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Levi-Civita’s regularization procedure for the two-body problem easily ex-
tends to a regularization of double inner collisions in the system consisting
of two uncoupled Newtonian two-body problems. Some action-angle variables
are found for this regularization, and the inner body is shown to describe el-
lipses on all energy levels. This allows us to define a second projection of the
phase space onto the space of pairs of ellipses with fixed foci. It turns out that
the initial and regularized averaged Hamiltonians of the three-body problem
agree, when seen as functions on the space of pairs of ellipses. After the reduc-
tion of the problem by the symmetry of rotations, the initial and regularized
averaged planar three-body problems are shown to be orbitally conjugate, up
to a diffeomorphism in the parameter space consisting of the masses, the semi
major axes and the angular momentum.
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In the classical three-body problem, if one of the masses is far from or
large compared to the other two, each of the masses approximately de-
scribes a Keplerian ellipse whose elements slowly vary with time. At the
limit where one mass is infinite or infinitely far away, the frequencies of
these slow secular deformations vanish; the system then is the product of
two uncoupled Keplerian problems and is thus completely integrable and
dynamically degenerate. In the neighborhood of this limit, if furthermore
the Keplerian frequencies satisfy a finite number of non-resonance condi-
tions, the averaged system, which is obtained by averaging the initial vector
field over the Keplerian ellipses, is the first of the normal forms of the full
system [1]. As such, it is also called the first order secular system and, for
the planar three-body problem, it is completely integrable.
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Since Lagrange and Laplace first tried to solve the problem of the stabil-
ity of the solar system, this averaged system has been extensively studied.
However, due to astronomical reasons, existing studies mainly examine
the neighborhood of circular and coplanar orbits. Jefferys-Moser’s [6] and
Lieberman’s [8] results are a first step towards a more global study. Yet
they did not describe the dynamics up to collisions.

It turns out in certain conditions, especially when the angular momen-
tum is small enough and when the energy is sufficiently negative, that the
conservation of these two first integrals does not prevent the two inner
bodies from colliding [7].

After having taken advantage of the Galilean invariance and having fixed
the center of mass, the averaged system is a priori defined on the space of
pairs of oriented ellipses with fixed foci which do not intersect one another.
This space can be compactified by adding degenerate eccentricity-one el-
lipses at infinity. Such an ellipse corresponds to a collision orbit where the
body goes back and forth along a line segment between its pericenter and
its apocenter [2, 10]). A striking feature of the averaged system is that it
extends to an analytic function where the inner ellipse is degenerate [4].
Thus, understanding the global structure of the fixed points of the averaged
system after its reduction by the symmetry of rotation demands taking into
account these double inner collisions.

The non-averaged perturbing function of the three-body problem extends
to a continuous function at collisions. Unfortunately, this extension is not
even differentiable. So the extension of the averaged system itself appears to
be dynamically irrelevant. This paper proves that, in the case of the planar
problem, the extension of the averaged system actually is the averaged
system associated to the regularized problem, up to some diffeomorphism
in the parameter space. The Levi-Civita regularization is used [2, 10]. It
substitutes the eccentric anomaly for the mean anomaly. The perturbing
function is indeed an analytic function of the eccentric anomaly, which is
thus a better adapted angle in the neighborhood of collisions.

A noteworthy consequence of this formal study of the averaged system in
the neighborhood of double inner collisions is the existence of quasiperiodic
invariant “punctured tori” on which the two inner bodies get arbitrarily
close to one another an infinite number of times. These motions generalize
those which Chenciner-Llibre had found in the case of the circular restricted
planar problem [3]. We give an outline of this result in section 4. The
complete proof, which requires to build higher order secular systems and
to apply some sophisticated version of KAM theorem à la Herman, will be
given in a forthcoming paper [5].
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1. SETTING AND NOTATIONS

