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Microscope, chancelant — Ma démission ! Mais, Prince
permettez après tout, la lune, ce n’est pas ma partie, ...
Moi je m’occupe que de mécanique – vous avez un obser-
vatoire ... ça regarde l’observatoire ... C’est lui qui est
chargé des relations avec le ciel.
Cosinus — Allons, mon enfant, ne demandez pas
l’impossible !
Prince Caprice — L’impossible ! Vous osez dire que c’est
impossible ? Mais je m’y oppose. Vous êtes tous des ânes !

Le Voyage dans la Lune, J. Offenbach (1875)
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5. The Poincaré coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



6

Résumé en français

La première moitié de ce mémoire est consacrée à la théorie KAM et au théorème
d’Arnold sur la stabilité des systèmes planétaires. Ce travail a fait l’objet d’un article
en préparation et d’une publication :(1)(2)

– “Twisted conjugacies and invariant tori theorems” [40]. Je redémontre une forme
normale de champs de vecteurs due à Moser [68], pour les perturbations de champs de
vecteurs admettant un tore invariant quasi-périodique diophantien. Cette forme nor-
male, que j’appelle une conjugaison tordue est une porte d’entrée pour démontrer des
théorèmes de tores invariants dus à Kolmogorov, Arnold, Rüssmann et Herman, ainsi
que d’autres théorèmes, par exemple pour des champs de vecteurs dissipatifs. J’introduis
une notion de conjugaison hypothétique, comme un intermédiaire commun aux théorèmes
de tores invariants avec une condition de non-dégénérescence faible, améliore certaines
estimations sur la dépendance fonctionnelle de la forme normale, et donne quelques
applications nouvelles à la mécanique céleste.

– “Démonstration du théorème d’Arnold sur la stabilité du système planétaire (d’après
Herman)” [39]. Cet article donne une démonstration du théorème d’Arnold pour
N planètes dans l’espace R3. La démonstration de [40] est une clarification et une
amélioration de la partie abstraite de [39]. Arnold avait publié le résultat remarquable
suivant : dans le problème planétaire newtonien à N planètes, si les masses des planètes
sont assez petites, il existe dans l’espace des phases un sous-ensemble invariant de
mesure de Lebesgue strictement positive, formé de tores invariants quasipériodiques de
dimension 3N − 1 [6]. La suggestion d’Arnold pour le démontrer en toute généralité
était de fixer la direction du moment cinétique, pour se débarrasser de la dégénérescence
due à l’invariance par rotation, puis d’appliquer sa version dégénérée du théorème de
Kolmogorov pour trouver des tores lagrangiens invariants au voisinage de la singularité
séculaire elliptique (mouvements képlériens elliptiques circulaires horizontaux). Cette
stratégie de réduction partielle ne marche pas à cause d’une résonance mystérieuse,
découverte par Herman, qui généralise à N planètes une résonance déjà connue de
Clairaut dans le problème de la lune. Cette résonance n’avait pas été remarquée dans le
cas de 2 planètes, où la réduction des noeuds de Jacobi permet de réduire complètement
le problème par la symétrie de rotation, en coordonnées de Delaunay (je rappelle en
appendice la définition de ces coordonnées, et propose une nouvelle démonstration de
leur caractère symplectique). Ici, je démontre par récurrence sur le nombre de planètes,
en suivant les idées d’Herman, que l’image locale de l’application fréquence (vue comme
fonction des demi grands axes des planètes) est contenue dans un plan vectoriel de codi-
mension deux, mais dans aucun plan vectoriel de codimension supérieure. Un argument
de la théorie des intersections lagrangiennes permet alors d’appliquer un théorème de
tores invariants qui ne requiert qu’une faible condition de non-dégénérescence.

(1)This French summary is the translation of the last part of the preface below.
(2)http://people.math.jussieu.fr/~fejoz/articles.html
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La seconde moitié de ce mémoire traite d’orbites périodiques et relativement périodiques
(i.e. périodiques en repère tournant), dans le problème global des N corps. Elle aussi
est basée sur deux articles.

– “The flow of the equal-mass spatial 3-body problem in the neighborhood of the equi-
lateral relative equilibrium” (avec A. Chenciner) [24]. Nous démontrons qu’exactement
deux familles de solutions relativement périodiques bifurquent de la solution d’équilibre
relatif de Lagrange : la famille homographique et la famille P12. De plus, en restriction à
la variété centrale de dimension 4 de l’équilibre relatif de Lagrange, la dynamique locale
est une application twist d’un anneau de section, bordé par les deux familles. Un autre
article montre que la famille P12 se termine, de l’autre côté, à la solution en Huit de
Chenciner-Montgomery [27]. Entre ces deux extrémités, on sait que la famille P12 existe
comme famille des minima de l’action lagrangienne parmi les lacets possédant sa classe
de symétrie. Une telle famille pourrait a priori être non unique, ou discontinue, mais les
expériences numériques ne laissent guère de doute (voir la figure dans la préface).

– “Unchained polygons and the N -body problem” (avec A. Chenciner) [26]. L’équilibre
relatif de Lagrange apparâıt dans ce qui précède comme le centre organisateur du Huit.
Nous montrons que le même phénomène se produit avec l’équilibre relatif du carré à
quatre masses égales, qui apparâıt comme centre organisateur de la famille du Hip-Hop.
Plus généralement, beaucoup de classes de solutions récemment découvertes appartien-
nent aux familles de Lyapunov issues d’équilibres relatifs symétriques. Dans un repère
tournant où elles deviennent périodiques, ces familles acquièrent des symétries remar-
quables. Nous étudions la possibilité de les prolonger globalement comme minima de
l’action lagrangienne en un repère tournant, au sein de leur classe de symétrie. Une
étape préliminaire est de déterminer les intervalles de la fréquence de rotation du repère
sur lesquels un équilibre relatif est l’unique minimum absolu de l’action. Nous nous
focalisons ensuite sur notre exemple principal, l’équilibre relatif du polygone régulier à
N sommets. L’existence locale de familles de Lyapunov verticales repose sur le fait que
la restriction de la partie quadratique de l’énergie aux directions centrales est définie
positive. Nous calculons les groupes de symétrie G r

s

(N, k, η) des familles de Lyapunov

verticales, et les utilisons pour prolonger les familles globalement. Les exemples paradig-
matiques sont les familles de Huits pour un nombre impair de corps et les familles de
Hip-Hops pour un nombre pair. Ce sont précisément les éléments de ces deux types de
familles qui peuvent être des minima globaux. Dans les autres cas, des obstructions ap-
paraissent, qui sont dues à des isomorphismes entre les groupes de symétrie de différentes
famille ; c’est le cas des châınes chorégraphiques, dont les éléments sont seulement des
minima locaux (sauf pour N = 3). Une autre particularité intéressante de ces châınes
est le rôle décisif joué par la parité, en particulier à travers la valeur prise par le mo-
ment cinétique. Pour les familles de Lyapunov bifurquant d’un polygone à au plus 6
sommets, nous vérifions en outre que la torsion locale est non dégénérée, ce qui justifie
de prendre la rotation du repère comme paramètre. Cet article montre la fécondité des
considérations de symétrie, comme technique de démonstration mais aussi comme guide
heuristique dans la recherche de solutions remarquables.
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Le problème des n corps, depuis longtemps à l’origine de nombreuses théories
mathématiques, garde entier, de part la variété des techniques nécessaires à son
étude, son pouvoir de fascination.
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A Brief Astronomical Preface

Newton’s discovery of universal attraction dramatically modified our understand-
ing of the motion of celestial bodies. This law masterly reconciles two seemingly con-
tradictory physical principles: the principle of inertia, put forward by Galileo and
Descartes in terrestrial mechanics, and the laws of Kepler, governing the elliptical
motion of planets around the Sun.

