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KAM theory is the perturbative theory, initiated by Kolmogorov, Arnold and
Moser in the 1950’s, of quasiperiodic motions in conservative dynamical systems.
These notes are a short introduction to the subject.

References of particular value are the book [3] on Hamiltonian systems, the
papers [24, 27] on KAM theory, and the book [4] for applications in celestial
mechanics. More detailed accounts with various viewpoints can be found in [1, 6,
7, 10, 11, 13, 15, 22, 23, 26, 28] and references therein.

1. Hamiltonian systems

Let H be a smooth function on an open set M of Tn × Rn = {(θ, r)}, with
Tn = Rn/Zn. The Hamiltonian vector field of H is

XH :

{
θ̇j = ∂rj

H

ṙj = −∂θj
H, j = 1, ..., n.
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Its projection on each plane of conjugate coordinates (θj , rj) is orthogonal to the
projection (∂θj

H, ∂rj
H) of the Euclidean gradient ∇H . While the Euclidean gra-

dient points towards the direction of steepest ascent of H , XH is tangent to the
energy levels of H , or, equivalently, H is a first integral of XH :

H ′ · XH =
∂H

∂θ
θ̇ +

∂H

∂r
ṙ = 0.

Hamiltonian vector fields seem to have been introduced and studied by Cauchy
in a Mémoire presented at the Accademia delle Scienze di Torino [8].

For instance, tha Hamiltonian equations of

H(θ, r) =
r2

2
− cos θ

are equivalent to the classical equations of a pendulum, as given for instance by
the theorem of the angular momentum.

2. Quasiperiodic motions

An important and simple class of Hamiltonians is that of integrable Hamiltoni-
ans, which do not depend on the angle θ. In such cases, the vector field becomes

θ̇ =
∂H

∂r
(r) ≡ cst, ṙ = 0,

and the flow

ϕt(θ, r) =

(
θ + t

∂H

∂r
(r), r

)
.

The phase space is foliated in invariant tori r = cst, in restriction to which the
flow is quasiperiodic (=linear), of frequency vector ∂H

∂r
(r).

A vector r being fixed, let α := ∂H
∂r

(r) ∈ Rn and consider the flow

ϕt : T
n → T

n, θ 7→ θ + tα.

Lemma 1. The frequency vector α is a topological conjugacy invariant up to the
action of the discrete group GLn(Z) : if two linear flows θ + tα and θ + tβ, with
α, β ∈ Rn, are topologically conjugate, there exists A ∈ GLn(Z) such that β = Aα
(and, if the conjugacy preserves the orientation, A ∈ SLn(Z)).

Proof. Assume two linear flows θ+ tα and θ+ tβ, with α, β ∈ Rn, are topologically
conjugate: there exists a homeomorphism h of Tn such that h(θ + tα) = h(θ)+ tβ.
At the expense of substituting h(θ)−h(0) for h(θ), we may assume that h(0) = 0.

Let H : Rn → Rn be the unique lift of h such that H(0) = 0. Now, the equality
H(θ + tα) = H(θ) + tβ holds for θ = t = 0 and, by continuity, for θ ∈ Rn and
t ∈ R.

Moreover, there exists a matrix A ∈ GLn(Z) such that H(θ + k) = H(θ) + Ak
for all θ ∈ Rn and k ∈ Zn; A is invertible because H is. Hence V := A−1H − id :
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Rn → Rn is a Zn-periodic vector field. In terms of V , the conjugacy hypothesis at
θ = 0 asserts that

L(tα + V (tα)) = LV (0) + tβ (∀t ∈ R),

i.e.
L(V (tα) − V (0)) = t(β − Lα).

Since the left hand side is bounded, necessarily β = Lα. �

The action of GLn(Z) is closely related to the arithmetic properties of frequency
vectors ; see [29, 2.2.3] for n = 2.

Proposition 1. The following properties are equivalent :

(1) The vector α is non resonant: k · α 6= 0 for all k ∈ Zn \ {0}
(2) The flow (ϕt) of the constant vector field α is ergodic: invariant continuous

functions (f(θ + tα) ≡ f(θ) for all t ∈ R and θ ∈ Tn) are constant
(3) For every continuous function f on Tn, the time average of f exists, is

constant and equals the space average of f :

lim
T→+∞

1

T

∫ T

0

f(θ + tα) dθ =

∫

Tn

f(θ) dθ.

(4) Every trajectory of (ϕt) is dense on Tn.

See [5, 18, 19] for further results on ergodicity.

Proof. (1) ⇒ (2) Suppose that α is non resonant and let f ∈ C0(T1) be invariant:
f = f ◦ ϕt for all t. The k-th Fourier coefficient of f ◦ ϕt is

f̂ ◦ ϕt(k) =

∫

Tn

e−i2πk·θ f(θ + tα) dθ.

The change of variable θ′ = θ + tα shows that

f̂ ◦ ϕt(k) = ei2πk·αtf̂(k).