First, symplectically reduce the three-body problem by the Galilean sym-
metry. The new system describes two fictitious bodies turning around a
fixed center of attraction (cf. § 24, chap. ii, first volume of the Leçons [9]).
Note that the fixed center does not attract both bodies with the same mass.
Let qj ∈ C\0 (j = 1, 2) be the position vectors of the two fictitious masses
µ1 and µ2, and pj ∈ C

∗ be their linear momentum covectors. Neglecting
the mutual interaction of the two fictitious moving masses (ibid.) leads
to the system defined on the space of quadruplets (q1, q2, p1, p2) i.e., the
cotangent bundle T ∗(C \ 0)2 ' (C \ 0)2 ×C

2 by the Hamiltonian

Fk =
|p1|2
2µ1

− µ1M1

|q1|
+
|p2|2
2µ2

− µ2M2

|q2|

and the symplectic form

ω = <(dp1 ∧ dq̄1 + dp2 ∧ dq̄2),

where < stands for the real part of a complex number. It is the direct
product of two uncoupled Keplerian problems and thus defines a Keplerian
action of the torus T

2 on an open set of the phase space.
Let’s restrict ourselves to pairs of elliptic motions such that the two

ellipses do not meet one another and let’s call the inner ellipse the first
ellipse. (As long as we do not take the interaction between the two bodies
into account, we actually do not really care if the two ellipses meet one
another.) The relevant part of the phase space is diffeomorphic to

T ∗ (C \ 0)×
(

T ∗ (C \ 0) \ ((C \ 0)×R)
)

'
(

S
1 ×R

3
)

×A
4,

where A
4 ' R × S

1 ×R
2 × S

0 is the phase space of the outer body; the
factor S

0 corresponds to the two possible ways the outer body can move
around the inner ellipse. Let L.C. be the two-sheeted covering of Levi-
Civita, defined as the product of the cotangent map of z 7→ z2 by idA4 :

L.C. : T ∗(C \ 0)×A
4 −→ T ∗(C \ 0)×A

4

((z, w), a) 7−→ ((q1, p1), a) =
((

z2,
w

2z̄

)

, a
)

.

L.C. is symplectic:

L.C.∗ω = <(dw ∧ dz̄ + dp2 ∧ dq̄2).

Lemma 1.1. For any real number f > 0, the Hamiltonian

L.C.∗ (|q1|(Fk + f))
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extends to an R-analytic Hamiltonian on T ∗
C×A

4.

The proof is obvious : this Hamiltonian can be written

|z|2L.C.∗(Fk + f) =
|w|2
8µ1

+

(

f +
|p2|2
2µ2

− µ2M2

|q2|

)

|z|2 − µ1M1.

A direct consequence of Leibniz rule is that on the energy surface

L.C.∗(Fk + f) = 0,

outside collisions, the Hamiltonian vector fields associated to

L.C.∗ (|q1|(Fk + f)) and L.C.∗Fk

define the same oriented straight line field.

2. REGULARIZED KEPLERIAN DYNAMICS

The (pull-back by L.C. of the) angular momentum is a first integral
for the regularized Hamiltonian L.C.∗ (|q1|(Fk + f)) because it was one for
Fk and the slow-down function |q1| is invariant by rotations. Moreover,
since |q1| only depends on the inner body, orbits of the outer body remain
unchanged. If (Λ2, λ2, ξ2, η2) are Poincaré coordinates (cf. § 58, chap. iii,
first vol., Leçons [9]) of this body on A

4, the functions Λ2, ξ2, and η2 are
first integrals, as well as

f1(Λ2) := f − µ3
2M

2
2

2Λ2
2

,

which, on the energy level L.C.∗(|q1|(Fk + f)) = 0, is the opposite of the
energy of the inner body. Thus the Hamiltonian vector field of

L.C.∗ (|q1|(Fk + f)) =
|w|2
8µ1

+ f1(Λ2)|z|2 − µ1M1

is the skew-product of a rotator (outer body) slowed down by a pair of
(1, 1)-resonant harmonic oscillators (inner body).

