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2015

Abstract. The theory of Kolmogorov, Arnold and Moser consists of a set of re-
sults regarding the persistence of quasiperiodic solutions, primarily in Hamiltonian
systems. We bring forward a “twisted conjugacy” normal form, due to Herman,
which contains all the (not so) hard analysis. We focus on the real analytic setting.
A variety of KAM results follows, including most classical statements as well as
more general ones. This strategy makes it simple to deal with various kinds of
degeneracies and (Abelian and non-Abelian) symmetries. As an example of ap-
plication, we prove the existence of quasiperiodic motions in the spatial 3-body
problem.

KAM theory consists of results regarding the existence of quasiperiodic solutions,
primarily in Hamiltonian systems. It was initiated by Kolmogorov in 1954, before
being further developped by Arnold, Moser, and others.

The phase space of an integrable Hamiltonian system is foliated by Lagrangian
invariant tori carrying a resonant or non resonant quasiperiodic dynamics. Kol-
mogorov’s theorem asserts that, for any perturbation of the Hamiltonian, many
non-resonant quasiperiodic Lagrangian invariant tori persist [57]. Kolmogorov’s
proof consists in looking for a strongly non-resonant invariant torus and solving
the corresponding functional equation using Newton’s algorithm in a (non Ba-
nach) functional space of infinite dimension. Poincaré wrote that the convergence
of perturation series looked very unlikely. Others, among which Weierstrass or
Bogoliubov-Krylov, failed to prove it. Proving the convergence of perturbation
series is difficult due to the accumulation, in this context, of “small denomina-
tors”. On the other hand, looking for invariant tori more geometrically as one
would in the general theory of invariant manifolds, without prescribing a precise
dynamics on the torus, fails severely because a resonant invariant torus does not
persist under a generic perturbation (see [77] or [20, section 2.6 and chapter 11]).
It was a stroke of genius of Kolmogorov both to imagine the correct statement and
to realize that the Newton algorithm could be implemented in a family of Banach
spaces and beat the effects of small denominators.

The invariant torus theorem has many applications in mathematical physics and
mechanics. For example, Arnold’s theorem tells us that the 1 + n-body plane-
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tary problem, where one body (standing for the Sun) has a (hugely) larger mass
than the others (standing for planets), has many quasiperiodic solutions [3, 38].
In the circular restricted three-body problem, the regular limit where one of the
masses vanishes while the other two describe circular motions around their center
of mass, those invariant tori separate energy levels and thus confine all neighbor-
ing solutions, thus resulting in a resounding stability property. In the same line of
thought, Herman has shown that Boltzman’s ergodic hypothesis fails for a generic
Hamiltonian, because codimension-1 invariant tori prevent energy levels to be er-
godic [100]. Yet, invariant tori theorems seldom apply directly, due to symmetries
and degeneracies, and to the stength of non-integrability. Should KAM theory
apply at all (see [16]), refined versions are usually needed.

Bibliographical comments. For background in Hamiltonian systems, excellent ref-
erences are the books of V. Arnold [4], V. Arnold-V. Koslov-A. Neishtadt [5], V.
Guillemin-S. Sternberg [47], A. Knauf [56], K. Meyer-G. Hall [68], C. Siegel-J.
Moser [93] or S. Sternberg [96].

There exist many surveys of KAM theory, among which we recommend those of
J.-B. Bost [12], L. Chierchia [22], J. Pöschel [79] or M. Sevryuk [89, 90, 92]. S.
Dumas’s book [29] is an interesting, historical account of the subject. Several re-
sults emphasized in the present paper, including the twisted conjugacy theorem 1,
were already proved in [38] in the smooth setting.

Here are some examples of refinements or extensions, sometimes spectacular:

• quantitative versions [24]

• persistence of lower dimensional tori [31] even without controling the first
order normal dynamics [14]

• persistence under degenerate torsion [33]

• global (non perturbative) versions for diffeomorphisms of the circle [51] or
cocycles [7]

• various kinds of linearizations of cocycles [6] or of interval exchange maps [66]

• the dynamics of generic Lagrangian invariant tori [100]

• weak KAM theory [35]

• reversible systems [91]

• non-Hamiltonian perturbations [67]

• Hamiltonian partial differential equations [10, 58]

(see references therein).
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1 Twisted conjugacy normal form

Let H be the set of germs along T0 = Tn×{0} of real analytic functions (“Hamil-
tonians”) in Tn × Rn = {(θ, r)}. The Hamiltonian vector field associated with
H ∈ H is

{

θ̇ = ∂rH

ṙ = −∂θH.
For any given vector α ∈ Rn, let K(α) be the affine space of Hamiltonians K ∈ H
of the form

K = c+ α · r +O(r2),

for some (non fixed) c ∈ R; O(r2) stands for the remainder (depending on θ) of
the expansion in power of r. The space K(α) consists exactly of Hamiltonians
for which T0 is invariant (ṙ|r=0 = 0) and carries a linear flow with velocity α
(θ̇|r=0 = α).1

Let G be the set of germs along T0 of exact symplectic real analytic isomorphisms
of the form2

G(θ, r) =
(

ϕ(θ), (r + S ′(θ)) · ϕ′(θ)−1
)

,

where ϕ is an isomorphism of Tn fixing the origin and S is a function on Tn

vanishing at the origin. The goal being to find invariant tori close to T0 and
carrying a linear flow of frequency α, ϕ allows us to make changes of coordinates
at will on the Lagrangian torus T0, while S allows us to bring back to the zero
section any graph over T0, of 0-average and sufficiently close to the zero section.

In the next theorem, we assume that α is Diophantine:

|k · α| ≥ γ

|k|τ (∀k ∈ Z
n \ {0}) (1)

for some fixed γ, τ > 0; we have set |k| = |k1|+ · · ·+ |kn|. We will call Dγ,τ the set
of such vectors. Dγ,τ is non empty if and only if τ ≥ n − 1 (Dirichlet’s theorem)
and, if τ > n − 1 and γ → 0, the complement of Dγ,τ within a ball has measure
O(γ), hence ∪γDγ,τ has full measure [82].

1 Theorem (Herman). If Ko ∈ K(α) and if H ∈ H is close enough to Ko, there
is a unique (K,G, β) ∈ K(α)× G × Rn such that

H = K ◦G+ β · r. (2)

We will prove theorem 1 in the next two sections.

The statement calls for some remarks.
1Recall that, in Dynamical Systems, a path γ : R → X on a manifold is quasiperiodic (of

some rank ≤ k) if there exists ω ∈ Rk and a map Γ : Tk → X such that γ(t) = Γ(tω). Provided
γ is smooth enough, γ then admits a Fourier expansion of the form γ(t) =

∑

j∈Zk γje
i2π (j·ω) t

(in some local coordinates in a tubular neighborhood of γ(R)).
2Conventionally, if f is a map from an open set U of a vector space E into another vector

space F , we define f ′(x) as an element of F ⊗E∗ (as opposed to E∗ ⊗F ), and we write f ′(x) · ξ
for the contraction with a vector ξ ∈ E. Also, we identify Rn with its dual, so that S′(θ) may
be imaged as the gradient of S.
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• The frequency being a conjugacy invariant of quasi-periodic flows, the counter-
term β · r, which allows us to tune the frequency, is necessary. Yet it breaks
the dynamical conjugacy between K and H and does not comply H with
having an invariant torus, as K does. We call this normal form a twisted
conjugacy. The geometrical contents of the theorem is that locally the set of
Hamiltonians possessing an α-quasiperiodic torus is a submanifold of finite
codimension if α is Diophantine (it has infinite codimension if α is not). The
counter-term is the finite dimensional obstruction to conjugacy to a Hamil-
tonian of K(α), and can be imaged as a simple control to preserve a torus of
the same frequency and cohomology class as that of Ko.

• In general, one cannot expect H to be of the form

H = (K + β · r) ◦G;

this would show that having a Diophantine invariant torus is an open prop-
erty, which is wrong, as the following example shows.

Consider the Hamiltonian H = α · r, α ∈ R2. All the tori r = cst are
invariant. By a first arbitrarily small perturbation, we may assume that α
is resonant: k ·α = 0 for some k ∈ Z2 \ {0}. Then add a resonant monomial:

H = α · r − ǫ sin(2πk · θ).

The vector field is
{

θ̇ = α

ṙ = 2πǫ cos(2πk · θ) k.
So, the solution through (0, r) at time t = 0 is

t 7→ (tα, r + 2πǫtk).

So, if ǫ > 0, this solution is unbounded and prevents any invariant torus
(among graphs over T0) to exist.

2 Exercise. Deduce Arnold’s normal form for vector fields v on the torus Tn close to
a Diophantine rotation [3, 12], from the twisted conjugacy theorem. Hint: Apply
the twisted conjugacy theorem to the Hamiltonian H(θ, r) = r · v on Tn × Rn.
Then check that the zero section is invariant by the corresponding isomorphism
G, using an argument of Lagrangian intersection [38].

Bibliographical comments. – Computing the codimension of a group orbit is some-
times imprecisely called the “method of parameters”. It is commonplace in singu-
larity theory. In KAM theory, where the codimension often turns out finite, it has
been fruitfully used in a number of works, among which: Arnold’s normal form of
vector fields on the torus (the paradigmatic, founding example) [3, 71, 100], Moser’s
normal form of vector fields [72] (which encompasses many natural subcases [15,
67, 98] but which has been much overlooked for 30 years), Chenciner’s work on
bifurcations of elliptic fixed points [17, 18, 19] or Eliasson-Fayad-Krikorian’s study
of the neighborhood of invariant tori [34]. The method of parameters allows us to
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first prove a normal form theorem which does not depend on any non-degeneracy
assumption, but which contains all the hard analysis; the remaining, finite di-
mensional problem is then to show that the frequency offset vanishes, using a
non-degeneracy hypothesis. This last step was probably not well understood be-
fore the late 80s [31, 61, 62, 85, 89]. The method fails for other kinds of dynamics
than the quasiperiodic one on the torus because generically there are infinitely
many new obstructions (the right hand side of the cohomological equation should
have zero-average on periodic orbits) at each step of the Newton algorithm [44].

– The normal form of theorem 1, which was advertised by Herman in the 90s (M.
Herman seemingly did not know Moser’s normal form), in particular in his lectures
on Arnold’s theorem at the Dynamical System Seminar in Université Paris VII,
can be seen as a particular case of Moser’s normal form, when the vector field is
Hamiltonian, then giving more precise information [39, 67]. A proof in the smooth
category can be found in [38]. The lesser rigidity there allows us not to introduce
deformed norms.

2 One step of the Newton algorithm

Let
φ(x) = K ◦G+ β · r, x = (K,G, β).

We want to solve the following equation between Hamiltonians:

φ(x) = H, (3)

for H close to φ(Ko, id, 0) = Ko. The twisted conjugacy theorem thus reduces to
prove that φ is invertible, keeping in mind that

– if φ is formally defined on the whole space K(α) × G × Rn, it is only if G is
close enough to the identity, with respect to the width of analyticity of K, that
φ(K,G, β) is analytic on a neighborhood of T0,

– equation (3) is really of interest to us only if it holds on a neighborhood of
G−1(T0), a domain depending on the unknown G.

G

R

K

H − β · r

T0G−1(T0)

Figure 1:

Note that H and Rn are trivially vector spaces, while
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• K(α) is an affine space, directed by the vector space R+O(r2)

• and G, while being a groupoid with semi-direct product law given by G2 ◦
G1 = (ϕ2 ◦ϕ1, (r+S

′
1+S

′
2 ·ϕ′

1) · (ϕ2 ◦ϕ1)
′−1), will rather be identified, locally

in a neighborhood of the identity, to an open set of the affine space passing
through the identity and directed by the linear space {(ϕ − id, S)}, where
v = ϕ− id : Tn → Rn and S : Tn → R are analytic and vanish at the origin.

We will invert φ using the Newton algorithm, which consists in iterating the op-
erator

f : x = (K,G, β) 7→ x̂ = x+ φ′(x)−1(H − φ(x)). (4)

Each step of the induction requires to invert the linearized operator φ′(x), not only
at x0 = (Ko, id, 0), but at some unknown x in the neighborhood of x0, i.e. to solve
the linearized equation

φ′(K,G, β) · (δK, δG, δβ) = δK ◦G+K ′ ◦G · δG+ δβ · r = δH (5)

where δH is the data, (K,G, β) is a parameter, and the unknowns are the “tangent
vectors” δK ∈ R⊕O(r2), δG (geometrically, a vector field along G) and δβ ∈ Rn.
Pre-composing with G−1 modifies the equation into an equation between germs
along the standard torus T0 (as opposed to the G-dependant torus G−1(T0)):

δK +K ′ · Ġ+ δβ · r ◦G−1 = Ḣ, (6)

where we have set Ġ = δG ◦ G−1 (geometrically, a germ along T0 of tangent
vector field) and Ḣ = δH ◦ G−1. It is a key point in measuring norms that we
are interested in the neighborhood of T0 on one side of the conjugacy, and in the
neighborhood of G−1(T0) on the other side.

