
A SIMPLE PROOF OF INVARIANT TORI THEOREMS

JACQUES FÉJOZ

Abstract. If T
n×{0} is a Diophantine invariant torus of a real analytic Hamiltonian

Ko : {(θ, r)} ⊂ T
n × R

n → R, any real analytic Hamiltonians H close to Ko has
a unique normal form H(θ, r) = K ◦ G(θ, r) + β · r, where T

n × {0} is an invariant
torus of some Hamiltonian K with the same frequency as Ko, G is a Hamiltonian
diffeomorphism of a particular type and β ∈ R

n is a frequency offset. The existence
and uniqueness of this normal form, which we call a twisted conjugacy, is proved here
with a simple abstract inverse function theorem, relying on the Newton algorithm.
The normal form is then shown to be a gateway to celebrated invariant tori theorems
of Kolmogorov, Arnold, Rüssmann and Herman.
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1. Introduction

Let H be the space of germs along Tn
0 := T

n × {0} of real analytic Hamiltonians in
T
n × R

n = {(θ, r)} (Tn = R
n/2πZ

n). The vector field associated with H ∈ H is

~H : θ̇ = ∂rH, ṙ = −∂θH.

For α ∈ R
n, let K be the affine subspace of Hamiltonians K ∈ H such that K|Tn

0
is

constant (i.e. Tn
0 is invariant) and ~K|Tn

0
= α. Those Hamiltonians are characterized by

their first order expansion along Tn
0 , of the form c + α · r for some c ∈ R, that is, their

expansion is constant with respect to θ and the coefficient of r is α. The germ space H
is endowed with the usual, inductive limit topology [16, Section 6.3, example (3)]; see
section 2.

We will focus on Diophantine frequency vectors:

Dγ,τ = {α ∈ R
n, ∀k ∈ Z

n \ {0} |k · α| ≥ γ|k|−τ}, |k| := |k1| + · · · + |kn|.
If τ > n− 1, the set ∪γ>0Dγ,τ has full Lebesgue measure [3, p. 83], [40]. If additionally
γ ≪ 1, Dγ,τ has positive Lebesgue measure, which we will assume in the sequel. Also,
see appendix D.

Let also G be the space of germs along Tn
0 of real analytic exact symplectomorphisms G

in T
n × R

n of the following form:

G(θ, r) = (ϕ(θ), tϕ′(θ)−1(r + ρ(θ))),

where ϕ is an isomorphism of T
n fixing the origin, and ρ is an exact 1-form on T

n.

Theorem 1 (Twisted conjugacy). Let α ∈ Dγ,τ and Ko ∈ K. For every H ∈ H close
enough to Ko, there exists a unique (K,G, β) ∈ K×G×R

n close to (Ko, id, 0) such that

H = K ◦G+ β · r
in some neighborhood of T

n
0 which is locally uniform with respect to H.

The frequency being a conjugacy invariant of quasi-periodic flows, the frequency offset
β · r is necessary. Yet it breaks the dynamical conjugacy between K and H and does
not comply H with having an invariant torus, as K does. This normal form thus is of
geometrical nature and we will call it a twisted conjugacy. Advertised by Herman in
the 1990’s [22], it is the Hamiltonian analogue of the normal form of vector fields on
the torus of Arnold and Moser [1, 31]. It appears in a more general setting in Moser
[32]. Its formal analogue actually goes back to Poincaré’s proof of existence of Lindstedt
series [35, Vol. ii, § 126].

Several facts prove or hint that H is generally not of the form (K + β · r) ◦ G: having
an invariant torus is not an open property, i.e. the operator (K,G, β) 7→ (K + β · r) ◦G
is not open, although it has the same invertible derivative as (K,G, β) 7→ K ◦G+ β · r
at (Ko, id, 0); the corresponding linearized equation

δH = (δK + δβ · r) ◦G+ (K ′ + β · dr) ◦G · δG
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(dots emphasizing linear operations) has formal or analytic obstructions as soon as α+β
is a resonant or Liouville vector; more generally, being invertible is usually not an open
property among linear maps of topological vector spaces.

Yet, in Dynamics the goal is to show that the parameter β ∈ R
n vanishes under adequate

hypotheses. The initial conjugacy problem has thus been reduced to a problem of finite
dimension. Poincaré, in his case, could use an argument of exactness from symplectic
geometry; see also Eliasson [17]. The use of rotating frames in [35, Chap. iii] and
[19, Proposition 82] in order to break some degeneracies relies on a similar idea in a
more specific setting. In sections 4 and 6, we will use respectively the usual implicit
function theorem in finite dimension and a result from Arnold-Pyartli in the theory of
Diophantine approximations on manifolds, making theorem 2 the common gateway to
several celebrated theorems.

However, when the frequency α is varied, a key point is that β depends Whitney-
smoothly on α ∈ Dγ,τ . This fact was noticed by Lazutkin for twist maps [27, 28].
Pöschel in finite differentiability, Herman, Rüssmann, Broer-Huitema-Takens with their
unfolding theory, and Sevryuk, considerably clarified the whole strategy [9, 22, 36, 41,
42, 45, 47].

Eventually, the seeming detour through twisted conjugacies splits the proof of invariant
tori theorems into a functionally well posed inversion problem in infinite dimension, and
an argument in finite dimension depending on the non-degeneracy hypothesis (compare
with [53, 54]; see also [51]). Moreover, the functional setting chosen here adapts to limit
degeneracies (lower dimensional tori), in a straightforward manner [19].

In sections 2 and 3, the main theorem of the paper is proved (theorem 2, a more precise
version of theorem 1), by applying the inverse function theorem 17. Theorem 17 itself, a
very simple version of the Nash-Moser theorem, can be applied to a variety of operators
involving small denominators or maps compositions; it is proved in appendix A using
the most standard Newton algorithm. Sections 4 and 6 are devoted to inducing invariant
tori theorems of Kolmogorov, Arnold, Rüssmann and Herman. Section 5 introduces an
intermediate step between twisted and true conjugacies, which we call a hypothetical
conjugacy. Appendices B and C allow to improve the quantitative bounds of theorems 2
and 17: with elementary estimates on the inverse of real analytic isomorphisms of the
phase space, and with Hadamard-like, interpolation inequalities, which do not seem much
spread in the literature. Appendix D weakens the arithmetics conditions. Appendix E
treats of quasi-periodic time-dependent perturbations. Some further comments are in
appendix F.

2. Functional setting

In this section we will define appropriate source and target spaces for the operator

φ : (K,G, β) 7→ H = K ◦G+ β · r,

to be defined and, when α is Diophantine, invertible.
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For various sets U and V , A(U, V ) will denote the set of continuous maps U → V which

are real analytic on the interior Ů , and A(U) := A(U,C).

Recall notations for the abstract torus and its embedding in the phase space:

T
n = R

n/2πZ
n and Tn

0 = T
n × {0} ⊂ T

n × R
n.

Define complex extensions

T
n
C = C

n/2πZ
n and Tn

C = T
n
C × C

n

as well as bases of neighborhoods

T
n
s = {θ ∈ T

n
C, max

1≤j≤n
|Im θj| ≤ s} and Tn

s = {(θ, r) ∈ Tn
C, |(θ, r)| ≤ s},

with |(θ, r)| := max1≤j≤n max (|Im θj |, |rj |).

2.1. Spaces of Hamiltonians. — Let Hs = A(Tn
s ), endowed with the Banach norm

|H|s := sup
(θ,r)∈Tn

s

|H(θ, r)|,

so that H be the inductive limit of the spaces Hs.

— For α ∈ R
n, let Kα

s = Ks be the affine subspace consisting of those K ∈ Hs such that

K(θ, r) = c+ α · r +O(r2)

for some c ∈ R.

— If G is a real analytic isomorphism on some open set of Tn
C

and if G is transverse to
Tn
s , let G∗A(Tn

s ) := A(G−1(Tn
s )) be endowed with the Banach norm

|H|G,s := |H ◦G−1|s.
By the principle of analytic continuation, | · |G,s is a Banach norm on Hs−|G−id |s .

Tn
0

G−1(Tn
0)

| · |G,σ = supG−1(Tn

σ
)

| · |s = supTn

s

2.2. Spaces of conjugacies.

2.2.1. Diffeomorphisms of the torus. Let Ds be the space of maps ϕ ∈ A(Tns ,T
n
C
) which

are real analytic isomorphisms from T̊
n
s to their image and which fix the origin.

