial
bodies, observed in the past. A two-century long competition started between
astronomers, who made more and more precise observations, and geometers, who
had the status and destiny of Newton’s law in their hands. Two main mysteries
kept the mathematical suspense at its highest: the motion of the Moon’s perigee,
and the shift of Jupiter’s and Saturn’s longitudes, revealed by the comparison
between the observations of that time and those which Ptolemy had recorded
almost two thousand years earlier. The first computations of Newton, Euler and
others were giving wrong results [37, 59]. But infinitesimal calculus was in its
infancy and geometers, at first, lacked the necessary mathematical apparatus to
understand the long-term influence of mutual attractions.

Regarding the Moon’s perigee, Clairaut and d’Alembert understood that the most
glaring discrepancy with observations could be explained by higher order terms [37,
59]. Thus the works of Euler, Clairaut, d’Alembert and others in the xviii century
constituted the Newtonian N -body problem as the description of solutions of a
system of ordinary differential equations (see section 2 below). The problem was
given a major impulse when Lagrange transformed mechanics and dynamics into
a branch of mathematical analysis (e.g. [92]), laying the foundations of differential
and symplectic geometry [176]. In his study of Jupiter’s and Saturn’s motions,
Laplace found approximate evolution equations, describing the average variations
of the elliptical elements of the planets. These variations are called secular because
they can be detected only over a long time interval, typically of the order of a
century ( = secular in Latin). Laplace computed the secular dynamics at the first
order with respect to the masses, eccentricities and inclinations of the planets. His
analysis of the spectrum of the linearized vector field, at a time when this chapter
of linear algebra did not exist, led him and Lagrange to a resounding theorem
on the stability of the solar system, which entails that the observed variations in
the motion of Jupiter and Saturn come from resonant terms of large amplitude
and long period, but with zero average [93, p. 164]. We are back to a regular
–namely, quasi-periodic (or conditionally periodic, according to the terminology
of some authors)– model, however far it is conceptually from Ptolemy’s ancient
epicycle theory. Yet it is a mistake, which Laplace made, to infer the topological
stability of the planetary system, since the theorem deals only with a truncated
problem (see section 10, and Chapter 13 of this volume).

Around that time Euler and Lagrange found two explicit, simple solutions of the
three-body problem, called relative equilibria because the bodies rigidly rotate
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around the center of attraction at constant speed [92]. These solutions, where each
body moves as if it were attracted by a unique fictitious body, belong to a larger
class of motions, called homographic, parametrized by the common eccentricity
of bodies ; see section 4, and Chapter 5 of this volume. Some mathematical
and more global questions started to compete with the purely initial astronomical
motivations. Recently, many new periodic orbits have been found, which share
some of the discrete symmetries of Euler’s and Lagrange’s orbits in the equal-mass
problem; see [167], or, in this Chapter, section 6.

The theory of the Moon did not reach a satisfactory stage before the work of
Adams and Delaunay in the xix century. Delaunay carried out the Herculean
computation of the secular dynamics up to the eighth order of averaging, with
respect to the semi major axis ratio; as already mentioned, the secular dynamics
is the slow dynamics of the elliptic elements of the Keplerian ellipses of planets
and satellites. The first order secular Hamiltonian is merely the gravitational
potential obtained by spreading the masses of planets and satellites along their
Keplerian trajectories, consistently with the third Kepler law. Delaunay mentioned
un résultat singulier, already visible in Clairaut’s computation: according to the
first order secular system, the perigee and the node describe uniform rotations, in
opposite directions, with the same frequency [62]. This was to play a role later
in the proof of Arnold’s theorem (see Chapter 6 of this volume), although higher
order terms of large amplitude destroy the resonance.

At the same time as Delaunay, Le Verrier pursued Laplace’s computations, but
questioned the astronomical relevance of his stability theorem. In the xix century,
after the failure of formal methods due to the irreducible presence of small de-
nominators in perturbation series generally leading to their divergence, Poincaré
has drawn the attention of mathematicians to qualitative questions, concerning
the structure of the phase portrait rather than the analytic expression of particu-
lar solutions, of the N -body problem. In particular, Bruns [25, 88] and Poincaré
in his epoch-making treatise New Methods of Celestial Mechanics [147] gave argu-
ments against the existence of first integrals other than the energy and the angular
momentum in the 3-body problem (see section 9 below).

Some facts like the anomalous perihelion advance of the planet Mercury could only
be explained in 1915 by Einstein’s theory of general relativity [101, 141]. Classical
dynamics thus proved to be a limit case of, already inextricably complicated but
simpler than, Einstein’s infinite dimensional field equations.

On the positive side, Poincaré gave a new impulse to the perturbative study of pe-
riodic orbits. Adding to the work of Hill and cleverly exploiting the symmetries of
the three-body problem, he found several new families, demanding a classification
in terms of genre, espèce and sorte (genre, species and kind) [147, Chap. iii]; see
section 5 below. In the xx century, followers like Birkhoff, Moser, Meyer have de-
veloped a variety of techniques to establish the existence, and study the stability,
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of periodic solutions in the N -body problem, and more generally in Hamilton-
ian systems: analytic continuation (in the presence of symmetries, first integrals
and other degeneracies), averaging, normal forms, special fixed point theorems,
symplectic topology. Broucke, Bruno, Hénon, Simó and others have quite sys-
tematically explored families of periodic orbits, in particular in the Hill (or lunar)
problem [1, 76, 82, 85, 115, 131, 132, 160, 152, 167, 182].

Regarding perturbation series, a stupendous breakthrough came from Siegel and
Kolmogorov, who proved that, respectively for the linearization problem of a one-
dimensional complex map and for the perturbation of an invariant torus of fixed
frequency in a Hamiltonian system, perturbation series do converge, albeit non
uniformly, under some arithmetic assumption saying that the frequencies of the
motion are far from resonances [90, 164]. Siegel’s proof overcomes the effect of
small denominators by cleverly controlling how they accumulate, whereas Kol-
mogorov uses a fast convergence algorithm, laying the foundations for the so-called
Kolmogorov-Arnold-Moser theory; see section 10, or Chapters 3, 6 and 13 of this
volume. See [8, 22, 24, 48, 49, 72, 60, 143, 150, 162, 163] for further background,
references and applications to celestial mechanics.

Two discoveries have led to another shift of paradigm. First, came the discovery of
exoplanets in the early 1990’s [161]. This confirmation of an old philosophical spec-
ulation has sustained the interest in extraterrestrial life. Many of these exoplanets
have larger eccentricities, inclinations or masses (not to mention brown dwarfs),
or smaller semi major axes, than planets of our solar system–and there seems to
be billions of them in our galaxy alone. Are such orbital elements consistent with
a stable dynamics? This wide spectrum of dynamical forms of behavior has con-
siderably broadened the realm of relevant many-body problems in astronomy, and
renewed interest in the global understanding of the many-body problems, far from
the so-called planetary regime (with small eccentricities, inclinations and masses),
and possibly with important tidal or more general dissipating effects (see [28]).

The second discovery is mathematical. Nearly all attempts to find periodic solu-
tions of the N -body problem by minimizing the action functional had failed until
recently because collisions might occur in minimizers, as Poincaré had pointed
out [148]. Indeed, the Newtonian potential is weak enough for the Lagrangian
action to be finite about collisions. In 1999 Chenciner-Montgomery overcame
this difficulty and managed to prove the existence of a plane periodic solution to
the equal-mass three-body problem, earlier found by Moore numerically, with the
choreographic symmetry –a term coined by Simó, meaning that the bodies chase
each other along the same closed curve in the plane. After this breakthrough, many
symmetric periodic solutions have been found, theoretically and numerically. See
section 6.

For most of the topics in this Chapter, it is only possible to outline major results.
Further references with more precise statements and proofs, strongly recommended
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and which we have largely used, are mentioned at then end in the section Related
Chapters.

2. Newton’s equations and their symmetries

The motion of N bodies is assumed to be governed by Newton’s equations

(1) ẍj =
∑
k 6=j

mk
xk − xj
‖xk − xj‖3

, j = 1, ..., N,

where xj ∈ E = Rd is the position of the j-th body in the d-dimensional Euclidean
space, ẍj its second time-derivative, mj its mass, and ‖ · ‖ the Euclidean norm;
the Euclidean scalar product of xj and xk will be denoted be xj · xk. We have
conveniently chosen the time unit so that the universal constant of gravitation,
which is in factor of the right hand side, equals 1. The space dimension d is
usually assumed less than or equal to three, but larger values may occasionally
prove worth of interest.

Following Lagrange, the equations can be written more concisely

ẍ = ∇U(x),

where x = (x1, ..., xN) ∈ EN is the configuration of the N points, U is the force
function (opposite of the gravitational potential energy)

U(x) =
∑
j<k

mjmk

‖xj − xk‖
,

and ∇U is the gradient of U with respect to the mass scalar product on EN (in
the sense that 〈dU(x), δx〉 = ∇U(x) · δx for all δx ∈ EN), the mass scalar product
itself being defined by

x · x′ =
∑

1≤j≤N

mj(xj · x′j).

Introducing the linear momentum y = (y1, ..., yN) ∈ EN , with components yj =
mjẋj, these equations can be put into Hamiltonian form (|y| = √y · y for y ∈ EN)
by saying that

ẋ = ∂yH and ẏ = −∂xH, where H(x, y) =
|y|2

2
− U(x).

As a particular case of the general equations of dynamics, the equations of the
N -body problem are invariant by the Galilean group, generated by the following
transformations:

• shift of time: t′ = t+ δt (δt ∈ R)
• shift of positions : x′j = xj + δx0 (δx0 ∈ E, j = 1, ..., d)
• space isometry: x′j = Rxj (R ∈ O(E), j = 1, ..., N)
• shift of velocities (or boost): ẋ′j = ẋj + δẋ0 (δẋ0 ∈ E, j = 1, ..., N).
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The first three symmetries preserve the Hamiltonian and according to Noether’s
theorem, entail the existence of first integrals, respectively:

• the energy H ∈ R
• the linear momentum P =

∑
j yj ∈ E

• the angular momentum C =
∑

j xj∧yj ∈ E∧E (a bivector, which identifies

to a scalar when d = 2 and to a vector when d = 3)

The invariance by velocity shifts is associated with the first integral
∑

j(mjxj −
yjt), which depends on time. But let us stick to autonomous vector fields and
integrals. This invariance has the additional consequence that the dynamics does
not depend on the fixed value of the linear momentum (put differently, this value
can be ajusted arbitrarily by switching to an arbitrary inertial frame of reference),
whereas the dynamics does depend on the fixed value of the angular momentum
(see the paragraph below on the reduction of Lagrange): for example, as a lemma
of Sundman will show in section 7, total collision may occur only if the angular
momentum is zero. In the sequel, we will assume that the linear momentum is
equal to zero whenever needed.