In an additional tour de force, Newton also estimated the first order effect on Mars of
the attraction of other planets. Indeed, he soon realized that in the long term the mutual
attraction of planets and other celestial bodies, could have a considerable accumulated
effect, destroying the Keplerian regularity it had first explained:

For while comets move in very eccentric orbs in all manner of positions,
blind fate could never make all the planets move one and the same way
in orbs concentric, some inconsiderable irregularities excepted which may
have arisen from the mutual actions of comets and planets on one another,
and which will be apt to increase, till this system wants a reformation.
[76, Book III, Query 31]

The unforeseen consequence of Newton’s discovery was to question the belief that the
solar system be stable: it was no longer obvious that planets kept moving immutably,
without collisions or ejections. And symmetrically, the question remained for a long
time, whether universal attraction could explain the irregularities of motion observed
in the past. A two-century long competition started between astronomers, who made
more and more precise observations, and geometers, who had the status and destiny of
Newton’s law in their hands. Two main mysteries kept the mathematical suspense at
its highest: the motion of the moon’s perigee, and the shift of Jupiter’s and Saturn’s
longitudes, revealed by the comparison between the observations of that time and those
which Ptolemy had recorded almost two thousand years earlier. The first computations
of Newton, Euler and others were giving wrong results [22, 35]. Infinitesimal calculus
was in its infancy and geometers, at first, lacked the necessary mathematical apparatus
to understand the long-term influence of mutual attractions.

Regarding the moon’s perigee, Clairaut and d’Alembert understood that the most
glaring discrepancy with observations could be explained by higher order terms [22, 35].
But the theory of perturbations was given its major impulse at the end of the xviii

century, when Lagrange transformed mechanics and dynamics into a branch of math-
ematical analysis, laying the foundations of differential and symplectic geometry (see
[100], and footnote (7) in the appendix of the present memoir). In his study of Jupiter’s
and Saturn’s motions, Laplace found approximate evolution equations, describing the
average variations of elliptical elements of the planets. These variations are called secu-
lar because they can be detected only over a long time interval, typically one century.
Laplace computed the secular dynamics at the first order with respect to the masses,
eccentricities and inclinations of the planets. His analysis of the spectrum of the lin-
earized vector field, at a time when this chapter of linear algebra did not exist, led him



10

and Lagrange to a resounding theorem on the stability of the solar system, which
entails that the observed variations in the motion of Jupiter and Saturn come from res-
onant terms of large amplitude and long period, but with zero average ([51, p. 164];
in this memoir, see theorem 11). We are back to a regular –namely, quasi-periodic(3)–
model, however far it is conceptually from Ptolemy’s ancient epicycle theory. Yet it
is a mistake, which Laplace made, to infer the topological stability of the planetary
system, since the theorem deals only with a truncated problem.

At this point, I would like to take the liberty of mentioning that around that time Euler

and Lagrange found two explicit, simple solutions of the three-body problem, called
relative equilibria because the bodies rigidly rotate around the center of attraction at
constant speed [49]. These solutions, where each body moves as if it were attracted
by a unique fictitious body, belong to a larger class of motions, called homographic,
parametrized by the common eccentricity of bodies. Recently, many new periodic orbits
have been found, which share some of the discrete symmetries of Euler’s and La-

grange’s orbits in the equal-mass problem [98], and to which the second half of this
memoir is devoted. However, no other explicit solution to the three-body problem has
been found ever since!

Euler and

Relative equilibria of

Lagrange

The theory of the moon did not reach a satisfactory stage before the work of Adams

and Delaunay in the xix century. Delaunay noticed un résultat singulier, already
visible in Clairaut’s computation: according to the first order secular system, the
perigee and the node describe uniform rotations, in opposite directions, with the same
frequency [37]. This was to play a role later in the proof of Arnold’s theorem, although
higher order terms of large amplitude destroy the resonance. Delaunay carried out the
Herculean computation of the secular dynamics up to the eighth order of averaging with
respect to the semi major axis ratio. At the same time, Le Verrier pursued Laplace’s
computations, but questioned the astronomical relevance of his stability theorem.

After the failure of formal methods of the xix century, due to the irreducible presence
of small denominators in perturbation series, Poincaré has drawn the attention of
mathematicians to qualitative questions, concerning the geometry of the phase portrait

(3)Some authors, e.g. [95], call such motions conditionally periodic, restricting the use of the adjective
quasi-periodic to the non-resonant case.
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rather than the analytic expression of particular solutions. In in his epoch-making
treatise Les méthodes nouvelles de la mécanique céleste, he wrote:

Les séries [de Gyldén et de Lindstedt] ne sont pas susceptibles de don-
ner une approximation indéfinie. [...] D’ailleurs, certaines conséquences
théoriques que l’on pourrait être tenté de tirer de la forme de ces séries
ne sont pas légitimes à cause de leur divergence. C’est ainsi qu’elles ne
peuvent servir à résoudre la question de la stabilité du système solaire.
[81, Introduction]

(The series [of Gyldén and Lindstedt] are not likely to give arbi-
trary approximations. [...] Furthermore, certain theoretical consequences
which one might be tempted to infer from the properties of these series,
are not legitimate because of their divergence. Thus they cannot help to
solve the question of the stability of the solar system.)

Poincaré gave arguments against the existence of first integrals other than the energy,
in Hamiltonian systems in general. In the case of the three-body problem: “Le problème
[...] n’admet pas d’autre intégrale uniforme que celles des forces vives et des aires” (the
problem has no uniform integral other than the energy and the angular momentum)
[81, Chap. v, § 85] (see [104, p. 241] for a criticism of the shortcomings of this result).
Poincaré also uncovered the splitting of separatrices of a hyperbolic equilibrium point
and the resulting entanglement (the interesting story of Poincaré’s mistake in the first
version of his memoir for king Oscar, which later led him to this discovery, is told in [11]):

On sera frappé de la complexité de cette figure, que je ne cherche même
pas à tracer. Rien n’est plus propre à nous donner une idée de la compli-
cation du problème des trois corps et en général de tous les problèmes de
Dynamique où il n’y a pas d’intégrale uniforme et où les séries de Bohlin
sont divergentes.

[...] Cette remarque est de nature à nous faire comprendre [...] combien
les transcendantes qu’il faudrait imaginer pour résoudre [le problème des
trois corps] diffèrent de toutes celles que nous connaissons. [81, § 397–398]
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(One is struck by the complexity of this figure, which I will not even try
to draw. Nothing is more appropriate to give an idea of the complexity
of the three-body problem, and, in general, of those dynamical systems
which do not have uniform integrals and where Bohlin series diverge.
[...] This remark should make us understand to what extent the transcen-
dants which we would have to imagine, to solve [the three-body problem],
depart from all those we know.)

Some facts like the anomalous perihelion advance of the planet Mercury could only be
explained in 1915 by Einstein’s theory of general relativity [55, 78]. Classical dynamics
thus proved to be a limit case of, already inextricably complicated but simpler than,
Einstein’s infinite dimensional field equations.