Let also

χs := {v ∈ A(Tns )
n, v(0) = 0}

be the space of vector fields on T
n
s which vanish at 0, endowed with the Banach norm

|v|s := max
θ∈Tn

s

max
1≤j≤n

|vj(θ)|.
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According to corollary 24, the map

σB̊χ
s+σ := {v ∈ χs+σ, |v|s < σ} → Ds, v 7→ id +v

is defined and locally bijective. It endows Ds with a local structure of Banach manifold
in the neighborhood of the identity.

We will consider the contragredient action of Ds on Tn
s (with values in Tn

C
) :

ϕ(θ, r) := (ϕ(θ), tϕ′(θ)−1 · r),
in order to linearize the dynamics on the alleged invariant tori.

2.2.2. Straightening tori. Let Bs be the space of exact one-forms over T
n
s , with

|ρ|s = max
θ∈Tn

s

max
1≤j≤n

|ρj(θ)|, ρ = (ρ1, ..., ρn).

We will consider its action on Tn
s by translation of the actions:

ρ(θ, r) := (θ, r + ρ(θ)),

in order to straighten the perturbed invariant tori.

2.2.3. Our space of conjugacies. Let Gs = Ds×Bs, identified with a space of Hamiltonian
symplectomorphisms by

(ϕ, ρ)(θ, r) := ϕ ◦ ρ (θ, r) = (ϕ(θ), tϕ′(θ)−1(r + ρ(θ))).

Endow its tangent space at the identity TidGs = gs := χs × Bs with the norm

|Ġ|s = |(v, ρ)|s := max(|v|s, |ρ|s),
and its tangent space at G = (ϕ, ρ) with the norm

|δG|s := |δG ◦G−1|s, δG ∈ TGG.
Here and elsewhere, the notation δG, as well as similar ones, should be taken as a whole;
there is no separate δ ∈ R in the present paper.

Also consider the following neighborhoods of the identity:

Gσs =

{

G ∈ Gs, max
(θ,r)∈Tn

s

|(Θ − θ,R− r)| ≤ σ, (Θ, R) = G(θ, r)

}

, σ > 0.

The operators (commuting with inclusions of source and target spaces)

φ : Ks+σ × Gσs × R
n → Hs, (K,G, β) 7→ K ◦G+ β · r

are now defined. In particular, if we let Es := Ks×Gs×R
n and σBE

s := {x ∈ Es, |x|s ≤
σ}, by restriction φ defines the operators

φ : σBE
s+σ → Hs

to which the inverse function theorem of appendix A will apply. Since these operators
commute with inclusions, we will speak of them in the singular.
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3. Twisted conjugacy

The local existence and uniqueness of the twisted conjugacy (theorem 1) can now be
phrased in terms of the operator φ.

Theorem 2 (Twisted conjugacy). Let α ∈ Dγ,τ . The operator φ has a unique local
inverse in the following sense: for all 0 < s < s+σ < 1, if Ko ∈ Hs+σ and |H −Ko|s+σ
is small, there is a unique (K,G, β) ∈ σBE

s , | · |s-close to (Ko, id, 0) such that

H = K ◦G+ β · r
over Tn

s . Moreover β ◦ φ−1 is a C1-function locally in the | · |s+σ-neighborhood of Ko.

Geometrically: the orbits of Hamiltonians K ∈ K under the action of symplectomor-
phisms of G locally form a subspace of finite codimension n. (The conclusion will also
hold in the neighborhood of (Ko, id, βo) if βo ∈ R

n.)

The theorem will follow from the inverse function theorem of appendix A applied to φ,
lemma 20 (for the uniqueness of the inverse) and corollary 22 (for the smoothness of
β ◦ φ−1). Let us now check the two main hypotheses of appendix A, one on φ′−1 and
one on φ′′.

Let Lα be the Lie derivative operator in the direction of the constant vector field α ∈
Dγ,τ :

Lα : A(Tns ) → A(Tns ), f 7→ f ′ · α =
∑

1≤j≤n

αj
∂f

∂θj
.

We will need the following classical lemma in two instances in the proof of lemma 4.

Lemma 3 (Cohomological equation). If g ∈ A(Tns+σ) has 0-average (
∫

T
g dθ = 0), there

exists a unique function f ∈ A(Tns ) of 0-average such that Lαf = g, and there exists
C0 = C0(n, τ) > 0 such that, for any σ:

|f |s ≤ C0γ
−1σ−τ−n|g|s+σ .

Proof. Let g(θ) =
∑

k∈Zn\{0} gk e
ik·θ be the Fourier expansion of g. The unique formal

solution to the equation Lαf = g is given by f(θ) =
∑

k∈Zn\{0}
gk

i k·α e
i k·θ.

Since g is analytic, its Fourier coefficients decay exponentially: we find

|gk| =

∣

∣

∣

∣

∫

Tn

g(θ) e−ik·θ
dθ

2π

∣

∣

∣

∣

≤ |g|s+σe−|k|(s+σ)

by shifting the torus of integration to a torus Im θj = ±(s+ σ).

Using this estimate and replacing the small denominators k · α by the estimate defining
the Diophantine property of α, we get

|f |s ≤ |g|s+σ
γ

∑

k

|k|τ e−|k|σ

≤ 2n|g|s+σ
γ

∑

ℓ≥1

(

ℓ+ n− 1
ℓ

)

ℓτ e−ℓ σ ≤ 4n|g|s+σ
γ (n− 1)!

∑

ℓ

(ℓ+ n− 1)τ+n−1 e−ℓ σ,
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where the latter sum is bounded by
∫ ∞

1
(ℓ+ n− 1)τ+n−1e−(ℓ−1)σ dℓ = σ−τ−nenσ

∫ ∞

nσ
ℓτ+n−1e−ℓ dℓ

< σ−τ−nenσ
∫ ∞

0
ℓτ+n−1e−ℓ dℓ = σ−τ−nenσΓ(τ + n).

Hence f belongs to A(Tns ) and satisfies the wanted estimate. �

Fix 0 < s < s+ σ < 1. We will write x = (K,G, β) and δx = (δK, δG, δβ).

Lemma 4. There exists C ′ > 0 which is locally uniform with respect to x ∈ Es+σ in the
neighborhood of G = id such that the linear map φ′(x) has an inverse φ′(x)−1 satisfying

∣

∣φ′(x)−1 · δH
∣

∣

s
≤ σ−τ−n−1C ′ |δH |G,s+σ .

Proof. A function δH ∈ G∗A(Ts+σ) being given, we want to solve the equation

φ′(x) · δx = δK ◦G+K ′ ◦G · δG+ δβ · r = δH,

for the unknowns δK ∈ TKKs ⊂ A(Tn
s ), δG ∈ TGGs, and δβ ∈ R

n, or, equivalently, after
composing with G−1 to the right,

δc+ K̇ +K ′ · Ġ+ δβ · r ◦G−1 = Ḣ,

where we have set δK = δc + K̇ with δc ∈ R and K̇ = O(r2), Ġ := δG ◦ G−1 ∈ gs and

Ḣ := δH ◦G−1 ∈ Hs+σ.

More specifically, G−1 and Ġ are of the form

G−1(θ, r) = (ϕ−1(θ), tϕ′ ◦ ϕ−1(θ) · r − ρ ◦ ϕ−1(θ)), Ġ = (ϕ̇, ρ̇− r · ϕ̇′),

where ϕ̇ ∈ χs+σ and ρ̇ ∈ Bs+σ, and we can expand

K = c+ α · r +K2(θ) · r2 +O(r3) and Ḣ = Ḣ0(θ) + Ḣ1(θ) · r +O(r2).

The equation becomes

(1)
[

ρ̇ · α+ δc− ρ ◦ ϕ−1 · δβ
]

+ r ·
[

−ϕ̇′ · α+ ϕ′ ◦ ϕ−1 · δβ + 2K2 · ρ̇
]

+

K̇ = Ḣ +O(r2),

where the term O(r2) in the right hand side depends only on K and Ġ, and not on

K̇. The equation turns out to be triangular in the five unknowns. The existence and
uniqueness of a solution with the wanted estimate follows from repeated applications of
lemma 3 and Cauchy’s inequality:

— The average over Tn
0 of the first order terms with respect to r in equation (1) yields

δβ =

(
∫

Tn

ϕ′ ◦ ϕ−1 dθ

)−1

·
∫

Tn
0

Ḣ1 dθ,

which does exist if ϕ is close to the identity (proposition 24).