Using the additional notations (in which ∗≥k stands for a function in O(rk), de-
pending on θ):



















K = c+ α · r +Q(θ) · r2 +K≥3

δK = δc+ δK≥2

Ġ = (ϕ̇,−r · ϕ̇′ + Ṡ ′)

Ḣ = Ḣ0 + Ḣ1 · r + Ḣ≥2

and the fact that

δβ · r ◦G−1 =
(

r · ϕ′ ◦ ϕ−1 − S ′ ◦ ϕ−1
)

· δβ,

and identifying the Taylor coefficients in equation (6) yield the following three
equations:

δc+ Ṡ ′ · α− S ′ ◦ ϕ−1 · δβ = Ḣ0 (7)

ϕ′ ◦ ϕ−1 · δβ − ϕ̇′ · α + 2 Ṡ ′ ·Q = Ḣ1 (8)

δK≥2 + ∂θK · ϕ̇− r · ϕ̇′ · ∂rK≥2 = Ḣ≥2. (9)
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The first equation aims at infinitesimally straightening the would-be invariant torus
of Ḣ0, the second equation at straightening its dynamics, and the third at equating
higher order terms. Due to the symplectic constraint, the first two equations are
coupled (the Hamiltonian lift of the vector field ϕ̇ having a non trivial component
in the r-direction), whereas in the context of general vector fields the system is
triangular. We will now show the existence of a unique solution to this system of
equations, and derive estimates of the solution, within some appropriate functional
setting.

Let
T
n
s = T

n × i[−s, s]n

be the complex extension of Tn of “width” s, and

|f |s = max
θ∈Tn

s

|f(θ)|

for functions f which are real holomorphic on the interior of Tns and continuous on
Tns ; such functions form a space A(Tns ) which is Banach (there are other possible
choices here, e.g. one could consider the space of functions which are real holo-
morphic on Tns ). We extend this definition to vector-valued functions by taking
the maximum of the norms of the components (and, consistently, the ℓ1-norm for
“dual” integer vectors, e.g. k ∈ Zn). Similarly, let Rn

s be a complex neighborhood
of the origin in Rn of “width” s:

R
n
s = {z ∈ C

n, |z| ≤ s}, |z| = max(|z1|, ..., |zn|).

We will call A(Tns × Rn
s ) the Banach space of functions which are continuous on

Tns × Rn
s and real holomorphic on the interior.

Let

• Hs = H ∩A(Tns × Rn
s ) (endowed with the supremum norm | · |s)

• Ks(α) = K(α) ∩ A(Tns × Rn
s ) ⊂ Hs.

• Gσs be the subset of G consisting of isomorphisms G ≃ (ϕ, S) such that
ϕ− id ∈ A(Tns ,R

n
1 ) and S ∈ A(Tns ,R1) and G is σ-polynomially-close to the

identity, i.e.
|G− id |s ≤ CGσ

kG (10)

for some fixed CG > 0 and kG > 0 to be later determined.

3 Lemma (Linearized equation). If x is close enough to x0, equation (6) possesses
a unique solution ẋ = (δK, Ġ, δβ). Moreover, there exist C ′, τ ′ > 0 such that, for
all s, σ,

|ẋ|s ≤
C ′

στ ′
|Ḣ|s+σ,

where C ′ depends only on n, τ , provided K, G−1 and β are bounded on Tns+σ×Rn
s+σ.
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Proof. First assume that δβ ∈ Rn is given with |δβ · r ◦ G−1| ≤ Cst |Ḣ|s+σ, and
replace equation (8) by

δβ̂ + ϕ′ ◦ ϕ−1 · δβ − ϕ̇′ · α + 2 Ṡ ′ ·Q = Ḣ1, (11)

where δβ̂ ∈ Rn is an additional unknown; as elsewhere in this proof, Cst stands
for a constant, to which we do not want to give a consistant name, and which
depends only on n, τ and |(K − α · r,G−1 − id, β)|s+σ.

• Averaging equation (7) yields δc =
∫

Tn

(

Ḣ0 + S ′ ◦ ϕ−1 · δβ
)

dθ, hence

|δc| ≤ Cst |Ḣ|s+σ

• According to lemma 45, equation (7) has a unique solution δS̃ having zero
average, with

|δS̃|s ≤
Cst

γστc
|Ḣ0|s+σ ≤ Cst

γστc
|Ḣ|s+σ.

Then the unique solution vanishing at the origin, δS = δS̃ − δS̃(0), satisfies
the same estimate (up to an unessential factor 2 which we absorb in the
constant).

Note that the estimates hold for all s, σ (at the expense of possibly having an
infinite right hand side). We now proceed similarly with equation (11):

• The average yields δβ̂ =
∫

Tn

(

Ḣ1 − 2Ṡ ′ ·Q− ϕ′ ◦ ϕ−1 · δβ
)

, hence, using

Cauchy’s inequality,3

|δβ̂| ≤ Cst

γστc+1
|Ḣ|s+σ.

• The average-free part determines δϕ, with

|ϕ̇|s ≤
Cst

γστc

(

|Ḣ1|s+σ + 2|Ṡ ′ ·Qo|s+σ
)

(∀s, σ > 0).

Using Cauchy’s inequality and the fact that Qo is given, we see that

|ϕ̇|s ≤
Cst

γ2στc(τc+1)
|Ḣ|s+σ,

where as before the constant depends only on n, τ , and |Qo|s+σ.

Equation (9) can then be solved explicitly:

δK≥2 = −∂θKo · ϕ̇+ 2r · ϕ̇′ ·Qo · r + δH≥2,

3We use the ℓ∞-norm on Rn (consistantly with the ℓ1-norm already used on the dual space
Zn).
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and whence

|δK|s ≤
Cst

γ2στc(τc+1)+1
|δH|s+σ.

We have built a map δβ 7→ δβ̂ in the neighborhood of δβ = 0. It is affine and,
when ϕ is close to the identity, invertible. Thus there exists a unique δβ such that
δβ̂ = 0, which satisfies

‖δβ‖ ≤ Cst

γστc+1
|Ḣ|s+σ.

The claim follows, with τ ′ = τc(τc+1)+1 and C ′ = Cst/γ2 for some constant Cst
independent of γ.4

The lemma may be rephrased: the linear operator φ′(x) has a unique local inverse
φ′(x)−1, with the given estimates.

Let
δx = φ′(x)−1(y − φ(x)) and x̂ = φ(x) = x+ δx.

Taylor’s formula says that

φ(x̂) = φ(x) + φ′(x) · δx+Q(x, x̂), Q(x, x̂) =

∫ 1

0

(1− t)φ′′(xt) · (δx)2 dt

= y +Q(x, x̂),

where we have set xt = x+ t δx (0 ≤ t ≤ 1), hence

y − φ(x̂) = −Q(x, x̂).

4 Lemma (Remainder). If |Ġ|s+σ ≤ σ/2,

|Q(x, x̂) ◦G−1|s ≤
C ′′

στ ′′
|ẋ|2s+σ.

Proof. Let δ2φ = φ′′(K,G, β) · (δK, δG, δβ)2. We have

δ2φ = 2δK ′ ◦G · δG+K ′′ ◦G · (δG)2,

hence
δ2φ ◦G−1 = 2δK ′ · Ġ+K ′′ · Ġ2,

so

|δ2φ ◦G−1|s ≤
Cst

σ
|(δK, Ġ)|2s+σ; (12)

note here that δ2φ is computed in (K,G, β), and it is then pre-composed by G−1.

Now, if xt = (Kt, Gt, βt),

|Q(x, x̂) ◦G−1|s ≤
∫ 1

0

∣

∣

(

φ′′(xt) · δx2
)

◦G−1
∣

∣

s
dt.

4A better, but less transparent, choice of norms lets C ′ = Cst/γ instead.
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Since |(id+Ġ)−1 − (id−Ġ)|s ≤ Cst|Ġ|2s,

|Q(x, x̂) ◦G−1|s ≤
∫ 1

0

∣

∣

(

φ′′(xt) · δx2
)

◦G−1
t

∣

∣

s+2|Ġ|2s+σ

dt,

whence the wanted estimate, using (12).

It remains to show that the iterated images

x0 = (Ko, id, 0), xn+1 = f(xn)

of the Newton map (4) are defined for n ∈ N and converge to some (K,G, β) ∈
K(α) × G × Rn such that H = K ◦ G + β · r in the neighborhood of G−1(T0),
provided H is close enough to Ko. Namely, we will assume that Ko ∈ Ks+σ(α),
H ∈ Hs+σ for some fixed s, σ with 0 < s < s+ σ ≤ 1, and

|H −Ko|s+σ ≤ ǫ

for some ǫ > 0. This is the goal of the next section.

3 Inverse function theorem

We first give an abstraction of our problem, and will afterwards show how it allows
us to complete the proof of the twisted conjugacy theorem.

Let E = (Es)0<s<1 be a decreasing family of Banach spaces with increasing norms
| · |s, and ǫBE

s = {x ∈ Es, |x|s < ǫ}, ǫ > 0, be its balls centered at 0. Let (Fs) be
an analogous family, and φ : σBE

s+σ → Fs, s < s + σ, φ(0) = 0, be maps of class
C2, commuting with inclusions.

On account of composition operators, we will assume there are additional, de-
formed norms |·|x,s, x ∈ Int(sBE

s ), 0 < s < 1, satisfying

|y|0,s = |y|s and |y|x′,s ≤ |y|x,s+|x′−x|s ,

and we will phrase our hypotheses on φ in terms of these norms.

Define

Q : σBE
s+σ × σBE

s+σ → Fs, (x, x̂) 7→ φ(x̂)− φ(x)− φ′(x)(x̂− x).

Assume that, if x ∈ sBE
s+σ, the derivative φ′(x) : Es+σ → Fs has a right inverse

φ′(x)−1 : Fs+σ → Es, and

{

|φ′(x)−1η|s ≤ C ′σ−τ ′ |η|x,s+σ
|Q(x, x̂)|x,s ≤ C ′′σ−τ ′′ |x̂− x|2s+σ+|x̂−x|s (∀s, σ, x, x̂, η)

(13)

with C ′, C ′′, τ ′, τ ′′ ≥ 1. Let C := C ′C ′′ and τ := τ ′ + τ ′′.
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The important fact in the Newton algorithm below, is that the index loss σ can
be chosen arbitrarily small, without s itself being small, provided the deformed
norm substitutes for the initial norm of the spaces Fs. The initial norm | · |s of
Fs is here only for the practical purpose of having a fixed target space, to which
perturbations belong.

5 Theorem. φ is locally surjective and, more precisely, for any s, η and σ with
η < s,

ǫBF
s+σ ⊂ φ

(

ηBE
s

)

, ǫ := 2−8τC−2σ2τη.

In other words, φ has a right-inverse ψ : ǫBF
s+σ → ηBE

s .

Some numbers s, η and σ and y ∈ BF
s+η being given, let

f : σBE
s+η+σ → Es, x 7→ x+ φ′(x)−1(y − φ(x)).

Proof of the theorem. Now, let s, η and σ be fixed, with η < s and y ∈ ǫBF
s+σ for

some ǫ. We will see that if ǫ is small enough, the sequence x0 = 0, xn := fn(0) is
defined for all n ≥ 0 and converges towards some preimage x ∈ ηBE

s of y by φ.

Let (σn)n≥0 be a sequence of positive real numbers such that 3
∑

σn = σ, and
(sn)n≥0 be the sequence decreasing from s0 := s + σ to s defined by induction by
the formula sn+1 = sn − 3σn.

Assuming the existence of x0, ..., xn+1, we see that φ(xk) = y +Q(xk−1, xk), hence

xk+1 − xk = φ′(xk)
−1(y − φ(xk)) = −φ′(xk)

−1Q(xk−1, xk) (1 ≤ k ≤ n).

Further assuming that |xk+1 − xk|sk ≤ σk, the estimate of the right inverse and
lemma 39 entail that

|xn+1 − xn|sn+1
≤ cn|xn − xn−1|2sn ≤ · · · ≤ cnc

2
n−1 · · · c2

n−1

1 |x1|2
n−1

s1
, ck := Cσ−τ

k .

The estimate
|x1|s1 ≤ C ′(3σ0)

−τ ′ |y|s0 ≤ Cσ−τ
0 ǫ = c0ǫ

and the fact, to be checked later, that ck ≥ 1 for all k ≥ 0, show :

|xn+1 − xn|sn+1
≤
(

ǫ
∏

k≥0

c2
−k

k

)2n

.