In addition to these Galilean symmetries, there is a much more specific scaling
invariance due to the fact that the kinetic energy |y|2/2 and the force function
U(x) are homogeneous of respective degrees 2 and −1: if x(t) is a solution, so is
xλ(t) = λ−2/3x(λt) for any λ > 0; see [34].

2.1. Reduction of the problem by translations and isometries. The invari-
ance by translations and isometries can be used to reduce the number of dimensions
of the N -body problem. The first complete reduction of the three-body problem
was carried out by Lagrange [92]. Albouy-Chenciner generalized it for N bodies in
Rd, which we now outline [3]. This reduction has proved efficient in particular in
the study of relative equilibria [3, 120] or, recently, for numerical integrators [66].

But before fleshing out this construction, let us mention that a somewhat less
elegant reduction, known as the “reduction of the node”, was later obtained by
Jacobi [87] for three bodies, generalized by Boigey [19] for four bodies and De-
prit [63] for an arbitrary number N of bodies. Jacobi’s reduction has the disad-
vantage of breaking the symmetry between the bodies and of being rather specific
(at least in its usual form) to the three-dimensional physical space. Yet it has
proved more wieldly in perturbative problems. Using this reduction, Chierchia-
Pinzari have managed to show that the planetary system is non-degenerate in
the sense of Kolmogorov at the elliptic secular singularity (see Chapter 6 of this
volume, and [50, 51]).

Recall that E = Rd is the Euclidean vector space where motion takes place. Thus
the state space (combined positions and velocities of the N bodies) is (EN)2 =



9

{(x, ẋ)}. Let (e1, ..., eN , ė1, ..., ėN) be the canonical basis of R2N . The map(
EN
)2 → E ⊗ R2N , (x, ẋ) 7→ ξ =

∑
1≤i≤N

(xi ⊗ ei + ẋi ⊗ ėi)

is an isomorphism, which allows us to identify a state (x, ẋ) to the tensor ξ.

The space E acts diagonally by translations on positions:

x+ δx0 = (x1 + δx0, ..., xN + δx0), δx0 ∈ E,

and similarly (but separately: Newton’s equations are invariant by separate trans-
lations on positions and on velocities) on velocities. The isomorphism above in-
duces an isomorphism (

EN/E
)2 → E ⊗D2

where D is what Albouy-Chenciner call the disposition space RN/Vect (1, ..., 1).
The space E ⊗ D2 represents states up to translations, which we will still denote
by the letter ξ.

Let ε denote the Euclidean structure of E. Pulled-back by ξ, it becomes a sym-
metric tensor

σ = tξ · ε · ξ ∈
(
D2
)⊗2

,

which characterizes ξ up to the isometry ι = ξ·σ−1/2 of E (otherwise said, ξ = ι·σ1/2

is the standard polar decomposition). Hence the space (D2)
⊗2

represents states
up to translations and isometries, called relative states.

For the sake of concreteness, write

σ =

(
β γ − ρ

γ + ρ δ

)
the block decomposition of σ, where β, γ, δ, ρ ∈ D⊗2 and tγ = γ and tρ = −ρ.
The space D∗ = {v∗ ∈ RN∗, v∗ · (1, ..., 1) = 0} having no canonical basis, consider
instead the generating family of covectors e∗ij = e∗j − e∗i and ė∗ij = ė∗j − ė∗i in D2∗,

where (e∗1, ..., e
∗
N , ė

∗
1, ..., ė

∗
N) is the canonical basis of R2N∗, and

ξ · e∗ij = xj − xi and ξ · ė∗ij = ẋj − ẋi.

The blocks β, γ and δ being symmetric, they are determined by the identities
β · (e∗ij ⊗ e∗ij) = ‖xj − xi‖2

δ · (ė∗ij ⊗ ė∗ij) = ‖ẋj − ẋi‖2

γ · (e∗ij ⊗ ė∗ij) = (xj − xi) · (ẋj − ẋi)
ρ · (e∗ij ⊗ ė∗kl) = 1

2
[(xj − xi) · (ẋl − ẋk)− (xl − xk) · (ẋj − ẋi)] ,

involving only scalar products of mutual distances and velocities.
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But what does the equation of dynamics become in this framework? Let e∗G =
1
M

(m1e
∗
1 + · · ·+mNe

∗
N). The bilinear form on RN∑

1≤i≤N

mi(e
∗
i − e∗G)⊗ e∗i =

1

M

∑
1≤i<j≤N

mimje
∗
ij
⊗2,

with M = m1 + · · · + mN , descends to the quotient by (1, ..., 1) and induces the
mass scalar product µ on D. Newton’s equation then reads, in E∗ ⊗D∗,

ε · ẍ · µ = dU, U =
∑
i<j

mimj

‖xi − xj‖
,

provided x is thought of as an element of E⊗D —an absolute configuration. The
force function factorizes through relative positions: U(x) = Û(β), for it depends

only on mutual distances. Since dÛ is a linear form on the space of symmetric
tensors of D⊗2, it is itself symmetric. Hence,

dU · x′ = dÛ · (tx′ · ε · x+ tx · ε · x′) = 2ε · x · dÛ · x′,
and the equation becomes

ẍ = 2x · A,
provided we define the Conley-Wintner endomorphism of D∗ as A = dÛ · µ−1. It
is then straightforward to deduce the reduced equation:

β̇ = 2γ

γ̇ = (tA · β + β · A) + δ

δ̇ = 2(tA · γ + γ · A)− 2(tAρ̇− ρ · A)

ρ̇ = tA · β − β · A.

We have already defined the energy as

H =
‖y‖2

2
− U,

which induces a function on the phase space P = (E ⊗D)⊕ (E ⊗D∗), whose first
term corresponds to absolute position x (modulo translations) and second term
corresponds to absolute linear momentum y (acting on absolute velocities, modulo
translations). Let ω be the natural symplectic form on (the tangent space of) P :

ω · (x, y)⊗ (x′, y′) = ε ·
(
x · ty′ − x′ · ty

)
.

The vector field X = (ẋ, ẏ) associated with Newton’s equation in P is nothing
else than the Hamiltonian vector field of H with respect to ω: iXω = dH. The
inverse of ω (as an isomorphism P → P∗) is a Poisson structure π, which can be
pulled back by the transpose of the quotient by isometries, to a degenerate Poisson
structure π̄ ∈ D⊗2. The symplectic leaves of π̄ are the submanifolds obtained by
fixing the rank of σ and the conjugacy invariants of the endomorphism ωD · σ (the
invariants of the angular momentum), where ωµ stands for the symplectic form
ωµ · (u, v)⊗ (u′, v′) = µ · (u⊗ v′ − u′ ⊗ v) of D2.
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3. Some limit problems of particular importance in astronomy

3.1. The planetary problem. In the Solar System, the mass of the Sun is signif-
icantly larger than that of the planets, since Jupiter, the heaviest planet, is about
1000 times smaller than the Sun. So it has become customary to call Planetary
Problem the asymptotic case of the N -body problem when the attraction of one of
the bodies, say, the first one of mass m1, called the Sun, dominates the attraction
of all the others, called the Planets. This is achieved by assuming that the mass
ratios mk/m1 are small (k = 2, ..., N) and that mutual distances of planets are
lower bounded. Let ε = max2≤j≤N mj/m1 (so, ε ' 1/1000 for our Solar System).

Then it is natural to use heliocentric coordinates

Xj = xj − x1, j = 2, ..., N

(this change of coordinates amounts to switching to the non-inertial frame of ref-
erence defined by the center of mass of the Sun). The motion of the Sun can easily
be recovered by assuming that the (fixed) center of mass

1∑
jmj

∑
j

mjxj,

which nearly agrees with the Sun x1, is at the origin. In these coordinates Newton’s
equations read

Ẍj = −m1

 Xj

‖Xj‖3
+
∑

k/∈{1,j}

mk

m1

Xk −Xj

‖Xk −Xj‖

 , j = 2, ..., N.

Since the first term of the right hand side dominates all of the others, unsurprisingly
the vector field appears as the perturbation of N − 1 uncoupled Kepler problems,
as if each planet underwent the only attraction of a fixed, fictitious center of
attraction located at the origin.

The perturbative character of this system is perceived more easily in the Hamil-
tonian formalism, where all the dynamics is determined by a unique function, the
Hamiltonian

H =
∑
j

‖yj‖2

2mj

−
∑
j<k

mjmk

‖xj − xk‖
;

Newton’s equations are indeed equivalent to Hamilton’s equations

ẋj = ∂yjH, ẏj = −∂xjH.
Symplectically lift the above heliocentric coordinates to the phase space by setting

X1 = x1, Xj = xj − x1, j = 2, ..., N

and
Y0 = y0 + · · ·+ yN , Yj = yj, j = 2, ..., N.

Since Y0 is the total linear momentum, it can be assumed to be equal to 0 without
loss of generality. Moreover, H being invariant by translations, it does not depend
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on X1. Let us define the auxiliary masses µ−1
j := m−1

j + M−1
j ' m−1

j and Mj =
m1 + · · · + mj−1 ' m1 (as ε tends to 0). The obtained Hamiltonian, seen as a
function of (X2, ..., XN , Y2, ..., YN):

H =
∑
2≤j

(
‖Yj‖2

2µj
− µjMj

‖Xj‖

)
+
∑

2≤j<k

(
− mjmk

‖Xj −Xk‖
+
Yj · Yk
m0

)
,

is indeed the sum of a Keplerian part (itself the sum of N − 1 uncoupled fictitious
Kepler problems) and a perturbing function. In the limit when ε tends to zero,
the Keplerian part is of the order of ε, whereas the perturbing function is of the
order of ε2, provided we assume that the linear momenta Yj are of the order of ε
—a natural hypothesis, if we recollect that Yj = mjẋj.

During a fixed time interval, each planet describes an approximate Keplerian el-
lipse, with precision O(ε). But on a longer time interval, say of order 1/ε or more,
it is an extraordinarily complicated question to determine the effect of the mutual
attractions of the planets. This long term dynamics is called secular and can be
seen as a dynamical system of the space of (N−1)-uples of Keplerian ellipses with
a fixed focus, which slowly deform and rotate in space.