8 JACQUES FÉJOZ

— Similarly, the average of the restriction to Tn
0 of (1) yields:

δc =

∫

Tn
0

Ḣ0 dθ +

∫

Tn
0

ρ ◦ ϕ−1 dθ · δβ.

— Next, the restriction to Tn
0 of (1) can be solved uniquely with respect to ρ̇ according

to lemma 3 (applied with ρ̇ = f ′).

— The part of degree one can then be solved for ϕ̇ similarly.

— Terms of order ≥ 2 in r determine K̇. �

Lemma 5. There exists a constant C ′′ > 0 which is locally uniform with respect to
x ∈ Es+σ in the neighborhood of G = id such that the bilinear map φ′′(x) satisfies

∣

∣φ′′(x) · δx⊗2
∣

∣

G,s
≤ σ−2C ′′ |δx|2s+σ.

Proof. Differentiating φ twice yields

φ′′(x) · δx⊗2 = 2δK ′ ◦G · δG+K ′′ ◦G · δG⊗2,

hence
(

φ′′(x) · δx⊗2
)

◦G−1 = 2 δK ′ · (δG ◦G−1) +K ′′ · (δG ◦G−1)⊗2,

whence the estimate. �

Exercise 6 (Arnold-Moser normal form) Use theorem 2 to show that, for every vector
field v ∈ χ(Tn) close to α ∈ Dγ,τ , there is a unique ϕ ∈ D and a unique β ∈ R

n such that
v = ϕ∗α+ β. Hint: apply theorem 2 to the Hamiltonian v(θ) · r; cf. [19, Section 4.3].

4. Strong non-degeneracy

Theorem 7 (Kolmogorov [12, 26]). Let α ∈ Dγ,τ and Ko ∈ K such that the averaged

hessian
∫

Tn
∂2Ko

∂r2
(θ, 0) dθ is non degenerate. For every H ∈ H close to Ko, there is a

unique (K,G,R) ∈ K × G × R
n close to (Ko, id, 0) such that

H(θ, r +R) = K ◦G(θ, r)

in a neighborhood of Tn
0 which is locally uniform with respect to H; in particular, H

possesses an α-quasi-periodic invariant torus.

This theorem has far reaching consequences ; see [7, 8, 11, 14, 34, 37, 46, 48] for references
and background. In particular it has led to a partial answer to the long standing question
of the stability of the Solar system [4, 10, 19].

Proof. Let Ko
2(θ) := 1

2
∂2Ko

∂r2
(θ, 0). Let F be the analytic function taking values among

symmetric bilinear forms, which solves the cohomological equation

LαF (θ, 0) =
1

2

∂2Ko

∂r2
(θ, 0) −

∫

Tn
0

1

2

∂2Ko

∂r2
(θ, 0) dθ

on Tn
0 (see lemma 3), and ϕ be the germ along Tn

0 of the (well defined) time-one map
of the flow of the Hamiltonian F (θ) · r2. The map ϕ is symplectic and restricts to
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the identity on Tn
0 . At the expense of substituting Ko ◦ ϕ and H ◦ ϕ for Ko and H

respectively, one can thus assume that

Ko = c+ α · r +Q · r2 +O(r3), Q :=

∫

Tn
0

1

2

∂2Ko

∂r2
(θ, 0) dθ.

The germs so obtained are close to one another.

Consider the family of perturbations obtained by translating Ko in the direction of
actions:

Ko
R(θ, r) := Ko(θ,R+ r), R ∈ R

n, R small,

and its approximation obtained by truncating the first order jet of Ko
R along Tn

0 from
its terms O(R2) which possibly depend on θ:

K̂o
R(θ, r) := (c+ α ·R) + (α+ 2Q ·R) · r +O(r2) = Ko

R +O(R2).

For the Hamiltonian K̂o
R, T n0 is invariant and quasi-periodic of frequency α + 2Q · R.

Hence the normal form of K̂o
R with respect to the frequency α is

K̂o
R =

(

K̂o
R − β̂oR · r

)

◦ id +β̂oR · r, β̂oR := 2Q · R.

By hypothesis the matrix ∂β̂o

∂R

∣

∣

∣

R=0
= 2Q is invertible, so the map R 7→ β̂o(R) is a local

diffeomorphism.

Now, theorem 1 asserts the existence of an analogous map R → β(R) for HR, which is

a small C1-perturbation of R 7→ β̂o(R), and thus a local diffeomorphism, with a domain
having a lower bound locally uniform with respect to H. Hence if H is close enough to
Ko there is a unique small R such that β = 0. For this R the equality HR = K ◦ G
holds, hence the torus obtained by translating G−1(Tn

0 ) by R in the direction of actions
is invariant and α-quasi-periodic for H. �

Exercise 8 Simplify this proof when Ko = Ko(r) is integrable.

Remark 9 (L. Chierchia) Assume the hypotheses of theorem 7 are verified. Applying
the theorem to each Hamiltonian H − β · r, β ∈ R

n, ‖β‖ ≪ 1, shows that there is a map
β 7→ (Kβ, Gβ , Rβ) such that

H(θ, r +Rβ) − β · (r +Rβ) ≡ Kβ ◦Gβ(θ, r),
and β 7→ Rβ is a local diffeomorphism. Hence there is a unique β such that Rβ = 0:

H = Kβ ◦Gβ + β · r
i.e., the twisted conjugacy follows from Kolmogorov’s theorem.

5. Hypothetical conjugacy

We now move to a “hypothetical” normal form, the common ground of invariant tori
theorems of section 6.

Let

Ks = ∪α∈RnKα
s =

{

c+ α · r +O(r2), c ∈ R, α ∈ R
n
}
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be the set of Hamiltonians on Tn
s for which Tn

0 is invariant and quasi-periodic, with
unprescribed frequency.

Theorem 10 (Hypothetical conjugacy). For every Ko ∈ Kαo

s+σ with αo ∈ Dγ,τ , there is
a germ of diffeomorphism

Θ : Hs+σ → Ks × Gs, H 7→ (KH , GH), KH = cH + αH · r +O(r2),

at Ko 7→ (Ko, id) such that for every H with αH ∈ Dγ,τ ,

H = KH ◦GH
and KH and GH are unique.

The pair (KH , GH ) can rightfully be called a hypothetical conjugacy of H because the
property H = KH ◦ GH depends on an arithmetical condition involving the unknown
frequency αH .

Proof. Denote φα the operator we have been denoting φ —because the vector α was
fixed while we now want to vary it. Define the map

Θ̂ : Dγ,τ ×Hs+σ → Ks × Gs × R
n

(α,H) 7→ Θ̂α(H) := (φα)−1(H) = (K,G, β)

locally in the neighborhood of (αo,Ko), Ko ∈ Kαo

s+σ. Since φ is infinitely differentiable,
by proposition 23 there exist a C∞-extension

Θ̂ : R
n ×Hs+σ → Ks × Gs × R

n.

Write Ko = αo · r + K̂, K̂ = c+O(r2). In particular, since

φα(Ko + (α− αo) · r, id, αo − α) ≡ Ko

locally for all α ∈ R
n close to αo we have

Θ̂(α,Ko) = (Ko, id, β), β(α,Ko) = αo − α.

In particular,
∂β

∂α
= − id

and, by the implicit function theorem, locally for all H there exists a unique α̂ such that
β(α̂,H) = 0. We conclude by letting Θ(H) = Θ̂(α̂,H). �

One can infer Kolmogorov’s theorem 7, or the following variation, from theorem 10.

Corollary 11 (Arnold [2], Pöschel [36]). Let Ko = Ko(r) be a germ of completely
integrable Hamiltonian. If H is close to Ko, there are C∞-germs G, c and α along Tn

0

of diffeomorphism, function and frequency, close to id, Ko and Ko′, such that whenever
αR ∈ Dγ,τ , the infinite jet along G−1(Tn

0 + (0, R)) of H ◦G−1 is

j∞G−1(Tn
0
+(0,R))H ◦G−1 = cR + αR · (r −R) +O((r −R)2).

Moreover, if the hessian ∂2
rK

o(0) is non degenerate, the set {R, αR ∈ Dγ,τ has positive
Lebesgue measure.
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Proof. As in the proof of Kolmogorov’s theorem, let

K0
R(θ,R) = Ko(θ,R+ r) and HR(θ, r) = H(θ,R+ r).

According to theorem 10, if R is small, there exist (KR, GR) ∈ Ks × Gs for some s > 0
such that KR = cR+αR ·r+O(r2), the map R 7→ αR is C1-close to R 7→ αoR := ∂rK

o(R),
and HR = KR ◦GR as soon as αR ∈ Dγ,τ , i.e.