Since
∑

n≥0 ρ
2n ≤ 2ρ if 2ρ ≤ 1, and using the definition of constants ck’s, we get a

sufficient condition to have all xn’s defined and to have
∑ |xn+1 − xn|s ≤ η:

ǫ =
η

2

∏

k≥0

c−2−k

k =
2η

C2

∏

k≥0

στ2
−k

k . (14)

Maximizing the upper bound of ǫ under the constraint 3
∑

n≥0 σn = σ yields

σk := σ
6
2−k. A posteriori it is straightforward that |xn+1 − xn|sn ≤ σn (as earlier

12



assumed to apply lemma 39) and cn ≥ 1 for all n ≥ 0. Besides, using that
∑

k2−k =
∑

2−k = 2 we get

ǫ =
η

2

∏

k≥0

c−2−k

k =
η

2

∏

k≥0

1

2τk2−k

(

1

C

(σ

6

)τ
)2−k

=
η

C2

( σ

12

)2τ

>
σ2τη

28τC2
,

whence the theorem.

Remark. The two competing small parameters η and σ being fixed, our choice of
the sequence (σn) maximizes ǫ for the Newton algorithm. It does not modify the
sequence (xk) but only the information we retain from (xk).

6 Exercise (End of proof of theorem 1). Complete the proof by checking that

– A similar statement as theorem 5 holds if φ is defined only on a ball of polynomial
radius with respect to the width of analyticity (see (10)).

– |Kn|sn , |G−1
n |sn and βn are bounded along the induction (in order to justify the

repeated use of estimates of lemmata 3 and 4, which are not uniform as assumed
in (13)). Hint: Use the fact that

G−1
n+1 = G−1

n ◦ (id+Ġn)
−1,

the estimate of Ġ in the induction and the estimate of proposition 46 in appendix B.

7 Corollary. The size of the allowed perturbation is polynomial in the Diophantine
constant γ (see (1)).

8 Exercise. What is the domain of ψ in FS? Hint: Optimize the function ǫ(η, σ)
under the constraint s+ σ = S.

Bibliographical comments. – The seeming detour through Herman’s normal form
reduces Kolmogorov’s theorem to a functionally well posed inversion problem, as
opposed to Zehnder’s (remarkable) work [101, 102]. One may compare the present
stragegy and Zehnder’s in the following way. Inverting the operator

φ : (K,G, β) 7→ H = K ◦G+ β · r

(see equation (3)) is equivalent to solving the implicit function

F (K,G, β;H) = K − (H − β · r) ◦G−1 = 0.

But φ happens to be a local diffeomorphism, while ∂F/∂(K,G, β) is invertible in
no neighborhood of (Ko, id, 0). This is why Zehnder had to deal with approximate
inverses. The drawback of focusing on the equation φ(K,G, β) = H is that we
neeed it to be satisfied on a domain which depends on G.

As Zehnder, we have encapsulated the Newton algorithm in an abstract inverse
function theorem, à la Nash-Moser. The algorithm indeed converges without
very specific hypotheses on the internal structure of the variables (see exercise 6,
though). At the expense of some optimality, ignoring this structure allows for
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simple estimates and control of the bounds, and for solving a whole class of anal-
ogous problems with the same toolbox (lower dimensional tori, codimension-one
tori, Siegel problem, as well as some problems in singularity theory).

– The fast convergence of the Newton algorithm makes it possible to beat the effect
of small denominators and other sources of loss of width of analyticity. Its has
proved unreasonably efficient compared to other lines of proof in KAM theory such
as direct proofs of convergence of perturbation series [32] or proofs via renormaliza-
tion [28]. Another approach relies on the method of periodic approximation and on
simultaneous Diophantine approximations [13]. Still another alternative to New-
tons’s algorithm consists, at each step of the induction, in solving a (non-linear)
finite dimentional approximation of the functional equation (3) using Ekeland’s
variational principle [30].

– The arithmetic condition is not optimal. Indeed, solving the exact cohomological
equation at each step is inefficient because the small denominators appearing with
intermediate-order harmonics deteriorate the estimates, whereas some of these
harmonics could have a smaller amplitude than the error terms and thus would
better not be taken care of. Even stronger, Rüssmann and Pöschel have noticed
that at each step it is worth neglecting part of the low-order harmonics them-
selves (to some carefully chosen extent). Then the expense, a worse error term,
turns out to be cheaper than that the gain –namely, the right hand side of the
cohomological equation now has a smaller size over a larger complex extension.
This makes it possible, with a slowly converging sequence of approximations, to
show the persistence of invariant tori under some arithmetic condition which, in
one dimension, is equivalent to Brjuno’s condition [80]. Bounemoura-Fischler have
found an interesting alternative proof based on periodic approximations [13].

– The analytic (or Gevrey) category is simpler than Hölder or Sobolev categories,
in Nash-Moser theory, because the Newton algorithm can be carried out without
intercalating smoothing operators (cf. [69, 88, 49, 12]). On the other hand, the
analytic category is more complicated because of the absence of cut off functions,
which forces us to pay attention to the domain of definition of the Hamiltonian
more carefully (cf. [38]).

– The method of Jacobowitz [53] (see [70] also) in order to deduce an inverse
function theorem in the smooth category from its analogue in the analytic category
does not work directly, here. The idea would be to use Jackson’s theorem in
approximation theory to caracterize the Hölder spaces by their approximation
properties in terms of analytic functions and, then, to find a smooth preimage
x by φ of a smooth function y as the limit of analytic preimages xj of analytic
approximations yj of y. However, in our inverse function theorem we require the
operator φ to be defined only on balls σBs+σ with shrinking radii when s+σ tends
to 0. This domain is too small in general to include the analytic approximations
yj of a smooth y. Such a restriction is inherent in the presence of composition
operators. The problem of isometric embeddings is simpler, from this viewpoint.
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4 Local uniqueness and regularity of the normal

form

In the proof of theorem 5 we have built right inverses ψ : ǫBF
s+η+σ → ηBE

s+η, of
φ, commuting with inclusions. The proof shows that ψ is continuous at 0; due to
the invariance of the hypotheses of the theorem by small translations, ψ is locally
continuous.

We further make the following two assumptions:

— The maps φ′(x)−1 : Fs+σ → Es are left (as well as right) inverses (in theorem 1
we have restricted to an adequate class of symplectomorphisms);

— The scale (| · |s) of norms of (Es) satisfies some interpolation inequality:

|x|2s+σ ≤ |x|s |x|s+σ̃ for all s, σ, σ̃ = σ

(

1 +
1

s

)

(according to the sentence after the statement of corollary 48 in appendix C, this
estimate is satisfied in the case of interest to us, since σ + log(1 + σ/s) ≤ σ̃).

9 Lemma (Lipschitz regularity). If σ < s and y, ŷ ∈ ǫBF
s+σ with ǫ = 2−14τC−3σ3τ ,

|ψ(ŷ)− ψ(y)|s ≤ CL|ŷ − y|ψ(y),s+σ, CL = 2C ′σ−τ ′ .

In particular, ψ is the unique local right inverse of φ, i.e. it is also the local left
inverse of φ.

Proof. Fix η < ζ < σ < s; the impatient reader can readily look at the end of the
proof how to choose the auxiliary parameters η and ζ more precisely.

Let ǫ = 2−8τC−2ζ2τη, and y, ŷ ∈ ǫBF
s+σ. According to theorem 5, x := ψ(y)

and x̂ := ψ(ŷ) are in ηBE
s+σ−ζ , provided the condition, to be checked later, that

η < s+ σ − ζ. In particular, we will use a priori that

|x̂− x|s+σ−ζ ≤ |x̂|s+σ−ζ + |x|s+σ−ζ ≤ 2η.

We have

x̂− x = φ′(x)−1φ′(x)(x̂− x)

= φ′(x)−1 (ŷ − y −Q(x, x̂))

and, according to the assumed estimate on φ′(x)−1 and to lemma 39,

|x̂− x|s ≤ C ′σ−τ ′ |ŷ − y|x,s+σ + 2−1Cζ−τ |x̂− x|2s+2η+|x̂−x|s .

In the norm index of the last term, we will coarsely bound |x̂ − x|s by 2η. Addi-
tionally using the interpolation inequality:

|x̂− x|2s+4η ≤ |x̂− x|s|x̂− x|s+σ̃, σ̃ = 4η

(

1 +
1

s

)

,
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yields
(

1− 2−1Cζ−τ |x̂− x|s+σ̃
)

|x̂− x|s ≤ C ′σ−τ ′ |ŷ − y|x,s+σ.
Now, we want to choose η small enough so that

— first, σ̃ ≤ σ− ζ, which implies |x̂− x|s+σ̃ ≤ 2η. By definition of σ̃, it suffices to
have η ≤ σ−ζ

4(1+1/s)
.

— second, 2−1Cζ−τ 2η ≤ 1/2, or η ≤ ζτ

2C
, which implies that 2−1Cζ−τ |x̂− x|s+σ̃ ≤

1/2, and hence |x̂− x|s ≤ 2C ′σ−τ ′ |ŷ − y|x,s+σ.
A choice is ζ = σ

2
and η = στ

16C
< s, whence the value of ǫ in the statement.

10 Proposition (Smoothness). For every σ < s, there exists ǫ, C1 such that for
every y, ŷ ∈ ǫBF

s+σ,

|ψ(ŷ)− ψ(y)− φ′(ψ(y))−1(ŷ − y)|s ≤ C1|ŷ − y|2s+σ.

Moreover, the map ψ′ : ǫBF
s+σ → L(Fs+σ, Es) defined locally by ψ′(y) = φ′(ψ(y))−1

is continuous and, if φ : σBE
s+σ → F is Ck, 2 ≤ k ≤ ∞, for all σ, so is ψ :

ǫBF
s+σ → Es.

Proof. Fix ǫ as in the previous proof and y, ŷ ∈ εBF
s+σ. Let x = ψ(y), η = ŷ − y,

ξ = ψ(y+η)−ψ(y) (thus η = φ(x+ξ)−φ(x)), and ∆ := ψ(y+η)−ψ(y)−φ′(x)−1η.
Definitions yield

∆ = φ′(x)−1 (φ′(x)ξ − η) = −φ′(x)−1Q(x, x+ ξ).

Using the estimates on φ′(x)−1 and Q and the latter lemma,

|∆|s ≤ C1|η|2s+σ′

for some σ′ tending to 0 when σ itself tends to 0, and for some C1 > 0 depending
on σ. Up to the substitution of σ by σ′, the estimate is proved.

The inversion of linear operators between Banach spaces being analytic, y 7→
φ′(ψ(y))−1 has the same degree of smoothness as φ′.

11 Corollary. If π ∈ L(Es, V ) is a family of linear maps, commuting with inclu-
sions, into a fixed Banach space V , then π ◦ ψ is C1 and (π ◦ ψ)′ = π · (φ′ ◦ ψ)−1.

This corollary is used with π : (K,G, β) 7→ β in the proof of theorem 1.

It will later be convenient to extend φ−1 to non-Diophantine vectors α. Whitney-
smoothness is a criterion for such an extension to exist [95, 99].

Suppose φ(x) = φα(x) now depends on some parameter α ∈ Bκ (the unit ball of
Rκ),

— that the estimates assumed up to now are uniform with respect to α over some
closed subset D ⊂ Rκ,

— and that φ is C1 with respect to α.

We will denote ψα the parametrized version of the inverse of φα.

16



12 Proposition (Whitney-smoothness). If s, σ and ǫ are chosen like in propo-
sition 10, the map ψ : D × ǫBF

s+σ → Es is C1-Whitney-smooth and extends to a
map ψ : Rn × ǫBF

s+σ of class C1. If φ is Ck, 1 ≤ k ≤ ∞, with respect to α, this
extension is Ck.

Proof. Let y ∈ ǫBF
s+σ. If α, α + β ∈ D, xα = ψα(y) and xα+β = ψα+β(y), we have

φα+β(xα+β)− φα+β(xα) = φα(xα)− φα+β(xα).

Since ŷ 7→ ψα+β(ŷ) is Lipschitz (lemma 9),

|xα+β − xα|s ≤ CL|φα(xα)− φα+β(xα)|s+σ,

and, since α̂ 7→ φα̂(xα) itself is Lipschitz, so is α 7→ xα.

Moreover, the formal derivative of α 7→ xα is

∂αxα = −φ′
α(xα) · ∂αφ(xα).

Expanding y = φα+β(xα+β) at β = 0 and using the same estimates as above, shows
that

|xα+β − xα − ∂αxα · β|s = O(β2)

when β → 0, locally uniformly with respect to α. Hence α 7→ xα is C1-Whitney-
smooth, and, similarly, Ck-Whitney-smooth if α 7→ φα is.