Outside Keplerian resonances, the effect of the mutual attractions seems to average
out and the secular dynamics is well described by simply averaging the perturba-
tion in the phase space over the Keplerian tori of dimension N − 1. Note however
that the unperturbed, purely Keplerian, dynamics is dynamically degenerate be-
cause all its bounded orbits have the same number of frequencies as there are
planets, whereas symplectic geometry would allow for quasiperiodic motions with
3N − 4 frequencies (see Chapters 3 and 6). This degeneracy is at the source of
many difficulties in celestial mechanics, and is specific to the Newtonian potential
1/r and to the elastic potential r2, as Bertrand’s theorem asserts [11] (see [75] for
an alternative proof from the point of view of normal forms).

If two or more planets have resonant Keplerian motions, then they will regularly
find themselves in the same relative position. So, their mutual attraction, instead
of averaging out, will tend to pile up. The obtained motions are generally unstable,
and very different from Keplerian motions, but even more difficult to describe
mathematically.

This problem will be taken up in section 10. For a further study using all the
apparatus of perturbation theory of Chapter 3 and the assistance of computers,
we refer to to Chapters 6 and 13.

3.2. The Lunar and well-spaced problems. In our Solar System, the ratio of
the distances Moon-Earth and Moon-Sun is approximately 0.003. So the motion
of the Moon can be studied by taking into account primarily the attraction of the
Earth, and then the perturbation due to the Sun.

Hence there is another much studied, important, integrable limit case of the N -
body problem. Without making any assumption on the masses (as opposed to the
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asymptotics of the planetary problem), let us assume that for all j = 3, ..., N the
body j is very far from the bodies 1, ..., j − 1. When N = 3, the system mimics
the Earth−Moon−Sun problem, and is thus called the Lunar problem, or Hill’s
problem due to the import work of the American mathematician and astronomer
G. W. Hill [84]; it can also be a good model for a Sun-Jupiter-asteroid system,
where the asteroid may belong for instance to the Asteroid Belt located between
Mars and Jupiter.

Here it is even more of a necessity to switch to the Hamiltonian formalism because
the integrable limit is subtler. Let Mj = m1 + · · · + mj−1 be some new auxiliary
masses. Define the symplectic Jacobi coordinates by referring each planet j to the
center of mass of the Sun and the j − 2 preceding inner planets:

X1 = x1, Xj = xj −
∑

1<k<j

mk

Mj−1

xk

and
Yj = yj +

mj

Mj

∑
k>j

yk.

This new change of coordinates reduces to switching to new frames of reference,
which differ from one body to another!, but this is a strength of the Hamiltonian
formalism to permit this, as long as the adequate changes are made for the linear
momenta. See [149] or, more recently, [70], for a more thorough discussion of these
coordinates. Additionally define the masses µj by the equality

1

µj
=

1

mj

+
1

Mj

.

The Hamiltonian becomes

H =
∑
1<k

‖Yk‖2

2µk
−
∑

1<j<k

mjmk

‖Xk +
∑

j<a<k
ma

Ma
Xa −Xj‖

.

Under our assumption, ‖X1‖ � ‖X2‖ � · · · � ‖Xn‖. So, for the k-th body, the
attraction of the bodies Xk+1, ..., XN is arbitrarily small. For a fixed k, we have∑

j<k

mjmk

‖Xk +
∑

j<a<k
ma

Ma
Xa −Xj‖

'
∑
j<k

mkMk−1

‖Xk −Xj‖
,

whence the Keplerian approximation.

3.3. The plane restricted three-body problem. A class of simplified non-
integrable (or so-believed) N -body problems is the following particular case. New-
ton’s equations (1) have a regular limit when one or several masses tend to zero. At
the limit, the zero-mass bodies are attracted by, without themselves influencing,
the other bodies, the so-called primaries. (The limit thus violates the principle of
action and reaction in its usual form.) Such limits are called restricted problems.
Note that the mass ratios of the zero-mass bodies are lost in the limit. Among
those problems, the simplest one is the restricted three-body problem, where one
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zero-mass body undergoes the attraction of two primaries revolving on a Keple-
rian ellipse. Even simpler is the invariant subproblem where all bodies move in
the plane and the primaries have circular motions. This is the circular plane re-
stricted three-body problem. It is a good model for the system consisting of the
Earth and the Sun (primaries), and the Moon. We will now describe some of its
first properties [18, 44, 57, 147].

Call 1− µ and µ the masses of the Sun and the Earth, which then lie at points of
coordinates (−µ, 0) and (1− µ, 0) in the frame rotating with the primaries.

The motion of the zero-mass is the solution of an autonomous system of differential
equations of the first order in dimension four. (In contrast, the elliptic restricted
three-body problem is non-autonomous.) Thus it has two degrees of freedom. Its
Hamiltonian in the rotating frame, or

H =
ẋ2 + ẏ2

2
− V (x, y)

with

V (x, y) =
x2 + y2

2
+

1− µ√
(x+ µ)2 + y2

+
µ√

(x− 1 + µ)2 + y2
,

is a first integral as always, and is classically called the Jacobi constant. It turns out
that there are no other first integrals (this statement is only conjectural as such,
but wildely believed true, and we refer to [129], or section 9, for more details), so
that the system is non-integrable. Actually, much of the complexity which can be
detected in the general N -body problem is already present in the circular plane
restricted three-body problem.

The projection on the configuration plane of the constant energy hypersurface
H = h defines the region

Hh = {(x, y) ∈ R2, V (x, y) + h ≥ 0}

of possible motions, called the Hill region.

The simplest case is when h� −1. Hh then consists of two disks centered around
each primary. The Moon is bounded to stay within one of those two disks –a
stability theorem due to Hill.

Yet the conservation of the energy does not prevent the Moon from colliding with
the closest primary. The Jacobi constant being fixed, these collisions can be reg-
ularized through the following two steps:

• Compactify the energy hypersurface (diffeomorphic to the solid torus S1×
R2) by adding a circle at infinity corresponding to all the possible directions
of arrival to and departure from collisions, into a space diffeomorphic to the
real projective space RP 3. This compactification is universal [106, 175].
• Slow the time down in order to keep the speed finite. Note that this can

be done on a given energy hypersurface while preserving the Hamiltonian
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Hill’s region

Figure 2. The Hill region around the Earth for very large negative
Jacobi constant, in an inertial frame of reference

structure of the equations, by considering the Hamiltonian√
(x− 1 + µ)2 + y2(H − h)

instead of H (if one wants to regularize collisions with the Earth). When
H = h, the time parametrization of orbits is changed but not the orbits
themselves.

Conley [57] has shown that the problem then boils down to studying the first return
map P of a global annulus of section A, which is diffeomorphic to S1× [−1, 1] and
transverse to the flow except on the boundary, which consists of two linked periodic
orbits previously discovered by Hill.

Second Hill periodic orbit

First Hill periodic orbit

Figure 3. Annulus of section of the circular plane restricted three-
body problem when h� −1
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The annulus is the set of all possible positions of the perigees and the return map
sends one position of the perigee to the next one. At the limit when the Sun
in infinitely far away, P is an integrable conservative twist map of the annulus,
i.e. a family of horizontal rotations by an angle which depends on the height in
a monotone way. For the circular plane restricted three-body problem, P is a
non-integrable conservative twist map, to which a huge mathematical apparatus
applies: Poincaré’s recurrence theorem, Birkhoff’s fixed point theorem, Moser’s
invariant curve theorem and Aubry-Mather theory prove respectively the stability
of motions in the sense of Poisson [11, Section 2.6.1], the existence of periodic
motions of long period of the Moon around the Earth in the rotating frame, of
quasi-periodic motions whose perigees have as envelope a smooth closed curve
and of motions whose perigees have as envelope a Cantor set (closed curve with
infinitely many holes). See [169] in particular. It is also possible to prove the
existence of stuttering orbits as in figure 2, where the sign of the angular momentum
changes infinitely many times but arbitrarily slowly, and the Moon undergoes
infinitely many arbitrarily close encounters with the Earth [32].

When the Jacobi constant is not � −1 –which is the case for our Moon, the two
connected components of the Hill region merge, and the dynamics is more compli-
cated. In particular, there exist transit orbits which connect small neighborhoods
of primaries [121]. Transit orbits can have important application in the design of
low-cost space missions [58].

4. Homographic solutions

In this section we introduce the few explicitly known solutions of the N -body
problem. We refer to section 5 of this volume for further study in the case N = 3,
which is completely understood.

To begin with, there are some very special configurations x ∈ EN , called central
configurations. Although these configurations can lead to several remarkable kinds
of motions according to the initial velocity of the bodies, one convenient way to
characterize them is that whenever the bodies are left at rest (ẋ(0) = 0) in such
a configuration x(0), the subsequent solution is homothetic with respect to the
center of mass xG = 1

M

∑
mjxj:

xj(t)− xG(t) = λ(t) (xj(0)− xG(0))

for some positive function of time λ(t). When λ→ 0, the homothetic motion leads
to a total collision. It is a striking theorem that actually any motion leading to a
total collision is asymptotic to central configurations [35, 113, 157, 178], giving an
additional importance to central configurations.

By differentiating the above equality twice with respect to time, we see that this
condition is equivalent to saying that the accelerations be proportional to positions
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(relatively to the center of mass):∑
k 6=j

mj
xk − xj
‖xk − xj‖3

= λ(0) (xj − xG) ,

or,

∇U(x) = λ(0)(x− xG).

Interpreting the scalar λ(0) as a Lagrange multiplier, central configurations appear
as the critical points of the restriction of the potential U to submanifolds of fixed
inertia I = ‖x− xG‖2.

Central configurations for N = 3 were known to Euler in the collinear case [68] and
to Lagrange in the general case [92]. In particular, Lagrange has shown that for
any masses there is a central configuration where the bodies are at the vertices of
an equilateral triangle. A trivial generalization of the Lagrange central equilibrium
for N equal masses is the regular N -gon.

A theorem of Moulton describes collinear central configurations. Namely, the latter
correspond exactly to the numberings of the point masses on the line. So, there
are N !/2 of them for N bodies [183].

But the general determination of central configurations turned out a difficult prob-
lem, still largely open today, despite some spectacular advances such as in [4] for
N = 5. It is not even known whether there are finitely many central configurations
for any given number N ≥ 6 of bodies [29], even in the plane [172].