The point z = w = 0 from the phase space can be ignored, because it
corresponds to an infinite energy for the initial problem. The phase space
is then diffeomorphic to

(T ∗
C) \ 0×A

4 ' S
3 ×R×A

4.
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Since the L.C. mapping is a two-sheeted covering, the pull-backs by L.C.
of all the initial observables (e.g. q1, the angular momentum G1 of the first
ellipse, etc.) descend through the antipodal mapping of the sphere

S
3 ×R×A

4 (z,w,a)∼(−z,−w,a)−→ SO3 ×R×A
4

and in general they extend to SO3×R×A
4 by continuity. We will generally

denote the extensions by the name of the initial observable. Let Fk be the
direct image of L.C.∗ (|q1|(Fk + f)) by the antipodal mapping.

Lemma 2.1. There exist a blow-up

b : T2 ×R
2 ×A

4 → SO3 ×R×A
4

of the phase space and coordinates ((L1, δ1,G1, γ1), (Λ2, δ2, ξ2, η2)) on each
of the two connected components of (R×S

1×R×S
1)×A

4 ' T
2×R

2×A
4

such that

b∗Fk = L1

√

2f1(Λ2)

µ1
− µ1M1

and

b∗ω = dL1 ∧ dδ1 + dG1 ∧ dγ1 + dΛ2 ∧ dδ2 + dξ2 ∧ dη2.

Moreover, we have

b∗q1 =
eiγ1

√

2µ1f1(Λ2)

(

−
√

L2
1 − G2

1 + L1 cos δ1 + iG1 sin δ1

)

and

δ2 = λ2 +
αkep

2 (Λ2)

2f1(Λ2)

√

L2
1 − G2

1 sin(δ1),

where αkep
2 (Λ2) = f ′

1(Λ2), and the angular momentum G1 of the inner body
is unchanged: b∗G1 = G1.

Note: the Poincaré coordinates of the outer body and their pull-back by
b are designated by the same letters.

Proof. The approach is to straighten the ellipsoids of constant energy
L.C.∗(|q1|(Fk + f)), diagonalize the vector field and eventually use sym-
plectic polar coordinates. This is completed by the blow-up

b2 : (R+ ×T
1)2 ×A

4 −→ (T ∗
C \ 0)×A

4 ' S
3 ×R×A

4

((rj , θj)j=1,2, (Λ2, δ2, ξ2, η2)) 7−→ ((w, z), (Λ2, λ2, ξ2, η2))
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defined by















w√
2 4

√

8µ1f1(Λ2)
+

i√
2

4

√

8µ1f1(Λ2)z =
√

2r1e
iθ1

w̄√
2 4

√

8µ1f1(Λ2)
+

i√
2

4

√

8µ1f1(Λ2)z̄ =
√

2r2e
iθ2

and

δ2 = λ2 +
α2(Λ2)

2f1(Λ2)
<(p1q̄1)

where α2(Λ2) := f ′
1(Λ2). We indeed have to subsitute δ2 for λ2 if we want

to straighten the ellipsoids and still preserve the symplectic form. The
pull-back of the Hamiltonian and of the symplectic form are

b2
∗L.C.∗(|q1|(Fk + f)) =

√

f1(Λ2)

2µ1
(r1 + r2)− µ1M1

and

b2
∗L.C.∗ω = dr1 ∧ dθ1 + dr2 ∧ dθ2 + dΛ2 ∧ dδ2 + dξ2 ∧ dη2.

The Levi-Civita mapping is a two-sheeted covering. Let’s now go back
downstairs, outside circular ellipses, through the two-sheeted covering

(R+
∗
×T

1)2 ×A
4 −→ (R×T

1)2 ×A
4

((rj , θj)j=1,2, a) 7−→ ((L1, δ1,G1, γ1), a)

defined by

{

L1 =
r1 + r2

2
δ1 = θ1 + θ2

and

{

G1 =
r1 − r2

2
γ1 = θ1 − θ2 + π.