H(θ, r) = KR ◦GR(θ, r −R).

(Beware that KR(θ, r) 6= K(θ, r +R) in general.)

In order to glue the constructed KR and GR together, define the germs K of C∞-
Hamiltonians and G of C∞-map by

K(θ, r) = Kr(θ, 0) and G(θ, r) = Gr(θ, 0) + (0, r) = (Gθ(θ, r), Gr(θ, r)).

As soon as αr ∈ Dγ,τ , the torus Tn
0 + (0, r) is K-invariant and quasi-periodic with

frequency αr. Besides, if H is close to Ko, Gr(θ, 0) is C∞-close to (θ, 0) and thus the
map G is a germ of diffeomorphism.

From the trivial the equality

KR ◦GR(θ, r −R) = KR(GR(θ, r −R) + (0, R) − (0, R)),

we see that the following equality

H(θ, r) = K(Gθ(θ, r), R)

holds between infinite jets along G−1
R (Tn

0 ) + (0, R) = G−1(Tn
0 + (0, R)), as soon as

αr := ∂rK(θ, r) ∈ Dγ,τ , whence the first assertion.

If the hessian ∂2
rK

o(0) is non degenerate, the frequency map r 7→ αr is a local diffeomor-
phism and the preimage by α of the set Dγ,τ thus has positive Lebesgue measure. �

6. Weak non-degeneracy

In theorem 7, the frequency is fixed. We will now deal with more degenerate cases, where
the map from actions or more general types of parameters, to the frequencies, might not
be a local diffeomorphism. As opposed to the strongly non degenerate case, we will not
be able to follow quasi-periodic invariant tori individually.

Assume that the perturbed Hamiltonian H = Ht depends smoothly on some parameter
t ∈ B

T (BT = the closed unit ball of R
T ); if H is close to some completely integrable

Hamiltonian, t may be the action coordinate r and, in the case of Arnold’s theorem, t
represents the semi major axes.

Definition 12 A smooth frequency map α : B
T → R

n is weakly non degenerate if its
local image nowhere lies in a proper vector subspace of R

n.

That this weak non-degeneracy property is relevant in general averaging theory, was
discovered by Arnold [5].
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Theorem 13 (Rüssmann). Suppose the family Ko
t ∈ Ks+σ, t ∈ B

T , has a non-planar
frequency map t 7→ αot . If γ and 1/τ are small and if Ht is close to Ko

t for all t ∈ B
T ,

there exist αt ∈ R
n, Kt ∈ Kαt

s , Gt ∈ Gs (all varying smoothly with t) and a subset
Dγ,τ ⊂ B

T of positive Lebesgue measure over which

Ht = Kt ◦Gt.

Theorem 13 follows from theorems 10 above and 14 below, with Dγ,τ := {t ∈ B
T , αt ∈

Dγ,τ} and the remark that being weakly-non degenerate is an open property among
Cn−1-maps (see [19, Lemma 44]).

Theorem 14 (Pyartli [39]). If t ∈ B
T 7→ αt ∈ R

n is non planar, the Lebesgue measure
of Dγ,τ is positive provided that γ is small enough and τ large enough.

Remark 15 Theorem 13 provides a convenient setting to check the persistence of in-
variant tori for parameters varying in any submanifold of B

T . For instance, in celestial
mechanics it is often crucial to prove the persistence of invariant tori on some given
energy level [18, Section 3.3]. In order to get such an “iso-energetic” statement, it suf-
fices to check that the restriction of the frequency map αo to the submanifold of B

T of
equation Ko

t (θ, 0) = cst is weakly non degenerate.

Exercise 16 (Herman’s stability theorem [19]) Let

H(θ, r, z) = H0(r) + ǫ
1

2
Q(r) · z⊗2 +O(z⊗3; r, ǫ) + ǫH1(θ, r, z)

be a germ along T
n×{0}×{0} of real analytic Hamiltonian in {(θ, r, z)} = T

n×R
n×C

p,
where

Q(r) · z⊗2 =
∑

1≤j≤p

α̂oj(r)Re (zj z̄j), α̂oj(r) ≥ 0,

and
∫

Tn

H1(θ, r, z) dθ = 0.

Assume that the frequency map

r 7→ (αo(r), α̂o(r)) ∈ R
n+p, α(r) := ∂rH0(r),

is weakly non degenerate. Then there exists ǫ > 0 such that H has an invariant set of
positive Lebesgue measure, consisting of Diophantine invariant tori. Hint: eliminate fast
angles θ from H1, then build a Birkhoff normal form to eliminate slow angles Arg zj ,
switch to symplectic polar coordinates in the z-direction, and apply Rüssmann’s theorem.

The proof of Arnold’s theorem on the stability of the planetary system reduces to a sim-
ilar, quantitative stability result, where H0 is the Hamiltonian describing the Keplerian
motion of non-interacting planets, and Q is the quadratic part of the secular Hamilton-
ian, describing the slow deformations of the Keplerian ellipses at the first order in the
eccentricities and inclinations, ǫ is the small order of masses of planets, r is a function
of the major semi-axes, θ is the mean longitudes, and z the secular coordinates.
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A. An inverse function theorem

Let E = (Es)0<s<1 be a decreasing family of Banach spaces with increasing norms | · |s,
and ǫBE

s = {x ∈ Es, |x|s < ǫ}, ǫ > 0, be its balls centered at 0. Let (Fs) be an analogous
family, and φ : σBE

s+σ → Fs, s < s+ σ, φ(0) = 0, be maps of class C2, commuting with
inclusions.

On account of composition operators, we will assume there are additional, deformed
norms |·|x,s, x ∈ Int(sBE

s ), 0 < s < 1, satisfying

|y|0,s = |y|s and |y|x′,s ≤ |y|x,s+|x′−x|s
,

and such that, if Fx,s denotes the normed vector space (Fs, | · |x,s),

x ∈ sBE
s+σ ⇒ φ(x) ∈ Fx,s.

In other words, φ is a section of the trivial Banach vector bundle of base sBE
s+σ and fiber

Fx,s over x. The important fact in the Newton algorithm below, is that the index loss
σ can be chosen arbitrarily small, without s itself being small, provided the deformed
norm substitutes for the initial one. The initial norm | · |s of Fs is here only for the
practical purpose of having a fixed target space, to which perturbations belong.

Assume that, if x ∈ sBE
s+σ, the differential φ′(x) : Es+σ → Fs has a right inverse

φ′(x)−1 : Fs+σ → Es, and
{

|φ′(x)−1η|s ≤ C ′σ−τ
′ |η|x,s+σ

|φ′′(x)ξ⊗2|x,s ≤ C ′′σ−τ
′′ |ξ|2s+σ (∀s, σ, x, ξ, η)

with C ′, C ′′, τ ′, τ ′′ ≥ 1. Let C := C ′C ′′ and τ := τ ′ + τ ′′.

Theorem 17. φ is locally surjective and, more precisely, for any s, η and σ with η < s,

ǫBF
s+σ ⊂ φ

(

ηBE
s

)

, ǫ := 2−8τC−2σ2τη.

In other words, φ has a right-inverse ψ : ǫBF
s+σ → ηBE

s .

Proof. Some numbers s, η and σ and y ∈ BF
s+η being given, let

f : σBE
s+η+σ → Es, x 7→ x+ φ′(x)−1(y − φ(x))

and

Q : σBE
s+σ × σBE

s+σ → Fs, (x, x̂) 7→ φ(x̂) − φ(x) − φ′(x)(x̂− x).

Lemma 18. The function Q satisfies, for x, x̂ ∈ sBE
s+2σ:

|Q(x, x̂)|x,s ≤ 2−1C ′′σ−τ
′′ |x̂− x|2s+σ+|x̂−x|s

.

Proof of the lemma. Let x̂t := (1 − t)x+ tx̂. Taylor’s formula yields

Q(x, x̂) =

∫ 1

0
(1 − t)φ′′(x̂t) (x̂− x)2 dt.
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Using the asumption on deformed norms,

|Q(x, x̂)|x,s ≤
∫ 1

0
(1− t)

∣

∣φ′′(x̂t)(x̂− x)2
∣

∣

x,s
dt ≤

∫ 1

0
(1− t)

∣

∣φ′′(x̂t)(x̂− x)2
∣

∣

x̂t,s+|x̂t−x|s
dt,

whence the estimate, using the asumption on φ′′. �

Now, let s, η and σ be fixed, with η < s and y ∈ ǫBF
s+σ for some ǫ. We will see that if ǫ

is small enough, the sequence x0 = 0, xn := fn(0) is defined for all n ≥ 0 and converges
towards some preimage x ∈ ηBE

s of y by φ.