On the positive side, Poincaré gave a new impulse to the perturbative study of periodic
orbits. Adding to the work of Hill and cleverly exploiting the symmetries of the three-
body problem, he found several new families, demanding a classification in terms of
genre, espèce and sorte (genre, species and kind) [81, Chap. iii]. That periodic orbits
are dense among bounded motions, as he conjectured, is still an open and highly plausible
conjecture (see [85] for C1-generic Hamiltonian systems and [44] for the restricted three-
body problem with small mass ratio for the primaries). He famously commented:

On peut alors avec avantage prendre [les] solutions périodiques comme
première approximation, comme orbite intermédiaire [...]. Ce qui nous
rend ces solutions périodiques si précieuses, c’est qu’elles sont, pour ainsi
dire, la seule brèche par où nous puissions essayer de pénétrer dans une
place jusqu’ici réputée inabordable. [81, § 36]
(One can then advantageously take periodic solutions as first approxima-
tion, as intermediate orbit. [...] What makes periodic orbits so valuable
is that they are the only breach, so to speak, through which we can try
to enter a place up to now deemed unapproachable.)

In the xx century, followers like Birkhoff, Moser and Meyer have developed a vari-
ety of techniques to establish the existence, and study the stability, of periodic solutions
in the many-body problem, and more generally in Hamiltonian systems: analytic contin-
uation (in the presence of symmetries, first integrals and other degeneracies), averaging,
normal forms, special fixed point theorems, symplectic topology. Broucke, Bruno,
Hénon, Simó and others have quite systematically explored families of periodic orbits,
in particular in the Hill (or lunar) problem. See [69, 103, 91, 70, 87, 60, 98, 42, 46] and
references therein.

Among the many kinds of perturbations series, the Lindstedt series are the most inter-
esting from the mathematical point of view; up to the correspondence between Cartesian
and polar coordinates, nowadays they are called Birkhoff series. Astronomers were
not fond of them because, while celestial bodies certainly have a prescribed position
and velocity, the Lindstedt normal forms (of infinite order) are defined on a set of
empty interior. This set is foliated in invariant embedded tori, in restriction to which
the flow is quasi-periodic. The series are generally divergent ([81, Chap. xii]; see also
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[79]), although Poincaré could not preclude that these series, the frequencies being fixed,
sometimes converge, non uniformly:

Nous avons reconnu que les équations canoniques [...] peuvent être satis-
faites formellement par des séries de la forme

{
xi = x0

i + µx1
i + µ2x2

i + ...,
yi = y0

i + µy1
i + µ2y2

i + ...,

où [...] wi = nit + ̟i (i = 1, 2, ..., n), [de quoi] nous avons tiré

xk
i =

∑ B sin(m1w1 + m2w2 + ... + mnwn + h)

m1n0
1 + m2n0

2 + ... + mnn0
n

+ A0.

[Cette] série converge-t-elle absolument et uniformément ? [... À] deux
degrés de liberté, les séries ne pourraient-elles pas, par exemple, con-
verger quand x0

1 et x0
2 ont été choisis de telle sorte que le rapport n1

n2
soit

incommensurable, et que son carré soit au contraire commensurable (ou
quand le rapport n1

n2
est assujetti à une autre condition analogue à celle

que je viens d’énoncer un peu au hasard) ? [81, §§ 146–149]
(We have realized that canonical equations [...] can be satisfied formally
by series of the form

{
xi = x0

i + µx1
i + µ2x2

i + ...,
yi = y0

i + µy1
i + µ2y2

i + ...,

where [...] wi = nit + ̟i (i = 1, 2, ..., n). From this we have inferred

xk
i =

∑ B sin(m1w1 + m2w2 + ... + mnwn + h)

m1n0
1 + m2n0

2 + ... + mnn0
n

+ A0.

Does [this] series converge absolutely and uniformly? [With] two degrees
of freedom, couldn’t it happen that the series converge when x0

1 and x0
2

have been so chosen that the ratio n1
n2

be rational and its square on the

contrary be irrational (or so that the ratio n1
n2

satisfy another condition,

analogous to the one I have just stated a bit randomly) ?)

Considering the unreasonable consequences of uniform convergence, in terms of existence
of periodic orbits at resonances, he speculated:

Les raisonnements de ce Chapitre ne permettent pas d’affirmer que ce
fait ne se présentera pas. Tout ce qu’il m’est permis de dire, c’est qu’il
est fort invraisemblable. [ibid.]
(The arguments in this Chapter do not make it possible to assert that
this fact will not occur. All I can say is that it is most unlikely.)

A stupendous breakthrough came from Siegel and Kolmogorov, who proved that,
respectively for the linearization problem of a one-dimensional complex map and for the
perturbation of an invariant torus of fixed frequency in a Hamiltonian system, pertur-
bation series do converge, albeit non uniformly, assuming in particular that the fixed



14

frequency is Diophantine [48, 97]:

|m1n
0
1 + · · · + mnn0

n| ≥
γ

(|n1| + · · · + |nn|)τ
(γ, τ > 0).

Siegel’s proof overcomes the effect of small denominators by cleverly controlling how
they accumulate. Kolmogorov uses Newton’s algorithm in a functional space of
infinite dimension and finds quasi-periodic invariant tori by a limiting process. The
fast convergence of the algorithm beats the effect of resonances, one of the main ideas
which laid the foundations for the so-called Kolmogorov-Arnold-Moser theory; see
[7, 13, 14, 31, 36, 80, 84, 94, 96] for background and references.

Arnold proved a degenerate version of Kolmogorov’s celebrated theorem, and de-
duced the existence of a set of positive measure of almost planar and almost circular
quasi-periodic solutions when the masses of the planets are small enough [6]. There are
several degeneracies in this problem. The most important one comes from the fact that
all the bounded orbits of the Kepler problem—a problem with two degrees of freedom—
are periodic, which is a very specific feature of the Newtonian potential in 1/r (and
of the elastic potential in r2, and only them, according to a theorem of Bertrand).
Arnold’s proof was complete only for the planar two-planet problem. In the spatial
case, an unforeseen and mysterious resonance is present: the trace of the linearized secu-
lar system is always zero, identically with respect to the semi major axes. As previously
mentioned, this was actually known to Delaunay in the three-body problem. But it
holds in general for the many-planet problem. This was first noticed by Herman who,
in a series of lectures in the 1990’s, sketched a complete and more conceptual proof of
Arnold’s theorem. Two sections of this memoir are devoted to explaining some ideas of
such a proof, as detailed in [39, 40]. Chierchia-Pinzari have just proved in general [33]
that Herman’s resonance disappears when one reduces the problem by the rotational
symmetry, as Robutel had proved in the three-body problem, using a computer.

However, Arnold’s theorem hardly applies to our solar system. There is a first dif-
ficulty with the upper value of the small parameter ε. A similar issue occurs when
semi-classical analysts let the Planck constant tend to zero. Hénon noticed that, with-
out any additional care, the first proofs of Kolmogorov’s theorem show the existence
of invariant tori only for a derisory ε of the order of 10−300 [45]! However, Robutel has
shown numerically that some significant parts of the solar system, in particular of the
system consisting of the Sun, Jupiter and Saturn [52, 88], display a quasi-periodic behav-
ior. Also, Celletti–Chierchia [15, 16] and Locatelli-Giorgilli [54] have proved
quantitative versions of the KAM theorem, which they have applied to the systems
Sun–Jupiter–asteroid Victoria and Sun–Jupiter–Saturn; these applications are assisted
by computer symbolic processors, requiring in the second case the manipulation of series
of ten million terms. Whether bounded motions form a set of positive Lebesgue measure
for all ε—and not only for ε ≪ 1—remains a completely open problem.