Thus, by the Whitney extension theorem, the claimed extension exists. Note that
Whitney’s original theorem needs two straightforward generalizations to be applied
here: ψ takes values in a Banach space, instead of R or a finite dimension vector
space (see [45]); and ψ is defined on a Banach space, but the extension directions
are of finite dimension.

13 Exercise (Quasiperiodic time dependant perturbations). Let ν ∈ Rm be fixed.
Consider the subspace Hν of H (in dimension 2(n+m)) consisting of Hamiltonians
in

T
n+m × R

n+m = T
n
θ × T

m
ψ × R

n
r × R

m
Ψ

of the form
Ĥ = ν ·Ψ+H,

where H does not depend on Ψ. Since the corresponding Hamiltonian vector field
has the component

ψ̇ = ν,

Hν may be imaged as the space of Hamiltonians on Tn × Rn with quasiperiodic
time dependance. Show that, if Ĥ ∈ Hν and Ĥ = φ(K,G, (β, β′)) (with β ∈ Rn

and β′ ∈ Rm), then










K ∈ Hν

G leaves ψ unchanged

β′ = 0.

Further question: develop the KAM theory below in this particular case.
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14 Exercise (Control & persistence of tori). If H is close to an integrable Hamil-
tonian Ko = Ko(r), show that there is a smooth integrable Hamiltonian β = β(r)
such that for every R such that T0 is a (γ, τ)-Diophantine invariant torus of Ko,
H − β(r) · r has an invariant torus carrying a quasiperiodic dynamics with the
same frequency.

Hint. Apply the twisted conjugacy theorem to each H(R+ ·, ·), with R ∈ Rn close
to 0 such that the torus r = R is Diophantine for Ko and, using Proposition 12,
extend the so-obtained function R 7→ β(R) as a smooth function.

Bibliographical comments. – It is possible give a proof, patterned on [88, p. 626],
that ψ is C1 without the assumption that φ′(x) has unique inverse (or right in-
verse). Yet the proof simplifies and the estimates improve under the combined
two additional assumptions. In particular, the existence of a right inverse of φ′(x)
makes the inverse ψ unique and thus allows us to ignore the way it was built (a
posteriori regularity result).

– Latzutkin understood, in the case of the standard map, the fundamental impor-
tortance of Whitney-smoothness of the invariant circles with respect the rotation
number. This is a key point in the method of parameter. The dependance actually
is of Gevrey class [78], but we do not need it here.

5 Conditional conjugacy

We now move to a conditional conjugacy, the common ground of invariant tori
theorems of later sections.

Let
Ks = ∪α∈RnKs(α) =

{

c+ α · r +O(r2), c ∈ R, α ∈ R
n
}

be the set of Hamiltonians on Tns ×Rn
s for which T0 is invariant and quasi-periodic,

with unprescribed frequency.

15 Theorem (Conditional conjugacy). For every Ko ∈ Ks+σ(α
o) with αo ∈ Dγ,τ ,

there is a germ of smooth map5

Θ : Hs+σ → Ks × Gs, H 7→ (KH , GH), KH = cH + αH · r +O(r2),

at Ko 7→ (Ko, id) such that the following implication holds:

(∀H) αH Diophantine =⇒ H = KH ◦GH

and (KH , GH) is unique in K × G.

Proof. Denote φα the operator we have been denoting φ –because the frequency α
was fixed while we now want to vary it. Define the map

Θ̂ : Dγ,τ ×Hs+σ → Ks × Gs × Rn

(α,H) 7→ Θ̂α(H) := (φα)
−1(H) = (K,G, β)

5Thank you to Jean-Christophe Yoccoz for drawing my attention to a mistake in a prior
version of this statement.
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locally in the neighborhood of (αo, Ko). Since φ is infinitely differentiable, by
proposition 12 there exist a C∞-extension

Θ̂ : Rn ×Hs+σ → Ks × Gs × R
n.

Write Ko = αo · r + K̂, K̂ = c+O(r2). In particular, since

φα(K
o + (α− αo) · r, id, αo − α) ≡ Ko

locally for all α ∈ Rn close to αo we have

Θ̂(α,Ko) = (Ko, id, β), β(α,Ko) = αo − α.

In particular,
∂β

∂α
= − id

and, by the implicit function theorem, locally for all H there exists a unique α̂
such that β(α̂, H) = 0. We conclude by letting Θ(H) = Θ̂(α̂, H).

The so-defined vector αH , which is called a frequency vector of H, is unique when
belonging to Dγ,τ . It depends Gevrey-smoothly on H (i.e. their partial derivatives
of order r behave like positive powers of r!), as discovered by Popov [78], but not
analytically (except for a family of integrable Hamiltonians). (For our purpose,
the Lipschitz regularity would suffice, in conjunction with the Lipschitz inverse
function theorem. For the sake of simplicity, we stick to the C1 class.)

6 Invariant torus with prescribed frequency

The first invariant torus theorem will be a trivial corollary of the conditional
conjugacy theorem. Consider a smooth family (Ko

t )t∈Bκ of Hamiltonians in some
Ks. Each Ko

t is of the form Ko
t = cot + αot · r + O(r2). The frequency map of the

family is
αo : Bκ 7→ R

n, t 7→ αot .

In this section, we will describe the simplest case, where (the derivative of) αo

has rank n, which, by the submersion theorem, implies that αo is onto, stably
with respect to C1-perturbations. In celestial mechanics, the parameter t may be
masses, semi major axes, eccentricities, inclinations, energy, angular momentum,
etc.

Now, let (Ht) be a smooth family of Hamiltonians in Hs such that, for each t, Ht

is close enough to Kt (a condition that we will not repeat in each statement).

16 Theorem. If the frequency map αo is a local submersion (that is, of rank n)
and if αo(0) ∈ Dγ,τ , there exists t ∈ Bn such that Ht has an invariant torus with
frequency αo(0). Moreover, the subset formed by the values of t ∈ Bn for which Ht

has an invariant torus has positive Lebegue measure.
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Proof. According to the conditional conjugacy theorem, the family (Ht) has some
frequency map α which is C∞-close to αo. So α itself is a local C∞-submersion
and attains αo(0). Besides, as soon as αt ∈ Dγ,τ , Ht has an invariant torus, which
happens for a subset B ⊂ Bn of positive Lebesgue measure.

17 Remark. The first part of the conlusion holds under the topological hypothesis
that αo has non-zero degree (which ensures that αo is locally onto, stably with
respect to perturbations), a remark which applies if αo has a ramification point,
for example.

Poincaré [77] introduced the following two transversality conditions (he was con-
sidering the particular case, considered next, where t is the action variable, Ko =
Ko(r) and α = ∂rK

o(r)).

18 Definition. The Hamiltonian family (Ko
t ) is

• isochronically non-degenerate if the frequency map has rank n

• isoenergetically non-degenerate if the map

B
κ → R× P(Rn), t 7→ ([αot ], c

o
t )

(where [αot ] stands for the homogeneous class of αot ) has rank n.

(Neither condition implies the other.)

19 Exercise (Variants of theorem 16). Prove the following two variants.

– Isoenergetic theorem: If the family (Kt) is isoenergetically non-degenerate, and
if the frequency vector αo belongs to Dγ,τ , there exists t ∈ Bκ such that Ht has an
invariant torus of energy co0 and frequency class [αo0]. Moreover, the subset formed
by the values of t ∈ Bκ for which Ht has an invariant torus of energy co0 has positive
(n− 1)-dimensional Lebesgue measure.6

– “Iso first integral” theorem: More generally, assume that for all t, ft is an Rλ-
valued first integral of Ko

t and Ht (e.g., with λ = 2, ft may stand for the energy
and the angular momentum of a mechanical system in the plane) and that the
frequency vector αo belongs to Dγ,τ The function ft must be constant on T0 and
we call ft(T0) this constant. If the map

B
κ → R× P(Rn), t 7→ (ft(T0), [α

o
t ])

has maximal rank n, there exists t ∈ Bκ such that Ht has an invariant torus on
which ft = f0(T0) and with frequency class [αo0]. More strongly, if the map

B
κ → R× R

n, t 7→ (ft(T0), α
o
t )

has maximal rank n, for every to ∈ Bκ close to 0 there exists t ∈ Bκ such that Ht

has an invariant torus with ft = f0(T0) and frequency vector αo0.

(For a first integral associated with a non-Abelian symmetry, see section 8).

6There is no intrinsic (n− 1)-dimensional Lebesgue measure, but the fact of having positive
(n− 1)-dimensional Lebesgue measure is intrinsic.
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We now turn to Kolmogorov’s theorem, which corresponds to the particular case
where the family (Ht) is obtained by mere translation of some initial Hamiltonian
H ∈ H, in the direction of actions: Ht(θ, r) = H(θ, t+ r), t ∈ Bn. Call co and Qo

the constant and quadratic parts of some Ko ∈ K(αo):

Ko = co + αo · r +Qo(θ) · r2 +O(r3).

20 Theorem (Kolmogorov). If the frequency vector αo belongs to Dγ,τ and if the
quadratic form

∫

Tn Q
o(θ) dθ is non-degenerate, there exists a unique R ∈ Rn such

that G−1(T0) + (0, R) is an αo-quasiperiodic invariant torus of H. Moreover, the
invariant tori of H form a set of positive Lebesgue measure in the phase space.

Proof. Let F be the analytic function taking values among symmetric bilinear
forms, which solves the cohomological equation LαoF = Qo−

∫

Tn Q
o dθ (use lemma

(45)), and ψ be the germ along T0 of the (well defined) time-one map of the flow
of the Hamiltonian F (θ) · r2. The map ψ is symplectic and restricts to the identity
on T0. At the expense of substituting K

o ◦ψ and H ◦ψ for Ko and H respectively,
one can thus assume that

Ko = co + αo · r +Q1 · r2 +O(r3), Q1 :=

∫

Tn

Qo(θ) dθ.

The germs so obtained from the initial Ko and H are close to one another.

Consider the family of trivial perturbations obtained by translating Ko in the
direction of actions:

Ko
R(θ, r) := Ko(θ, R + r), R ∈ R

n, R small,

and its approximation obtained by truncating the first order jet of Ko
R along T0

from its terms O(R2):

K̂o
R(θ, r) := (co + αo ·R) +

(

αo + 2Q1 ·R
)

· r +O(r2) = Ko
R +O(R2).

For the Hamiltonian K̂o
R, T0 is invariant and quasiperiodic of frequency αo+2Q1 ·R.

The first assertion then follows from theorem 16.

What has been done for the torus of frequency αo can more generally be done for all
tori of Diophantine frequency. What remains to be proved is that the collection of
perturbed invariant tori has positive measure. Using the map Θ of the conditional
conjugacy theorem, now define

(KR, GR) = Θ(HR),

with
{

KR = cR + αR · r +O(r2)

GR(θ, r) = (ϕR(θ), (r + S ′
R(θ)) · ϕ′

R(θ)
−1)

locally in the neighborhood of R = 0, say for ‖R‖ < R0. Let

R = {R ∈ R
n, ‖R‖ < R0, αR ∈ Dγ,τ}.
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As soon as R ∈ R, G−1
R (T0) is invariant for HR, hence

TR = G−1
R (T0) + (0, R) = {(θ, R− S ′

R(θ)), θ ∈ T
n}

is invariant for H. Because of proposition 12, TR depends Whitney-smoothly
on R ∈ R. Thus the diffeomorphisms which straighten all the TR’s individually
may be glued together, by Whitney’s extension theorem and the last assertion
follows.

21 Remark (Measure of the set of tori). Due to the estimate of the inverse function
theorem 5, if γ ≪ 1, the allowed size of |H −Ko|s (for some s > 0) is polynomial
in γ (of degree 4). One can actually show that it is |H − Ko|s = O(γ2) [79]. In
other words, for a given H, a torus with frequency vector in Dγ,τ is preserved for
some γ = O(

√
ǫ), and, as a classical estimate of the measure of the complement of

Diophantine vectors shows, the measure of the complement of the invariant tori is
of order O(γ) = O(

√
ǫ).

Once one has one invariant torus, it is straightforward to obtain a set of positive
measure of invariant tori, as the proof above has shown. (This was not so at the
level of generality of theorem 16. Why? If t1, t2 ∈ B, the invariant tori of Ht1 and
Ht2 may meet. In Kolmogorov’s theorem, the parameter being the cohomology
class of the tori, this cannot happen.) We will see in the next section that a much
weaker transversality condition is sufficient for locally finding a positive measure
of tori. Yet, in the absence of any transversality hypothesis, the question of the
accumulation of a quasiperiodic invariant torus by quasiperiodic invariant tori, and
their measure, is the subject of Herman’s conjecture [34].