Along a homothetic motion, the force undergone by each body j is the same force
as if all the other bodies were replaced by a fictitious body located at their center of
mass. Each body thus follows a motion of an associated 2-body problem. There are
other motions sharing this very specific property, together with the fact that at all
times the configuration is central. Along such a solution, the bodies’ configuration
changes by similarities in E –the solution is thus called homographic– and the
bodies have a Keplerian motion, with some common eccentricity e > 0.

Figure 4. Three elements of the homographic family of the equi-
lateral triangle with equal masses. From left to right: eccentricity
= 0.0 (relative equilibrium), 0.5 and 1 (homothetic triple collision)
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Among homographic motions, homothetic ones correspond to the particular case
where e = 1. The other most interesting case is e = 0. Corresponding solutions,
along which mutual distances are constant and the configuration remains congruent
to itself, are called relative equilibria. In a frame of reference rotating at the
adequate (necessarily constant) velocity, relative equilibria become fixed points
and thus, in the absence of absolute fixed points in the N -body problem, play the
role of organizing centers of the dynamics.

5. Periodic solutions

Next to homographic solutions, periodic solutions are among the simplest ones
of the N -body problem. They have the additional advantage of being abundant:
that periodic orbits are dense among bounded motions, as Poincaré conjectured, is
still an open and highly plausible conjecture (see [151] for C1-generic Hamiltonian
systems and [79] for the restricted three-body problem with small mass ratio for
the primaries). Also, periodic orbits play a decisive role in Poincaré’s proof on
non-integrability (see section 9 below). Poincaré famously commented:

On peut alors avec avantage prendre [les] solutions périodiques comme
première approximation, comme orbite intermédiaire [...]. Ce qui
nous rend ces solutions périodiques si précieuses, c’est qu’elles sont,
pour ainsi dire, la seule brèche par où nous puissions essayer de
pénétrer dans une place jusqu’ici réputée inabordable. [147, § 36]
(One can then advantageously take periodic solutions as first approx-
imation, as intermediate orbit. [...] What makes periodic orbits so
valuable is that they are the only breach, so to speak, through which
we can try to enter a place up to now deemed unapproachable.)

While proving the existence of a wealth of periodic orbits in the planetary prob-
lem, Poincaré felt the need to classify this zoology in sorts, genres and species.
They are found by means of continuation arguments, either from the Keplerian
approximation (where the mutual attraction of planets is neglected) or from the
first order secular dynamics (corresponding to a first order normal form along
Keplerian tori).

• Solutions of the first sort have zero inclination (which means that the
bodies move in a plane) and the eccentricities of the planets are small. In
the limit where the masses vanish, the orbits are circular, with rationally
dependent frequencies.

Solutions of the second sort still have zero inclination but finite eccen-
tricities; in the limit one gets elliptic motions with the same direction of
major semi-axes and conjunctions or oppositions at each half-period.

In solutions of the third sort, eccentricities are small but inclinations are
finite and the limit motions are circular but inclined.
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• Solutions of the second genre are today called subharmonics: they are
associated with and close to a given T -periodic solution of one of the three
previous sorts and their period is an integer multiple of T .
• Solutions of the second species are particularly interesting: in the limit

of zero masses, the planets follow Keplerian orbits until they collide and
shift to another pair of Keplerian ellipses. See [107] for a complete proof of
existence in the plane, symmetric case. In the spatial case, a full symbolic
dynamics of such almost collision orbits has been constructed by Bolotin
and MacKay: it implies the existence of solutions with an erratic diffusion
of the angular momentum and a much slower one of the Jacobi constant [20,
21]. This is a beautiful example of the “breach” described by Poincaré,
where periodic solutions are used to build solutions of a complicated kind.

For a recent account of the known periodic orbits of the three-body problem, we
refer to the book of Meyer [115].

6. Symmetric periodic solutions

We will now focus on orbits which, in addition to being periodic, display dis-
crete symmetries. A wealth of such orbits have been found theoretically in the
past decade, following the foundational paper of Chenciner and Montgomery [45].
These orbits are usually found by means of variational methods, although occa-
sionally some shooting or other method can be used.

A solution x(t) (t0 ≤ t ≤ t1) of Newton’s equations can be viewed as a critical
point, in the class of paths with fixed ends, of the (Lagrangian) action functional

A(x) =

∫ t1

t0

L(x(t), ẋ(t)) dt,

where L is the Lagrangian of the N -body problem, defined by

L(x, ẋ) =
∑

1≤j≤n

1

2
mj‖ẋj‖2 + U(x).

According to the celebrated Maupertuis principle, a solution of energy (or Hamil-
tonian) h can also be viewed, up to a time reparametrization, as a geodesic of the
Jacobi metric

ds2 = 2(h+ U)

( ∑
1≤j≤N

mj‖ẋj‖2

)
dt2.

(This beautiful idea of incorporating the forces into the geometry can rightfully be
seen as one of the key ideas having later led to the theory of General Relativity.)
If h ≥ 0, since U > 0, the Jacobi metric is non-degenerate and the study of its
geodesics thus reduces to a standard problem of Riemannian geometry. Yet the
case of negative energy is more interesting: in section 7, we will see that all the
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recurrent behavior, and periodic orbits in particular, can exist only if h < 0, in
which case the motion takes place within Hill’s region

Hh := {x ∈ EN , U(x) + h ≥ 0}
(already mentioned in the particular case of Hill’s problem in section 3) and the
Jacobi metric is degenerate on the boundary of Hh.

Finding periodic geodesics on a Riemannian manifold as length minimizers within
a fixed non-trivial homotopy or homology class is commonplace. In contrast, all
attempts to apply the same strategy to the three-body problem had failed because
collisions might occur in minimizers, as Poincaré had pointed out [148]. Indeed,
the Newtonian potential is weak enough for the Lagrangian action to be finite
around collisions; this specific issue can be circumvented conveniently but somehow
artificially by considering stronger potentials of interaction of the particles than
the Newtonian potential.

Considering spaces of loops with large symmetry groups has permitted to rule out
collisions without changing the potential of interaction. Using variational methods,
in 1999 Chenciner-Montgomery managed to prove the existence of a plane periodic
solution to the equal-mass three-body problem, whose symmetry group is a 12th-
order subgroup of the symmetry group of the Lagrange equilateral triangle. In
particular the bodies chase each other along a closed curve—such solutions have
been named choreographies by Simó. This solution being eight-shaped, it has been
called the Eight [45, 36, 124]. It had earlier been found numerically by Moore [125].

Figure 5. The Eight

Since then, Simó has searched the phase space for solutions with various symmetry
groups quite systematically, and found a whole wealth of them [167]. Theoreti-
cal works, in particular from S. Terracini and her students, have also shown the
existence of a large number of symmetric periodic orbits which minimize the La-
grangian action within their symmetry class [15, 14, 76]. And Marchal, helped by
Chenciner, remarkably brought the first general answer to the question of colli-
sions:

Theorem (Marchal-Chenciner [36, 104]). Minimizers of the Lagrangian action
(among all fixed-end paths) are collision-free.

Marchal-Chenciner’s theorem thus shows a subtle difference between Cauchy and
Dirichlet boundary conditions in the many-body problem, and its proof gives
the most powerful method to date for showing that minimizers avoid collisions.
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Ferrario and Terracini have found the general, equivariant version of this theo-
rem, thereby establishing the existence of a host of infinite families of choreogra-
phies [76].

At the Saari conference in 1999, Marchal realized that the Eight could be related
to the equilateral triangle relative equilibria, through a Lyapunov family of spatial
orbits, periodic in a rotating frame [41, 43, 103]. This family has been named
P12, after the order of its symmetry group (figure 6); see a description of the
beginning of this Lyapunov family on the side of the Lagrange relative equilibrium
in Marchal’s book [102].

Figure 6. The P12 family, interpolating from the Lagrange relative
equilibrium to the figure-eight solution of Chenciner-Montgomery

In fact, such a connection between relative equilibria and symmetric periodic or-
bits is a very general phenomenon, bringing light to the family tree of all the newly
discovered periodic orbits [40, 42]. The second example is that of the Hip-Hop so-
lution of Chenciner-Venturelli [46], which is similarly related to the square relative
equilibrium (figure 7).

Figure 7. The Hip-Hop family, interpolating from the square rel-
ative equilibrium to the Hip-Hop solution of Chenciner-Venturelli

Relative equilibria themselves and, in turn, symmetric periodic solutions, have
become intermediate orbits in the neighborhood of which local perturbation theory
can be applied [43], with the possibility from this starting point to vary masses
and explore the existence of asymmetric periodic or quasiperiodic solutions.
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At this point, let us also mention some interesting solutions recently found by
minimizing the Lagrangian action, without symmetry arguments, or not even pe-
riodic: they are the retrograde and prograde periodic orbits for various choices of
masses [31], and the (non periodic) brake solutions, which end at the Hill bound-
ary ∂Hh, hence with zero-angular momentum, and for which a kind of symbolic
dynamics exists [122].

7. Global evolution, collisions and singularities

7.1. Sundman’s inequality. The following functions play a fundamental role:

I = x · x, J = x · ẋ, K = ẋ · ẋ,

where we recall that x · y denotes the mass scalar product defined in section 2.
They are respectively the moment of inertia, the half of its time derivative, and
twice the kinetic energy. In particular,

H =
K

2
− U.

Note that

J̇ =
Ï

2
= ẋ · ẋ+ x · ẍ = ẋ2 + x · ∇U(x).

Since U is homogeneous of degree −1, x · ∇U(x) = −U(x). Hence, we get:

Proposition (Lagrange-Jacobi identity).

J̇ = K − U = 2H + U =
K

2
+H.

This identity has important consequences. For example:

Corollary . If the recurrent set is non empty, the energy is negative.

Proof. Since U > 0, if H ≥ 0 then J is increasing along trajectories (in other words,
it is a strict Lyapunov function), preventing any recurrence in the dynamics. �

In particular, periodic or quasiperiodic behavior exists only for negative energies.
We will see below that even bounded motions cannot take place if the energy is
non negative.

Recall that we have defined the angular momentum as the bivector

C =
∑

1≤j≤N

mjx ∧ ẋ.

For example, in dimension d = 2, C identifies to a scalar and the norm of C is
merely the absolute value of this scalar. In dimension d = 3, C identifies to a
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vector of R3 by the formula 0 −c b
c 0 −a
−b a 0

 7→
ab
c


and the norm of C is just the Euclidean norm of the latter vector.

