
NON-INTEGRABILITY

OF THE MINIMUM TIME KEPLER PROBLEM

M. ORIEUX, J.-B. CAILLAU, T. COMBOT, AND J. FÉJOZ

Abstract. We prove that the minimum time controlled Kepler problem is not
meromorphically Liouville integrable on the Riemann surface of its Hamiltonian.

1. Introduction

The Kepler problem

(1) q̈ +
q

‖q‖3 = 0, q ∈ R
2 \ {0}.

is a classical reduction of the two-body problem [2]. Here, we think of q as the
position of a spacecraft, and of the attraction as the action of the Earth. We are
interested in controlling the transfer of the spacecraft from one Keplerian orbit
towards another, in the plane. Denoting v = q̇ the velocity, and the adjoint
variables of q and v by pq and pv, the minimum time dynamics is a Hamiltonian
system with

(2) H(q, v, pq, pv) = pq.v −
pv.q

‖q‖3 + ‖pv‖,

as is explained in section 2.1. Prior studies of this problem can be found in
[5, 7]. The controlled Kepler problem can be embedded in the two parameter
family obtained when considering the control of the circular restricted three-body
problem:

(3) q̈ +∇qΩµ(t, q) = εu,
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where

Ωµ(t, q) = − 1− µ
√

(q1 + µ cos t)2 + (q2 + µ sin t)2

− µ
√

(q1 − (1− µ) cos t)2 + (q2 − (1− µ) sin t)2

is the potential parameterized by the ratio of masses, µ ∈ [0, 1/2], and where
u ∈ R

2 is the control, whose amplitude is modulated by the second parameter,
ε ≥ 0. Alternatively to time minimization, minimization of the L

2 norm of the
control can be considered,

∫ tf

0

u2(t) dt → min .

This is the so-called energy cost. In the uncontrolled model (ε = 0), it is well known
that the Kepler case (µ = 0) is integrable and geodesic (there exists a Riemannian
metric such that Keplerian curves are geodesics of this metric [15, 16]) while there
are obstructions to integrability for positive µ. In the controlled case (ε > 0), the
Kepler problem for the energy cost has been shown to be integrable (and geodesic)
when suitably averaged (see [6] for a survey). The aim of this paper is to study
the integrability properties of the Kepler problem for time minimization.

The pioneering work of Ziglin in the 80’s [22], followed by the modern formu-
lation of differential Galois theory in the late 90’s by Moralès, Ramis and Simó
[13, 14], have led to a very diverse literature on the integrability of Hamiltonian
systems. According to Pontrjagin’s Maximum principle, one can turn general opti-
mization problems with dynamical constraints into Hamiltonian systems, which are
generally not everywhere differentiable. Optimal control theory thus provides an
abundant class of dynamical systems for which integrability is a central question.
Yet, differential Galois theory has not so often been applied in this context (see,
e.g., [4]), in part because of the difficulty brought by the singularities. Notwith-
standing theses singularities (vanishing of the adjoint variable pv, here), we show
how to apply these ideas to the system (2).

2. Setting

2.1. The minimum time controlled Kepler problem. We first recall some
classical facts on optimal control. We refer for example to the book of Agrachev
and Sachkov [1] for more details. Let M be an n-dimensional smooth manifold
and U an arbitrary subset of R

m (typically a submanifold with boundary). A
controlled dynamical system is a smooth family of vector fields

f : M × U → TM

parameterized by the control values. Admissible controls are measurable functions
valued in the subset U . A preliminary question is the following: Is some final state
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xf accessible from some initial state x0, i.e. does the system

ẋ(t) = f(x(t), u(t)), u(t) ∈ U,

x(0) = x0, x(tf ) = xf ,

have a solution for some admissible control? The system is said to be controllable
if the answer is positive for all possible initial and final states x0, xf ∈ M . The
controlled Kepler problem, associated with (1), is

q̈ +
q

‖q‖3 = u, q ∈ R
2 \ {0}, u2

1 + u2
2 ≤ 1,

(q(0), q̇(0)) = (q0, v0), (q(tf ), q̇(tf )) = (qf , vf ),

where q is the position vector of a spacecraft and where the control u is the thrust
of the engine. The thrust is obviously bounded; here we assume that it is valued in
the Euclidean unit ball. (Note that, with respect to (3), we have chosen ε = 1; as
will be clear from Section 3, this does not restrict the generality of the analysis.)