Let (σn)n≥0 be a sequence of positive real numbers such that 3
∑

σn = σ, and (sn)n≥0

be the sequence decreasing from s0 := s + σ to s defined by induction by the formula
sn+1 = sn − 3σn.

Assuming the existence of x0, ..., xn+1, we see that φ(xk) = y +Q(xk−1, xk), hence

xk+1 − xk = φ′(xk)
−1(y − φ(xk)) = −φ′(xk)−1Q(xk−1, xk) (1 ≤ k ≤ n).

Further assuming that |xk+1−xk|sk
≤ σk, the estimate of the right inverse and lemma 18

entail that

|xn+1 − xn|sn+1
≤ cn|xn − xn−1|2sn

≤ · · · ≤ cnc
2
n−1 · · · c2

n−1

1 |x1|2
n−1

s1 , ck := 2−1Cσ−τk .

The estimate

|x1|s1 ≤ C ′(3σ0)
−τ ′ |y|s0 ≤ 2−1Cσ−τ0 ǫ = c0ǫ

and the fact, to be checked later, that ck ≥ 1 for all k ≥ 0, show :

|xn+1 − xn|sn+1
≤



ǫ
∏

k≥0

c2
−k

k





2n

.

Since
∑

n≥0 ρ
2n ≤ 2ρ if 2ρ ≤ 1, and using the definition of constants ck’s, we get a

sufficient condition to have all xn’s defined and to have
∑ |xn+1 − xn|s ≤ η:

(2) ǫ =
η

2

∏

k≥0

c−2−k

k =
2η

C2

∏

k≥0

στ2
−k

k .

Maximizing the upper bound of ǫ under the constraint 3
∑

n≥0 σn = σ yields σk := σ
62−k.

A posteriori it is straightforward that |xn+1 − xn|sn ≤ σn (as earlier assumed to apply
lemma 18) and cn ≥ 1 for all n ≥ 0. Besides, using that

∑

k2−k =
∑

2−k = 2 we get

η

2

∏

k≥0

c−2−k

k =
η

2

∏

k≥0

1

2τk2−k

(

2

C

(σ

6

)τ
)2−k

=
2η

C2

( σ

12

)2τ
>

σ2τη

28τC2
,

whence the theorem. �

Exercise 19 The domain of ψ contains ǫBF
S , ǫ = 2−12τ τ−1C−2S3τ , for any S.

Proof. The above function ǫ(η, σ) = 2−8τC−2σ2τη attains is maximum with respect to
η < s for η = s. Besides, under the constraint s+ σ = S the function ǫ(s, σ) attains its
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maximum when σ = 2τs and s = S
1+2τ . Hence, S being fixed, the domain of ψ contains

ǫBF
S if

ǫ < 2−8τC−2 S

1 + 2τ

(

2τS

12(1 + 2τ)

)2τ

.

Given that S < 1 < τ by hypothesis, it suffices that ǫ be equal to the stated value. �

A.1. Smoothness. In the proof of theorem 17 we have built right inverses ψ : ǫBF
s+η+σ →

ηBE
s+η, of φ, commuting with inclusions. The estimate given in the statement shows that

ψ is continuous at 0; due to the invariance of the hypotheses of the theorem by small
translations, ψ is locally continuous.

We further make the following two assumptions:

— The maps φ′(x)−1 : Fs+σ → Es are left (as well as right) inverses (in theorem 2 we
have restricted to an adequate class of symplectomorphisms);

— The scale (| · |s) of norms of (Es) satisfies some interpolation inequality:

|x|2s+σ ≤ |x|s |x|s+σ̃ for all s, σ, σ̃ = σ

(

1 +
1

s

)

(according to the remark after corollary 26, this estimate is satisfied in the case of interest
to us, since σ + log(1 + σ/s) ≤ σ̃).

Lemma 20 (Lipschitz regularity). If σ < s and y, ŷ ∈ ǫBF
s+σ with ǫ = 2−14τC−3σ3τ ,

|ψ(ŷ) − ψ(y)|s ≤ CL|ŷ − y|ψ(y),s+σ, CL = 2C ′σ−τ
′

.

In particular, ψ is the unique local right inverse of φ, i.e. it is also the local left inverse
of φ.

Proof. Fix η < ζ < σ < s; the impatient reader can readily look at the end of the proof
how to choose the auxiliary parameters η and ζ more precisely.

Let ǫ = 2−8τC−2ζ2τη, and y, ŷ ∈ ǫBF
s+σ. According to theorem 17, x := ψ(y) and

x̂ := ψ(ŷ) are in ηBE
s+σ−ζ , provided the condition, to be checked later, that η < s+σ−ζ.

In particular, we will use a priori that

|x̂− x|s+σ−ζ ≤ |x̂|s+σ−ζ + |x|s+σ−ζ ≤ 2η.

We have

x̂− x = φ′(x)−1φ′(x)(x̂− x)

= φ′(x)−1 (ŷ − y −Q(x, x̂))

and, according to the assumed estimate on φ′(x)−1 and to lemma 18,

|x̂− x|s ≤ C ′σ−τ
′ |ŷ − y|x,s+σ + 2−1Cζ−τ |x̂− x|2s+2η+|x̂−x|s

.

In the norm index of the last term, we will coarsely bound |x̂− x|s by 2η. Additionally
using the interpolation inequality:

|x̂− x|2s+4η ≤ |x̂− x|s|x̂− x|s+σ̃, σ̃ = 4η

(

1 +
1

s

)

,
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yields
(

1 − 2−1Cζ−τ |x̂− x|s+σ̃
)

|x̂− x|s ≤ C ′σ−τ
′ |ŷ − y|x,s+σ.

Now, we want to choose η small enough so that

— first, σ̃ ≤ σ − ζ, which implies |x̂− x|s+σ̃ ≤ 2η. By definition of σ̃, it suffices to have

η ≤ σ−ζ
4(1+1/s) .

— second, 2−1Cζ−τ 2η ≤ 1/2, or η ≤ ζτ

2C , which implies that 2−1Cζ−τ |x̂− x|s+σ̃ ≤ 1/2,

and hence |x̂− x|s ≤ 2C ′σ−τ
′ |ŷ − y|x,s+σ.

A choice is ζ = σ
2 and η = στ

16C < s, whence the value of ǫ in the statement. �

Proposition 21 (Smoothness). For every σ < s, there exists ǫ, C1 such that for every
y, ŷ ∈ ǫBF

s+σ,

|ψ(ŷ) − ψ(y) − φ′(ψ(y))−1(ŷ − y)|s ≤ C1|ŷ − y|2s+σ.
Moreover, the map ψ′ : ǫBF

s+σ → L(Fs+σ, Es) defined locally by ψ′(y) = φ′(ψ(y))−1 is

continuous and, if φ : σBE
s+σ → F is Ck, 2 ≤ k ≤ ∞, for all σ, so is ψ : ǫBF

s+σ → Es.

Proof. Fix ǫ as in the previous proof and y, ŷ ∈ εBF
s+σ. Let x = ψ(y), η = ŷ − y,

ξ = ψ(y + η) − ψ(y) (thus η = φ(x+ ξ) − φ(x)), and ∆ := ψ(y + η) − ψ(y) − φ′(x)−1η.
Definitions yield

∆ = φ′(x)−1
(

φ′(x)ξ − η
)

= −φ′(x)−1Q(x, x+ ξ).

Using the estimates on φ′(x)−1 and Q and the latter lemma,

|∆|s ≤ C1|η|2s+σ′
for some σ′ tending to 0 when σ itself tends to 0, and for some C1 > 0 depending on σ.
Up the substitution of σ by σ′, the estimate is proved.

The inversion of linear operators between Banach spaces being analytic, y 7→ φ(ψ(y))−1

has the same degree of smoothness as φ′. �

Corollary 22. If π ∈ L(Es, V ) is a family of linear maps, commuting with inclusions,
into a fixed Banach space V , then π ◦ ψ is C1 and (π ◦ ψ)′ = π · φ′ ◦ ψ.

This corollary is used with π : (K,G, β) 7→ β in the proof of theorem 2.