By uniqueness, for all k ∈ Zn \ {0} we see that f̂(k) = 0. Hence f is constant.

(2) ⇒ (1) Conversely, suppose that k · α = 0 for some k ∈ Zn \ {0}. Then
f(θ) = ei2πk·θ is invariant and not constant, hence the flow is not ergodic.

(1) ⇒ (3) Call f̄ the space-average of f . We will show the conclusion by taking
more and more general functions.

– If f is constant, f̄(θ) ≡ f̄ trivially. If f(θ) = ei2πk·θ for some k ∈ Zn \ {0},
direct integration shows that

1

T

∫ T

0

f(θ + tα) dθ =
1

T
ei2πk·θ ei2πk·αT − 1

ik · α
→T→+∞ 0 = f̄ .

The expression k ·α in the denominator is the first occurence of the so-called small
denominators, which are the source of many difficulties in perturbation theory.

– If f is a trigonometric polynomial, the same conclusion holds by linearity.
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– Let now f be continuous. Let ǫ > 0. By the theorem of Weierstrass, there is
a trigonometric polynomial P such that

max
θ∈Tn

|f(θ) − P (θ)| ≤ ǫ.

For such a P , we have shown that there is a time T0 such that if T ≥ T0,
∣∣∣∣
1

T

∫ T

0

P (θ + tα) dθ

∣∣∣∣ ≤ ǫ.

Using the two latter inequalities, we see that
∣∣∣∣
1

T

∫ T

0

f(θ + tα) dt − f̄

∣∣∣∣

≤
1

T

∫ T

0

|f(θ + tα) − P (θ + tα)| dt +

∣∣∣∣
1

T

∫ T

0

P (θ + tα) dt − P̄

∣∣∣∣ + |P̄ − f̄ | ≤ 3ǫ.

So, again 1
T

∫ T

0
f(θ + tα) dθ tends to 0.

(3) ⇒ (1) Suppose α is resonant: k · α = 0 for some k ∈ Zn \ {0}, and let
f(θ) = ei2πk·θ. The space average of f equals 0, while

1

T

∫ T

0

ei2πk·(θ+αt) dt = ei2πk·θ.

So there exists a non constant continuous function whose time and space averages
do not match.

(1) ⇒ (4) Suppose that one trajectory is not dense: there exist a point θ ∈ Tn

and an open ball B ⊂ Tn such that the curve t 7→ θ + tα will never visit B. Let
f be a continuous function whose support lies inside B and whose integral is > 0.
The space average of f is > 0, while its time average is 0. Hence α is resonant.

(4) ⇒ (1) Suppose α is resonant: k · α = 0 for some k ∈ Zn \ {0}. We will show
that there is a small ball B centered at θo := k/2 (mod Zn) which the trajectory
t 7→ tα never visits. Indeed, let θ be in such a ball B of small radius. Does there
exist t ∈ R such that tα = θ in Tn? Equivalently, does there exist t ∈ R and
ℓ ∈ Zn such that α = θ + ℓ? Taking the dot product of the equation with k yields
0 = k · θ + k · ℓ. But k · ℓ ∈ Z, while k · θ ∈]0, 1[ provided the radius of B is small
enough (depending on k). This shows that there is no such t ∈ R. �

If we think for instance to two planets revloving around the Sun with frequencies
α1 and α2, that the frequency vector α = (α1, α2) be resonant means that the two
planets will regularly find themselves in the same relative position. Hence, their
mutual attraction, which is small due to their small masses compared to the mass
of the Sun, instead of averaging out, will pile up. This is all the more true that
the order |k| := |k1| + · · · + |kn| of the resonance is small. As a general rule,
perturbation theory rather studies what happens away from resonances, and at
some distance away from them in the phase space (all the farther that they have
low order).
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3. A more geometric viewpoint

One of the primary interests of the Hamiltonian formalism is that all the in-
formation on a Hamiltonian vector field is contained in a function. It is easier to
compute changes of coordinates for functions than for vector fields. But in order
to preserve the simple relation between the Hamiltonian function and its vector
field, only some special changes of coordinates should be used, namely those dif-
feomorphisms φ : M → M such that the direct image by φ of the Hamiltonian
vector field of H ◦ φ equals the Hamiltonian vector field of H :

φ∗XH◦φ = XH .

In order to characterize such diffeomorphisms, let us introduce a coordinate-free
definition of XH . Let

ω =
∑

1≤j≤n

dθj ∧ drj.

This geometric structure is called the symplectic form of the phase space M . It is
the field of 2-forms (antisymmetric bilinear forms) which maps two velocities (θ̇, ṙ)
and (Θ̇, Ṙ) (tangent vectors of M at some point (θ, r)) to

ω((θ̇, ṙ), (Θ̇, Ṙ)) =
∑

1≤j≤n

det

(
θ̇j Θ̇j

ṙj Ṙj

)
,

i.e. to the sum of the oriented areas of the projections on planes of conjugate
coordinates (θj , rj), of the parallelogram generated by the two velocity vectors.
An excellent and straightforward introduction to differential forms can be found
in Arnold’s book [3].