Proposition 1 ([7]). The Kepler problem is controllable.

This is a consequence of two facts: The Lie algebra generated by the drift and the
vector field supporting the control generate the whole tangent space at each point
(which entails some local controllability), and the uncontrolled flow (or drift) of the
Kepler problem is recurrent. Under some additional convexity and compactness
assumptions, one is then able to retrieve existence of optimal controls.

We now deal with such optimal controls. We restrict ourselves to integral cost
functions, that is to problems of the form

(4)











ẋ(t) = f(x(t), u(t)),

x(0) = x0, x(tf ) = xf ,
∫ tf
0

L(x(t), u(t)) dt → min

where the final time tf can be fixed or not, and L : M × U → R is a smooth
function. In the early 60’s, Pontrjagin and his coauthors realized that necessary
conditions for optimality could be stated in Hamiltonian terms. By T ∗M we denote
the cotangent bundle of the manifold M .

Definition 1. The associated pseudo-Hamiltonian is

H : T ∗M × R× U → R, (x, p, p0, u) 7→ 〈p, f(x, u)〉+ p0L(x, u).

The following fundamental result is Pontrjagin Maximum Principle [18] (see [1] for
a modern presentation).

Theorem 1. If (x, u) solves (4), there exists a Lipschitzian function p(t) ∈ T ∗
x(t)M ,

t ∈ [0, tf ], a constant p0 ≤ 0, (p(t), p0) 6= 0, such that, almost everywhere,
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(i) (x, p) is a solution of the Hamiltonian system associated with H(·, ·, u(t)):

ẋ =
∂H

∂p
(x, p, u), ṗ = −∂H

∂x
(x, p, u),

(ii) H(x(t), p(t), u(t)) = maxv∈U H(x(t), p(t), v).

Such curves (x, p) are called extremals. As a consequence of the maximization con-

dition, the pseudo-Hamiltonian evaluated along an extremal is constant. Moreover,

if the final time is free then this constant is zero.

This powerful result has some downsides. The Hamiltonian is defined on the cotan-
gent bundle of the original phase space, and thus the dimension is doubled. Besides,
the maximization condition, which "eliminates the control" and allows to obtain
a truly Hamiltonian system in (x, p) only, might generate singularities (that is
non-differentiability points of the maximized Hamiltonian which is in general only
Lipschitzian as a function of time when evaluated along an extremal). The above
theorem applies to time minimization with L ≡ 1 (and free final time). In this
case, the non-positive constant p0 is only related to the level of the Hamiltonian,
and we will not mention it in the sequel as we will not discuss the implications of
having normal (p0 6= 0) or abnormal (p0 = 0) extremals.

2.2. Main result. The minimum time Kepler problem can be stated according
to

(5)











q̈ + q
‖q‖3 = u, ‖u‖ ≤ 1,

(q(0), q̇(0)) = (q0, v0), (q(tf ), q̇(tf )) = (qf , vf ),

tf → min,

where, as before, q ∈ R
2 is the position vector and u ∈ R

2 the control. It will be
convenient to use the same notations as in the general problem (4) and let

q = (x1, x2), q̇ = (x3, x4),

be the coordinates on the initial phase space M = (R2 \ {0})× R
2. According to

Definition 1, the pseudo-Hamiltonian is then

(6) H(x, p, u) = p1x3 + p2x4 −
p3x1 + p4x2

(x2
1 + x2

2)
3/2

+ p3u1 + p4u2.