A.2. Whitney-smoothness with respect to finitely many parameters. In sec-
tion 5, it is convenient to extend φ−1 to non-Diophantine vectors α. Whitney-smoothness
is a criterion for such an extension to exist [50, 52].

Suppose φ(x) = φα(x) now depends on some parameter α ∈ Bn (the unit ball of R
n),

— that the estimates assumed up to now are uniform with respect to α over some closed
subset D ⊂ R

n,

— and that φ is C1 with respect to α.

We will denote ψα the parametrized version of the inverse of φα.
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Proposition 23 (Whitney-smoothness). If s, σ and ǫ are chosen like in proposition 21,
the map ψ : D×ǫBF

s+σ → Es is C1-Whitney-smooth and extends to a map ψ : R
n×ǫBF

s+σ

of class C1. If φ is Ck, 1 ≤ k ≤ ∞, with respect to α, this extension is Ck.

Proof. Let y ∈ ǫBF
s+σ. If α,α+ β ∈ D, xα = ψα(y) and xα+β = ψα+β(y), we have

φα+β(xα+β) − φα+β(xα) = φα(xα) − φα+β(xα).

Since ŷ 7→ ψα+β(ŷ) is Lipschitz (lemma 20),

|xα+β − xα|s ≤ CL|φα(xα) − φα+β(xα)|s+σ,
and, since α̂ 7→ φα̂(xα) itself is Lipschitz, so is α 7→ xα.

Moreover, the formal derivative of α 7→ xα is

∂αxα = −φ′α(xα) · ∂αφ(xα).

Expanding y = φα+β(xα+β) at β = 0 and using the same estimates as above, shows that

|xα+β − xα − ∂αxα · β|s = O(β2)

when β → 0, locally uniformly with respect to α. Hence α 7→ xα is C1-Whitney-smooth,
and, similarly, Ck-Whitney-smooth if α 7→ φα is.

Thus, by the Whitney extension theorem, the claimed extension exists. Note that Whit-
ney’s original theorem needs two straightforward generalizations to be applied here: ψ
takes values in a Banach space, instead of R or a finite dimension vector space (see [20]);
ψ is defined on a Banach space, but the extension directions are of finite dimension. �

B. Analytic isomorphisms

Here we include an elementary inversion theorem for real analytic isomorphisms on T
n
s .

The qualitative part is used in section 2, to parameterize locally Ds by vector fields,
and, in lemma 3, to solve the cohomological equation for the frequency offset δβ. The
estimates are needed only for an explicit bound in the invariant tori theorems of the
paper.

Recall that we have set T
n
s := {θ ∈ C

n/2πZ
n, max1≤j≤n |Im θj| ≤ s}. We will denote

by p : R
n
s := R

n × i[−s, s]n → T
n
s its universal covering.

Proposition 24. Let v ∈ A(Tns+2σ,C
n), |v|s+2σ < σ. The map id +v : T

n
s+2σ → R

n
s+3σ

induces a map ϕ : T
n
s+2σ → T

n
s+3σ whose restriction ϕ : T

n
s+σ → T

n
s+2σ has a unique

right inverse ψ : T
n
s → T

n
s+σ:

T
n
s+σ

� � ϕ
// T
n
s+2σ

T
n
s

Q1

ψ

ccG
G

G

G

G

G

G

G

G

?�

OO

.

Furthermore,

|ψ − id |s ≤ |v|s+σ
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and, provided 2σ−1|v|s+2σ ≤ 1,

|ψ′ − id | ≤ 2σ−1|v|s+2σ .

Proof. Let Φ : R
n
s+2σ → R

n
s+3σ be a continuous lift of id +v and k ∈ Mn(Z), k(l) :=

Φ(x+ l) − Φ(x).

(1) Injectivity of Φ : R
n
s+σ → R

n
s+2σ. Suppose that x, x̂ ∈ R

n
s+σ and Φ(x) = Φ(x̂).

By the mean value theorem,

|x− x̂| = |v(px̂) − v(px)| ≤ |v′|s+σ|x− x̂|,
and, by Cauchy’s inequality,

|x− x̂| ≤ |v|s+2σ

σ
|x− x̂| < |x̂− x|,

hence x = x̂.
(2) Surjectivity of Φ: R

n
s ⊂ Φ(Rn

s+σ). For any given y ∈ R
n
s , the contraction

f : R
n
s+σ → R

n
s+σ, x 7→ y − v(x)

has a unique fixed point, which is a pre-image of y by Φ.
(3) Injectivity of ϕ : T

n
s+σ → T

n
s+2σ. Suppose that px, px̂ ∈ R

n
s+σ and ϕ(px) =

ϕ(px̂), i.e. Φ(x) = Φ(x̂)+κ for some κ ∈ Z
n. That k be in GL(n,Z), follows from

the invertibility of Φ. Hence, Φ
(

x− k−1(κ)
)

= Φ(x̂), and, due to the injectivity
of Φ, px = px̂.

(4) Surjectivity of ϕ : T
n
s ⊂ ϕ(Tns+σ). This is a trivial consequence of that of Φ.

(5) Estimate on ψ := ϕ−1 : T
n
s → T

n
s+σ. Note that the wanted estimate on ψ is in

the sense of Ψ := Φ−1 : R
n
s → R

n
s+σ. If y ∈ R

n
s ,

Ψ(y) − y = −v(pΨ(y)),

hence |Ψ − id |s ≤ |v|s+σ.
(6) Estimate on ψ′. We have ψ′ = ϕ′−1 ◦ϕ, where ϕ′−1(x) stands for the inverse of

the map ξ 7→ ϕ′(x) · ξ. Hence

ψ′ − id = ϕ′−1 ◦ ϕ− id,

and, under the assumption that 2σ−1|v|s+2σ ≤ 1,

|ψ′ − id |s ≤ |ϕ′−1 − id |s+σ ≤ |v′|s+σ
1 − |v′|s+σ

≤ σ−1|v|s+2σ

1 − σ−1|v|s+2σ
≤ 2σ−1|v|s+2σ .

�

C. Interpolation inequalities

In this section we prove some Hadamard interpolation inequalities, which are used in
sections A.1 and A.2.

Recall that we denote by T
n
C

the infinite annulus C
n/2πZ

n, by T
n
s , s > 0, the bounded

sub-annulus {θ ∈ T
n
C
, |Im θj| ≤ s, j = 1...n} and by D

n
t , t > 0, the polydisc {r ∈

C
n, |rj| ≤ t, j = 1...n}. The supremum norm of a function f ∈ A(Tns × D

n
t ) will be

denoted by |f |s,t.
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Let 0 < s0 ≤ s1 and 0 < t0 ≤ t1 be such that

log
t1
t0

= s1 − s0.

Let also 0 ≤ ρ ≤ 1 and

s = (1 − ρ)s0 + ρs1 and t = t1−ρ0 tρ1.

Proposition 25. If f ∈ A(Tns1 × D
n
t1),

|f |s,t ≤ |f |1−ρs0,t0 |f |
ρ
s1,t1 .

Proof. Let f̃ be the function on T
n
s1 ×D

n
t1 , constant on 2n-tori of equations (Im θ, |r|) =

cst, defined by

f̃(θ, r) = max
µ,ν∈Tn

∣

∣f
(

(±θ1 + µ1, ...,±θn + µn),
(

r1 e
iν1 , ..., rn e

iνn
))∣

∣

(with all possible combinations of signs). Since log |f | is subharmonic and T
2n is compact,

log f̃ too is upper semi-continuous. Besides, log f̃ satisfies the mean inequality, hence is
plurisubharmonic.

By the maximum principle, the restriction of |f | to T
n
s ×D

n
t attains its maximum on the

distinguished boundary of T
n
s × D

n
t . Due to the symmetry of f̃ :

|f |s,t = f̃(isǫ, tǫ), ǫ = (1, ..., 1).

Now, the function

ϕ(z) := f̃(zǫ, e−(iz+s)tǫ)

is well defined on Ts1, for it is constant with respect to Re z and, due to the relations

imposed on the norm indices, if |Im z| ≤ s1 then |e−(iz+s)t| ≤ es1−st = t1.

The estimate

logϕ(z) ≤ s1 − Im z

s1 − s0
ϕ(s0i) +

Im z − s0
s1 − s0

ϕ(s1i)

trivially holds if Im z = s0 or s1, for, as noted above for j = 1, esj−st = tj , j = 0, 1.
But note that the left and right hand sides respectively are suharmonic and harmonic.
Hence the estimate holds whenever s0 ≤ Im z ≤ s1, whence the claim for z = is. �

Recall that we have let Tn
s := T

n
s × D

n
s , s > 0, and, for a function f ∈ A(Tn

s ), let
|f |s = |f |s,s denote its supremum norm on Tn

s . As in the rest of the paper, we now
restrict the discussion to widths of analyticity ≤ 1.