22 Exercise. Instead of applying theorem 16, complete the proof of theorem 20
using the twisted conjugacy theorem.

Hint. The twisted conjugacy normal form of K̂o
R with respect to the frequency α

is
K̂o
R =

(

K̂o
R − β̂oR · r

)

◦ id+β̂oR · r, β̂oR := 2Q1 · R.

By assumption the matrix ∂β̂o

∂R

∣

∣

∣

R=0
= 2Q1 is invertible and the map R 7→ β̂oR is

a local diffeomorphism. Now, there is an analogous map R → βR for HR, which
is a small C∞-perturbation of R 7→ β̂oR, and thus a local diffeomorphism, with a
domain having a lower bound locally uniform with respect to H. Hence if H is
close enough to Ko there is a unique small R such that β = 0. For this R the
equality HR = K ◦ G holds, hence the torus obtained by translating G−1(T0) by
R in the direction of actions is invariant and α-quasiperiodic for H.

Bibliographical comments. – Claims that Kolmogorov’s proof was incomplete are
unfounded in view of the breakthrough: the supposedly missing arguments in
Kolmogorov’s paper bear upon to Cauchy’s inequality and elementary harmonic
analysis [57, 23, 40]. Kolmogorov actually gave these details in Moscow’s semi-
nar, as Arnold and Sinäı have testified. Arnold later gave an alternative proof.
Arnold’s statement is equivalent to Kolmogorov’s, despite the superficial difference
of looking to all neighboring tori at a time. Arnold additionally payed attention
to how far H can be from Ko, as the torsion gets close to degenerate [3].
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– The remark that parameters are not necessarily action variables adds some flex-
ibility for finding invariant tori, e.g. in the work of Zhao L. [104, 105]. Another
example is an analogue of Arnold’s theorem where one would be allowed to tune
not only the semi major axes but also the masses of the planets.

7 Invariant tori with unprescribed frequencies

There is a KAM theory which assumes only a much weaker non-degeneracy con-
dition than above. Let α : Bκ → Rn be a smooth map.

23 Definition. The frequency map α is skew 7 if its image is nowhere locally con-
tained in a vector hyperplane.

24 Lemma (Rüssmann [83, 84]). If α is skew and analytic, for all t ∈ Bκ there
exist r ∈ N∗ and j1, ..., jr ∈ Nκ such that

Vect
(

∂j1αt, ..., ∂
jrαt

)

= R
n; (15)

the integer maxi |ji| (where |ji| is the length of ji) is called the index of degeneracy
at t. Conversely, if there exists t ∈ Bκ, r ∈ N∗ and j1, ..., jr ∈ Nκ such that (15)
holds, α is skew.

The property of being skew is a very weak transversality condition. It is of crucial
interest that κ may be smaller than n.

25 Example. The monomial curve

α : t ∈ [0, 1] 7→ (1, t, ..., tn−1) ∈ R
n

is skew. Indeed, with the convention that 1/n! = 0 if n ∈ Z−, the matrix

(

α, α′, · · · , α(n−1)
)

=

(

(j − 1)!

(j − i)!
tj−i
)

1≤i,j≤n
.

has rank n.

See [87] for a comparison with a dozen conditions which have been used in KAM
theory. Here we content ourselves with the following examples, showing in par-
ticular that being skew is implied by the traditional conditions of isochronic or
isoenergetic non-degeneracy.

26 Example. – If α is isochronically non-degenerate, at every point t ∈ Bκ its local
image is an open set of Rn, so α is skew, with index of degeneracy equal to 1.

– Suppose that t is the action variable, H = H(r) and α = ∂rH(r). If then H
is isoenergetically non-degenerate, its frequency map is skew. Indeed, since the

7The terminology we have chosen here is not standard. Related (but not always equivalent)
conditions have been called essentially non planar, non planar, Rüssmann-non-degenerate, weakly
non-degenerate, curved etc.
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determinant of the “bordered torsion”8
(

α′ α
tα 0

)

is non zero, α′ must have rank

n− 1, the bordered torsion is equivalent to




τ̄ 0 ᾱ
0 0 β
tα β 0





with det τ̄ 6= 0 and β ∈ R, hence the borderd torsion has determinant −β2 det τ̄ ,
hence β 6= 0, hence H is skew with index of degeneracy equal to 1.

27 Example (L. Chierchia). The integrable Hamiltonian defined over T4 × R4 by

H =
1

4
r41 +

1

2
r21r2 + r1r3 + r4

is isochronically and isoenergetically degenerate, but its frequency, as a function
of the action r1, is skew at (r1, 0, 0, 0), r1 6= 0.

We now take up hypotheses of the beginning of section 6, i.e. we consider a
smooth family (Ko

t )t∈Bκ of Hamiltonians in K. Each Ko
t is of the form Ko

t =
cot + αot · r +O(r2). The (analytic) frequency map of the family is

αo : Bκ 7→ R
n, t 7→ αot .

Let (Ht) be a smooth family of Hamiltonians in Hs such that, for each t, Ht is
close enough to Kt. The conditional conjugacy theorem yields a smooth frequency
map t 7→ αt of H which is C∞-close to t 7→ αot .

28 Proposition (Rüssmann [87]). If αo is skew, there exists µ ∈ N∗ (an affine
function of the index of degeneracy of αo) such that if α is Cµ-close to αo,

Leb {t ∈ B
κ, αt /∈ Dγ,τ} ≤ Cγ1/µ.

From the proof of the proposition, it is not hard to see how these estimate de-
teriorate when there are several time scales (a situation otherwise called properly
degenerate).

29 Corollary. Under the hypotheses of proposition 28, if we split α into α =
(α̂, α̌) ∈ Rn̂ × Rň, n̂+ ň = n, then

Leb {t ∈ B
κ, (α̂t, ǫα̌t) /∈ Dγ,τ} ≤ C

(γ

ǫ

)1/µ

for some affine function µ of the index of degeneracy.

An immediate consequence is the following theorem.

30 Theorem. If the frequency map αo is skew, there is a subset T ⊂ Bκ of positive
Lebesgue measure such that, for all t ∈ T , Ht has a Diophantine quasiperiodic
invariant torus.

8Poincaré calls this square matrix the “bordered Hessian” of H [77].
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31 Remark (Size of the allowed perturbation). In many applications indeed, that
there are several time scales. For example, in the planetary 3-body problem the
dynamics splits into the fast Keplerian dynamics and the slow secular dynamics.
If one wants to apply KAM theory, it is then crucial to know the size of the
allowed perturbation in terms of these time scales. The relevant estimates may be
established along the following lines.

Consider for example the case of a frequency curve α = (α̂, α̌) : I 7→ Rn = Rn̂×Rň,
t 7→ (α̂(t), α̌(t)), assumed skew at some t0 ∈ I. Then, after corollary 29, if we want
to have some measure estimates which are uniform with respect to small ǫ, we need
to choose γ = O(ǫN) for some N large enough. Last, due to the estimate of the
inverse function theorem 5, if γ ≪ 1, the allowed size of |H−Ko|s (for some s > 0)
is polynomial in γ, hence in ǫ. (One can show that |H −Ko|s = O(γ2) is enough
for the conclusion to hold [79].) Hence, it usually suffices to apply theorem 30 to
a normal form of high order, whose remainder is in O(ǫ2N).

The analogue of Kolmogorov’s theorem for the weak transversality condition of
being skew is the following. Consider one Hamiltonian K ∈ K(αo) for some αo ∈
DHγ,τ (with γ small enough and τ large enough) and one Hamiltonian H ∈ H
close to K. Upon putting Ko under normal form at some high enough order,
theorem 15 gives the existence of a frequency map r 7→ αor of K.

32 Theorem (Rüssmann). If the frequency map αo is skew, the invariant tori of
H form a set of positive Lebesgue measure in the phase space.

The proof mimicks the second part of the proof of Kolmogorov’s theorem.

Bibliographical comments. The theory of Diophantine approximations on manifolds
was initiated by the works of Arnold and his students; see [9, 55, 81, 94]. It has
later been used in dynamical systems, e.g. in [5, 21, 8, 31, 74, 75, 85, 86, 87].

8 Symmetries

This section consists in a remark regarding Hamiltonian systems invariant under a
Hamiltonian group action. The natural way to find invariant tori is to apply KAM
theory to the symplectically reduced system. Here, we explain how to take advan-
tage of the symmetries “upstairs”, avoiding to carry out explicit computations on
the quotient.

Let (X,ω) be an exact symplectic real analytic manifold of dimension 2n and G a
compact group, acting analytically onX in a Hamiltonian way, freely and properly.
Call 2m the corank of G. Let us briefly recall the argument why the corank is
even. Consider the adjoint action of a maximal torus T on the Lie algebra g of G.
Since T is Abelian, g splits into irreducible components of real dimensions 1 or 2,
on which T respectively acts trivially or by rotations. The component with trivial
representation V contains the Lie algebra t of T . But, if T is indeed maximal, one
must have V = t [1].
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Let T0 be a Lagrangian embedded real analytic torus of X and Ko
t : X 7→ R,

t ∈ Bκ, be a smooth family of G-invariant real analytic functions (Hamiltonians)
for which T0 is invariant, quasiperiodic of frequency vector αot ∈ Rn.

The main example is a rotation-invariant mechanical system. The condition of
being skew is always violated, because one frequency (corresponding in the phase
space to the two directions of non trivial rotations of the angular momentum
vector) vanishes identically. One can get rid of this degeneracy by fixing the direc-
tion of the angular momentum (see [103]). The remaining invariance by rotations
around the direction of the angular momentum adds some flexibility for checking
the transversality condition, since the harmonics which are not invariant have zero
Fourier coefficient. What follows is an abstraction of this situation.

33 Lemma. The image of the frequency map t 7→ αot lies in a subspace of Rn of
codimension m.

Proof. Let T be a maximal torus of G; its codimension is 2m. Let µ be the moment
map, thought of as a map X → g, and t+ be the positive Weyl chamber of T (see
[48]). As Guillemin-Sternberg have noticed (see [46] for details) X+ = µ−1(t+) is

• a codimension-2m, real analytic submanifold of X (µ is transverse to t+, a
connected component of the regular values of µ)

• symplectic (TX+ intersects its symplectic orthogonal along the space of vec-
tors generated by t+ only, hence along the zero section only)

• a section of the G-action (because maximal tori are conjugate to each other
and, under our asumptions, the moment map is equivariant).

The velocity vector on T0 is tangent to X+, so T0 ∩ X+ is an invariant torus,
whose ergodic components are isotropic (see appendix A), hence of dimension
at most n − m. By invariance of X+, the frequencies in the directions which
are symplectically orthogonal to X+ vanish. There are m of them, whence the
claim.

Let T be a maximal torus as in the proof above, of Lie algebra t = Rk (k thus
being the rank of G). Let τ : X → Rk be its moment map (a projection of the
full moment map µ). By a classical theorem of Weinstein, we may identify a
neighborhood of the Lagrangian torus T with a neighborhood of the zero section
T0 in the cotangent bundle of T . Let (θ, r) be coordinates. Let us expand τ near
T0:

τ = τ0(θ) + τ1(θ) · r +O(r2),

where τ0(θ) ∈ Rk and τ1(θ) ∈Mk,n(R). The torus T0 is invariant and quasiperiodic
for each component of τ (because those components commute with Ko

0). So τ0 and
τ1 actually do not depend on θ.

Consider the amended Hamiltonian

K̂o
t,u = Ko

t + u · τ, (16)
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depending on parameters t ∈ Bκ and u ∈ Rk. By Lagrangian intersection theory,
it has the same ergodic Lagrangian invariant tori as Ko

t , and the frequency vector
of T0 is changed into

α̂ot,u = αot + u · τ1,

Call Vect τ1 the subspace of Rn spanned by the k row-vectors of τ1. This is the
subspace of frequencies which may be attained by tuning the parameter u.

Rather then repeating the whole theory in the G-invariant setting, we merely adapt
four chief statements, according to the following array of hypotheses, where the
partially reduced system refers to the restriction of the Hamiltonian system to the
invariant symplectic manifold X+, of dimension 2(n−m).

Submersive frequency Skew frequency
Partially reduced system 1 2
Fully reduced system 3 4

34 Theorem (Partially reduced viewpoint). 1. If the frequency map αo : Rκ → Rn

has rank ≥ n−m at 0 and αo0 ∈ Dγ,τ , there exists t such that Ht has an invariant
torus of frequency αo0. Besides, the subset formed by the values of t ∈ Bn for which
Ht has an invariant torus has positive Lebegue measure.

2. If the image of the frequency map does not lie in any plane of codimension > m
in Rn, for a subset of t ∈ Bκ of positive Lebesgue measure, Ht has a rank-(n−m)
quasiperiodic invariant torus.