According to Theorem 1, minimizing trajectories must be projections on M of
integral curves of the Hamiltonian that has to be maximized over the unit disk.
The maximized Hamiltonian is readily equal to

H(x, p) = p1x3 + p2x4 −
p3x1 + p4x2

(x2
1 + x2

2)
3/2

+
√

p23 + p24

on T ∗M , while the control is given by

u =
1

√

p23 + p24
(p3, p4)
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whenever p3 and p4 do not vanish simultaneously. Now, let

M = {(x, p, r) ∈ C
8 × C

2
∗, r

2
1 = x2

1 + x2
2, r22 = p23 + p24}

be the Riemann surface of H. It is a complex symplectic manifold (with local
Darboux coordinates (x, p) outside the singular hypersurface r1r2 = 0), over which
H extends meromorphically, and even rationally, since

(7) H(x, p, r) = p1x3 + p2x4 −
p3x1 + p4x2

r31
+ r2.

The Hamiltonian H has four degrees of freedom, hence (see [2]) the meromorphic
Liouville integrability of H over M would mean that there would exist three
independent first integrals, in addition to H itself, almost everywhere in M. The
aim of this paper is to prove that it is not the case.

Theorem 2. The minimum time Kepler problem is not meromorphically Liouville

integrable on M.

It is well known that the classical Kepler problem is integrable, and even super
integrable (since there are more first integrals than degrees of freedom, as a result
of Kepler’s first law and of the dynamical degeneracy of the Newtonian potential—
see for instance [9]). On the opposite, the three-body problem is not as is known
after the seminal work of Poincaré (for recent accounts on this topic see, e.g., [8, 10,
17, 21]). Similarly, the above theorem asserts that lifting the Kepler problem to the
cotangent bundle and introducing the singular control term r2 breaks integrability.

This result prevents the existence of enough complex analytic (and even mero-
morphic) first integrals to ensure integrability over M. Or course, it does not
prevent the existence of an additional real first integral which would have a nat-
ural frontier asymptotic to the real domain and thus, would not extend to the
complex plane. Future work might be dedicated to investigate either or not The-
orem 2 holds for real first integrals.

3. Proof of Theorem 2

The rest of the article is devoted to proving the theorem. Our proof consists in
studying the variational equation along some integral curve of (7). In order to
carry out this computation, we choose a collision orbit, with the drawback that
it requires some regularization. We also note that there exist effective tools to
perform this kind of computations (see, e.g., [12]). The algebraic obstruction to
Liouville integrability comes from the theorem below of Moralès and Ramis, which
we now recall. We follow the presentation of Singer in [20].

3.1. Some facts of Galois differential theory. Consider a linear differential
equation (L) : Y ′ = AY , A ∈ Mn(k), k being a differential field whose field of
constants k0 is algebraically closed. We want the Galois group to be the group of
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symmetries preserving all algebraic and differential relations of a basis of solutions.
We consider the polynomial ring

S = k[Y1,1, . . . , Yn,n, 1/det(Y )]

where Y is an n×n matrix. This ring has a derivation provided by the differential
system Y ′ = AY . We now consider a maximal differential ideal M of S, and the
quotient R = S/M . This quotient satisfies the following

Definition 2 (Picard-Vessiot field). A Picard-Vessiot ring for Y ′ = AY is a dif-
ferential ring R over k such that

(i) The only differential ideals of R are (0) and R.
(ii) There exists a fundamental matrix Z ∈ GLn(R) for the equation Y ′ = AY .
(iii) R is generated as a ring by k, the entries of Z and 1/det(Z) .

It turns out that the choice of the maximal differential ideal M always gives
the same Picard-Vessiot ring up to isomorphism. This ring is also a domain, thus
allowing to consider the quotient field, the Picard-Vessiot field.

Definition 3 (Galois group). The differential Galois group of R over k is the
group of differential automorphism of R preserving k, noted Gal(R/k).

For a differential system Y ′ = AY , if there is no ambiguity on the base field k. (For
the case treated in this paper, the base field k is C(z).) Given a fundamental matrix
of solution Z and a Galois group element σ, we have Z ′ = AZ, and thus applying
σ, we also have σ(Z)′ = Aσ(Z). Thus σ(Z) is also a matrix of solutions; there
exists a constant matrix C such that σ(Z) = ZC, and as σ is an automorphism, C
has to be invertible. So Gal(R/k) can be represented as a group of n×n matrices.

Proposition 2. The Galois group Gal(R/k) ⊂ GLn(k0) is a linear algebraic

group, i.e. the zero set in GLn(k0) of a system of polynomials over k0 in n2

variables.