Another matter for discontent when applying KAM theory to astronomy, is that the
set of KAM invariant tori in phase space fill a transversely Cantor set, parametrized
by Diophantine frequencies, which is topologically meager. Given the approximation
which is made by substituting the Newtonian planetary system to the real solar system,
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whether the planet’s mean motions are Diophantine or not, is not a question with any
straightforward meaning. Incidentally, Molchanov has speculated on the opposite
hypothesis that these mean motions could be totally periodic [65]. Hence the direct
conclusion of Arnold’s theorem over an infinite time interval, is illusory in astronomy.
Yet KAM theory provides a fundamental conceptual tool in the study of conservative
systems since, as is wildly believed, the conclusion of invariant tori theorems holds
under much weaker hypotheses than current theoretical proofs require. To paraphrase
Poincaré, quasi-periodic orbits too are part of the breach.

A related and more realistic theorem by Nekhoroshev [73], asserts that in the neigh-
borhood of KAM quasi-periodic solutions motions are stable over an exponentially long
time interval with respect to the small parameter. By applying a theorem of this type,
Niederman has shown the stability of a solar system with two planets having small
masses, not quite equal but much closer to realistic values [77]. In order to describe
the slow evolutions more accurately, Neishtadt has developed the theory of adiabatic
invariants [75], and extended related results to non-Hamiltonian perturbations [74].

Over the centuries, geometers have spent an inordinate amount of time and energy prov-
ing stronger and stronger stability theorems for dynamical systems more or less closely
related to the solar system. It was a huge surprise when the numerical computations
of Laskar showed that over the life span of the Sun, or even over a few hundred mil-
lion years, collisions and ejections of inner planets are probable (see [53] for a recent
account). Our solar system is now wildly believed unstable. Works of Sitnikov and
Alekseev [71], Moeckel [62], Simó-Stuchi [99] and Galante-Kaloshin [43], among
others (see [8] for other references), show the complexity of the simplest non-integrable
many-body problem, the restricted three-body problem (restricted meaning that the
third body has zero mass and thus moves under the influence of, but without influencing,
the two primaries). Arnold’s diffusion and the general mechanisms of instability in large
dimension are still to be understood, despite significant progress [7, 12, 30, 38, 58, 59, 64]
(see [8] for more references).

Two discoveries have led to another shift of paradigm. First, came the discovery of
exoplanets in the early 1990’s [92]. This confirmation of an old philosophical speculation
has sustained the interest in extraterrestrial life. Many of these exoplanets have larger
eccentricities, inclinations or masses (not to mention brown dwarfs), or smaller semi
major axes, than planets of our solar system–and there seem to be billions of them in
our galaxy alone. Are such orbital elements consistent with a stable dynamics? This
wide spectrum of dynamical forms of behavior has considerably broadened the realm
of relevant many-body problems in astronomy, and renewed interest in the global un-
derstanding of the many-body problems, far from the so-called planetary regime (with
small eccentricities, inclinations and masses), and possibly with important tidal or more
general dissipating effects (see [18]).

The second discovery is mathematical. Finding periodic geodesics on a Riemannian
manifold as length minimizers within a fixed non-trivial homotopy or homology class
is commonplace. Yet all attempts to apply the same strategy to the three-body prob-
lem had failed because collisions might occur in minimizers, as Poincaré had pointed
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out [82]. Indeed, the Newtonian potential is weak enough for the Lagrangian action to be
finite around collisions. Using variational methods, in 1999 Chenciner-Montgomery

managed to prove the existence of a plane periodic solution to the equal-mass three-
body problem, whose symmetry group is a 12th-order subgroup of the symmetry group
of the Lagrange equilateral triangle. In particular the bodies chase each other along
a closed curve—such solutions have been named choreographies by Simó. This curve
being eight-shaped, the solution has been called the Eight [28, 20]. It had been found
numerically by Moore [66].

Since then, Simó has searched the phase space for such symmetric orbits quite system-
atically, and found a whole wealth of them [98]. Theoretical works, in particular from
S. Terraccini and her students, have also shown the existence of a large number of
symmetric periodic orbits which minimize the Lagrangian action within their symmetry
class [10, 42]. And Marchal, helped by Chenciner, remarkably brought the first gen-
eral answer to the question of collisions: minimizers of the Lagrangian action (among
all fixed-end loops) are collision-free [20, 42, 57]. Marchal’s theorem thus shows a
subtle difference between Cauchy and Dirichlet boundary conditions in the many-body
problem.

At the Saari conference in 1999, Marchal realized that the Eight could be related to
the equilateral triangle relative equilibria, through a Lyapunov family of spatial orbits,
periodic in a rotating frame [27, 24]:

This family has been named P12, after the order of its symmetry group. In fact, such
a connection between relative equilibria and symmetric periodic orbits is a very gen-
eral phenomenon, bringing light to the family tree of all the newly discovered periodic
orbits [23, 26]. The second example is that of the Hip-Hop solution of Chenciner-
Venturelli [29], which is similarly related to the square relative equilibrium.
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Relative equilibria themselves and, in turn, symmetric periodic solutions, have become
intermediate orbits in the neighborhood of which local perturbation theory can be ap-
plied [27].

The first half of the present memoir is devoted to KAM theory and Arnold’s theorem
for several planets in space, as detailed in one preprint and one article:(4)

– “Twisted conjugacies and invariant tori theorems [40]. I reprove a normal form theorem
due to Moser [68], for perturbations of a vector field having a Diophantine quasi-
periodic invariant torus. This normal form, which I call a twisted conjugacy, is a gateway
to invariant tori theorems of Kolmogorov, Arnold, Rüssmann and Herman, as
well as to some other theorems, for example for dissipative vector fields. I introduce
a hypothetical conjugacy, i.e. a conjugacy depending on arithmetical properties of the
perturbed frequency vector, as an intermediate step towards invariant tori theorems with
weak non-degeneracy conditions, I improve some estimates on the functional dependance
of the normal form, and give some new applications to celestial mechanics.

– “Démonstration du théorème d’Arnold sur la stabilité du système planétaire (d’après
Herman)” [39]. Arnold’s theorem is proved for N planets in space. (The proof included
in [40] is a clarification and an improvement of the abstract part of [39].) Arnold

remarkably asserted, in the Newtonian model of the planetary problem with N planets,
the existence of an invariant set of positive Lebesgue measure, foliated in quasi-periodic
invariant tori of dimension 3N − 1 [6]. Arnold’s suggestion for proving the result in
full generality was to fix the direction of the angular momentum vector, in order to
get rid of a degeneracy due to the rotational invariance of the problem, and then to
apply his degenerate version of Kolmogorov’s theorem to find Lagrangian tori in the
neighborhood of the elliptic secular singularity (circular horizontal Keplerian ellipses).
This strategy of partial reduction fails because of a mysterious resonance, discovered
by Herman, which generalizes the resonance found by Clairaut in the first order
lunar problem. This resonance had not been noticed in the context of KAM theory
because in the 2-planet problem, Jacobi’s reduction of the node makes it possible to
carry out the full symplectic reduction by rotations in Delaunay’s coordinates (I recall
the definition of these coordinates in the appendix of this memoir, and give a new
proof of their symplecticity). Here it is proved by induction on the number of planets,
following Herman, that the local image of the frequency map of the planetary system
(as a function of the semi major axes), is contained in a vector plane of codimension
two, and in no vector plane of larger codimension. Using an argument of Lagrangian
intersection theory, this allows us to apply an invariant tori theorem with a weak (or
Rüssmann-) non-degeneracy condition.

The second half of the memoir deals with periodic and relatively periodic orbits in the
global many-body problem. It is based on two publications.