35 Theorem (Totally reduced viewpoint). 3. If the amended frequency map α̂o :
Rκ × Rk → Rn, has rank ≥ n − m at (0, 0), there exists t such that Ht has an
invariant torus of frequency αo0 (mod Vect τ1). Besides, the subset formed by the
values of t ∈ Bn for which Ht has an invariant torus has positive Lebegue measure.

4. If the image of the amended frequency map does not lie in any plane of codi-
mension > m in Rn, for a subset of t ∈ Bκ of positive Lebesgue measure, Ht has
a rank-(n−m) (posibly non minimal) quasiperiodic invariant torus.

The hypotheses in the two statements amount to assuming that the induced fre-
quency map α̂o : Rκ×Rk → Rn/Vect τ1 (of the totally reduced system) respectively
has rank ≥ n−m or is skew.

If the parameter is the translation in the direction of the action variable r, one
could further infer the existence of a subset of the phase space and of positive
Lebesgue measure, consisting of invariant tori, as in section 6, using an argument
which we will not repeat here.

Items 1 and 2 yield minimal tori. Items 3 and 4 yield strictly more tori, foliated into
minimal invariant subtori of codimenion from 0 to k. Determining this codimension
requires to compute the frequencies of the lift of the T -action, which boils down
to a quadrature, along the lines of the standard theory of symplectic reduction.

Proof. First restrict to the symplectic manifold X+, which has dimension 2(n−m)
(partial reduction). Items 1 and 2 of the statement follow from theorems 16 and 30
respectively. Now, restrict to a regular level of µ and quotient by T . The reduced
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Hamiltonian system ofKo
t has frequency the equivalence class of α

o
t modulo Vect τ1.

So, resonance hyperplanes in the partially reduced phase space which are broken
by u ·τ1 project to zero in the reduced system. Assertions 3 and 4 thus follow from
theorems 16 and 30, this time applied to the fully reduced system.

All the four items of this theorem will be used in our study of the three-body
problem.

Bibliographical comments. The idea of amending the Hamiltonian goes back to
Poincaré when he would look to the three-body problem in a rotating frame of
reference in order to break some degeneracies in his search for periodic orbits [77].
The role of partial reduction (consisting in fixing only the direction of the angular
momentum) was brought forward in [65].

9 Lower dimensional tori

In this section, we sketch the theory for lower dimensional invariant tori. Some
additional details may be found in [38].

Two integers n ≥ 1 and m ≥ 0 being fixed, let H be the set of germs along
T0 = Tn × {0} × {0} of real analytic functions (Hamiltonians) in the phase phase

T
n × R

n × C
m = {(θ, r, z = (x, y))}.

A Hamiltonian H ∈ H defines a germ of vector field

{

θ̇ = ∂rH

ṙ = −∂θH,

{

ẋ = ∂yH

ẏ = −∂xH.

Let α ∈ Rn and β ∈ Rm. Split the integer m into m = m′ +m′′ (m′ and m′′ will
respectively be the numbers of hyperbolic and elliptic directions), and let Qβ be
the matrix

Qβ = 2πDiag(β1, ..., βm,−β1, ...,−βm′ , βm′+1, ..., βm) ∈ M2m(R).

Define K(α, β) as subset of H of Hamiltonians of the form

K = c+ α · r + 1

2
Qβ · z2 +O(r2, rz, z3)

=
n
∑

j=1

αjrj + π

m′

∑

j=1

βj(x
2
j − y2j ) + π

m
∑

j=m′+1

βj(x
2
j + y2j ) +O(r2, rz, z3)

where c is some (non-fixed) real number.

In the following definitions, maps are all real analytic. Let B1(Tn) be the group of
exact 1-forms on Tn, D be the group of isomorphisms of Tn fixing the origin,

Sp2m =
{

ψ ∈M2m(R),
tψJψ = J

}

, J =

(

0 −idRm

idRm 0

)

,
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be the symplectic group,

A∗(T
n, Sp(2m)) = {exp∆ψ ∈ A(Tn, Sp(2n)),∆ψ ∈ A∗(T

n, sp2m)}

be the image by the exponential of the subspace

A∗(T
n, sp2m(R)) =

{

ψ ∈ A(Tn, sp2m(R)),
tψ = ψ and

∫

Tp

ψjj(θ) dθ = 0, j = 1, ..., 2m

}

. (17)

Let now
G = B1(Tn)×A(Tn,R2m)×D∗ ×A∗(T

n, Sp(2m)).

Let a = (θ, r, z) = (θ, r, x, y) ∈ Tp×Rp×Rq ×Rq and G = (ρ, ζ, ϕ, ψ) ∈ G. If ψ is
C0-close to the constant map θ 7→ idR2q , there exists a unique ψ̇ ∈ C∞

∗ (Tp, sp(2q))
such that ψ = exp ψ̇. Let



















ρ(a) = (θ, r + ρ, z)

ζ(a) = (θ, r +Rζ , z + ζ(θ))

ϕ(a) = (ϕ(θ), tDϕ(θ)−1 · r, z)
ψ(a) = (θ, r + Sψ · z2, ψ(θ) · z),

with






Rζ = −J · ((z + ζ/2)Dζ)

Sψ · z2 = 1
2

∫ 1

0

(

exp(tψ̇) · z
)2

·
(

J ·Dψ̇
)

dt,
(18)

and then
G(a) = ψ(ϕ(ζ(ρ(a)))). (19)

This defines an exact symplectomorphism [38].

The generalized twisted conjugacy theorem is as follows.

Assume (α, β) is Diophantine in this sense: for every k ∈ Zn, l′ ∈ Zm
′

and l′′ ∈ Zm
′′

such that |l′|, |l′′| = 1 or 2,











|k · α| ≥ γ
|k|τ (if k 6= 0)

|l′ · β′| ≥ γ

|k · α + l′′ · β′′| ≥ γ
(|k|+1)τ

(Melnikov condition)

(20)

36 Theorem. If H ∈ H is close enough to some Ko ∈ K(α, β), there exists a
unique (K,G, α̂, β̂) ∈ K(α, β)× G × Rn × Rm close to (Ko, id, 0, 0) such that

H = K ◦G+ α̂ · r + 1

2
Qβ̂ · z2.

We will skip the proof here. It only combines the same formal ideas as in the
smooth category [38] and the inverse function theorem of section 3.

The theory for lower dimensional tori unwinds as in the Lagrangian case. Of course,
there is no direct analogue of Kolmogorov’s theorem if m′′ > 0, since there are not
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enough action variables to control all of the tangent and normal frequencies. Let
us merely give one statement, corresponding to theorem 30.

Consider a smooth family (Ko
t )t∈Bκ of Hamiltonians in some Ks, defining a fre-

quency map
(αo, βo) : Bκ 7→ R

n, t 7→ (αot , β
o
t ).

Let (Ht) be a smooth family of Hamiltonians in Hs such that, for each t, Ht is
close enough to Kt.

37 Theorem. If the frequency map (αo, βo) is skew, there is a subset T ⊂ Bκ of
positive Lebesgue measure such that, for all t ∈ T , Ht has a Diophantine quasiperi-
odic invariant torus.

Bibliographical comments. – The existence of normally hyperbolic tori has been
acknowledged early, since hyperbolic normal directions do not interfere with the
tangent quasiperiodic dynamics [54].

– It was a surprise when H. Eliasson proved an invariant torus theorem for normaly
elliptic tori [31], due to the problem of the lack of parameters.

– Bourgain later proved that it suffices to assume |l| = 1 in the Melnikov condition.
The proof is more difficult since one cannot straighten the normal dynamics of the
torus, so the linearized equations are not diagonal anymore in Fourier space [76].

10 Example in the spatial three-body problem

The Hamiltonian of the three-body problem is

H =
∑

0≤j≤2

‖p‖2
2mj

−
∑

0≤j<k≤2

mjmk

‖qj − qk‖
,

where qj ∈ R3 is the position of the j-th body and pj ∈ R3 is its impulsion.
Periodic solutions have been advertised by Poincaré as the only breach through
which to enter the impregnable fortress of the three-body problem. Conjecturally
they are dense in the phase space, but also of zero measure. In contrast, we
will prove the existence of quasiperiodic motions, at least here in the hierarchical
(or lunar) problem, where two bodies (say, q0 and q1) revolve around each other
while the third body revolves, far away, around the center of mass of the two
primaries. Another classical perturbative regime would have been the planetary
problem, where there is no assumption on the distances of the bodies, but two
masses (planets) are assumed small with respect to the remaining one (Sun).

38 Theorem. There exist a set of initial conditions of positive Lebesgue measure
leading to quasiperiodic solutions, arbitrarily close to Keplerian, coplanar, circular
motions, with semi major axis ratio arbitrarily small.

The hurried reader may simplify the following discussion by focusing on the plane
invariant subproblem.
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Let (Q0, Q1, Q2, P0, P1, P2) be the Jacobi coordinates, defined by:










Q0 = q0

Q1 = q1 − q0

Q2 = q2 − σ0q0 − σ1q1,











P0 = p0 + p1 + p2

P1 = p1 + σ1p2

P2 = p2,

where 1/σ0 = 1+m1/m0 and 1/σ1 = 1+m0/m1. P0 is the total linear momentum,
which can be assumed equal to 0 without loss of generality. Besides, H does not
depend on Q0. So, (Q1, Q2, P1, P2) is a symplectic coordinate system on the phase
space reduced by the symmetry of translation, and the equations read

{

Q̇i = ∂Pi
H (i = 1, 2)

Ṗi = −∂Qi
H.

A direct computation shows that

H =
∑

1≤i≤2

‖Pi‖2
2µi

−
∑

0≤i<j≤2

mimj

‖qi − qj‖
,

with

M0 = m0, M1 = m0 +m1 and
1

µi
=

1

Mi−1

+
1

mi

.

One can split H into two parts

H = Kep+Rem

where

Kep =
∑

1≤i≤2

(‖Pi‖2
2µi

− µiMi

‖Qi‖

)

is a sum of two uncoupled Kepler problems, and

Rem =
µ2M2

‖Q2‖
− m0m2

‖q2 − q0‖
− m1m2

‖q2 − q1‖
is the remainder.

Let us assume that the two terms of Kep are negative so that each body Qi under
the flow of Kep describes a Keplerian ellipse. Let (ℓi, Li, gi, Gi, θi,Θi)i=1,2 be the
associated Delaunay coordinates. These coordinates are symplectic and analytic
over the open set where motions are non-circular and non-horizontal [41]; since we
will precisely be interested in a neighborhood of circular coplanar motions, these
variables are only intermediate coordinates for computations. One shows that

Kep = −
∑

i=1,2

µ3
iM

2
i

2L2
i

.

The Keplerian frequencies9 are

κi =
∂Kep

∂Li
=
µ3
iM

2
i

L3
i

=

√
Mi

a
3/2
i

,

9Traditionally given the ununderstandable name of mean motions.
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so that the Keplerian frequency map

κ : (L1, L2) 7→ (κ1, κ2)

is a diffeomorphim (R∗
+)

2 → (R∗
+)

2. Due to the fact that the Keplerian part
depends only on 2 of the action variables, solutions of the Keplerian approximation
are quasiperiodic with atmost 2 independent frequencies. This degeneracy has been
interpreted as a hidden SO(4)-symmetry for each planet, whose momentum map
is given partly by the eccentricity vector. How the Keplerian ellipses slowly rotate
and deform will be determined by mutual attractions. This degeneracy is specific
to the Newtonian and elastic potentials, as Bertrand’s theorem asserts [11].

In the hierarchical regime (a1 ≪ a2) the dominating term of the remainder is

Main := −µ1m2P2(cos θ)
‖X1‖2
‖X1‖3

, (21)

with P2(c) = 1
2
(3c2 − 1) (second Legendre polynomial) and θ = Q̂1, Q2. Since

the Keplerian frequencies satisfy κ1 ≫ κ2, we may average out the fast, Keple-
rian angles ℓ1 and ℓ2 successively, thus without small denominators [37, 54]. The
quadrupolar Hamiltonian is

Quad =

∫

T2

Main
dℓ1 dℓ2
4π2

; (22)

It is the dominating interaction term which rules the slow deformations of the Kep-
lerian ellipses. It naturally defines a Hamiltonian on the space of pairs of Keplerian
ellipses with fixed semi major axes. This space, called the secular space, is locally
diffeomorphic to R8, whose origin corresponds to circular horizontal ellipses.

After reduction by the symmetry of rotations (e.g. with Jacobi’s reduction of
the nodes, which consists in fixing the angular momentum vector, say, vertically,
and quotienting the so-obtained codimension-3 Poisson submanifold by rotations
around the angular momentum), the secular space has 4 dimensions, with coordi-
nates (g1, G1, g2, G2) outside coplanar or circular motions.