The expression of q1 given in the proposition is proved by a straightforward
computation (cf. [2]), as well as those of δ2 and G1. The translation by π
in the definition of γ1 is due to historical reasons: as a coordinate for the
orientation of an ellipse, people usually use the argument of the pericenter
rather than that of the apocenter. Let eventually b denote the direct image
of the blow-up b2 by the 2-sheeted covering previously defined. Then for a
fixed a ∈ A

4, the following diagram commutes:

S
3 ×R

b2←− T
2 ×R

2

(w, z) ∼ (−w,−z)




y





y
(θ1, θ2) ∼ (θ1 + π, θ2 + π)

SO3 ×R
b←− T

2 ×R
2.
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The left vertical arrow is the direct product of the identity of R by the
universal covering S

3 → RP
3 = SO3. When restricted to each energy level

T
2× I, the horizontal arrows identify to one point the circles of the bound-

ary which are obtained by fixing one of the two angles, depending on the

connected component of the boundary.

The expression of q1 in the previous lemma yields:

Corollary 2.1. The orbits of the inner body in the physical plane (co-
ordinate q1) under the regularized Keplerian flow are ellipses for any value
of the energy.

Definition 2.1. Let (q1, p1, q2, p2) be a point of the phase space. There
exists a unique point (q1, p

′
1, q2, p2) which describes the same pair of ellipses

in the configuration space under the flow of Fk as (q1, p1, q2, p2) under the
flow of Fk. Let kf be the diffeomorphism of the phase space to itself defined
by

kf : (q1, p1, q2, p2) 7−→ kf (q1, p1, q2, p2) = (q1, p
′

1, q2, p2).

Also, let πFk
(resp. πFk

) the quotient maps by the Keplerian action of T
2

(resp. by its regularized action).

The diffeomorphism kf induces the identity on the energy level Fk =
0 and the action-angle coordinates of the inner body for the regularized
problem, (L1, δ1,G1, γ1), agree on this level with the Delaunay coordinates
(L1, l1, G1, g1) (cf. § 58, chap. iii, first vol. of the Leçons [9]) once the
mean anomaly l1 has been replaced by the eccentric anomaly u1.

3. AVERAGING

Let F = Fk + Fp be a perturbation of Fk, chosen among Hamiltonians
which are defined and of class C∞ over an open set O of the phase space.
Suppose that the following three properties hold: (1) Fp is a function on
the configuration space (i.e. it does not depend on the velocities); (2) O is
invariant by the Keplerian action of the torus T

2; (3) O contains an open
subset of the set of double inner collisions q1 = 0. Let then Fk +Fp be the
regularized analogue of Fk + Fp, with Fk = |q1|(Fk + f) and Fp = |q1|Fp.
Typically, Fp is the perturbing function of the planar three-body problem
for the Jacobi decomposition (cf. § 42, chap. ii, first vol. of the Leçons [9]).

Recall that up to the terms Fk and Fk –which, as functions of L1 and
Λ2, are constants after the symplectic reduction by fast angles (l1, λ2) or
(δ1, δ2), the first order secular systems of the initial and regularized prob-
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lems are the averages of Fp and Fp over the orbits of the Keplerian actions
(cf. the encyclopædia [1]):

〈Fp〉 =
1

4π2

∫

T2

Fp dl1 dl2 and 〈Fp〉 =
1

4π2

∫

T2

Fp dδ1 dδ2.

〈Fp〉 and 〈Fp〉 can be factorized through the space of pairs of oriented
ellipses with fixed foci. This space can be thought of as the quotient space
of the phase space either by πFk

or by πFk
. So let {Fp} and {Fp} be

functions on an open subset of the space of pairs of oriented ellipses with
fixed foci defined by

〈Fp〉 = {Fp} ◦ πFk
and 〈Fp〉 = {Fp} ◦ πFk

.