– “The flow of the equal-mass spatial 3-body problem in the neighborhood of the equilat-
eral relative equilibrium” (with A. Chenciner) [24]. It is shown that exactly two families

(4)http://people.math.jussieu.fr/~fejoz/articles.html



18

of relatively periodic orbits bifurcate from the Lagrange equilateral triangle, namely the
homographic and the P12 families. Moreover, in restriction to the 4-dimensional cen-
ter manifold, the local dynamics is proved to be a twist map of an annulus of section,
bounded by the two families. Another paper shows that the P12 family ends at the
Eight [27]. In between, the P12 family is known to exist as a family of minimizers
of the Lagrangian action within its symmetry class for all values of the rotation of the
frame. Such a family could be non-unique, or not continuous, but numerical experiments
indicate that it is not the case (see the pictures above).

– “Unchained polygons and the N -body problem” (with A. Chenciner) [26]. The La-
grange relative equilibrium appears above as the organizing center of the Eight. We
show that the same phenomenon occurs with the equal-mass relative equilibrium of the
square, which appears as the organizing center of the Hip-Hop. More generally, many
recently studied classes of periodic solutions bifurcate from symmetric relative equilib-
ria. In a rotating frame where they become periodic, these families acquire remarkable
symmetries. We study the possibility of continuing these families globally as action min-
imizers in a rotating frame, among loops sharing the same symmetries. In a preliminary
step we estimate the intervals of the frame rotation frequency over which the relative
equilibrium is the sole absolute action minimizer. Then we focus on our main example,
the relative equilibrium of the equal-mass regular N -gon. The proof of the local existence
of the vertical Lyapunov families relies on the fact that the restriction to the correspond-
ing directions of the quadratic part of the energy is positive definite. We compute the
symmetry groups G r

s

(N, k, η) of the vertical Lyapunov families observed in appropriate

rotating frames, and use them for continuing the families globally. Paradigmatic families
are the Eight families for an odd number of bodies and the Hip-Hop families for an even
number. It is precisely for these two kinds of families that global minimization may be
used. In the other cases, obstructions to the method come from isomorphisms between
the symmetries of different families; this is the case for the so-called chain choreogra-
phies, where only a local minimization property is true (except for N = 3). Another
interesting feature of these chains is the deciding role played by the parity, in particular
through the value of the angular momentum. For the Lyapunov families bifurcating
from the regular N -gon with N ≤ 6, we check in an appendix that locally the torsion
is not zero, which justifies taking the rotation of the frame as a parameter. This article
illustrates how fertile symmetry considerations are, not only as a proof technique, but
also in the heuristic search for remarkable solutions.

The many-body problem has been at the origin of numerous mathematical theories. And
because of the variety of techniques its study demands, it retains all of its fascination.

Paris, Summer 2010
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1. A Simple Proof of Invariant Tori Theorems

As Poincaré noticed, a periodic orbit is a fixed point of a return map to a section of the
flow. For a quasi-periodic orbit there is no such reduction to finite dimension. In this
section we sketch the lines of a simple proof of Kolmogorov’s and Rüssman’s invariant
tori theorem, as detailed in [40] (see also the exposition in [47, Section 15.4]), and as
used in the many-planet problem in the next section. The strength of this proof is to
reduce Kolmogorov’s theorem to a normal form, whose existence and uniqueness follows
from a simple, abstract inverse function theorem.

1.1. Reduction of the invariant torus theorem. — Let H be the space of germs
along Tn

0 := Tn × {0} of real holomorphic Hamiltonians in Tn × Rn = {(θ, r)} (Tn =
Rn/2πZn). The vector field associated with H ∈ H is

XH : θ̇ = ∂rH, ṙ = −∂θH,

and H is said to be close to 0 if the supremum norm of its complex extension over some
neighborhood of Tn

0 in Cn/(2πZ)n × Cn is close to 0 (see section 1.2).

For α ∈ Rn, let K α be the affine subspace of Hamiltonians K ∈ H such that K|Tn

0
is

constant (i.e. Tn
0 is invariant) and ~K|Tn

0
= α. Those Hamiltonians are characterized by

their first order jet along Tn
0 :

j1
Tn

0
K = c + α · r + O(r2)

for some variable c ∈ R, the notation O(r2) meaning terms of order 2 or larger with
respect of r, possibly depending on θ.

In the many-planet problem a resonance relation k ·α = 0, k ∈ Zn \ {0}, would say that
several planets regularly find themselves in the same relative position; over a long time
interval, their small mutual attraction, instead of averaging out, would tend to pile up.
Here instead, we will consider Diophantine frequencies:

Dγ,τ = {α ∈ Rn, ∀k ∈ Zn \ {0} |k · α| ≥ γ|k|−τ}, |k| := |k|1 = |k1| + · · · + |kn|.
These arithmetic conditions are by no means necessary [90] (see also [40, Appendix D]).

Theorem 1 (Kolmogorov [48]). — Let Ko ∈ K α. Suppose that α belongs to Dγ,τ

and that the averaged Hessian
∫

Tn

∂2Ko

∂r2 (θ, 0) dθ non degenerate. Every H ∈ H close to
Ko possesses an αo-quasi-periodic invariant torus.

If Ko only had one Diophantine invariant torus without being completely integrable, one
would reduce the case to the theorem with an initial normal form along the invariant
torus. We refer to [13, 94, 17] for references and background on Kolmogorov’s theorem.

Kolmogorov’s theorem is a consequence of the following normal form. Let G be the
space of germs along Tn

0 of real holomorphic exact symplectomorphisms G in Tn × Rn

of the following form:

G(θ, r) = (ϕ(θ), tϕ′(θ)−1(r + ρ(θ))),
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where ϕ is a real holomorphic isomorphism of Tn fixing the origin (meant to straighten
the dynamics along the perturbed torus), and ρ is an exact 1-form on Tn (meant to
straighten the perturbed torus).

Theorem 2 (Twisted conjugacy). — Let α ∈ Dγ,τ and Ko ∈ K α. For every H ∈
H close enough to Ko, there exists a unique (K,G, β) ∈ K α×G ×Rn close to (Ko, id, 0)
such that

H = K ◦ G + β · r
in some neighborhood of G−1(Tn

0 ). Moreover, β depends C1-smoothly on H.

Geometrically: the orbits of Hamiltonians K ∈ K α under the action of symplectomor-
phisms of G locally form a subspace of finite codimension n. In the normal form, the
offset β · r usually breaks (twists) the dynamical conjugacy between K and H.

This theorem is the Hamiltonian particular case of [68]. Here we restrict to this case for
the sake of simplicity, although there are some interesting applications —in particular
to celestial mechanics— of the more general case.

Proof of theorem 1 assuming theorem 2. — We will further assume that Ko = Ko(r) is
integrable, which is a slightly simplifying, but non-essential, hypothesis. Write

Ko(r) = c + α · r +
1

2
Q · r2 + O(r3), Q :=

∂2Ko

∂r2
(0).

Applying theorem 2 to H alone is hopeless (because in general β 6= 0) and näıve (because
the cohomology class of the perturbed torus will not be 0 in general). On the other
hand, Ko has a whole family of invariant tori, parametrized by their action r. So, define
Ko

R(θ, r) = Ko(θ,R + r) and HR(θ, r) = H(θ,R + r), R ∈ Rn small.

Theorem 2 applied to HR asserts the existence of a triple (KR, GR, βR) ∈ K α ×G ×Rn

such that

HR = KR ◦ GR + βR · r.
In order to prove theorem 1, it suffices to show that there exists R close to 0 such that
βR = 0.