If X = (θ̇, ṙ) is a vector field,

ω(X, ·) =
∑

1≤j≤n

(θ̇j drj − ṙj dθj),

so the Hamiltonian vector field can be defined by the following equation.

Lemma 2. The Hamiltonian vector field of H is characterized by the implicit
equation ω(XH, ·) = dH.

Hence the only eligible transformations φ are be the ones which preserve ω, in
the sense that

ω = φ∗ω,

where φ∗ω(X, Y ) := ω(φ′ · X, φ′ · Y ) for all pairs of tangent vectors X and Y at a
point. Such transformations are called symplectic or canonical.

A fundamental operation on differential forms is the exterior derivative. It
extends the usual differential of functions to differential forms of any degree p:

d
∑

i1<···<p

ρi1,...,ip(θ)dθi1 ∧ · · · ∧ dθip =
∑

i1<···<p

dρi1,...,ip(θ) ∧ dθi1 ∧ · · · ∧ dθip.
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It can be defined intrinsically (and implicitely) by the Stokes formula
∫

V

dρ =

∫

∂V

ρ,

where V is an oriented manifold with boundary of dimension deg ρ + 1, and ∂ is
the boundary oparator. That ∂2 = ∅, entails that d is a cohomology operator:
d2 = 0. Again, see [3] for a self-contained introduction to differential forms.

Example 1. Let ρ =
∑

1≤i≤n ρi(θ) dθi be a closed 1-form on Tn, closed meaning
dρ = 0. The diffeomorphism

φ : (θ, r) 7→ (θ, r + ρ(θ))

satisfies

φ∗ω − ω =
∑

1≤i≤n

dθi ∧ dρi(θ) = −dρ = 0,

and thus is symplectic.

Example 2. Let ϕ be a diffeomorphism of Tn. Define its lift to Tn × Rn by

φ : (θ, r) 7→ (ϕ(θ), r · ϕ′(θ)−1).

This diffeomorphism preserves the 1-form λ = r · dθ:

φ∗λ = r · ϕ′(θ)−1 · ϕ′(θ) · dθ = λ,

hence the symplectic form ω = −dλ also:

φω = −φ∗dλ = −dφ∗λ = −dλ = ω.

Proposition 2. If (φt) is the flow of a Hamiltonian vector field XH , φ∗
tω = ω for

all t ∈ R (wherever the flow is defined).

This property is an essential feature of Hamiltonian flows. It implies the the
volume dθ1 ∧ · · · ∧ dθn ∧ dr1 ∧ · · · ∧ drn (= the n-th exterior power of ω, up to
a multiplicative constant) is preserved. Yet it is only in the 1980’s that Gro-
mov’s celebrated non-squeezing theorem pointed out some specifically symplectic
properties [17, 21].

We will use proposition 2 in order to build symplectic diffeomorphisms close to
the identity.

Proof. The proof is straightforward with the standard toolbox of exterior calculus:

φ∗
tω − ω =

∫ t

0

d

ds
(φ∗

sω) ds by the fundamental formula of calculus

=

∫ t

0

φ∗
s(LXH

ω) ds by definition of the Lie derivative LX .

The Cartan homotopy formula says that LXH
ω = diXH

ω + iXH
dω, where iXω :=

ω(X, ·). Since ω has constant coefficients, dω = 0. Since iXH
ω = dH and d2 = 0,

diXH
ω = d2 = 0. Hence φ∗

tω = ω. �
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We have seen some of the ergodic properties of quasiperiodic flows with a non
resonant frequency vector. Let us mention here an important property of invariant
tori carrying ergodic quasiperiodic flows. This property says how such tori are
embedded in the phase space with respect to the symplectic structure.

Proposition 3 (Herman). Let T be an invariant embedded torus in M , carrying
an ergodic quasiperiodic flow. Then T is isotropic, i.e. the 2-form induced on T
vanishes.

Proof. Let j : Tn →֒ M be a parametrization of T = j(Tn) such that the induced
flow on Tn is φt(θ) = θ + tα, α ∈ Rn non resonant. Let Ω be the induced 2-form
on Tn:

Ω = j∗ω =
∑

1≤k<l≤n

Ωkl(θ) dθk ∧ dθl.

We want to show that Ω = 0. Since (φt) is a translation,

φ∗
t Ω(θ) =

∑
Ωkl(θ + tα) dθk ∧ dθl.

Since all trajectories are dense and φ∗
tΩ = Ω for all t ∈ R, the functions Ωkl are

constant on Tn.

But ω has a primitive, and so has Ω: Ω = dΛ, whith Λ := −j∗(
∑

k rk dθk).
Integrate Ω on 2-tori Tkl ⊂ Tn obtained by fixing all coordinates θm, m = 1, ..., n,
but θk and θl: ∫

Tkl

Ω =

∫

T2

Ωkl dθk dθl = Ωkl (∀k, l).