Proof. This can be obtained by letting a Galois group element σ act (right multi-
plication by a matrix) on the differential ideal I = (f1, . . . , fp). We can moreover
assume that fi ∈ k[Y ]. As this does not change the degrees in the Yi,j and since I
must be stabilized, σ(fi) must belong to I∩kmax(deg f1,...,deg fp)[Y ]. This condition is
a condition of membership to a vector space, which provides algebraic conditions
on the entries of the matrix σ. �

Proposition 3 (Fundamental Theorem of Differential Galois Theory). Let K be

a Picard-Vessiot field with differential Galois group G over k.

(i) There is a one-to-one correspondence between Zariski-closed subgroups H ⊂
G and differential subfields F , k ⊂ F ⊂ K, given by

H ⊂ G → KH = {a ∈ K, σ(a) = a ∀σ ∈ H}
F → Gal(K/F ) = {σ ∈ G, σ(a) = a ∀a ∈ F}
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(ii) A differential subfield F , k ⊂ F ⊂ K, is a Picard-Vessiot extension of k if

and only if Gal(K/F ) is a normal subgroup of G, in which case Gal(F/k) ≃
G/Gal(K/F ).

We are interested in non integrability for nonlinear Hamiltonian systems. The
link with the Hamiltonian world is given by the celebrated theorem of Moralés-
Ramis below. We recall that an algebraic group G is said to be virtually Abelian
if its connected component containing the identity is an Abelian subgroup of G.

Theorem 3 (Moralès-Ramis [13]). Let H be an analytic Hamiltonian on a complex

analytic symplectic manifold and Γ be a non constant solution. If H is integrable

in the Liouville sense with meromorphic first integrals, then the first order varia-

tional equation along Γ has a virtually Abelian Galois group over the base field of

meromorphic functions on Γ.

The main idea behind this theorem is that if H is Liouville integrable, then so are
the linearized equations near a non constant solution Γ. More precisely, thanks to
Ziglin’s Lemma below, the first integrals of H can be transformed in such a way
that their first non trivial term in their series expansion near Γ are functionally
independent.

Lemma 1 (Ziglin’s Lemma). Let Φ1, . . . ,Φr ∈ k(x1, . . . , xn) be functionally inde-
pendent functions. We consider Φ0

1, . . . ,Φ
0
r the lowest degree homogeneous term

for some fixed positive weight homogeneity in x1, . . . , xn. Assume Φ0
1, . . . ,Φ

0
r−1 are

functionally independent. Then there exists a polynomial Ψ such that the lowest
degree homogeneous term Ψ0 of Ψ(Φ1, . . . ,Φr) is such that Φ0

1, . . . ,Φ
0
r−1,Ψ

0 are
functionally independent.

Applying this Lemma recursively, we prove that if a Hamiltonian system admits
a set of commuting, functionally independent meromorphic first integrals on a
neighbourhood of a curve, then their first order terms, after possibly polynomial
combinations of them, are also commuting, functionally independent meromorphic
first integrals of the linearized system along the curve. Moralès-Ramis [13] precisely
proved that symplectic linear differential systems having such first integrals have
a Galois group whose identity component is Abelian. This result can be expected
knowing that the Galois group leaves invariant every first integral, so the more
first integrals, the smaller the Galois group.

We will need the definition of the monodromy group of a linear differential
equation. Let us consider a differential system Y ′ = AY, A ∈ Mn(C(x)). We note
S = P

1 \ {singularities of A}. Let us consider a point z0 ∈ S and a closed oriented
curve γ ⊂ S, with x0 ∈ γ. There exists a basis of solutions Z on a neighbourhood
of x0, holomorphic in z. We now use analytic continuation along the loop γ to
extend this basis of solutions. However, it cannot a priori be extended to a whole
neighbourhood of γ, because after one loop, the basis of solutions Zγ at x0 could
be different. This defines a matrix Dγ ∈ GLn(C) such that Zγ = ZDγ and thus a
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homomorphism

Mon : π1(S, x0) → GLn(C), Mon(γ) = Dγ.

This homomorphism carries the group structure of π1(S, x0), and thus its image is
also a group.