Corollary 26. If σ1 = − log
(

1 − σ0

s

)

and f ∈ A(Tn
s+σ1

),

|f |2s ≤ |f |s−σ0
|f |s+σ1

.

In section A.1, we use the equivalent fact that, if σ̃ = σ+ log
(

1 + σ
s

)

and f ∈ A(Tn
s+σ̃),

|f |2s+σ ≤ |f |s|f |s+σ̃.

Proof. In proposition 25, consider the following particular case :
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• ρ = 1/2. Hence

s =
s0 + s1

2
and t =

√
t0t1.

• s = t. Hence in particular t0 = s es0−s and t1 = s es1−s.

Then

|f |2s = |f |2s,s ≤ |f |s0,t0 |f |s1,t1 .

We want to determine max(s0, t0) and max(s1, t1). Let σ1 := s − s0 = s1 − s. Then
t0 = s e−σ1 and t1 = s eσ1 . The expression s+ σ − seσ has the sign of σ (in the relevant
region 0 ≤ s + σ ≤ 1, 0 ≤ s ≤ 1); by evaluating it at σ = ±σ1, we see that s0 ≤ t0 and
s1 ≥ t1.

Therefore, since the norm | · |s,t is non decreasing with respect to both s and t,

|f |2s ≤ |f |t0,t0 |f |s1,s1 = |f |t0 |f |s1
(thus giving up estimates uniform with respect to small values of s). By further setting
σ0 = s−t0 = s (1 − e−σ1), we get the wanted estimate, and the asserted relation between
σ0 and σ1 is readily verified. �

D. Weaker arithmetic conditions

In this section, we look more carefully to the arithmetic conditions needed for the induc-
tion to converge, in the proof of the inverse function theorem 17 applied to the operator
φ of section 3.

A function ∆ : N∗ → [1,+∞[ being given, define D∆ as the subset of vectors α ∈ R
n

such that

|k · α| ≥ (|k| + n− 1)n−1

∆(|k|) (∀k ∈ Z
n \ {0}).

(The function ∆ is just some other normalization of what is an approximation function
in [40] or a zone function in [15].) For D∆ to be non empty, trivially we need lim+∞ ∆ =
+∞.

Proposition 27. The conclusions of theorems 7 and 2 hold if the Diophantine condition
is replaced by the condition that there exist c > 0 and ς ∈]0, 1[ such that

∑

ℓ≥1

∆(ℓ)e−ℓ/j
2 ≤ exp

(

c 2ςj
)

as j → +∞.

Example 28 The Diophantine set Dγ,τ corresponds to a polynomially growing function

∆, and to a polynomially (at most) growing function
∑

ℓ≥1 ∆(ℓ)e−ℓ 2−j

. A fortiori,
∑

ℓ≥1 ∆(ℓ)e−ℓ/j
2

is less than polynomially growing.

Proof of the proposition. Call L the discrete Laplace transform of ∆:

L(σ) =
∑

ℓ≥1

∆(ℓ)e−ℓσ,
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and assume it is finite for all σ > 0. Patterning the proof of lemma 3, we get the following
generalization.

Lemma 29. Let g ∈ A(Tns+σ) having 0-average. There is a unique function f ∈ A(Tns )
of zero average such that Lαf = g. This function satisfies

|f |s ≤ C L(σ) |g|s+σ , C =
2ne

(n− 1)!
.

(Again, see [40] for improved estimates. But such an improvement is not the crux of our
purpose here.)

Taking up the proof of the inverse function theorem of appendix A with our new estimates
(see in particular equation (2)), we see that the Newton algorithm converges provided

∑

j≥0

2−j logL(σj) <∞,

for some choice of the converging series
∑

σj. Choosing
∑

σj =
∑

j−2, we see that it is
enough that logL(σj) ≤ c 2ςj for some c > 0 and ς ∈]0, 1[, whence the given criterion. �

E. Quasi-periodic time-dependent perturbations

As a variation and a second use of the inverse function theorem 17, we briefly treat
of Hamiltonians which are quasi-periodically time-dependent. Such Hamiltonians are
commonplace in celestial mechanics, e.g. in restricted many-body problems (for a def-
inition of these problems, see [6, Section 2.5]), where the primary bodies have a given
quasi-periodic motion, which influences without being influced by, the zero-mass.

Suppose n = n̂+ ň with n̂, ň > 0. We split variables accordingly: α = (α̂, α̌), θ = (θ̂, θ̌),
etc. Variables with a caronˇare related to the time of the perturbation. Let

H̄ = {H ∈ H, ∂řH ≡ α̌}.

Let K̄ = H̄ ∩ K. For Hamiltonians in H̄, the frequency ˙̌θ ≡ α̌ is fixed. Let also Ḡ be the
subset of G consisting of symplectomorphisms G = (ϕ, ρ) ∈ G such that ϕ is of the form
ϕ(θ) = (ϕ̂(θ), θ̌), i.e. ϕ̌(θ) = θ̌. If H ∈ H̄ and if G ∈ Ḡ is close enough to the identity
for H ◦G to be well defined over T

n
s for some s > 0, then H ◦G ∈ H̄s. So, by restriction

the operator φ (see section 2) defines a map

φ̄ : K̄s+σ × Ḡσs+σ × R
n̂ → H̄s, (K,G, β̂) 7→ K ◦G+ β̂ · r̂.

Corollary 30 (Twisted conjugacy for quasi-periodic time-dependent perturbations).
The operator

φ̄ : K̄s+σ × Ḡσs+σ × R
n̂ → H̄s

is a local diffeomorphism.

Proof. We pattern the proof of theorem 2, and additionaly impose that δH ∈ THH̄. One
only needs to check that the solution δx of equation (1) lies in the tangent space of the
source space of φ. Indeed, we have
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— δβ̌ = 0 because ˇ̄H1 = 0 and ∂θ̂ϕ̂ = 0.

— ˇ̇ϕ = 0 because ˇ̇H1 = 0 (since ∂řH(θ, 0) ≡ α̌).

— ∂řK̇ = 0 because Ḣ does not either. �

We can now state the following analogue of Kolmogorov’s theorem. It does not follow
from Kolmogorov’s theorem directly because the unperturbed Hamiltonian is degenerate
in the direction of the action ř. What saves the result is that the perturbation is picked
in the particular class H̄.

Theorem 31. Let α ∈ Dγ,τ and Ko ∈ K̄ such that the hessian
∫

Tn
∂2Ko

∂r̂2
(θ, 0) dθ is non

degenerate. For every H ∈ H̄ close to Ko, there exist a unique (K,G,R) ∈ K̄ × Ḡ × R
n̂

such that
H(θ̂, θ̌, r̂ + R̂, ř) = K ◦G(θ, r)

in a neighborhood of Tn
0 which is locally uniform with respect to H; in particular, H

possesses an α-quaspieriodic invariant torus.

The proof consists in patterning the proof of theorem 7, and using corollary 30 instead
of theorem 2.

Let us now focus on weakly non-degenerate Hamiltonians. The following result is the
analogue of theorem 10.

Corollary 32 (Hypothetical conjugacy for quasi-periodic time-dependent perturba-
tions). For every Ko ∈ K̄αo

s+σ with αo ∈ Dγ,τ , there is a germ of diffeomorphism

Θ : H̄s+σ → K̄s × Ḡs, H 7→ (KH , GH), KH = cH + αH · r +O(r2),

at Ko 7→ (Ko, id) with αH = (α̂H , α̌
o), such that for every H with αH ∈ Dγ,τ ,

H = KH ◦GH
and KH and GH are unique.

This corollary follows from corollary 30, but not directly from theorem 10, because in
theorem 10 there is no uniqueness and it is not obvious that α̌ = α̌o.

The application of corollary 32 to various cases is left to the reader. It often relies on
the remark that if α̌o ∈ Dγ̌,τ ⊂ R

ň for some
checkγ, τ > 0, then {α ∈ Dγ,τ , α̌ = α̌o} has positive Lebesgue measure for some γ > 0.

F. Comments

Section 1. The proof of invariant tori theorems presented here differs from others chiefly
for the following reasons:

— The emphasis on twisted conjugacy, which allows to separate the inversion problems
from the use of the non-degeneracy hypotheses (see the introduction).