On the other hand, by Stokes formula, this integral equals 0. So Ω = 0. �

If in addition T is a perturbation of Tn × {0}, it is the graph of a 1-form ρ
over Tn (up to the identification of the cotangent bundle of Tn to Tn × Rn). The
proposition then asserts that ρ is closed.

4. Perturbation series

Consider a Hamiltonian H(θ, r) on a neighborhood of Tn ×{0} in Tn ×Rn. We
will assume that H depends formally on some parameter ǫ and that, when ǫ = 0,
H does not depend on the angles:

H(θ, r) = H0(r) + ǫH1(θ, r) + ǫ2H2(θ, r) + · · · .

Can we eliminate the dependance of H1 on θ by a change of coordinates ǫ-close to
the identity, and can we then similarly deal with higher order terms?

In order to try to do so, let us consider some auxiliary Hamiltonian ǫF , with
flow φt. We would like to choose F so that φ∗

1H = H ◦ φ1 does not depend on θ,
up to second order terms in ǫ.

Recall that
d

dt

∣∣∣∣
t=0

φ∗
t H = H ′ · XF = XF · H,
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where XF is seen as a derivation operator, and that more generally

d

dt
φ∗

tH =
d

ds

∣∣∣∣
s=0

φ∗
t+sH = φ∗

t (XF · H).

By Taylor’s formula (applied to the function t 7→ φ∗
tH between t = 0 and t = 1),

φ∗
1H = H + ǫXF · H + ǫ2

∫ 1

0

(1 − t)φ∗
t (X

2
F · H) dt.

Expanding H in powers of ǫ yields

φ∗
1H = H0(r) + ǫ (H1 + XF · H0) + O(ǫ2).

Split H1 into

H1(θ, r) = H̄1(r) + H̃1(θ, r), H̄1 =

∫

Tn

H(θ, r) dθ.

We would like to find F so that

H̃1 + XF · H0 = 0,

or, equivalently, since XF = ∂rF · ∂θ − ∂θF · ∂r,

∂rH0 · ∂θF = H̃1.

In general H̄1(r) is not equal to 0. This means that the frequency vector on the
torus Tn×{r} is modified by terms of order 1 in ǫ. Since it is a conjugacy invariant,
it is hopeless to try to eliminate H̄1 (and, indeed, XF · H0 has zero average).

Among the partial derivatives of the unknown F , the above equation involves
only the derivatives with respect to θ. So r can be considered as a fixed parameter.
The equation then becomes a first order linear partial differential equation with
constant coefficients. Let α = ∂rH0(r) ∈ Rn. Let Lα be the Lie derivative operator
in the direction of the constant vector field α :

Lα : f 7→ Lαf = α · ∂θf =
∑

1≤j≤n

αj

∂f

∂θj

,

defined for functions f on Tn of various possible classes of regularity.

Let F be the set of formal Fourier series on Tn with no constant term.

Lemma 3. If α is non resonant and g ∈ F , there is a unique f ∈ F such that
Lαf = g.

Proof. By asumption g is a formal series of the form

g =
∑

k∈Zn\{0}

gke
i2πk·θ

and we look for a series f of the same form, satisfying
∑

k

i2πk · αfke
i2πk·θ =

∑

k

gke
i2πk·θ.
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The unique solution is given by the coefficients

fk =
gk

i2πk · α
(∀k ∈ Z

n \ {0}).

�

For s > 0, let

T
n
s := {θ ∈ C

n/Z
n, max

1≤j≤n
|Im θj | ≤ s}

be the complex extension of Tn of width s. Let A(Tn
s ) be the set of real holomorphic

functions from (a neighborhood of) Tn
s to C. Endowed with the supremum norm

|f |s := sup
θ∈Tn

s

|f(θ)|,

it is a Banach space [14, 6.3].

In order for the operator L−1
α to send analytic function to analytic functions, one

needs some quantitative arithmetic condition preventing α from being too close to
any low order resonance —how close depending of the order.

Definition 1. For γ, τ > 0, α ∈ Rn is (γ, τ)-Diophantine if

∀k ∈ Z
n \ {0} |k · α| ≥

γ

|k|τ
, |k| := |k1| + · · · + |kn|.

Let Dγ,τ be the set of all such vectors, and Dτ = ∪γ>0Dγ,τ .

The following facts hold:

• Dirichlet’s theorem: Dτ 6= ∅ ⇔ τ ≥ n − 1.
• If τ = n− 1, Dτ is locally uncountable, has Hausdorf dimension n, but has

n-dimensional Lebesgue measure zero.
• If τ > n − 1, Rn \ Dτ has n-dimensional Lebesgue measure zero. So, the

measure of Dγ,τ tends to the full measure as γ tends to 0. On the other
hand, the trace of Dγ,τ on the unit sphere is a Cantor set.