Proposition (Sundman inequality [178]).

IK − J2 ≥ ‖C‖2.

Proof. The norm of the angular momentum is

‖C‖ = (J x) · ẋ,
where J is the possibly degenerate complex structure of EN associated with C

(first let J0 =
√
−C2

−1
C be the associated complex structure on E, and call J the

structure on EN acting diagonally by J0 on each factor E; cf. [3]). Let X = x/‖x‖.
The inequality we have to prove becomes:

ẋ2 ≥ (X · ẋ)2 + ((JX) · ẋ)2 .

Since X and JX are orthogonal with respect to the mass metric, the right hand
side is the square of the norm of the projection of ẋ on the possibly degenerate
complex line generated over R by X and JX. So the inequality follows from the
Cauchy-Schwarz inequality. �

Sundman’s fundamental inequality is better understood having in mind the Saari
decomposition of the velocity [3, 156, 158], into three components which are or-
thogonal to each other with respect to the mass metric:

ẋ = ẋh + ẋr + ẋd,

where

• ẋh = J2/I is the homothetic velocity, proportional to x
• ẋr = ‖C‖2 is the rotational velocity, corresponding to solid body rotation
• ẋd is the deformation velocity, the remainder.

Sundman’s inequality gives a lower bound on the kinetic energy, consisting in
neglecting the deformation velocity.

Now, let

S = I−1/2(J2 + ‖C‖2)− 2I1/2H

be the Sundman function. Using the facts that İ = 2J and J̇ = K/2 +H, we see
that its time derivative is

Ṡ = I−3/2J
(
IK − J2 − ‖C‖2

)
.

Thus Sundman’s inequality is equivalent to saying that S and I are both increasing,
or both decreasing.
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7.2. Collisions and singularities. Let x(t) be a solution of the N -body problem.
It has a collision at some time t0 if at the limit when t tends to t0 from below the
positions of two or more bodies agree: xi(t

−
0 ) = xj(t

−
0 ) for some i 6= j. The two

extreme cases are when the collision is binary, if the mutual distance ‖xi − xj‖ of
only two bodies tend to zero, and when it is total, if all mutual distances tend to
zero, or, equivalently, if the inertia I tends to zero.

In the two-body problem, collisions are only possible if the angular momentum is
zero. Sundman’s inequality expressed in terms of the Sundman function allows us
to generalize this property to the N -body problem:

Lemma (Sundman). In case of a total collision, necessarily C = 0.

Proof. Look at what happens before, but close to, a collision. Certainly, U tends
to infinity, and so does Ï = 4H + 2U . Moreover, if the collision is total, I > 0
tends to 0. Since Ï tends to infinity, Ï > 0, so İ = 2J increases. So İ < 0
(otherwise I could not tends to 0). So, I > 0 decreases to 0, J < 0 increases to 0
and K = 2H + 2U tends to +∞.

Since I decreases, so does the Sundman function S. But in the expression

S = I−1/2(J2 + ‖C‖2)− 2I1/2H,

if C 6= 0, the dominating term is I−1/2‖C‖2, which is increasing. Hence, C = 0. �

Triple collisions of the three-body problem have been regularized by blow-up by
McGehee, and have thus become a privileged place to study the three-body prob-
lem. In particular, Moeckel has uncovered the complicated dynamical behavior
which occurs in their neighborhood; their see [113, 118] and references therein.

We have seen that periodic and quasiperiodic solutions can exist only if the energy
is negative. More generally, we have the following criterion for stable solutions.

Theorem (Jacobi). If a motion is bounded (|xj| ≤ c for all j and all t, for some
constant c) and bounded away from collisions (‖xj(t) − xk(t)‖ ≥ c for all j 6= k
and all t, for some constant c), the energy is negative.

Indeed, stable solutions in the sense of the statement are defined for all times
because velocities too are bounded (because ẋ · ẋ = K = 2(H +U)). Moreover, as
in the corollary above, if the energy is ≥ 0, the inertia is strictly convex and thus
cannot be bounded simultaneously below and above, which proves the theorem.

However, the criterion that the energy should be negative for stability is not suf-
ficient, by far, as soon as the number of bodies is larger than 2. Indeed, it can
be shown that close to a triple collision one of the bodies assumes an arbitrar-
ily large velocity. This makes it possible, even with negative energy, for a body
to escape to infinity while two other bodies asymptotically describe a Keplerian
ellipse [113, 180].
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Binary collisions are regularizable in the sense that, if t0 is the collision time, as
shown by Sundman the configuration x = (x1, ..., xN) is locally a holomorphic
function of the uniformizing variable

v(t) =

∫ t

t0

dt

‖ri(t)− rj(t)‖
,

where i and j are the indices of the two colliding bodies. In the two-body problem,
this variable is the true anomaly. In theN -body problem, this variable is equivalent
to the true anomaly of the two colliding bodies, since in the neighborhood of the
collision the two colliding bodies behave nearly as if they did not feel the influence
of the other bodies. Since t(v) − t0 has a zero at v = 0 of multiplicity 3, the
configuration is also a holomorphic function of (t− t0)1/3. So it has a unique real
analytic extension with respect to this variable, hence a unique Puiseux extension
with respect to t, past t0. In order to regularize all binary collisions simultaneously,
the variable

v(t) =

∫ t

t0

U(x(t)) dt

should be used instead. Simultaneous double collisions (involving two or more
pairs of bodies) are more complicated; some of them are regularizable though, but
with a finite degree of differentiability, at least in some cases [109].

In the three-body problem, always assuming that the angular momentum is non-
zero, Sundman has shown that solutions x(v) are real holomorphic in a uniform
strip |Im v| < δ containing the real axis. Following Poincaré [144, 145], map this
strip to the unit disc D : |ω| < 1 by the transformation

v 7→ ω =
eπv/2δ − 1

eπv/2δ + 1
,

which sends the real axis onto the real line segment ] − 1, 1[. The configuration
x becomes a holomorphic function on the unit disc D. Hence all solutions of the
three-body problem with non-vanishing angular momentum can be represented by
series of ω converging uniformly over any compact subset of the open unit disk.
These series of Sundman (later generalized to the N -body problem by Wang [181])
positively answer a question asked in an international competition honoring the
60th birthday of Oscar II, king of Sweden and Norway [13, 16, 64]. Yet, they con-
verge so slowly that they have been completely useless, for practical computations
as for any theoretical purpose.

Multiple collisions are more complicated than binary ones. Indeed, Chazy has
shown that there exist solutions leading to a triple collision at time t = 0 which
are infinite series of the form

x(t) = t2/3
∑
n≥0

an(−t)αn

for some real number α which is a non-constant algebraic function of the masses
of the bodies [29]. These solutions were found as heteroclinic solutions positively
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asymptotic to the homothetic total collision, −α < 0 being a characteristic expo-
nent of the homothetic solution. When α is irrational, such a series has an isolated
logarithmic singularity at t = 0; it has infinitely many analytic branches after the
collision, but none of them is real, thus preventing any attempt to extend such a
solution analytically past the collision.

A related question is to determine the nature of singularities of the N -body prob-
lem i.e., in which circumstance a solution might not extend past some finite time
t0. As Painlevé noticed in 1895 [139], for N > 3 a singularity need not correspond
to non-regularizable collisions (although at least binary collisions must occur). The
terminology is unfortunate since it has become customary to call such a singularity
a non-collision singularity, although what is really meant is “a singularity whose
collisions are binary”. H. von Ziepel and H. J. Sperling have shown that such a
non-collision singularity is equivalent to the motion in physical space becoming
unbounded in finite time [177]. J. N. Mather and R. McGehee have established
the existence of an uncountable Cantor set of solutions in the four-body problem,
whose configuration becomes unbounded in finite time, with binary collisions ac-
cumulating at the singularity [112]. In the solutions they construct, a small mass
body oscillates between a binary and a fourth particle. The commuting particle
each time encounters the binary close to a triple collision, and is ejected with a
larger and larger velocity, before overtaking and colliding with the fourth particle.
Then it rebounds from the fourth particle with the elastic behavior characteristic
of a binary collision, and so on. Saari has shown however that non-collision sin-
gularities of the four-body problem are improbable in both the sense of Lebesgue
measure and of Baire category [155].

Finally, J. Xia has proved the existence of solutions with non-collision singular-
ities in a symmetric 5-body problem, containing no binary collision prior to the
singularity. McGehee’s technique of blowing up the collision singularities was the
major tool [184]; see also the paper of Gerver [78].

8. Final motions in the three-body problem

In the two-body problem, let r = x2 − x1 ∈ E. Every non-collision solution is
defined for all times and belongs to one of the following three kinds according to
its asymptotic behavior as t→ +∞:

(1) elliptic (eccentricity < 1): 0 < lim inf r ≤ lim sup r < +∞
(2) parabolic (eccentricity = 1): lim r =∞ and lim ṙ = 0
(3) hyperbolic (eccentricity > 1): lim r =∞ and lim |ṙ| = c > 0.

Moreover, the behavior in the past is analogous.

In the three-body problem, the classification gets more complicated and the sym-
metry of the past and future fails. Let rk = xj − xi ∈ E when i < j < k, with
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the cyclic convention that 1 < 2 < 3 < 1, so that among other things we have
r1 + r2 + r3 = 0.

Theorem (Chazy [30]; see also [11, Chap. 2]). Every non-collision solution of
the three-body problem belongs to one of the following seven kinds, as t→ +∞:

(1) H (hyperbolic)

lim ri =∞, lim |ṙi| = ci > 0 for all i

(2) HPk (hyperbolic-parabolic)

lim ri =∞, lim |ṙi| = ci > 0, lim |ṙk| = 0 for all i 6= k

(3) HEk (hyperbolic-elliptic)

lim ri =∞, lim |ṙi| = ci > 0, sup |rk| <∞ for all i 6= k

(4) PEk (parabolic-elliptic)

lim ri =∞, lim ṙi = 0, sup |rk| <∞ for all i 6= k

(5) P (parabolic)

lim |ri| =∞, lim ṙi = 0 for all i

(6) B (bounded)
sup |ri| <∞ for all i

(7) O (oscillating)

lim sup
t

sup
i
|ri| =∞, lim inf

t
sup
i
|ri| <∞.

The terminology “elliptic/parabolic/hyperbolic” refers to the corresponding mo-
tions in the two-body problem. Also, note that for instance in the final motion
HPk, the constraint r1 + r2 + r3 = 0 entails that two mutual distances have a
hyperbolic behavior, and one a parabolic behavior.