39 Lemma. The quadrupolar system Quad is integrable.

Indeed, it happens that Quad does not depend on the argument g2 of the pericenter
of the outer ellipse (but the next higher order term, the “octupolar term”, does),
thus proving its integrability:

Quad = − µ1m2a
2
1

8a32 (1− e22)
3/2

[

(15e21 cos2 g1 − 12e21 − 3) sin2(i2 − i1)
+3e21 + 2

]

, (23)

where ij is the inclination of the ellipse of Qj with respect to the Laplace plane
(e.g. [63]); the Hamiltonian in the plane problem is simply obtained by letting
i1 = i2 = 0.

We now need to estimate the frequencies and the torsion of the quadrupolar system,
somewhere in the secular space. Lidov-Ziglin [63] have established the bifurcation
diagram of the system, and proved the existence of 5 regimes in the parameter
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space, according to the number of equilibrium points of the reduced quadrupolar
system. Here, for the sake of simplicity we will localize our study in some regular
region (i.e. a region with a uniform action-angle coordinate system) and, more
specifically, on a neighborhood of the origin of the secular space, i.e. circular
horizontal Keplerian ellipses. See [60] for more details on the computations.

40 Lemma (Lagrange, Laplace). The first quadrupolar system has a degenerate
elliptic singularity at the origin of the secular space, whose normal frequency vector
is

αQuad(0) = −3a21
4a32









Λ−1
1

Λ−1
2

−Λ−1
1 − Λ−1

2

0









.

Proof. The following steps lead to the desired expansion of Quad:

• Using elementary geometry, express cos θ12 in terms of the elliptic elements
and the true anomalies. Then substitute the variable u1 for v1, using the
relations

cos(v1) =
a1

‖X1‖
(cosu1 − e1) and sin v1 =

a1
‖X1‖

√

1− e21 sin u1.

• Multiply Main by the Jacobian of the change of angles

dℓ1 dℓ2
du1 dv2

=
‖X1‖
a1

‖X2‖2

a2
√

1− e22
.

• In the integrand of (22) with i = 2, express the distances to the Sun in terms
of the inner eccentric anomaly u1 and outer true anomaly v2:

‖X1‖ = a1(1− e1 cos u1) and ‖X2‖ =
a2(1− e22)

1 + e2 cos v2
,

and expand at the second order with respect to eccentricitites and inclina-
tions (odd powers vanish; the fourth order yields the second Birkhoff invari-
ant and will be needed later).

• The obtained expression is trigonometric polynomial in u1 and v2. Average
it.

• Switch to the Poincaré coordinates (ξj, ηj , pj, qj), which are symplectic and
analytic in the neighborhood of circular horizontal ellipses, and are defined
by the relations















ξj + iηj =
√

2Lj

√

1−
√

1− e2j e
−i(gj+θj)

pj + iqj =
√

2Lj

√

√

1− e2j(1− cos ij) e
−iθj ;

here we use the notation Λj = Lj = µj
√

Mjaj.
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The invariance of Quad by horizontal rotations entails that, as proved by Lagrange
and Laplace, there exist two quadratic forms Qh and Qv (indices h and v here stand
for “horizontal” and “vertical”) on R2 such that

Quad = −3a21
8a32

(Qh(ξ) +Qh(η) +Qv(p) +Qv(q) +O4(ξ, η, p, q)) .

The computation shows that
{

Qh(ξ) =
ξ2
1

L1
+

ξ2
2

L2

Qv(p) = − p2
1

L1
− p2

2

L2
+ 2p1p2√

L1L2

The horizontal part is already in diagonal form. The vertical part Qv is diagonal-
ized by the orthogonal operator of R2

ρ =
1√

Λ1 + Λ2

( √
Λ2

√
Λ1

−
√
Λ1

√
Λ2

)

.

This operator of R2 lifts to a symplectic operator

ρ̃ : (x1, y1, x2, y2, x3, y3, x4, y4)

7→ (ξ1, η1, ξ2, η2, p1, q1, p2, q2) = (x1, y1, x2, y2, p1, q1, p2, q2)

with
(p1, p2) = ρ · (x3, x4) and (q1, q2) = ρ · (y3, y4).

In the new coordinates,

Quad = − a21
4a32

(

1 + 3
2Λ1

(x21 + y21) +
3

2Λ2
(x22 + y22)−

3
2

(

1
Λ1

+ 1
Λ2

)

(x23 + y23) +O4(x, y)

)

, (24)

thus showing that the origin is elliptic, and degenerate (since there is no term in
x24 + y24).

Switching (outside the origin) to symplectic polar coordinates (ϕ̃j, r̃j)j=1,...,4 defined
by

xj + iyj =
√

2r̃j e
−iϕ̃j ,

one gets the wanted expression of αQuad(0) =
∂Quad
∂r̃

(0).

It is an exercise (e.g. using generating functions) to check that all the changes of
coordinates we have made on the secular space lift to changes of coordinates in
the full phase space, up to adequately modifying the mean longitude. This does
not change the Keplerian frequencies.

The quadrupolar frequency vector αQuad(0) calls for some comments:

• Due to the SO(3)-symmetry, rotations of the two inner ellipses around a
horizontal axis leave Quad invariant. Hence the infinitesimal generators of
such rotations (last two columns of the matrix ρ̃ in the proof of lemma 40)
span an eigenplane of the quadratic part of (24), with eigenvalue 0. This
explains for the vanishing last component of the normal frequency vector (for
all r’s for that matter):

αQuad(0)4 = 0 (∀Λ1,Λ2). (25)
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• Unexpectedly, the sum of the frequencies vanishes:

∑

1≤j≤4

αQuad(0)j = 0 (∀Λ1,Λ2). (26)

• The local image of the map (Λ1,Λ2) 7→ αQuad(0) thus lies in a 2-plane of R4

but in no line, since the map

(Λ1,Λ2) 7→ −3a21
4a32

(

Λ−1
1

Λ−1
2

)

= −3

4

M3
2

M2
1

µ6
2

µ4
1

(

Λ3
1Λ

−6
2

Λ4
1Λ

−7
2

)

is a diffeomorphism. Hence, additional resonances may always be removed
by slightly shifting Λ1 and Λ2.

41 Proposition. The local image of the frequency map

(R+
∗ )

2 → R
6, (a1, a2) 7→ α = (κ1, κ2, αQuad(0))

is contained in the codimension-2 subspace

α6 = 0, α3 + α4 + α5 = 0 (27)

but in no subspace of larger codimension.

Proof. What remains to be checked is the second, negative assertion, i.e. that the
frequency map

α̃ : (a1, a2) 7→ α̃ = (κ1, κ2, αQuad(0)1, αQuad(0)2)

=
(

c1a
−3/2
1 , c2a

−3/2
2 , c3a

3/2
1 a−3

2 , c4a
2
1a

−7/2
2

)

is skew, where the ci’s depend only on the masses. Restricting for example to
the curve a2 = a31, one gets a frequency vector whose components are Laurent
monomials in

√
a1, with components of pairwise distinct degrees. Such a curve is

skew according to example 25 (using the fact that extracting components of the
monomial curve preserves the skew property).

Resonances (25) and (26) a priori prevent from eliminating all terms in the Lind-
stedt (or Birkhoff) normal form of Quad, and from applying theorem 30. And
resonant terms will not disappear by adjusting the Λj’s. But, as the following
lemma shows, there are no resonant terms at the second order in r̃.

Let
L(2) =

{

(Λ1,Λ2) ∈ R
2, ∀|k| ≤ 4, k1Λ

−1
1 + k2Λ

−1
2 6= 0

}

be the open set of values of (Λ1,Λ2) for which the horizontal first quadrupolar
frequency vector satisfies no resonance of order ≤ 4. Here we will restrict to L(2)
for the sake of precision, although, when we let a1/a2 tend to 0 later in the lunar
problem, this restriction will become an empty constraint.
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42 Lemma. If the parameters (Λ1,Λ2) belong to L(2), Quad has a non-resonant
Lindstedt normal form at order 2 i.e., there exist coordinates (ϕj, rj)j=1,...,4, tangent
to (ϕ̃j, r̃i)j=1,...,4, such that

Quad = cst + αQuad(0) · r +
1

2
τQuad · r2 +O(r3).

Besides, the torsion is

τQuad =









0
τ̄Quad 0

0
0 0 0 0









with τ̄Quad =

− a21
8a32

1

Λ2
1Λ

2
2





−6Λ2
2 18Λ1 Λ2 −24Λ2

2 − 18Λ1 Λ2

18Λ1 Λ2 24Λ2
1 −18Λ1 Λ2 − 24Λ2

1

−24Λ2
2 − 18Λ1 Λ2 −18Λ1 Λ2 − 24Λ2

1 6Λ2
2 + 18Λ1 Λ2 + 6Λ2

1



 .

Proof. We carry out the same computation as in the proof of lemma 40, now up to
the order 2 in the r̃j’s. The truncated expression is a trigonometric polynomial in
the angles ϕ̃j, of degree ≤ 4. Eliminating non-resonant monomials, i.e. functions
of k · ϕ with k · αQuad(0), is a classical matter. Two kinds of terms cannot be
eliminated by averaging:

• Monomials in the angle 4ϕ̃4.

• Monomials in ϕ̃1 + ϕ̃2 + ϕ̃3 + ϕ̃4.

Such monomials actually cannot occur in the expansion, due to the invariance
by rotations (they would not satisfy the d’Alembert relation [25, 65]).10 A direct
computation leads to the given expression of the torsion τQuad.

Note that the torsion τQuad, as a function of Λ1 and Λ2, extends analytically outside
L(2) (as often do first order normal forms). This allows us to define the quadrupolar
frequency map

αQuad : r 7→ αQuad +
1

2
τQuad · r,

a first order approximation of the normal frequencies.

43 Proposition. The first quadrupolar frequency map has constant rank 3 and, in
restriction to the symplectic submanifold obtained by fixing vertically the direction
of the angular momentum, is a local diffeomorphism.

Proof. For this lemma, we denote by C = (Cx, Cy, Cz) ∈ R3 the angular momen-
tum of the first two planets. The submanifold V of vertical angular momentum,

10Thank you to Gabriella Pinzari for pointing out to me that the second kind of monomials
too, is ruled out by d’Alembert’s relations.
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has equation Cx = Cy = 0. It is a symplectic, codimension-2 submanifold, trans-
verse to the Hamiltonian vector fields XCx

and XCy
of Cx and Cy. Since it is

invariant by the flow of Quad, its tangent space has equations, in the coordinates
(xj, yj)j=1,...,4 of the proof of lemma 40, x4 = y4 = 0. So, the upper left 3 × 3
submatrix τ̃Quad of τQuad is the Hessian of the restriction of Quad to V . In order
to conclude, one merely needs to notice that the determinant of the torsion τ̃Quad:

det τ̃Quad = −
(

a21
a32

)3
27

64

1

Λ2
1Λ

2
2

(

39Λ2
1 + 39Λ1Λ2 + 4Λ2

2

)

is non-zero.

So, Quad (adequately truncated) has a non-degenerate quasiperiodic dynamics in
the three degrees of freedom corresponding to coordinates (ψj, si)j=1,2,3.

End of the proof of theorem 38. We would like to prove the persistence of some of
the invariant tori of our normal form, which have frequencies of the following order
(assuming a1 = O(1) and a2 → ∞):

α = O(1, a
−3/2
2 , a−3

2 , a
−7/2
2 , a−3

2 , 0).

The conclusion thus follows from any of the four arguments below:

• the first item of theorem 34 (using proposition 43)

• the second item of theorem 34 (using again proposition 43), which yields not
only the precedingly found Diophantine tori but also resonant tori (which
induce Diophantine tori after reduction by the symmetry of rotation)

• the third item of theorem 34 (using proposition 41, for which the compu-
tation of the torsion is not needed, at the expense of deteriorating measure
estimates)

• the fourth item of theorem 34 (using again proposition 41).

In three cases, the existence of Diophantine invariant tori of Kep+Quad is proved,
either at the partially reduced level or at the fully reduced one. Locally they
will have positive measure provided γ = O(a

−7/2
2 ). Theorem 34 applies with a

perturbation of the size |H − Ko| = O(γN) for some N (remark 31). Thus the
theorem really applies to the perturbation of the normal form of the Hamiltonian
of order ∼ 7N/2 in 1/a2.

Bibliographical comments. – The discovery of the eccentricity vector is often wrongly
attributed to Runge and Lenz [2].

– For an anachronistic proof of Bertrand’s theorem using Kolmogorov’s theorem,
see [42].

– Lemma 39 is obvious in the plane problem, where the analoguous reduction leads
to a 2-dimensional reduced secular space, with coordinates (g1, G1) (see [36, 64]).
This is less so in space. Harrington noticed it only after having carried out the
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computation [50]. Lidov-Ziglin [63] called this a “happy coincidence”, and indeed
this invariance allowed them to study the bifurcation diagram of the quadrupolar
Hamiltonian Quad. This was also crucial in various studies [54, 104, 105].