Claim : The map R 7→ βR is a local diffeomorphism. So the above conclusion holds.

Since being a local diffeomorphism is an open property and HR is close to Ko
R, it suffices

to prove the claim for the trivial perturbation Ko
R. But a Taylor expansion of Ko

R
immediately gives the normal form of Ko

R:

Ko
R = [c + O(R)] +

[
α + Q · R + O(R2)

]
· r + O(r2)

=
(
[c + O(R)] + α · r + O(r2)

)
◦ id +(Q · R + O(R2)) · r.

Hence, βR = Q · R + O(R2), which is indeed a local diffeomorphism due to the non
degeneracy assumption in Kolmogorov’s theorem.
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Hence if H is close enough to Ko there is a unique small R such that β = 0. For this R,
‖R‖ ≤ ǫ, the equality HR = K ◦ G holds:

Tn
s + (0, R)

−(0,R)
//

H
))T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

Tn
s

G
//

HR

""E

E

E

E

E

E

E

E

E

Tn
s−ǫ

K

��

R

hence the torus obtained by translating G−1(Tn
0 ) by R in the direction of actions is

invariant and α-quasi-periodic for H.

This normal form is the Hamiltonian analogue of the normal form of vector fields on the
torus in the neighborhood of Diophantine constant vector fields ([5, 67]). An extensive
use of external parameters (like β here) was made by Moser [68]. This powerful trick
consists in switching the frequency obstruction (obstruction to the conjugacy to the
initial dynamics) from one side of the conjugacy to the other. In the 80’s, Herman
understood the power of this reduction to a finite dimensional problem (see [93]).

1.2. Proof of the twisted conjugacy. — It is the aim of this section to show theo-
rem 2, by locally inverting the operator

φ : (K,G, β) 7→ H = K ◦ G + β · r
with adequate source and target spaces. Define the Banach space Hs of Hamiltonians
H ∈ H which are continuous on the extension

Tn
s = {(θ, r) ∈ Cn/Zn × Cn, |Im θj| ≤ s, |rj | ≤ s}

of Tn
0 of width s and real holomorphic on the interior of Tn

s , and K α
s := K α∩Hs. Endow

these spaces with the supremum norm | · |s. Note that the strict inductive limit H =
lim−→Hs, being the complete countable union of the closed subspaces of empty interior
H1/n, is not Baire, thus not metrizable. Also define analogous subsets Gs of symplectic
isomorphisms in G , endowed with their natural structure of a Banach manifold in the
neighborhood of the identity (see [40, section 2] for precise definitions). Finally, let
Es := K α

s × Gs × Rn (with norm equal to the maximum of norms on the three factors)
and balls σBE

s = {x ∈ Es, |x|s ≤ σ}.
The formula above thus defines operators

φ : σBE
s+σ → Hs

commuting with inclusions, in terms of which the local existence and uniqueness of a
twisted conjugacy for Hamiltonians takes the following form.(5)

Theorem 3. — Let α ∈ Dγ,τ . The operator φ is invertible in the sense that, for all
0 < s < s + σ < 1, if |H − Ko|s+σ is small, there is a unique (K,G, β) ∈ Es, | · |s-close

(5)We could assume that the symplectomorphism G is defined only on Tn

s (as opposed to Tn

s+σ), but
taking into account the internal structure of the variable x = (K, G, β) would result here in a worthless
strengthening of the conclusion.
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to (Ko, id, 0) such that H = K ◦ G + β · r. Moreover β ◦ φ−1 is a C1-function locally in
the neighborhood of Ko in Hs+σ.

This entails theorem 2 and itself follows from the inverse function theorem below. Before
stating the latter, we check that the operators φ′−1 and φ′′ exist and are bounded.

We will need the following classical lemma in the proof of lemma 5. Let Lα be the Lie
derivative operator in the direction of the constant vector field α :

Lα : A (Tn
s ) → A (Tn

s ), f 7→ f ′ · α =
∑

1≤j≤n

αj
∂f

∂θj
.

Lemma 4 (Cohomological equation). — If g ∈ A (Tn
s+σ) has 0-average (

∫

T
g dθ =

0), there exists a unique function f ∈ A (Tn
s ) of 0-average such that Lαf = g, and there

exists a C0 = C0(n, τ) such that, for any σ:

|f |s ≤ C0γ
−1σ−τ−n|g|s+σ .

We will write x = (K,G, β) and δx = (δK, δG, δβ). Fix 0 < s < s + σ < 1.

Lemma 5. — There exists C ′ > 0 which is locally uniform with respect to x ∈ Es in the
neighborhood of G = id such that the linear map φ′(x) has an inverse φ′(x)−1 satisfying

∣
∣φ′(x)−1 · δH

∣
∣
s
≤ σ−τ−n−1C ′ |δH |G,s+σ ,

where we have set

|δH |G,s+σ :=
∣
∣δH ◦ G−1

∣
∣
s+σ

.

It is straightforward to check this lemma, and even more straightforward is the next one.

Lemma 6. — There exists a constant C ′′ > 0 which is locally uniform with respect to
x ∈ Es+σ in the neighborhood of G = id such that the bilinear map φ′′(x) satisfies

∣
∣φ′′(x) · δx⊗2

∣
∣
G,s

≤ σ−1C ′′ |δx|2s+σ.

It is now not difficult to believe that the equation H = φ(x) can be solved locally,
following the remarkable idea of [48], by composing infinitely many times the Newton
operator

f : x 7→ x + φ′(x)−1(H − φ(x)),

on extensions Tn
s of shrinking width s; the two lemmas above indeed allow us to control

the convergence of the iterates: φ is a local diffeomorphism and this depends only on
the conclusions of the two latter lemmata.

In order to prove Kolmogorov’s theorem, it is crucial that the normal form, and in
particular the frequency β, be unique and depend smoothly on the Hamiltonian. We
refer to [40, Appendices A.1 and D] to see how interpolation theory can be used to obtain
good uniqueness and smoothness estimates.
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1.3. Degeneracy and hypothetical conjugacy. — Under the hypotheses of the-
orem 1, for each unperturbed Diophantine frequency there is a unique value of the
parameter R for which the conjugacy is untwisted (βR = 0). In more degenerate cases,
R 7→ βR might not be a local diffeomorphism. Then α cannot be fixed arbitrarily among
Diophantine vectors and the above argument requires some refinement.

Let Ks = ∪α∈RnK α
s be the set of Hamiltonians on Tn

s for which Tn
0 is invariant and

quasi-periodic, yet with unprescribed frequency.

Theorem 7 (Hypothetical conjugacy). — For every Ko ∈ K αo

s+σ with αo ∈ Dγ,τ ,

there is a (non unique) germ of C∞-map(6)

Θ : Hs+σ → Ks × Gs, H 7→ (KH , GH), KH = cte + αH · r + O(r2),

at Ko 7→ (Ko, id) such that for every H the following implication holds:

αH ∈ Dγ,τ =⇒ H = KH ◦ GH .

The pair (KH , GH ) can rightfully be called a hypothetical conjugacy of H because the
property H = KH ◦ GH depends on arithmetical conditions involving the unknown
frequency αH .

Proof. — Denote φα the operator we have been denoting φ –because the vector α was
fixed while we now want to vary it. Define the map

Θ̂ : Dγ,τ × Hs+σ → Ks × Gs × Rn

(α,H) 7→ Θ̂α(H) := (φα)−1(H) = (K,G, β)

locally in the neighborhood of (αo,Ko), Ko ∈ K αo

s+σ. Using Whitney’s extension theo-
rem, one can show the existence of a smooth extension

Θ̂ : Rn × Hs+σ → Ks × Gs × Rn.