Chazy knew examples of all those different kinds of motions, except for motions
oscillating both in the past and in the future, whose existence was proved by
Sitnikov in 1959 [133, 170, 99]. Alekseev has summarized the current state of
knowlege of the various cases [5, 11], which we reproduce here. Columns correspond
to the asymptotic behavior in the future (+), and rows in the past (−).

The first case is for positive energy:

H+ HE+
i

H− Lagrange, 1772,
isolated examples

Chazy, 1922, measure > 0

Partial capture
Measure > 0

Shmidt, 1947 (numerical)
Sitnikov, 1953 (qualitative)

HE−
j

Complete dispersal
Measure > 0

i = j: Birkhoff, 1927 (measure > 0)

i 6= j: Exchange, measure > 0
Bekker, 1920 (numerical)

Alekseev, 1956 (qualitative)

The table below treats of the case of negative energy:
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HE+
i B+ O+

HE−
j i = j: Birkhoff, 1927

(measure > 0)

i 6= j: Exchange

Measure > 0
Bekker, 1920 (numerical)

Alekseev, 1956 (qualitative)

Complete capture
Chazy, 1929 and Merman, 1954

(measure = 0)

Littlewood, 1952
Alekseev, 1968 ( 6= ∅)

Chazy, 1929 and Merman, 1954,
measure = 0

Alekseev, 1968, 6= ∅

B− Partial dispersal
Symmetric to HE−

j ∩B
+

Euler, 1772
Lagrange, 1772

Poincaré, 1892

Arnold, 1963, measure > 0

Littlewood, 1952,
measure = 0

Aleskseev, 1968, 6= ∅

O− Symmetric to HE−
j ∩OS

+ Symmetric to B− ∩OS+ Sitnikov, 1959, 6= ∅
Measure ?

There are conditions on the masses in several cases, which are not explicitely
mentionned.

Some references which have not yet been cited are the works of Alekseev [5],
Arnold [7], Birkhoff [18], Littlewood [98], Merman [114], Sitnikov [171, 170], cos-
mologist Shmidt [173, 174].

The partition given by this classification of the twelve-dimensional phase space of
the three-body problem is poorly understood (see [11, 2.4.1]), except maybe in the
isoceles invariant subproblem [168].

Chazy’s classification emphasizes the positions and it is unknown whether there is
a similar classification with respect to velocities. For example, in the three-body
problem, there exist bounded motions (with positive measure) whose velocities
oscillate [44, 71].

Some of the results of Birkhoff and Sundman have been generalized to the N -
body problem par Marchal-Saari [105]. Other related results are: the existence
of bounded motions in the planetary regime, according to Arnold’s theorem (sec-
tion 10, chap. 6 of this volume, and [7, 72]), and the fact that any two configu-
rations of the N -body problem have at least one collision-free connection, due to
the theorem of Marchal-Chenciner cited in section 6).

9. Non integrability

Every intuition we have of the N -body problem indicates that it is not integrable
for N ≥ 3. We now review some non-integrability results, which are both more
difficult and weaker than what one would wish.

Bruns has proved the non-existence of first integrals which are algebraic with
respect to positions and momenta, and which differ non-trivially from the classical
first integrals [25, 88]. The result holds for any number N ≥ 3 of bodies and
any choice of the masses. Painlevé later showed that that it is enough to suppose
algebraicity only in the momenta [139].

Poincaré proved that, in the N -body problem with N ≥ 3, there is no new first in-
tegral which is analytic with respect to the elliptic elements and to the small masses
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(or even admit a formal expansion in the masses with analytic coefficients) [147,
Volume II]: “Le problème [...] n’admet pas d’autre intégrale uniforme que celles
des forces vives et des aires” (the problem has no uniform integral other than the
energy and the angular momentum) [147, Chap. v, § 85]. Poincaré’s impossibility
theorem, however beautiful it is, does not preclude that there could exist a first in-
tegral which depends only smoothly on the masses (see [183, p. 241] for a criticism
of the shortcomings of the result)!

The strategy of proof of Poincaré is the following. Call H the Hamiltonian of the
planetary problem and F a first integral. Expanding the equation {H,F} = 0 with
respect to the small parameter ε (mass ratio) and then expanding the coefficients
themselves in Fourier series, Poincaré shows that many Fourier coefficients of F
must vanish at some well chosen resonances of H. Again, one of the difficulties is
the dynamical degeneracy of H, whose limit when ε tends to 0 does not depend
on all of the action variables.

Poincaré also uncovered the splitting of separatrices of a hyperbolic equilibrium
point and the resulting entanglement (the interesting story of Poincaré’s mistake
in the first version of his memoir [146] for king Oscar II, which later led him to
this discovery, is told in [13, 16, 64]):

On sera frappé de la complexité de cette figure, que je ne cherche
même pas à tracer. Rien n’est plus propre à nous donner une idée
de la complication du problème des trois corps et en général de tous
les problèmes de Dynamique où il n’y a pas d’intégrale uniforme et
où les séries de Bohlin sont divergentes.

[...] Cette remarque est de nature à nous faire comprendre [...]
combien les transcendantes qu’il faudrait imaginer pour résoudre
[le problème des trois corps] diffèrent de toutes celles que nous con-
naissons. [147, § 397–398]

(One is struck by the complexity of this figure, which I will not
even try to draw. Nothing is more appropriate to give an idea of
the complexity of the three-body problem, and, in general, of those
dynamical systems which do not have uniform integrals and where
Bohlin series diverge.

[...] This remark should make us understand to what extent the
transcendants which we would have to imagine, to solve [the three-
body problem], depart from all those we know.)

Figure 8 gives an idea of this figure which Poincaré did not dare to draw, for the
standard map introduced by Chirikov [52, 96] as a universal model of chaotic layers
around a separatrix of a non integrable twist map. In two dimensions, this kind of
dynamical non-integrability implies the non-existence of additional first integrals,
as explained by Moser [133]. See how the circular restricted three-body problem
reduces to such a map in section 3.3.
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Figure 8. The entanglement of the invariant curves of the primary
hyperbolic fixed point (center of the figure) of the standard map
(x′, y′) = (x+ y′, y + ε sin 2πx), ε = 0.3.

More recently, the non-existence of additional meromorphic integrals in the neigh-
borhood of well chosen particular solutions has been proved by studying the mon-
odromy group of the variational equation of a periodic solution; see [89, 185] for ex-
ample. The method has been successfully applied for example to the Lagrange par-
abolic solution of the three-body problem in one of the results of Tzygvintsev [179],
using Ziglin’s and Morales-Ramis theories, for fixed masses. Some refinements lead
to differential Galois theory [126, 127], the Galois group being an extension of the
monodromy group. Recently, Combot has significantly generalized the results re-
garding celestial mechanics [53, 55, 56]. Higher order variational equations seem
to give additional information in undetermined cases [54, 56, 129, 128, 110]. The
main limitation of the method is that it is local in the neighborhood of some solu-
tion, and that a priori there could exist an additional meromorphic first integral
in a domain of the phase space which is bounded by a natural frontier and which
does not contain the studied periodic orbits.

10. Long term stability of the planetary system

We take up the discussion on the planetary system, as introduced at the beginning
of section 3; further references for this section are Chapters 6 and 13 of this volume,
as well as [11, Chap. 6] and [7, 27, 33, 39, 49, 72, 147].

Let (λj,Λj, ξj, ηj, pj, qj)2≤j≤N be the Poincaré coordinates of the planets. These
coordinates are analytic and symplectic in the neighborhood of circular, horizon-
tal, Keplerian motions. The Keplerian part of the Hamiltonian, describing the
revolution of planets around the Sun without the mutual attraction of planets, is

HKep =
∑

2≤j≤N

−
µ3
jM

2
j

2Λ2
j

,

while the perturbing function is an implicit, transcendent, ε-small function

εHpert(λ,Λ, ξ, η, p, q)

of all the coordinates (where λ stands for (λ2, ..., λN), etc.), so that

H = HKep(Λ) + εHpert(λ,Λ, ξ, η, p, q).

Averaging theory shows that, over a time interval of length 1/ε and outside Keple-
rian resonances, the dynamics is well described by the Hamiltonian obtained from
H by averaging the perturbing part with respect to the fast angles λ = (λ2, ..., λN).
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This averaged Hamiltonian is the so-called (first order) secular Hamiltonian

Hsec = HKep + ε

∫
Tn

Hpert dλ.

Since it does not depend on the Keplerian angle λ, the conjugate action Λ is a
first integral. So, Hsec can be thought of as a Hamiltonian on the secular space
R4(N−1) = {(ξ, η, p, q)}, with parameter Λ. Since

Λj = µj
√
Mjaj, j = 2, ..., N,

(see the definition of the fictitious masses µj, Mj in section 2), this means that
the semi major axes are constant, for the averaged Hamiltonian; this is the first
stability theorem of Lagrange.

The orgin ξ = η = p = q = 0 corresponds to circular, horizontal, direct Keplerian
ellipses of fixed semi major axes. As some symmetry argument shows, it is a
critical point of the secular system. It proves an elliptic fixed point. Hence, for the
linearized vector field, the origin is stable; this is the second stability theorem of
Lagrange and Laplace [93, p. 164]. As Poincaré noticed, those stability theorems
prove stability only for approximate equations.

Moreover, the Hamiltonian has the following remarkable expansion.

Theorem (Lagrange-Laplace). Let m = (m2, ...,mN), a = (a2, ..., aN), ξ =
(ξ2, ..., ξN), η = (η2, ..., ηN), p = (p2, ..., , pN) and q = (q2, ..., qN). There are
two symmetric bilinear forms Qh = Qh(m, a) and Qv = Qv(m, a) on the tangent
space at the origin of the secular space, respectively called horizontal and vertical,
which depend on the masses and semi major axes analytically, and such that

Hsec = C0(m, a) +Qh ·
(
ξ2 + η2

)
+Qv ·

(
p2 + q2

)
+O(4),

with
Qh · ξ2 =

∑
2≤j<k≤N

mjmk

(
C1(aj, ak)

(
ξ2
j

Λj

+
ξ2
k

Λk

)
+ 2C2(aj, ak)

ξjξk√
ΛjΛk

)

Qv · p2 =
∑

2≤j<k≤N

−mjmkC1(aj, ak)

(
pj√
Λj

− pk√
Λk

)2

and the Cj’s themselves are explicit linear combinations of the Laplace coefficients.