– Among the many accounts of the work of Lagrange and Laplace (comprising
lemma 40), we refer to [97, 59, 43].

– Resonance (26) of order 3 was known to Clairaut, noticed by Delaunay as un
résultat singulier [27], and discovered by Herman in the general n-planet problem.

– In the proof of lemma 42, it is a happy coincidence that resonant terms associated
with the second resonance actually do not occur at our order of truncation. Malige
has computed that higher degree resonant monomials occur, starting at order
10 [65].

– The strategy in Fejoz [38] for proving Arnold’s theorem corresponds to the third
argument given above at the end of the proof of theorem 38. The strategy of
Chierchia-Pinzari [26] corresponds to the first and second arguments.

A Isotropy of invariant tori

Let (X,ω) be a symplectic manifold, (ϕt) a symplectic flow and T be a minimal
quasiperiodic invariant embedded torus for (ϕt).

44 Lemma. If ω is exact, T is isotropic.

Proof. We may assume that ϕt(θ) = θ+ tα (t ∈ R, θ ∈ Tn) for some non-resonant
vector α. Let

ν =
∑

i<j

νij(θ) dθi ∧ dθ2

be the 2-form induced by ω on T . Since (ϕt) preserves ω, for all t we have

νij(θ + tα) = ν(θ).

Since the flow on T is minimal, νij is constant. By integrating with respect to
θi and θj, this constant must be zero (more learnedly: according to the Hodge
theorem, the zero 2-form is the unique harmonic representative of the cohomology
class).

If ω is not exact, the conclusion may be wrong. M. Herman has even constructed
codimension-2 minimal invariant tori, in such a robust manner that this disproved
the quasi-ergodic hypothesis [100].

B Two basic estimates

The following lemma is used in two instances in the proof of lemma 3, as well as
in the proof of Kolmogorov’s theorem 20.
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45 Lemma (Cohomological equation). Let s and σ be given in ]0, 1]. If g ∈
A(Tns+σ), there exists a unique function f ∈ A(Tns ) of 0-average such that

Lαf = g −
∫

Tn

g(θ) dθ,

and there exists a Cc = Cc(n, τ) such that, for any s, σ:

|f |s ≤ Ccγ
−1σ−τc |g|s+σ, τc = τ + n.

Proof. Up to substituting g−
∫

Tn g, we may assume that g has zero average. Then,
let g(θ) =

∑

k∈Zn\{0} gk e
i 2πk ·θ be the Fourier expansion of g. The unique formal

solution to the equation Lαf = g is given by f(θ) =
∑

k∈Zn\{0}
gk

i 2π k·α e
i 2π k·θ.

Since g is analytic, its Fourier coefficients decay exponentially: we find

|gk| =
∣

∣

∣

∣

∫

Tn

g(θ) e−ik·θ
dθ

2π

∣

∣

∣

∣

≤ |g|s+σe−|k|(s+σ)

by shifting the torus of integration to a torus Im θj = ±(s+σ) (the sign depending
on the sign of kj). Using this estimate and replacing the small denominators k · α
by its Diophantine lower bound, we get

|f |s ≤ |g|s+σ
γ

∑

k

|k|τ e−|k|σ

≤ 2n|g|s+σ
γ

∑

ℓ≥1

(

ℓ+ n− 1
ℓ

)

ℓτ e−ℓ σ ≤ 4n|g|s+σ
γ (n− 1)!

∑

ℓ

(ℓ+ n− 1)τ+n−1 e−ℓ σ,

where, as a change of variable and a rough approximation show, the latter sum is
bounded by

∫ ∞

1

(ℓ+ n− 1)τ+n−1e−(ℓ−1)σ dℓ < σ−τ−nenσ
∫ ∞

0

ℓτ+n−1e−ℓ dℓ

Hence f belongs to A(Tns ) and satisfies the wanted estimate.

Bibliographical comments. The estimate has been obtained by bounding the terms
of Fourier series one by one. In a more careful estimate, one should take into
account the fact that if |k · α| is small, then k′ · α is not so small for neighboring
k′’s. This makes it possible to find the optimal exponent of σ, uniformly with
respect to the dimension [70, 82].

We have also used the following inverse function theorem. Recall that we have set
Tns := {θ ∈ Cn/2πZn, max1≤j≤n |Im θj| ≤ s}.
46 Proposition. Let v ∈ A(Tns+2σ,C

n), |v|s+2σ < σ. The map id+v : Tns+2σ →
Rn
s+3σ induces a map ϕ : Tns+2σ → Tns+3σ whose restriction ϕ : Tns+σ → Tns+2σ has a

unique right inverse ϕ−1 : Tns → Tns+σ:

Tns+σ
� � ϕ

// Tns+2σ

Tns
Q1

ϕ−1

cc●
●

●

●

●

●

●

●

●

?�

OO

.
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Furthermore,
|ϕ−1 − id |s ≤ |v|s+σ

and, provided 2σ−1|v|s+2σ ≤ 1,

|(ϕ−1)′ − id | ≤ 2σ−1|v|s+2σ.

Proof. Let Φ : Rn
s+2σ → Rn

s+3σ be a continuous lift of id+v and k ∈ Mn(Z),
k(l) := Φ(x + l) − Φ(x). Denote by p : Rn

s := Rn × i[−s, s]n → Tns the universal
covering of Tns .

1. Injectivity of Φ : Rn
s+σ → Rn

s+2σ. Suppose that x, x̂ ∈ Rn
s+σ and Φ(x) =

Φ(x̂). By the mean value theorem,

|x− x̂| = |v(px̂)− v(px)| ≤ |v′|s+σ|x− x̂|,

and, by Cauchy’s inequality,

|x− x̂| ≤ |v|s+2σ

σ
|x− x̂| < |x̂− x|,

hence x = x̂.

2. Surjectivity of Φ: Rn
s ⊂ Φ(Rn

s+σ). For any given y ∈ Rn
s , the contraction

f : Rn
s+σ → R

n
s+σ, x 7→ y − v(x)

has a unique fixed point, which is a pre-image of y by Φ.

3. Injectivity of ϕ : Tns+σ → Tns+2σ. Suppose that px, px̂ ∈ Rn
s+σ and ϕ(px) =

ϕ(px̂), i.e. Φ(x) = Φ(x̂)+κ for some κ ∈ Zn. That k be in GL(n,Z), follows
from the invertibility of Φ. Hence, Φ (x− k−1(κ)) = Φ(x̂), and, due to the
injectivity of Φ, px = px̂.

4. Surjectivity of ϕ : Tns ⊂ ϕ(Tns+σ). This is a trivial consequence of that of Φ.

5. Estimate on ψ := ϕ−1 : Tns → Tns+σ. Note that the wanted estimate on ψ
follows from the corresponding estimate for the lifted map Ψ := Φ−1 : Rn

s →
Rn
s+σ. But, if y ∈ Rn

s ,
Ψ(y)− y = −v(pΨ(y)),

hence |Ψ− id |s ≤ |v|s+σ.

6. Estimate on ψ′. We have ψ′ = ϕ′−1 ◦ϕ, where ϕ′−1(x) stands for the inverse
of the map ξ 7→ ϕ′(x) · ξ. Hence

ψ′ − id = ϕ′−1 ◦ ϕ− id,

and, under the assumption that 2σ−1|v|s+2σ ≤ 1,

|ψ′ − id |s ≤ |ϕ′−1 − id |s+σ ≤ |v′|s+σ
1− |v′|s+σ

≤ σ−1|v|s+2σ

1− σ−1|v|s+2σ

≤ 2σ−1|v|s+2σ.
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C Interpolation of spaces of analytic functions

In this section we prove some Hadamard interpolation inequalities, which are used
in section 4.

Recall that we denote by TnC the infinite annulus Cn/2πZn, by Tns , s > 0, the
bounded sub-annulus {θ ∈ TnC, |Im θj| ≤ s, j = 1...n} and by Dn

t , t > 0, the
polydisc {r ∈ Cn, |rj| ≤ t, j = 1...n}. The supremum norm of a function
f ∈ A(Tns × Dn

t ) will be denoted by |f |s,t.
Let 0 < s0 ≤ s1 and 0 < t0 ≤ t1 be such that

log
t1
t0

= s1 − s0.

Let also 0 ≤ ρ ≤ 1 and

s = (1− ρ)s0 + ρs1 and t = t1−ρ0 tρ1.

47 Proposition. If f ∈ A(Tns1 × Dn
t1
),

|f |s,t ≤ |f |1−ρs0,t0 |f |
ρ
s1,t1 .

Proof. Let f̃ be the function on Tns1×Dn
t1
, constant on 2n-tori of equations (Im θ, |r|) =

cst, defined by

f̃(θ, r) = max
µ,ν∈Tn

∣

∣f
(

(±θ1 + µ1, ...,±θn + µn),
(

r1 e
iν1 , ..., rn e

iνn
))∣

∣

(with all possible combinations of signs). Since log |f | is subharmonic (hence upper
semi-continuous) and T2n is compact, log f̃ too is upper semi-continuous. Besides,
log f̃ satisfies the mean inequality, hence is plurisubharmonic.

By the maximum principle, the restriction of |f | to Tns ×Dn
t attains its maximum

on the distinguished boundary of Tns × Dn
t . Due to the symmetry of f̃ :

|f |s,t = f̃(isǫ, tǫ), ǫ = (1, ..., 1).

Now, the function
ϕ(z) := f̃(zǫ, e−(iz+s)tǫ)

is well defined on Ts1 , for it is constant with respect to Re z and, due to the
relations imposed on the norm indices, if |Im z| ≤ s1 then |e−(iz+s)t| ≤ es1−st = t1.

The estimate

logϕ(z) ≤ s1 − Im z

s1 − s0
ϕ(s0i) +

Im z − s0
s1 − s0

ϕ(s1i)

trivially holds if Im z = s0 or s1, for, as noted above for j = 1, esj−st = tj, j = 0, 1.
But the left and right hand sides respectively are suharmonic and harmonic. Hence
the estimate holds whenever s0 ≤ Im z ≤ s1, whence the claim for z = is.

Recall that we have let Tn
s := Tns × Dn

s , s > 0, and, for a function f ∈ A(Tn
s ), let

|f |s = |f |s,s denote its supremum norm on Tn
s . As in the rest of the paper, we now

restrict the discussion to widths of analyticity ≤ 1.

41



48 Corollary. If σ1 = − log
(

1− σ0
s

)

and f ∈ A(Tn
s+σ1

),

|f |2s ≤ |f |s−σ0|f |s+σ1 .

In section 4, we use the equivalent fact that, if σ̃ = s+log
(

1 + σ
s

)

and f ∈ A(Tn
s+σ̃),

|f |2s+σ ≤ |f |s|f |s+σ̃.

Proof. In proposition 47, consider the following particular case :

• ρ = 1/2. Hence

s =
s0 + s1

2
and t =

√
t0t1.

• s = t. Hence in particular t0 = s es0−s and t1 = s es1−s.

Then
|f |2s = |f |2s,s ≤ |f |s0,t0 |f |s1,t1 .

We want to determine max(s0, t0) and max(s1, t1). Let σ1 := s−s0 = s1−s. Then
t0 = s e−σ1 and t1 = s eσ1 . The expression s + σ − seσ has the sign of σ (in the
relevant region 0 ≤ s + σ ≤ 1, 0 ≤ s ≤ 1); by evaluating it at σ = ±σ1, we see
that s0 ≤ t0 and s1 ≥ t1.

Therefore, since the norm | · |s,t is non-decreasing with respect to both s and t,

|f |2s ≤ |f |t0,t0 |f |s1,s1 = |f |t0|f |s1

(thus giving up estimates uniform with respect to small values of s). By further
setting σ0 = s − t0 = s (1− e−σ1), we get the wanted estimate, and the asserted
relation between σ0 and σ1 is readily verified.

Bibliographical comments. – The obtained inequalities generalize the standard
Hadamard inequalities. They are optimal and show that the convexity of ana-
lytic norms is twisted by the geometry of the phase space. See [73, Chap. 8] for
more general but coarser inequalities.

– Interpolation inequalities in the analytic category do not depend on regularizing
operators as they do in the Hölder or Sobolev cases. See, e.g. [52, Theorem A.5]
or [49].

Acknowledgments. These notes are the expanded version of a chapter of the Ha-
bilitation memoir [39] and of a subsequent short course given at the workshop
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in RICAM (Linz, November 2014). I thank J.-B. Caillau, A. Chenciner, J. Mather,
G. Pinzari and J.-C. Yoccoz for their interest or suggestions. Paradoxycally, this
work has been partially funded by the ANR project Beyond KAM theory (ANR-
15-CE40-0001).
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Chaotic Dyn., 18(6):703–718, 2013.
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