See [2, 24, 25, 29] and references therein for proofs and additional facts.

Proposition 4. Assume that α ∈ Dγ,τ and let 0 < s < s + σ. If g ∈ A(Tn
s+σ),

there is a unique function f ∈ A(Tn
s ) such that Lαf = g. Besides,

|f |s ≤ Cγ−1σ−n−τ |g|s+σ,

where the number C depends only on the dimension n and the exponent τ .

This estimate calls for a comment. We have already mentionned Cauchy’s
Mémoire presented to the Accademia delle Scienze di Torino on October 11, 1831,
where he introduced and studied the so-called equations of Hamilton [8]. In the
same Mémoire in Celestial Mechanics [9] (!), Cauchy proved the remarkable for-
mula

f(z) =
1

2πi

∫

C

f(ζ)

ζ − z
dζ,
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where f is a holomorphic function in some complex domain containing a disc
centered at z and bounded by the circle C. This formula plays an essential rôle
here. By differentiating with respect to z, we get

f ′(z) =
1

2πi

∫

C

f(ζ)

(ζ − z)2
dζ.

It follows that if f ∈ A(Tn
s+σ), then

|f ′|s ≤ σ−1|f |s+σ.

More generally, any differential operator of the first order will satisfy a similar kind
of estimate. In particular,

|Lαf |s ≤ C|α|σ−1|f |s+σ, with |α| := max
1≤j≤n

|αj|.

The operator Lα is typical of KAM theory in that both Lα and its inverse behave
like differential operators, due to small denominators.

Proof. Let g(θ) =
∑

k∈Zn\{0} gk eik·θ be the Fourier expansion of g. The unique

formal solution to the equation Lαf = g is given by f(θ) =
∑

k∈Zn\{0}
gk

i k·α
ei k·θ.

Since g is analytic, its Fourier coefficients decay exponentially: we find

|gk| =

∣∣∣∣
∫

Tn

g(θ) e−ik·θ dθ

2π

∣∣∣∣ ≤ |g|s+σe
−|k|(s+σ)

by shifting the torus of integration to a torus Im θj = −sign(kj)(s + σ).

Using this estimate and replacing the small denominators k · α by the estimate
defining the Diophantine property of α, we get

|f |s ≤
|g|s+σ

γ

∑

k

|k|τ e−|k|σ

≤
2n|g|s+σ

γ

∑

ℓ≥1

(
ℓ + n − 1

ℓ

)
ℓτ e−ℓ σ ≤

4n|g|s+σ

γ (n − 1)!

∑

ℓ

(ℓ + n − 1)τ+n−1 e−ℓ σ,

where the latter sum is bounded by
∫ ∞

1

(ℓ + n − 1)τ+n−1e−(ℓ−1)σ dℓ = σ−τ−nenσ

∫ ∞

nσ

ℓτ+n−1e−ℓ dℓ

< σ−τ−nenσ

∫ ∞

0

ℓτ+n−1e−ℓ dℓ

= σ−τ−nenσΓ(τ + n).

Hence f belongs to A(Tn
s ) and satisfies the wanted estimate. �

So, we may define F (θ, r) := L−1
α H̃1(θ, r) for a fixed value of r chosen so that

α = ∂H0/∂r(r) ∈ Dγ,τ . As well, we may define partial derivatives of F with
respect to r at any order, so as to define not only the trace of a function F on
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Tn × {r}, but the whole infinite jet of a function along this torus; for instance at
the first order, we may set

∂F

∂r
(r) := L−1

α

∂H̃1

∂r
(θ, r).

Borel’s lemma asserts that such an infinite jet along Tn ×{r} extends to a smooth
function. Better, one can show using Whitney’s extension theorem that all such
jets taken together with r varying among values for which the frequency is (γ, τ)-
Diophantine:

∂H0

∂r
(r) ∈ Dγ,τ ,

extend to a smooth function F . We have thus eliminated the dependence of H1

on θ along all (γ, τ)-Diophantine tori.

By repeating the procedure, we may do so at any finite order in ǫ. The theorem
of Kolmogorov consists in showing the existence of a similar analyic normalization
at the infinite order, under some non-degeneracy asumption, as we will now see.

5. Statement of the invariant torus theorem of Kolmogorov

Let H be the space of germs along Tn
0 := Tn ×{0} of real analytic Hamiltonians

in Tn × Rn = {(θ, r)} (Tn = Rn/Zn), endowed with the usual, inductive limit
topology (see section 6). The vector field associated with H ∈ H is

~H : θ̇ = ∂rH, ṙ = −∂θH.

For α ∈ Rn, let Kα be the affine subspace of Hamiltonians K ∈ H such that
K|Tn

0
is constant (i.e. Tn

0 is invariant) and ~K|Tn
0

= α:

Kα = {K ∈ H, ∃c ∈ R, K(θ, r) = c + α · r + O(r2)}, α · r = α1r1 + · · ·+ αnrn,

where O(r2) are terms of the second ordrer in r, which depend on θ.