— Classical perturbation series (or some modification of these) have been directly shown
to converge in some cases (see [49] for the convergence of Schröder series in the Siegel
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problem; see [17], or [13], for Lindstedt series of Hamiltonians). These direct proofs
of convergence are involved because, as J. Moser noticed in [32, p. 149], the series
do not converge absolutely, and thus the proof of conditional convergence must take
into account compensations or the precise accumulation of small denominators through
a subtle combinatorial analysis. On the other hand, as Kolmogorov discovered, the
perturbation series yielded by the Newton algorithm are absolutely convergent, provided
that one adequately decreases the width of the analytic extension at each step of the
induction. The magics is that compensations are taken into account without any further
care, yet without explaining “the whole truth”.

— We encapsulate the Newton algorithm in an abstract inverse function theorem à
la Nash-Moser. The idea for KAM theory goes back to [53, 54]; see also [51]. The
algorithm indeed converges without any specific hypothesis on the internal structure
of the variables, as in Nash’s construction of a solution to the isometric embedding
of Riemannian manifolds ([29, 24]). At the expense of some optimality, ignoring this
structure allows for a simple control of the bounds and for solving a whole class of
analogous problems with the same toolbox (quasi-periodic time dependent perturbations
as in appendix E, lower dimensional tori, codimension-one tori, Rüssmann’s translated
curve theorem, Siegel problem, as well as a number of problems in singularity theory,
etc.).

— The analytic (or Gevrey) category is simpler, in Nash-Moser theory, than Hölder or
Sobolev categories because the Newton algorithm can be carried out without intercalat-
ing smoothing operators (cf. [44, 7]).

— Hadamard interpolation inequalities are optimal and simple for analytic norms be-
cause, again, they do not depend on regularizing operators, as it is shown in appendix C
(cf. [23, Theorem A.5]).

— The use of auxiliary norms (| · |G,s in lemmas 3 and 5, | · |x,s in appendix A) prevents
from artificially loosing, due to compositions, a fixed width of analyticity at each step of
the Newton algorithm —the domains of analyticity being deformed rather than shrunk.
As a pitfall, the argument of [24, Sections 5 and 6] to deduce an inverse function theorem
in the smooth category abstractly from the theorem in the analytic category, does not
apply directly here.

Section 3. Lemma 3. The estimate is obtained by bounding the terms of Fourier series
one by one. In a more careful estimate, one should take into account the fact that if
|k · α| is small, then k′ · α is not so small for neighboring k′’s. This allows to find the
optimal exponent of σ, making it independent of the dimension; see [30, 40].

Lemmas 4 and 5. The small denominators and the composition operators have the same
effet, in the estimates, of reducing the width of analyticity.

Section 6. Definition 12. This property can be expressed in terms of the rank of
the matrix of partial derivatives of α at all orders (see [47] for instance). Outside the
neglectible set where one needs to take into account some larger order derivatives, it
is equivalent to being essentially non planar in the terminology of [39], through the



24 JACQUES FÉJOZ

following remark: if α is weakly non degenerate, in the neighborhood of every t ∈ B
T , α

passes through points of R
n which do not lie in any proper vector subspace, so there is

a curve drawn on α(BT ) which is essentially non planar, hence α itself is essentially non
planar.

Theorem 13. For the dramatic history of the five proofs found independently in the
80’s and 90’s, see [46].

Appendix A. Theorem 17. — The two competing small parameters η and σ being fixed,
our choice of the sequence (σk) maximizes ǫ for the Newton algorithm. It does not
modify the sequence (xk) but only the information we retain from (xk).

— In the expression of ǫ, the square exponent of C is inherent in the quadratic con-
vergence of Newton’s algorithm. From this follows the dependence, in KAM theory, of
the size ǫ of the allowed perturbation with respect to the small Diophantine constant γ:
ǫ = O(γ2).

— The method of Jacobowitz [24] (see Moser [30] also) in order to deduce an inverse
function theorem in the smooth category from its analogue in the analytic category does
not work directly, here. The idea would be to use Jackson’s theorem in approximation
theory to characterize the Hölder spaces by their approximation properties in terms of
analytic functions and, then, to find a smooth preimage x by φ of a smooth function y
as the limit of analytic preimages xj of analytic approximations yj of y. However, in
our inversion function theorem there is an interplay between the initial and modified
norms of Fs, and the analytic approximations yj do not belong to the initial domain of
definition of φ. Such a difficulty is inherent in the presence of composition operators,
and did not occur in the problem of isometric embeddings. It is probably simpler to
intercalate smoothing operators within the Newton algorithm, as Sergeraert [44], or
later, Hamilton [21].

Appendix A.1. One can prove that ψ is C1 without additional assumptions, just by
patterning [44, p. 626]). Yet the proof simplifies and the estimates improve under the
combined two additional assumptions. In particular, the existence of a right inverse of
φ′(x) makes the inverse ψ unique and thus allows to ignore the way ψ was built.

Appendix B. See similar statements in [37, 38].

Appendix C. In this paragraph, the obtained inequalities are analogues for complex ex-
tensions of tori in their cotangent bundle, of the standard Hadamard convexity inequal-
ities for infinite strips in C. They are optimal and show that analytic norms are not
quite convex with respect to the width of the complex extensions, due to the geometry
of the phase space. See [33, Chap. 8] for more general but non-optimal inequalities.

Appendix D. Proposition 27. There are reasons to believe that the so-obtained arith-
metic condition is not optimal. Indeed, solving the exact cohomological equation at
each step is inefficient because the small denominators appearing with intermediate-
order harmonics deteriorate the estimates, whereas some of these harmonics could have
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a smaller amplitude than the error terms and thus would better not be taken care of.
Even stronger, Rüssmann and Pöschel noticed that at each step it is worth neglecting
part of the low-order harmonics themselves (to some carefully chosen extent). Then
the expense, a worse error term, turns out to be cheaper than that the gain —namely,
the right hand side of the cohomological equation now has a smaller size over a larger
complex extension. This allows, with a slowly converging sequence of approximations,
to show the persistence of invariant tori under some arithmetic condition which, in one
dimension, is equivalent to the Brjuno condition; see [38, 43].

Thank you to A. Albouy, V. Arnold, P. Bernard, A. Chenciner, L. Chierchia, A.
Knauf [25], R. Krikorian, I. Kupka, D. Sauzin, M. Sevryuk and J.-C. Yoccoz, for il-
luminating comments.
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[7] J.-B. Bost. Tores invariants des systèmes dynamiques hamiltoniens (d’après Kol-
mogorov, Arnold, Moser, Rüssmann, Zehnder, Herman, Pöschel, . . .). Astérisque,
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[23] L. Hörmander. The boundary problems of physical geodesy. Arch. Rational Mech.

Anal., 62(1):1–52, 1976.
[24] H. Jacobowitz. Implicit function theorems and isometric embeddings. Ann. of Math.

(2), 95:191–225, 1972.
[25] A. Knauf. Klassische mechanik. To appear, 500 pages, 2010.
[26] A. N. Kolmogorov. On the conservation of conditionally periodic motions for a

small change in Hamilton’s function. Dokl. Akad. Nauk SSSR (N.S.), 98:527–530,
1954.

[27] V. F. Lazutkin. Existence of a continuum of closed invariant curves for a convex
billiard. Uspehi Mat. Nauk, 27(3(165)):201–202, 1972.

[28] V. F. Lazutkin. Existence of caustics for the billiard problem in a convex domain.
Izv. Akad. Nauk SSSR Ser. Mat., 37:186–216, 1973.

[29] J. Moser. A new technique for the construction of solutions of nonlinear differential
equations. Proc. Nat. Acad. Sci. U.S.A., 47:1824–1831, 1961.

[30] J. Moser. A rapidly convergent iteration method and non-linear differential equa-
tions. II. Ann. Scuola Norm. Sup. Pisa (3), 20:499–535, 1966.

[31] J. Moser. A rapidly convergent iteration method and non-linear partial differential
equations. I. Ann. Scuola Norm. Sup. Pisa (3), 20:265–315, 1966.

[32] J. Moser. Convergent series expansions for quasi-periodic motions. Math. Ann.,
169:136–176, 1967.



A SIMPLE PROOF OF INVARIANT TORI THEOREMS 27

[33] R. Narasimhan. Several complex variables. Chicago Lectures in Mathematics. Uni-
versity of Chicago Press, Chicago, IL, 1995. Reprint of the 1971 original.
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