The masses and semi major axes being fixed, let ρh, ρv ∈ SO(n) be diagonalizing
transformations of Qh and Qv :

ρ∗hQh =
∑

2≤j≤N

σj dξ
2
j and ρ∗vQv =

∑
2≤j≤N

ςj dp
2
j , σ1, ..., σn, ς1, ..., ςn ∈ R.

The map ρ : (ξ, η, p, q) 7→ (ρh · ξ, ρh · η, ρv · p, ρv · q) is symplectic and we have

Hsec ◦ ρ = C0 +
∑

2≤j≤N

σj (ξ2
j + η2

j ) +
∑

2≤j≤N

ςj (p2
j + q2

j ).



32

This first order normal form of the planetary system is the starting point to study
the long term evolution of the system. The next step consists in building higher
order integrable normal forms. Among the several kinds of formal perturbations se-
ries (see Chapter 3 of this volume), the series of Lindstedt, von Zeipel and Birkhoff
are the most interesting ones. They are at the core of all stability studies, in-
cluding KAM and Nekhoroshev theories. We end this chapter by a short account
on these series. In the case of the planetary problem, the series of Lindstedt and
von Zeipel are obtained by eliminating the fast, Keplerian angles λ, after which
the series of Birkhoff at the elliptic secular singularity is obtained by factorizing
the secular Hamiltonian (composed with ρ) through functions of the ξ2

j + η2
j and

p2
j + q2

j , wherever possible.

10.1. Linstedt and von Zeipel series. Consider a Hamiltonian on Tn × Rn =
{(θ, r)} (Tn = Rn/Zn),

H(θ, r) = H0(r) + εH1(θ, r) + ε2H2(θ, r) + · · · ,
which depends analytically on some small parameter ε and whose value when ε = 0
is an integrable Hamiltonian H0(r). Poincaré described the basic procedure to
eliminate the angle θ from H, outside resonances of H0, using a formal symplectic
diffeomorphism φ. He attributed the procedure to Lindstedt, and called it a new
method [147, 97], as opposed to old ones usde by Delaunay, Bohlin and others
(see [61] for instance).

A formal normalization φ can be built as the time-one map of the flow of an auxil-
iary ε-small Hamiltonian vector field (Poincaré rather used a generating function,
but this is slightly more complicated in a perturbative setting):

φ = expXK , K = εK1(θ, r) + ε2K2(θ, r) + · · · .
The formal pull-back of H by φ is

H ◦ φ = H +XK ·H +
1

2
X2
K ·H + · · · ,

where the Hamiltonian vector field XK of K can be seen as a derivative operator
or, using that XKj

·H0 = −XH0 ·Kj (= the Poisson bracket of Kj and H0),

H◦φ = H0+ε (H1 −XH0 ·K1)+ε2
(
H2 +XK1 ·H1 +

1

2
X2
K1
·H0 −XH0 ·K2

)
+· · · .

One would like to find successively K1, K2, ..., so that each term of H ◦φ of given
degree ≥ 1 in ε does not depend on θ anymore. We get a triangular infinite system
of linear partial differential equations on Tn, parameterized by actions:

XH0 ·K1 = {H1} := H1 −
∫
Tn

H1 dθ

XH0 ·K2 =

{
H2 +XK1 ·H1 +

1

2
X2
K1
·H0

}
...
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where XH0 = α · ∂θ, with α := (∂r1H0, · · · , ∂rnH0). As expanding in Fourier series
shows, the first equation has formal solutions outside resonances k ·α = 0, k ∈ Zn
(recall that α depends on actions). Choose for example the solution with zero
average:

K1(r) =
∑

k∈Zn\{0}

Ĥk
1

i2π k · α
, H1 =

∑
k∈Zn

Ĥk
1 e

i2πk·θ.

The small denominators k · α may prevent the Fourier series of K1(r) from con-
verging. Intuitively, this mean that close to resonances the long term effect of
the perturbation, instead of averaging out, will pile up. Outside resonances, the
Fourier coefficients of K1 are well defined. Then the second equation can be solved
similarly. But since the right hand side is now a formal Fourier series, K2 is a for-
mal Fourier series whose coefficients themselves are formal Fourier series, etc.

In order to avoid convergence problem for constructing Lindtedt series up to some
finite order, since the Fourier coefficients of analytic functions decay exponentially
fast, one can truncate the Fourier series of the right hand sides of the equations, at
some high order tending to infinity when ε tends to 0. This is done at the expense
of loosing analyticity of expansions at ε = 0. But then the equations involve only
finitely many small denominators, which can be avoided on an open set in the space
of actions. A way to make sense of the exact construction among formal Fourier
series, is to restrict to Diophantine frequency vectors and build the infinite jet of
the series (by formally differentiating the equations in the direction transverse to
the Lagrangian tori) on this Cantor set. The so-obtained coefficients then extend
to the whole phase space, due to a theorem of Whitney [33]. The series of von
Zeipel generalize those of Lindstedt when the unperturbed Hamiltonian H0 does
not depend on all the action variables, which is called a proper degeneracy. Only
the fast angles can then be eliminated. Thus von Zeipel series are a parameterized
version of the Lindstedt series. This generalization is obviously needed in the
planetary problem since the Keplerian part depends only on Λ.

The next question to arise is that of the convergence of the Lindstedt (or von
Zeipel) series H ◦ φ, and of the normalization φ itself (of course, the convergence
of φ implies that of H ◦ φ). The answer is not straightforward. Examples where
the normalization diverges occur as a byproduct of the constructions of Anosov-
Katok [6]. Here is a very simple example.

Example ([11]) On T2 × R2 = {(θ, r)}, consider the Hamiltonian

H = α1r1 + α2r2 + ε

(
r1 +

∑
k∈Z2

ak sin(k · θ)

)
,

where ak = exp(−‖k‖) and α is Diophantine: |k · α| ≥ γ‖k‖−τ for all k ∈ Z2 \ {0}
for some γ, τ > 0. The angle θ rotates with constant frequency αε = (α1 + ε, α2):
θ(t) = θ(0) + tαε. There are arbitrarily small values of ε such that αε is resonant:
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(α1 + ε)/α2 = p/q ∈ Q. Then we have

ṙj = −ε
∑
k

kjak cos(k · θ), j = 1, 2.

Terms such that k ·αε 6= 0 have zero average. But others, namely those for which k
is of the form k = κ(−q, p) for κ ∈ Z have a constant contribution, so that r goes to
infinity (if by chance this constant contribution is zero, one can slightly modify one
coefficient ak to obtain the wanted behavior). On the other hand, if the Lindstedt
series and the corresponding transformation converged, the action r would undergo
only bounded oscillations. So the Lindstedt transformation diverges (whether the
Lindsted series itself diverges, does not follow from the given simple argument).

The above examples are not generic, for they are perturbations of degenerate
Hamiltonians. But Poincaré proved that divergence is generic (in a somewhat
topological sense; in the closely related work by Siegel mentioned below, on the
generic divergence of Birkhoff normalization series, the notion of genericity has a
more metric flavor) [147, Chap. xiii]. His argument roughly goes as follows. If a
Lindstedt normalization converges for some value of the action r, the torus Tn×{r}
is invariant and quasiperiodic for H ◦ φ. Its frequency is αε(r) = ∂r(H ◦ φ)(r) =
∂rH0 + · · · . The unperturbed frequency α0(r) was chosen non-resonant, but, for
abitrarily small ε > 0, the perturbed frequency αε is resonant. Hence, the invariant
torus is foliated by lower dimensional invariant tori. Such a resonant torus is non
generic. So, generically Lindstedt normalizations diverge. Poincaré also proved
that Lindstedt normalizations in the three-body problem diverge generally.

But Poincaré could not preclude that Lindstedt series and normalizations some-
times converge, non uniformly (notations in the quotation have been changed):

Nous avons reconnu que les équations canoniques [...] peuvent être
satisfaites formellement par des séries de la forme{

θi = θ0
i + εθ1

i + ε2θ2
i + ...,

ri = r0
i + εr1

i + ε2r2
i + ...,

où les θki et les rki sont des fonctions périodiques des quantités

wi = αit+$i, (i = 1, 2, ..., n),

[de quoi] nous avons tiré

rki =
∑ B sin(k1w1 + k2w2 + ...+ knwn + h)

k1α0
1 + k2α0

2 + ...+ knα0
n

+ A0.

[Cette] série converge-t-elle absolument et uniformément ? [... À]
deux degrés de liberté, les séries ne pourraient-elles pas, par exemple,
converger quand r0

1 et r0
2 ont été choisis de telle sorte que le rapport

α1

α2
soit incommensurable, et que son carré soit au contraire commen-

surable (ou quand le rapport α1

α2
est assujetti à une autre condition
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analogue à celle que je viens d’énoncer un peu au hasard) ? [147,
§§ 146–149]

(We have realized that canonical equations [...] can be satisfied
formally by series of the form{

ri = r0
i + εr1

i + ε2r2
i + ...,

θi = θ0
i + εθ1

i + ε2θ2
i + ...,

where θki and rki are functions of the quantities

wi = αit+$i, (i = 1, 2, ..., n).

From this we have inferred

rki =
∑ B sin(k1w1 + k2w2 + ...+ knwn + h)

k1n0
1 + k2n0

2 + ...+ knn0
n

+ A0.

Does [this] series converge absolutely and uniformly? [With] two
degrees of freedom, couldn’t it happen that the series converge when
r0

1 and r0
2 have been so chosen that the ratio α1

α2
be rational and its

square on the contrary be irrational (or so that the ratio α1

α2
satisfy

another condition, analogous to the one I have just stated a bit
randomly) ?)

Considering the unreasonable consequences of uniform convergence, in terms of
existence of periodic orbits at resonances, he speculated:

Les raisonnements de ce Chapitre ne permettent pas d’affirmer que
ce fait ne se présentera pas. Tout ce qu’il m’est permis de dire, c’est
qu’il est fort invraisemblable. [ibid.]

(The arguments in this Chapter do not make it possible to assert
that this fact will not occur. All I can say is that it is most unlikely.)

Hill and Weierstrass queried Poincaré’s arguments against the convergence of Lind-
stedt series [13, 83]. Despite their own failure to show the convergence of those
perturbation series, later events proved their case.