Let also G be the space of germs along Tn
0 of real analytic symplectomorphisms

G in Tn × Rn of the following form:

G(θ, r) = (ϕ(θ), (r + ρ(θ)) · ϕ′(θ)−1),

where ϕ is an isomorphism of Tn fixing the origin (meant to straighten the flow
on an invariant torus), and ρ is a closed 1-form on Tn (meant to straighten an
invariant torus).

In the whole paper we fix α ∈ Rn Diophantine (0 < γ ≪ 1 ≪ τ ; see [24]):

|k · α| ≥ γ|k|−τ (∀k ∈ Z
n \ {0}), |k| = |k1| + · · ·+ |kn|

and
Ko(θ, r) = co + α · r + Qo(θ) · r2 + O(r3) ∈ Kα

such that the average of the quadratic form valued function Qo be non-degenerate:

det

∫

Tn

Qo(θ) dθ 6= 0.
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Theorem 1 (Kolmogorov [20, 12]). For every H ∈ H close to Ko, there exists a
unique (K, G) ∈ Kα×G close to (Ko, id) such that H = K◦G in some neighborhood
of G−1(Tn

0 ).

See [24, 27] and references therein for background. The functional setting below
is related to [16].

6. The action of a group of symplectomorphisms

Define complex extensions Tn
C

= Cn/Zn and Tn
C

= Tn
C
×Cn, and neighborhoods

(0 < s < 1)

T
n
s = {θ ∈ T

n
C
, max

1≤j≤n
|Im θj | ≤ s} and Tn

s = {(θ, r) ∈ Tn
C
, max

1≤j≤n
max (|Im θj |, |rj|) ≤ s}.

For complex extensions U and V of real manifolds, denote by A(U, V ) the Ba-
nach space of real holomorphic maps from the interior of U to V , which extend
continuously on U ; A(U) := A(U, C).

• Let Hs = A(Tn
s ) with norm |H|s := sup(θ,r)∈Tn

s
|H(θ, r)|, such that H = ∪sHs

be their inductive limit.

Fix s0. There exist ǫ0 such that Ko ∈ Hs0
and, for all H ∈ Hs0

such that
|H − Ko|s0

≤ ǫ0,

(1)

∣∣∣∣det

∫

Tn

∂2H

∂r2
(θ, 0) dθ

∣∣∣∣ ≥
1

2

∣∣∣∣det

∫

Tn

∂2Ko

∂r2
(θ, 0) dθ

∣∣∣∣ 6= 0.

Hereafter we assume that s is always ≥ s0. Set Kα
s = {K ∈ Hs ∩ Kα, |K −

Ko|s0
≤ ǫ0}, and let ~Ks ≡ R ⊕ O(r2) be the vector space directing Kα

s .

• Let Ds be the space of isomorphisms ϕ ∈ A(Tn
s , T

n
C
) with ϕ(0) = 0 and Zs

be the space of bounded real holomorphic closed 1-forms on Tn
s . The semi-direct

product Gs = Zs ⋊ Ds acts faithfully and symplectically on the phase space by

(2) G : Tn
s → Tn

C
, (θ, r) 7→ (ϕ(θ), (ρ(θ) + r) · ϕ′(θ)−1), G = (ρ, ϕ),

and, to the right, on Hs by Hs → A(G−1(Tn
s )), K 7→ K ◦ G.

• Let ds := {ϕ̇ ∈ A(Tn
s )n, ϕ̇(0) = 0} with norm |ϕ̇|s := maxθ∈Tn

s
max1≤j≤n |ϕ̇j(θ)|,

be the space of vector fields on Tn
s which vanish at 0. Similarly, let |ρ̇|s =

maxθ∈Tn
s
max1≤j≤n, |ρ̇j(θ)| on Zs. An element Ġ = (ρ̇, ϕ̇) of the Lie algebra

gs = Zs ⊕ ds (with norm |(ρ̇, ϕ̇)|s = max(|ρ̇|s, |ϕ̇|s)) identifies with the vector
field

(3) Ġ : Tn
s → C

2n, (θ, r) 7→ (ϕ̇(θ), ρ̇(θ) − r · ϕ̇′(θ)),

whose exponential is denoted by exp Ġ. It acts infinitesimally on Hs by Hs → Hs,
K 7→ K ′ · Ġ.

Constants γi, τi, ci, ti below do not depend on s or σ.
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Lemma 0. If Ġ ∈ gs+σ and |Ġ|s+σ ≤ γ0σ
2, then exp Ġ ∈ Gs and | exp Ġ − id |s ≤

c0σ
−1|Ġ|s+σ.