Elliptic elements such as the semi major axes a1, a2, or eccentricities
e1, e2, can naturally be thought of as functions over the space of pairs of
ellipses, whereas the functions L1,L1, f(Λ2), ..., will be thought of as being
defined over the phase space, once the masses and the parameter f are
fixed. For instance we can write

L1 = µ1

√

M1(
√

a1 ◦ πFk
) and L1 =

√

2µ1f1(a1 ◦ πFk
).

Proposition 3.1. The initial and regularized secular Hamiltonians sat-
isfy

{Fp} = a1{Fp}
i.e.,

〈Fp〉 =
(

L2
1

µ2
1M1
〈Fp〉

)

◦ kf .

Proof. In the integral defining 〈Fp〉, after having taken into account the
fact that dδ1 ∧ dδ2 = dδ1 ∧ dλ2 = dδ1 ∧ dl2, let’s carry out the change of
variables corresponding to kf :

〈Fp〉 =
1

4π2

∫

kf (T2)

Fp ◦ k−1
f d(δ1 ◦ k−1

f ) dλ2.

Since we have supposed that Fp is a function over the configuration space
and since kf is precisely fibered over this space, Fp = |q1|Fp is invariant
by kf . Moreover, since δ1 is the eccentric anomaly of the ellipse of the
regularization, δ1 ◦ k−1

f = u1. Thus

〈Fp〉 =
1

4π2

∫

kf (T2)

Fp |Q1| du1 dλ2.
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After Kepler’s equation we have |Q1| du1 = (a1 ◦ πFk
) dλ1 and

〈Fp〉 =
a1 ◦ πFk

4π2

∫

kf (T2)

Fp dλ1 dλ2 = a1 ◦ πFk
〈Fp〉 ◦ kf .

This proposition calls for a few remarks:

• The averaged system does not depend on the mean anomalies λj , so
under its flow the conjugate variables Λj , or, equivalently, the semi major
axes aj , are first integrals. Hence the constant factor a1 is not important.
It could actually have been removed with a different normalization of the
slow-down function; e.g. consider f1(Λ2)|Q1|(F + f) instead of F .

• This result holds for the restricted problems (see my thesis [4] for
more details on the link between the restricted and the full problems at the
secular level).

• For the spatial problem, Moser’s regularization may be used, instead of
that of Levi-Civita. Explicit computations are more complicated. But if we
are only to prove that the previous result holds for the spatial problem, it
suffices to notice that before being perturbed the motion of each of the two
bodies, separately, is planar, and to know that Levi-Civita’s regularization
is just a two-sheeted covering of Moser’s.

We are now going to confront the unfortunate fact that the diffeomor-
phism kf is not symplectic. After the reduction by the fast angles and by
the symmetry of rotation, the space of pairs of ellipses is a sphere S

2, and
the parameters are the masses, the energy level f , the semi major axes and
the angular momentum [4]. Therefore, the phase space is two-dimensionnal
and the orbits are just the energy levels.

In the next theorem, the perturbation Fp is the Jacobi perturbing func-
tion of the planar three-body problem [4]. All we actually use is that its
average satisfies

a1{Fp} = {Fp} = µ1m2h(e1, e2, a1, a2, g, m0, m1)

for some R-analytic function h, where m0, m1 and m2 are the masses of
the three initial bodies. In particular, {Fp}/m2 does not depend on m2.
Also, notice that the four masses which intervene in the expression of Fk

satisfy the following equalities:

1

µ1
=

1

m0
+

1

m1
,

1

µ2
=

1

M1
+

1

m2
, M1 = m0 + m1 and M2 = M1 + m2.

Is all the dynamics of 〈Fp〉 contained, in some sense, in that of 〈Fp〉?
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Theorem 3.1. After reduction by the symmetry of rotation and by the
Keplerian actions of T

2, once the masses m0, m1 and m2, the semi major
axes a1 and a2, the energy f and the angular momentum C have been fixed,
there exists a fictitious value m′

2 of the outer mass such that the averaged
regularized system 〈Fp〉 is R-analytically orbitally conjugate to the averaged
initial system 〈Fp〉 in which m′

2 substitutes for m2.