Note that the directions where Θ̂ is extended have finite dimension; on the other hand,
that the map Θ̂ takes values in a Banach space, as opposed to a space of finite dimension
as in the initial version of Whitney, causes no difficulty.

Write Ko = αo · r + K̂, K̂ = O(r2). In particular, since

φα(Ko + (α − αo) · r, id, αo − α) ≡ Ko

locally for all α ∈ Rn close to αo, we have

Θ̂(α,Ko) = (K, id, β), β = αo − α,

and
∂β

∂α
= − id .

So, by the implicit function theorem, locally for all H there exists a unique α̂ such that
β(α̂,H) = 0. It then suffices to set Θ(H) = Θ̂(α̂,H).

(6)Merci à Jean-Christophe Yoccoz pour sa remarque que Θ n’a ici aucune raison d’être une
difféomorphisme local comme je l’affirmais.
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Now assume that the perturbed Hamiltonian H depends on some parameter t ∈ BT ; if
H is close to some completely integrable Hamiltonian, s may be the action coordinate r
and, in the case of Arnold’s theorem, s represents the semi major axes. By composition
with Θ, H determines a non-unique frequency map t 7→ αt := α̂, which is C∞-close to
the frequency map t 7→ αo

t of the unperturbed family of Hamiltonian Ko.

In the case of Kolmogorov’s theorem, this map is a local diffeomorphism and the set

Dγ,τ := {t, αt ∈ Dγ,τ}

has positive measure because Dγ,τ has. In general, the map is not a local diffeomorphism,
but the set Dγ,τ might still have positive measure. This is decided by the following result
of Diophantine approximation theory.

Theorem 8 (Margulis, Pyartli [86]). — If some real analytic map t ∈ BT 7→ αo
s ∈

Rp is non-planar in the sense that its image is nowhere locally contained in some proper
vector subspace of Rp, the Lebesgue measure of {t ∈ BT , αo

s ∈ Dγ,τ} is positive provided
that γ is small enough and τ large enough.

This kind of non-degeneracy condition is generally attributed to H. Rüssmann, due to
the influence of [89]. The two latter statements and the fact that being non-planar is an
open property in the Ck-topology, with k large enough with respect to the dimension T ,
imply the following invariant tori theorem.

Theorem 9. — If the family Ko
t ∈ Kt+σ, t ∈ BT , has a non-planar frequency map

t 7→ αo
t and if Ht is close to Ko

t , there exist (Kt = αt · r + δKt, Gt) ∈ Kt × Gt such that

– For every t such that αt ∈ Dγ,τ ,

Ht = Kt ◦ Gt.

– The set Dγ,τ = {t ∈ BT , αt ∈ Dγ,τ} has positive Lebesgue measure.

2. Quasi-Periodic Motions in the Planetary Problem

2.1. Arnold’s theorem. — Consider 1+n point bodies with masses m0, εm1, ..., εmn >
0 (ε > 0) and position vectors x0, x1, ..., xn ∈ R3. Newton’s equations for the planets
take the form

q̈j = m0
q0 − qj

||q0 − qj||3
+ ε

∑

k 6=j

mk
qk − qj

||qk − qj ||3
(j = 1, ..., n).

They have a limit when ε → 0, for which each planet (masses εmj) undergoes the only
attraction of the sun (mass m0). If their energies are negative, planets describe Keplerian
ellipses with some given semi major axes and eccentricities. As a whole, the system is
quasi-periodic with n frequencies. In 1963, Arnold published the following remarkable
result ([6]).



25

Theorem 10. — For every m0,m1, ...,mn > 0 and for every a1 > ... > an > 0 there
exists ε0 > 0 such that for every 0 < ε < ε0, in the phase space in the neighborhood
of circular and coplanar Keplerian motions with semi major axes a1, ..., an, there is an
invariant subset of positive Lebesgue measure consisting of quasi-periodic motions with
3n − 1 frequencies.

The proof of this theorem is rendered difficult by the multitudinous degeneracies of the
planetary problem; the shift between the number of frequencies, n in the Keplerian
approximation and 3n − 1 in the full problem, reveals one of them. Arnold’s initial
proof does not fully describe these degeneracies and actually misses one of them. Hence
it is wrong in the case of n ≥ 3 planets in space. In 1998, in a series of lectures M.
Herman sketched a complete and more conceptual proof of this theorem, which he never
published before his untimely death. We will now review a couple of ideas which make
this proof so powerful and, I believe, elegant, referring to [39] for the details, and to [40],
described in the previous section, for an improved proof of the abstract invariant torus
theorem.

2.2. The secular dynamics. — It is not difficult to see that, after reduction by
translations, the Hamiltonian is

F =
∑

1≤j≤n

(

‖Pj‖2

2µj
− µjMj

‖Qj‖

)

+ ε
∑

1≤j<k≤n

(

− mjmk

‖Qj − Qk‖
+

Pj · Pk

m0

)

,

where Qj is the position of the j-th planet relatively to the Sun, Pj is its impulsion, and
the reduced masses µj and Mj are defined by

1

µj
=

1

m0
+

1

εmj
, Mj = m0 + εmj .
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Let (λj ,Λj , ξj , ηj , xj , yj)1≤j≤n be the Poincaré coordinates (see appendix A). They are
symplectic analytic coordinates in a neighborhood of circular horizontal Keplerian mo-
tions. For each planet, the coordinates (λj ,Λj) are angle-action coordinates of the
reduced Kepler problem, so that

‖Pj‖2

2µj
− µjMj

‖Qj‖
= −

µ3
jM

2
j

2Λ2
j

.

These Keplerian Hamiltonians define a Keplerian action of the n-torus. We will focus
on tori which have non resonant, and even Diophantine, Keplerian frequencies. Roughly
speaking, these are the initial conditions for which planets will not regularly find them-
selves in the same relative positions.

Up to an ε-deformation of the Poincaré coordinates, standard normal form theory (and
lemma 4) asserts that we may assume that the Hamiltonian is replaced by

F = −
µ3

jM
2
j

2Λ2
j

− ε
∑

j<k

mjmk

∫

Tn

dλj dλk

‖Qj − Qk‖
+ R + O(ε2),

where the infinite jet of the remainder R vanishes along Keplerian motions whose fre-
quencies are Diophantine (here we lose analyticity with respect to ε); the average of
the “complementary part”

∑
Pj · Pk indeed equals zero because, up to multiplicative

constants, along Keplerian motions we have Pj = q̇j = ∂Qj/∂λj .

The Newtonian potential is degenerate because all its bounded orbits are periodic, as
opposed to quasi-periodic on 3-tori, as symplectic geometry would permit in a 6n-
dimensional phase space. This is reflected in the fact that the Keplerian part depends
on the Λj ’s, and no other action variable. Thus the above averaging procedure allows
us to eliminate the fast angles λj ’s only. The averaged Hamiltonian

Fs = −ε
∑

j<k

mjmk

∫

Tn

dλj dλk

‖Qj − Qk‖

induces a Hamiltonian system on the space of n-uplets of Keplerian ellipses with fixed
semi major axes. It is called secular (or Lagrangian, in [8]) because it describes the
slow deformations of the Keplerian ellipses under the influence of the averaged mutual
attraction of planets, visible only on the long term, say over one century (= secular in
Latin). As Gauss described it, it is the gravitational potential of the system obtained by
spreading the masses of the planets along their Keplerian ellipses, according to the third
Kepler Law. Roughly speaking, the effect of the secular term is to make the Keplerian
ellipses rotate in their planes and to make their planes themselves rotate around the
total angular momentum.