Proof. Let χs = A(Tn
s )2n, with norm ‖v‖s = maxθ∈Tn

s
max1≤j≤2n |vj(θ)|. Let

Ġ ∈ gs+σ with |Ġ|s+σ ≤ γ0σ
2, γ0 := (36n)−1. Using definition (3) and Cauchy’s

inequality, we see that if δ := σ/3,

‖Ġ‖s+2δ = max (|ϕ̇|s+2δ, |ρ̇ + r · ϕ̇′(θ)|s+2δ) ≤ 2nδ−1|Ġ|s+3δ ≤ δ/2.

Let Ds = {t ∈ C, |t| ≤ s} and F := {f ∈ A(Ds × Tn
s )2n, ∀(t, θ) ∈ Ds × Tn

s , |f(t, θ)|s ≤ δ}.
By Cauchy’s inequality, the Lipschitz constant of the Picard operator

P : F → F, f 7→ Pf, (Pf)(t, θ) =

∫ t

0

Ġ(θ + f(s, θ)) ds

is ≤ 1/2. Hence, P possesses a unique fixed point f ∈ F , such that f(1, ·) =

exp(Ġ) − id and |f(1, ·)|s ≤ ‖Ġ‖s+δ ≤ c0σ
−1|Ġ|s+σ, c0 = 6n.

Also, exp Ġ ∈ Gs because at all times the curve exp(tĠ) is tangent to Gs, locally
a closed submanifold of A(Tn

s , Tn
C
) (the method of the variation of constants gives

an alternative proof). �

7. A property of infinitesimal transversality

We will show that locally ~Ks is tranverse to the infinitesimal action of gs on
Hs+σ.

Lemma 1. For all (K, Ḣ) ∈ Kα
s+σ ×Hs+σ, there exists a unique (K̇, Ġ) ∈ ~Ks × gs

such that

K̇ + K ′ · Ġ = Ḣ and max(|K̇|s, |Ġ|s) ≤ c1σ
−t1 (1 + |K|s+σ) |Ḣ|s+σ.

Proof. We want to solve the linear equation K̇ + K ′ · Ġ = Ḣ . Write





K(θ, r) = c + α · r + Q(θ) · r2 + O(r3)

K̇(θ, r) = ċ + K̇2(θ, r), ċ ∈ R, K̇2 ∈ O(r2)

Ġ(θ, r) = (ϕ̇(θ), R + S ′(θ) − r · ϕ̇′(θ)), ϕ̇ ∈ χs, Ṙ ∈ Rn, Ṡ ∈ A(Tn
s ).

Expanding the equation in powers of r yields
(4)(

ċ + (Ṙ + Ṡ ′) · α
)

+r ·
(
−ϕ̇′ · α + 2Q · (Ṙ + Ṡ ′)

)
+K̇2 = Ḣ =: Ḣ0+Ḣ1 ·r+O(r2),

where the term O(r2) on the right hand side does not depend on K̇2.

Fourier series and Cauchy’s inequality show that if g ∈ A(Tn
s+σ) has zero average,

there is a unique function f ∈ A(Tn
s ) of zero average such that Lαf := f ′ · α = g,

and |f |s ≤ cσ−t|g|s+σ [24].
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Equation (4) is triangular in the unknowns and successiveley yields:





Ṡ = L−1
α

(
Ḣ0 −

∫
Tn Ḣ0(θ) dθ

)

Ṙ = 1
2

(∫
Tn Q(θ) dθ

)−1 ∫
Tn

(
Ḣ1(θ) − 2Q(θ) · Ṡ ′(θ)

)
dθ

ϕ̇ = L−1
α

(
Ḣ1(θ) − 2Q(θ) · (Ṙ + Ṡ ′(θ))

)

ċ =
∫

Tn Ḣ0(θ) dθ − Ṙ · α

K̇2 = O(r2),

and, together with Cauchy’s inequality, the wanted estimate. �

8. The local transversality property

Let us bound the discrepancy between the action of exp(−Ġ) and the infinites-
imal action of −Ġ.

Lemma 2. For all (K, Ḣ) ∈ Kα
s+σ×Hs+σ such that (1+ |K|s+σ)|Ḣ|s+σ ≤ γ2σ

τ2 , if

(K̇, Ġ) ∈ ~K× gs solves the equation K̇ +K ′ ◦ Ġ = Ḣ (lemma 1), then exp Ġ ∈ Gs,

| exp Ġ − id |s ≤ σ and

|(K + Ḣ) ◦ exp(−Ġ) − (K + K̇)|s ≤ c2σ
−t2(1 + |K|s+σ)

2|Ḣ|2s+σ.

Proof. Set δ = σ/2. Lemmas 0 and 1 show that, under the hypotheses for some
constant γ2 and for τ2 = t1 + 1, we have |Ġ|s+δ ≤ γ0δ

2 and | exp Ġ − id |s ≤ δ.