Definition 4. The image of the application Mon is called the monodromy group.

Note that the monodromy group depends on the choice of Z, so it is only deter-
mined up to conjugation. Since analytic continuation preserves analytic relations,
the monodromy group is a subset of the differential Galois group over the base
field of meromorphic functions on S; in particular, it is included in the differential
Galois group over the base field of rational functions. For Fuchsian systems (all
singularities are regular singularities, i.e. the growth at singularities of solutions
is at most polynomials), we have moreover the following.

Theorem 4 (Schlesinger density theorem [19]). Let (E) : Y ′ = AY be a Fuchsian

differential linear equation with coefficients in C(x) and let Π be its monodromy

group. Then Π is dense for the Zariski topology in the Galois group of the Picard-

Vessiot extension of (E) over the base field of rational functions: Π = Gal(A).

3.2. A collision orbit. In order to find an explicit solution of 6, let us define the
4-dimensional symplectic submanifold

S = {(x, p, r) ∈ M | x2 = x4 = p2 = p4 = 0, r1 = x1, r2 = −p3}.
As S is the phase space of the controlled Kepler problem on the line (collision
orbit) parameterized by q1, it is invariant. On the interior of S, (x1, x3, p1, p3) is a
set of (Darboux) coordinates and, in restriction to S, the Hamiltonian reduces to

H(x, p) = p1x3 −
p3
x2
1

− p3,

so the Hamiltonian vector field on S is






















ẋ1 = x3

ẋ3 = −1− 1
x2

1

ṗ1 = −2p3
x3

1

ṗ3 = −p1.

In particular,

(8)

{

ẍ1 = −1− 1
x1

2

p̈3 − 2p3
x3

1

= 0.

As is known since the work of Charlier and Saint Germain on the Kepler problem
with a constant force (see [3]), the function

C =
1

2
x2
3 + x1 −

1

x1
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is a first integral on S and H|S is integrable. Let us change time to s = x1(t) and

denote by ′ = d
ds

the derivation with respect to this new time. It suffices to find
an obstruction in this modified time, as explained at the end of the proof.

Using (8), we see that the variable p3 satisfies the linear differential equation

2

(

C +
1

x1

− x1

)

p′′3(x1)−
(

1 +
1

x2
1

)

p′3(x1)−
2p3(x1)

x3
1

= 0,

which yields

p3(x1) =

√

−Cx1 + x2
1 − 1√

x1

(

c1

∫

x
3/2
1

(−Cx1 + x2
1 − 1)3/2

dx1 + c2

)

for some constants of integration c1 and c2. Here the symbol
∫

f(x1)dx1 denotes
some primitive of f with respect to the variable x1. It suffices to find one particular
integral curve along which the variational equation has a non virtually Abelian
Galois group. To this end, we consider the simple—but rich enough—case c1 = 0,
c2 = 1.

p3(x1) =

√

−Cx1 + x2
1 − 1√

x1

·

Using the expression of the first integral C and of the vector field, we deduce

x3(x1) =
√
2

√

−Cx1 + x2
1 − 1√

x1

, p1(x1) = − 1√
2

x2
1 + 1

x2
1

·

Choosing C = 2i and some determination of the squares yields a particularly
simple solution Γ drawn on S ⊂ M,

(9)



















x1 = x1,

x2 = 0,

x3 =
√
2x1−i√

x1

,

x4 = 0,























p1 = − x2

1
+1√
2x2

1

,

p2 = 0,

p3 =
x1−i√

x1

,

p4 = 0.

3.3. Normal variational equation. In the initial time, the linearized equation
along Γ is the Hamiltonian vector field associated with the Hamiltonian DH along
Γ:

Ż(t) = A(t)Z(t), A(t) = J D2H(Γ(t)),

where J is the Poisson structure. In the coordinates (x1, ..., x4, p1, ..., p4),

J =

(

04 I4
−I4 04

)

.