Proof. Consider the phase space after it has been symplectically reduced
by the fast angles and once it has been quotiented by rotations. The
mappings πFk

and πFk
induce two diffeomorphisms from this space into the

space of pairs of ellipses which do not meet and with fixed energy and foci,
mod rotations. We will call E the latter space. It is diffeomorphic to S

2 ×
I×S

0. Local coordiates almost everywhere on this space –precisely, where
the ellipses are neither circular nor degenerate [4], are given by (e1, e2, g =
g1 − g2). The semi major axes aj , the masses m0, m1 and m2 and, in the
case of the regularized problem, f , are the parameters.

Proposition 3.1 asserts that the initial and regularized secular Hamilto-
nians define the same function on E , up to the multiplicative constant a1.
In order to complete the symplectic reduction by the symmetry of rota-
tion, we still need to restrict ourselves to a (regular) level of the angular
momentum.

In each of the two problems, the conservation of the angular momentum
C = C is equivalent, on E , to that of

C

Λ2
◦ π−1

Fk
=

µ1

√
M1a1

µ2

√
M2a2

ε1 + ε2

and

C
Λ2
◦ π−1

Fk
=

√

2µ1

(

f − µ2M2

2a2

)

ε1

µ2

√
M2a2

+ ε2

repectively (where εj :=
√

1− e2
j )). These two functions have the same

level surfaces when the coefficient in front of ε1 is the same. So it suffices
to notice that the function

m2 7→
µ1

√
M1a1

µ2

√
M2a2

is a diffeomorphism of ]0, +∞[ into itself and that the level curves of

a1{Fp} = {Fp} do not depend on m2.

Therefore it is dynamically relevant to globally study the singularities of
the secular Hamiltonian, including up to inner collisions.



AVERAGING NEAR COLLISIONS 11

4. INVARIANT PUNCTURED TORI

Theorem 3.1 is a key step towards proving the existence of quasiperiodic
invariant “punctured” 4-tori in the planar three-body problem. Here, by
“punctured” 4-torus we mean a torus minus a finite number of 2-tori [3].
Along trajectories of such punctured tori, the two inner bodies get arbi-
trarily close to one another an infinite number of times. Each time, these
bodies miss a double collision because when the eccentricities of their el-
lipses reach the value one, they are not quite at the pericenters.

Theorem 4.1. In the planar three-body problem, for any given set of
masses, there exists a transversally Cantor set of positive Liouville measure
which consists of diophantine quasiperiodic punctured tori, such that along
its trajectories the two inner bodies get arbitrarily close to one another an
infinite number of times.

The proof consists of four steps :

1. regularize double inner collisions;

2. build the secular systems of the regularized problem;

3. apply some adapted KAM theorem to find a positive measure of in-
variant tori for the regularized problem;

4. check that most of the found quasiperiodic motions do not meet the
double- inner-collision set.

The first step was described in § 2. Thanks the coordinates of Lemma 2.1
and to Theorem 3.1, the second and third steps are very similar to build-
ing the secular systems of the non-regularized planar three-body problem.
Surprisingly enough, the fourth step does not concern the secular systems
proper, but rather the conjugacy diffeomorphism between the regularized
problem and its secular systems. In some specific region of the phase space,
which in [5] I call the asynchronous region, this diffeomorphism can be
computed by quadrature of trigonometric polynomials, which makes the
transversality condition easy to check.

These motions generalize the solutions that Chenciner-Llibre [3] had
found in the planar circular restricted problem. Indeed, the averaged sys-
tems of the restricted problems are the limits of the averaged system of the
full problem when the adequate mass goes to zero [5]. So the restricted
problems are particular limit cases of our study, while on the other hand
the proof of Chenciner-Llibre cannot be easily extended to the full 3-body
problem.

A forthcoming paper [5] gives the complete proof of theorem 4.1, to-
gether with the proof of the existence of some other kinds of periodic or
quasiperiodic motions in the planar three-body problem.
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versité Paris XIII, 1999.
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