Let H = K + Ḣ. Taylor’s formula says

Hs ∋ H ◦ exp(−Ġ) = H − H ′ · Ġ +

(∫ 1

0

(1 − t) H ′′ ◦ exp(−tĠ) dt

)
· Ġ2

or, using the fact that H = K + K̇ + K ′ · Ġ,

H ◦exp(−Ġ)−(K +K̇) = −(K̇ +K ′ ·Ġ)′ ·Ġ+

(∫ 1

0

(1 − t) H ′′ ◦ exp(−tĠ) dt

)
·Ġ2.

The wanted estimate thus follows from the estimate of lemma 1 and Cauchy’s
inequality. �

Let Bs,σ = {(K, Ḣ) ∈ Kα
s+α × Hs+σ, |K|s+σ ≤ ǫ0, |Ḣ|s+σ ≤ (1 + ǫ0)

−1γ2σ
τ2}

(recall (1)).

According to lemmas 1-2, the map φ : Bs,σ → Kα
s ×Hs,

φ(K, Ḣ) = (K + K̇, (K + Ḣ) ◦ exp(−Ġ) − (K + K̇)),

satisfies, if (K̂, ̂̇H) = φ(K, Ḣ),

|K̂ − K|s ≤ c3σ
−t3 |Ḣ|s+σ, | ̂̇H|s ≤ c3σ

−t3 |Ḣ|2s+σ.

Theorem 2 applies and shows that if H−Ko is small enough in Hs+σ, the sequence
(Kj , Ḣj) = φj(Ko, H − Ko), j ≥ 0, converges towards some (K, 0) in Kα

s ×Hs.
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K

H
K̇

K̂ = K + K̇

H ◦ exp(−Ġ)

̂̇H

Ḣ
K ′ ◦ Ġ

Let us keep track of the Ġj’s solving with the K̇j’s the successive linear equations

K̇j + K ′
j · Ġj = Ḣj (lemma 1). At the limit,

K := Ko + K̇0 + K̇1 + · · · = H ◦ exp(−Ġ0) ◦ exp(−Ġ1) ◦ · · · .

Moreover, lemma 1 shows that |Ġj|sj+1
≤ c4σ

−t4
j |Ḣj|sj

, hence the isomorphisms

γj := exp(−Ġ0) ◦ · · · ◦ exp(−Ġj), which satisfy

|γn − id |sn+1
≤ |Ġ0|s1

+ ... + |Ġn|sn+1
,

form a Cauchy sequence and have a limit γ ∈ Gs. At the expense of decreasing
|H − Ko|s+σ, by the inverse function theorem, G := γ−1 exists in Gs−δ for some
0 < δ < s, so that H = K ◦ G.

Appendix. A fixed point theorem

Let (Es, | · |s)0<s<1 and (Fs, | · |s)0<s<1 be two decreasing families of Banach
spaces with increasing norms. On Es × Fs, set |(x, y)|s = max(|x|s, |y|s). Fix
C, γ, τ, c, t > 0.

Let

φ : Bs,σ := {(x, y) ∈ Es+σ × Fs+σ, |x|s+σ ≤ C, |y|s+σ ≤ γστ} → Es × Fs

be a family of operators commuting with inclusions, such that if (X, Y ) = φ(x, y),

|X − x|s ≤ cσ−t|y|s+σ and |Y |s ≤ cσ−t|y|2s+σ.

In the proof of theorem 1, “|x|s+σ ≤ C” allows us to bound the determinant of∫
Tn Q(θ)dθ away from 0, while “|y|s+σ ≤ γστ” ensures that exp Ġ is well defined.

Theorem 2. Given s < s + σ and (x, y) ∈ Bs,σ such that |y|s+σ is small, the
sequence (φj(x, y))j≥0 exists and converges towards a fixed point (ξ, 0) in Bs,0.

Proof. It is convenient to first assume that the sequence is defined and (xj , yj) :=
F j(x, y) ∈ Bsj ,σj

, for sj := s+2−jσ and σj := sj−sj+1. We may assume c ≥ 2−t, so
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that dj := cσ−t
j ≥ 1. By induction, and using the fact that

∑
2−k =

∑
k2−k = 2,

|yj|sj
≤ dj−1|yj−1|

2
sj−1

≤ · · ·

≤ |y|2
j

s+σ

∏

0≤k≤j−1

d2k+1

k

≤
(
|y|s+σ

∏

k≥0

d2−k−1

k

)2j

=
(
c4tσ−t|y|s+σ

)2j

.

Given that
∑

n≥0 µ2n

≤ 2µ if 2µ ≤ 1, we now see by induction that if |(x, y)|s+σ

is small enough, (xj , yj) exists in Bsj ,σj
for all j ≥ 0, yj converges to 0 in Fs and

the series xj = x0 +
∑

0≤k≤j−1(xk+1 −xk) converges normally towards some ξ ∈ Es

with |ξ|s ≤ C. �
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[7] H. W. Broer, G. B. Huitema, and M. B. Sevryuk. Quasi-periodic motions in families of
dynamical systems, volume 1645 of Lecture Notes in Mathematics. Springer-Verlag, Berlin,
1996. Order amidst chaos.
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