We will keep on using time x1, instead of the initial time t, writing

Z ′(x1(t)) =
1

x3(t)
A(x1(t))Z(x1(t)).
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Let us now reorder coordinates according to (x1, x3, p1, p3, x2, x4, p2, p4). Since S is
an invariant submanifold, the 8×8 matrix A has an upper triangular bloc structure

A =

(

A1 A2

0 A3

)

with

A3 =











0 0 0 1√
2p3

− 1√
2p2

3

0 − 1√
2x3

1
p3

0

0 1√
2p3

0 0

− 1√
2x3

1
p3

0 3√
2x4

1

0











.

Moralès-Ramis Theorem gives necessary conditions for Liouville integrability in
terms of the Galois group of this linear differential system over the base field
of meromorphic functions on Γ. Looking at the expression (9) of Γ, we see that
meromorphic functions on Γ are just meromorphic functions in

√
x1 ∈ C\{0,±

√
i}.

The block A3 corresponds to infinitesimal variations in the normal direction to S,
which is the part where interesting phenomena might occur. As the Picard-Vessiot
field is generated by all the components of the solutions, the Picard-Vessiot field
K generated by the normal variational equation

(L) : X ′ = A3X, X = (X1, X2, X3, X4)

is a subfield of the Picard-Vessiot field of the whole variational equation, and thus
Gal(A) ⊃ Gal(A3). That Gal(A3) is not virtually Abelian will thus imply that
Gal(A) itself is not virtually Abelian. In order to reduce the system to a one
dimensional linear equation, we use the cyclic vector method on A3: From (L) we
get X ′

1 = L1(X1, X2, X3, X4), where L1 is a linear form on R
4, thus by derivation,

X ′′
1 =L1(X

′
1, X2, X3, X4) + L1(X1, X

′
2, X3, X4)

+L1(X1, X2, X
′
3, X4) + L1(X1, X2, X3, X

′
4)

=L2(X1, X2, X3, X4).

Iterating, we obtain


































X1 = X1,

X ′
1 = L1(X1, X2, X3, X4),

X ′′
1 = L2(X1, X2, X3, X4),

X
(3)
1 = L3(X1, X2, X3, X4),

X
(4)
1 = L4(X1, X2, X3, X4).
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The Li’s are five linear forms on R
4, so X1 must satisfy some linear differential

equation of order 4 that we compute to be

(10) X
(4)
1 +

2(3i− 5x1)

x1(i− x1)
X

(3)
1 +

(−3x1 + i)(−29x1 + 23i)

4(x1 − i)2x2
1

X ′′
1

− (i− 3x1)(7x1 + i)

4(x1 − i)2x3
1

X ′
1 +

3x1 + i

4(x1 − 1)3x4
1

X1 = 0.

We find a solution of this equation of the form

X1(x1) =
i− x1√

x1

(

c1 + c2

∫ √
x1(1 + ix1)

− 3

2
−i

√

3

2 .2F1(γ(x1))dx1

)

,

where 2F1 is the Gauss hypergeometric function and

γ(x1) =

(

5

2
− i

√
3

2
,
1

2
+ i

√
3

2
, 1 + i

√
3, 1 + ix1

)

.

The Picard-Vessiot field K contains this solution and, as it is a differential field, it also
contains

√
x1(1 + ix1)

− 3

2
−i

√

3

2 2F1(γ(x1)).

Noting K̃ the differential field generated by this function, we have K̃ ⊂ K. Now the
Galois group of 2F1(γ(x1)) over C(x1) is SL2(C) (see Kimura’s table, [11]). By Galois
correspondence, the Galois group of (10) over the rational functions in x1 admits SL2(C)
as a subgroup. The hypergeometric equation (10) is Fuchsian (all its singular points
are regular), so thanks to Theorem 4, we know that its Galois group over the field of
rational functions is the closure of its monodromy group. Besides, the Galois group
over meromorphic functions contains the monodromy group, and of course, is included
in the Galois group over rational functions. Eventually, the Galois group of (10) over
meromorphic functions in x1 also contains SL2(C). Thus, adding the algebraic extension√
x1, the Galois group can be reduced to at most one subgroup of index 2: The only

possibility is SL2(C) again. So the Galois group of K over the base field of meromorphic

functions in
√
x1 ∈ C\{0,±

√
i} contains SL2(C) and is not virtually Abelian. According

to Morales-Ramis, this concludes the proof.
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