The stupendous breakthrough came more than half a century later from Kol-
mogorov (in addition to Siegel, as mentioned in the introduction). There is a
variant of Lindstedt series in which one seeks invariant tori with incommensurable
frequencies fixed beforehand. Kolmogorov proved that for the perturbation of an
invariant torus of fixed frequency in a Hamiltonian system, some perturbation
series does converge, albeit non uniformly, assuming in particular that the fixed
frequency is Diophantine [90]:

|k1α1 + · · ·+ knαn| ≥
γ

(|k1|+ · · ·+ |kn|)τ
(γ, τ > 0).

This arithmetic condition had already occured in the work of Kryloff-Bogoliuboff
(see [91] for references). Kolmogorov uses Newton’s algorithm in a functional space
of infinite dimension and finds quasi-periodic invariant tori by a limiting process.
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The fast convergence of the algorithm beats the effect of resonances, one of the
main ideas which laid the foundations for the so-called Kolmogorov-Arnold-Moser
theory; see Chapter 3 of this volume for a precise statement.

A subtlety is that there are infinitely many normalizing transformations, lead-
ing to a unique Lindstedt normal form. This point was clarified by Moser, who
showed (in a more general setting but always with fixed frequencies) that the con-
vergence of Kolmogorov’s normalizing transformation entails the convergence of
the normalizing transformation associated to Lindstedt series [130, Section 4].

10.2. Birkhoff series. Recall that the secular system has an elliptic fixed point
at the origin of the Poincaré coordinates. More generally, consider a Hamiltonian
in R2n of the form

H = H2 +H3 + · · ·
where Hi is homogeneous of total degree i and where the quadratic part is itself
of the form

H2 =
1

2

(
α1(x2

1 + y2
1) + · · ·+ αn(x2

n + y2
n)
)
.

If the frequency α = (α1, ..., αn) is non resonant: k · α 6= 0 (for all k ∈ Zn \ {0}),
in a construction similar to Lindstedt series, one can eliminate the angle and find
a formal symplectic diffeomorphism φ of R2n such that H ◦ φ is a formal power
series in the variables ρi = 1

2
(x2

i + y2
i ) [18]:

H ◦ φ =
∑
k≥1

Hk(ρ), degHk = k.

In case of resonances, there remain resonant terms in the normal form, which is
not integrable in general. We will not dwell on resonances here, for which we
rather refer to the very interesting discussion of [11] and references therein. So,
we assume that the frequency vector is non resonant.

If the normalization converges, so does the normal form, and the Hamiltonian is
integrable. (Ito has proved that the converse is also true [86].) Various studies,
starting with Poincaré’s, showed with increasing strength that the normalization
is generically divergent; see the book of Siegel-Moser [166, Chap. 30]. One of the
strongest result on divergence was proved by Siegel in 1954 and showed the generic
divergence of the normalization, the quadratic part of the Hamiltonian being fixed
but otherwise arbitrary [165]. Somehow taking up Poincaré’s idea for Lindstedt
series, Siegel showed that convergence would imply the existence of families of
periodic solutions having arbitrarily large period and lying in a neighborhood of
the origin, and that existence of such a family implies an infinite countable number
of independant analytic conditions, defining a set of first category in the space of all
families of coefficients of Hamiltonians. On the other hand, Bruno and Rüssmann
proved the convergence of the normalization when the normal form is quadratic
and the eigenvalues satisfy Bruno’s arithmetic condition [23, 154].
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As Eliasson pointed out, whether there exist divergent Birkhoff normal forms (as
opposed to divergent normalization series) remained an unsettled question for an
inordinate amount of time [67], as in any other normal form problem for that
matter. Only recently did Gong give examples, apparently, of diverging Birkhoff
normal forms, for some given quadratic part satisfying some arithmetic condi-
tion, stronger than being Liouville. The proof consists in carefully controlling
the accumulation of small denominators appearing when eliminating non-resonant
terms [80]. Besides, Perez-Marco proved the remarkable dichotomy that, for a
given non-resonant quadratic part, the set of Hamiltonians having a convergent
Birkhoff normal form is either full or pluripolar [142]. This shows that, for the qua-
dratic parts which Gong has taken care of, Hamiltonians with converging Birkhoff
normal form are exceptional. Another case (for a hyperbolic fixed point) is filled by
Hamiltonians recently constructed by Saprykina, whose normal form is quadratic
(hence convergent, of course) but which are non integrable, and thus for whom no
symplectic normalization converges [159].

10.3. Stability and instability. Arnold proved a degenerate version of Kol-
mogorov’s celebrated theorem, and deduced the existence of a set of positive mea-
sure of almost plane and almost circular quasi-periodic solutions when the masses
of the planets are small enough [7]. There are several degeneracies in this problem.
The most important one comes from the fact that all the bounded orbits of the
Kepler problem—a problem with two degrees of freedom—are periodic, which is a
very specific feature of the Newtonian potential in 1/r (and of the elastic potential
in r2, and only them, according to a theorem of Bertrand). Arnold’s proof was
complete only for the plane two-planet problem, due to degeneracies. Some kind of
non degeneracy is necessary for KAM tori to persist locally (see examples above),
although some this is not true globally [69]. In the spatial case, an unforeseen and
mysterious resonance is present. Namely, the trace of the linearized secular system
is always zero, identically with respect to the semi major axes: keeping the same
notations as at the beginning of this section,∑

2≤j≤N

(σj + ςj) = 0.

As previously mentioned, this fact was actually known to Delaunay in the three-
body problem. But it holds in general in the N -body planetary problem. This
was first noticed by Herman who, in a series of lectures in the 1990’s, sketched a
complete and more conceptual proof of Arnold’s theorem. Chierchia-Pinzari later
proved in general [49] that Herman’s resonance disappears when one reduces the
problem by the rotational symmetry, as Robutel had proved in the three-body
problem, using a computer. The whole subject is described in Chapter 6 of this
volume.

Arnold’s theorem hardly applies to our solar system. There is a first difficulty with
the upper value of the small parameter ε. A similar issue occurs when semi-classical
analysts let the Planck constant tend to zero. Hénon noticed that, without any
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additional care, the first proofs of Kolmogorov’s theorem show the existence of
invariant tori only for a derisory ε of the order of 10−300 [81]! However, Robutel
has shown numerically that some significant parts of the solar system, in particular
of the system consisting of the Sun, Jupiter and Saturn [94, 153], display a quasi-
periodic behavior. Also, Celletti–Chierchia [26, 27] and Locatelli-Giorgilli [100]
have proved quantitative versions of the KAM theorem, which they have applied
to the systems Sun–Jupiter–asteroid Victoria and Sun–Jupiter–Saturn; these ap-
plications are assisted by computer symbolic processors, requiring in the second
case the manipulation of series of ten million terms. Whether bounded motions
form a set of positive Lebesgue measure for all ε—and not only for ε� 1—remains
a completely open problem.

Another matter for discontent when applying KAM theory to astronomy, is that
the set of KAM invariant tori in phase space fill a transversely Cantor set, para-
metrized by Diophantine frequencies, which is topologically meager. Given the
approximation which is made by substituting the Newtonian planetary system to
the real solar system, whether the planet’s mean motions are Diophantine or not,
is not a question with any straightforward meaning. Incidentally, Molchanov has
speculated on the opposite hypothesis that these mean motions could be totally
periodic [123]. Hence the direct conclusion of Arnold’s theorem over an infinite
time interval, is illusory in astronomy. Yet KAM theory provides a fundamental
conceptual tool in the study of conservative systems since, as is wildly believed, the
conclusion of invariant tori theorems holds under much weaker hypotheses than
current theoretical proofs require. To paraphrase Poincaré, quasi-periodic orbits
too are part of the breach.

A related and more realistic theorem by Nekhoroshev [134], asserts that in the
neighborhood of KAM quasi-periodic solutions motions are stable over an expo-
nentially long time interval with respect to the small parameter. By applying a
theorem of this type, Niederman has shown the stability of a solar system with
two planets having small masses, not quite equal to but much closer to realistic
values of Jupiter and Saturn [138]. In order to describe the slow evolutions more
accurately, Neishtadt has developed the probabilistic theory of adiabatic invari-
ants [136], and extended related results to non-Hamiltonian perturbations [135].

Over the centuries, geometers have spent an inordinate amount of time and energy
proving stronger and stronger stability theorems for dynamical systems more or
less closely related to the solar system. It was a huge surprise when the numerical
computations of Laskar showed that over the life span of the Sun, or even over a few
hundred million years, collisions and ejections of inner planets are probable (see [95]
for a recent account). Our solar system is now wildly believed unstable. Works
of Sitnikov and Alekseev [133], Moeckel [117, 118], Simó-Stuchi [169], Galante-
Kaloshin [77] and Féjoz-Guardià-Kaloshin-Roldán [74], among others (see [11] for
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other references), show the complexity of the simplest non-integrableN -body prob-
lem, the restricted three-body problem. Arnold’s diffusion and the general mecha-
nisms of instability in large dimension are still to be understood, despite significant
progress [8, 17, 47, 65, 108, 111, 119] (again, see [11] for more references).
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et réduction des homothéties dans le problème des n corps. Regul. Chaotic



43

Dyn., 3(3):93–106, 1998. J. Moser at 70 (Russian).
[35] A. Chenciner. Collisions totales, mouvements complètement paraboliques
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d’Alembert]. CNRS Éditions, Paris, 2002. Edited by Michelle Chapront-
Touzé.

[60] R. de la Llave. A tutorial on KAM theory. In Smooth ergodic theory and its
applications (Seattle, WA, 1999), volume 69 of Proc. Sympos. Pure Math.,
pages 175–292. Amer. Math. Soc., Providence, RI, 2001.
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Norm. Supér. (4), 42(2):193–219, 2009.
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hamiltonien. C. R. Acad. Sci. Paris Sér. I Math., 330(12):1097–1102, 2000.



46

[90] A. N. Kolmogorov. On the conservation of conditionally periodic motions
for a small change in Hamilton’s function. Dokl. Akad. Nauk SSSR (N.S.),
98:527–530, 1954.

[91] N. Kryloff and N. Bogoliuboff. Introduction to Non-Linear Mechanics. An-
nals of Mathematics Studies, no. 11. Princeton University Press, Princeton,
N. J., 1943.

[92] J.-L. Lagrange. Essai sur le problème des trois corps. Œuvres, Tome VI.
Gauthier-Villars (Paris), 1867-1892 edition, 1772.
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R. Math. Acad. Sci. Paris, 94:577–8, 1882. Oeuvres I, 162-163.
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