The secular Hamiltonian is not integrable, but has an elliptic singularity at circular
coplanar ellipses. Moreover Lagrange and Laplace have shown that its quadratic part
splits in a remarkable way, which can be partly anticipated thanks to the symmetries
[83]. The full computation is long; it is one of those in the subject which made Michael
Herman say “BLC” (Bonjour Les Calculs)!
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Theorem 11 (Lagrange-Laplace). — Let m = (m1, ...,mn), a = (a1, ..., an), ξ =
(ξ1, ..., ξn), η = (η1, ..., ηn), x = (x1, ..., , xn) and y = (y1, ..., yn). There are two sym-
metric bilinear forms Qh = Qh(m,a) and Qv = Qv(m,a) on the tangent space at the
origin of the secular space, respectively called horizontal and vertical, which depend on
the masses and semi major axes analytically, and such that

Fs = C0(m,a) + Qh ·
(
ξ2 + η2

)
+ Qv ·

(
x2 + y2

)
+ O(4),(1)

with

(2)







Qh · ξ2 =
∑

1≤j<k≤n

mjmk

(

C1(aj , ak)

(

ξ2
j

Λj
+

ξ2
k

Λk

)

+ 2C2(aj , ak)
ξjξk
√

ΛjΛk

)

Qv · x2 =
∑

1≤j<k≤n

−mjmkC1(aj , ak)

(

xj
√

Λj

− yk√
Λk

)2

and the Cj’s themselves are explicit linear combinations of the Laplace coefficients.

The masses and semi major axes being fixed, let ρh, ρv ∈ SO(n) be diagonalizing trans-
formations of Qh and Qv :

ρ∗hQh =
∑

1≤j≤n

σj dξ2
j and ρ∗vQv =

∑

1≤j≤n

ςj dp2
j , σ1, ..., σn, ς1, ..., ςn ∈ R.

The map ρ : (ξ, η, p, q) 7→ (ρh · ξ, ρh · η, ρv · p, ρv · q) is symplectic and we have

Fs ◦ ρ = C0 +
∑

1≤j≤n

σj (ξ2
j + η2

j ) +
∑

1≤j≤n

ςj (p2
j + q2

j ).

In order to investigate the persistence of Lagrangian invariant tori in the neighborhood
of the singularity, one only needs to switch to symplectic polar coordinates and apply
results of section 1.3.

Let A = {(a1, ..., an) ∈ Rn ; 0 < an < an−1 < ... < a1}. The unperturbed frequency
map is the multi-valued map

αo : a ∈ A 7→ {ν1, ..., νn, σ1, ..., σn, ς1, ..., ςn} ⊂ R,

where ν1, ..., νn are the Keplerian frequencies, and σ1, ..., σn and ς1, ..., ςn the eigenvalues
of the matrices Qh and Qv. We are reduced to studying the arithmetic properties of αo,
and in particular the measure of the inverse of Diophantine frequencies.

2.3. Herman’s mysterious resonance. —

Theorem 12 (M. Herman). — The frequency map αo of the first order secular sys-
tem, as a function of the semi major axes, has its image lying entirely in a plane P of
codimension 2. But its image lies in no plane of higher codimension.

The theorem can be proved by induction on the number of planets and by complexifying
the semi major axes. The first resonance is that one of the frequencies ςj’s is zero.
It comes from the Galilean symmetry and disappears when fixing the direction of the
angular momentum, e.g. vertically.
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The second resonance is that the sum of all the secular frequencies is zero:
∑

(σj + ςj) =
0. This is obvious to check from the above formulae –the quadratic part of Fs is traceless.
For two planets revolving around the sun, this means that the plane of each ellipse slowly
rotates around the vertical axis in the negative direction, and that the ellipses rotate in
their own planes in the positive direction with the same frequency. But for n planets the
resonance seems to have been unnoticed before. In all cases, it is mysterious, insofar as
no symmetry seems to explain it. According to numerical evidence, for small values of n
it vanishes in the second order secular system; but one precisely wants to avoid checking
this.

It turns out that Herman’s resonance too disappears, namely in the system fully reduced
by the symmetry of rotations. The difficulty is that the elliptic singularity is a critical
level of the angular momentum. A key remark is that the fully reduced system (i.e.
the system with fixed angular momentum, quotiented by rotations around the angular
momentum) is non planar if and only if there is a rotating frame in which the partially
reduced system (i.e. the system with vertical angular momentum) is non planar. But
there is one, and actually infinitely many, such rotating frames, because the trace of the
quadratic part of the angular momentum is non zero, as can easily be seen, again by an
argument of analytic continuation. An alternative proof, using the Deprit coordinates,
has recently been provided by [32], which went even further by proving the strong non-
degeneracy of the secular system.

The 2n − 1 slow frequencies vanish when ε = 0. Hence, when ε is small, there is
a competition between choosing Diophantine conditions (1) good enough so that (as
a quantitative version of the twisted conjugacy theorem shows) the local image of the
operator φ at the secular system of some high enough order contains the full Hamiltonian
of the planetary problem; (2) bad enough so that (as a quantitative version of the Arnold-
Margulis-Pyartli theorem shows) the frequency map passes through such Diophantine
vectors in positive measure in the space of semi major axes. It turns out that fixing τ
large enough and choosing γ as some power of ε fits the bill. The above abstract theory
applies to the reduced systems and yields a positive measure of invariant quasi-periodic
Diophantine (3n − 2)-tori (or, as a refinement shows, invariant normally elliptic tori of
any dimensions between n and 3n − 2), which lift to a positive measure of invariant
quasi-periodic (3n−1)-tori of the full system (respectively, to invariant normally elliptic
tori of dimensions between n + 1 and 3n − 1).

3. From the Lagrange relative equilibrium to the Eight choreography

Consider three point masses in R3 of equal mass m, undergoing the Newtonian attraction:

q̈j = m
∑

k 6=j

qk − qj

‖qk − qj‖3
, qj ∈ R3, j = 1, 2, 3.

In the absence of equilibria, a natural “breach” to look at is the neighborhood of relative
equilibria, i.e. equilibria modulo the action of rotations. Focusing on the most symmetric
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relative equilibrium, the so-called Lagrange relative equilibrium:

qL
j (t) =

(

a exp i

(

ωt + j
2π

3

)

, 0

)

∈ C × R,
√

3ω2a3 = m, ω = 2π,

we will describe the neighboring dynamics, determine the families of periodic orbits
bifurcating from the relative equilibrium, and show that one of those families continues
until the figure-eight solution of Chenciner-Montgomery.

3.1. Symmetries. — Newton’s equations define a vector field in the 18-dimensional
phase space {(q, q̇)}, but the symmetries allow us to decrease the number of dimensions
significantly.

– The linear momentum
∑

j q̇j ∈ R3 being a first integral, the codimension-6 subspace

of equations
∑

j q̇j = 0 and
∑

j qj = 0 is invariant. Moreover we may restrict to this
subspace without loss of generality due to the possibility of choosing a frame of reference
whose origin is located at the center of mass.

– The angular momentum
∑

j qj ∧ q̇j ∈ R3 is the other known first integral. Its level set
containing the Lagrange relative equilibrium is a codimension-3 invariant submanifold,
to which we may restrict, again, without loss of generality: the homogeneity of the New-
tonian potential allows the rescaling of any motion with non-zero angular momentum to
a motion whose angular momentum has a unit norm, and the rotational invariance allows
the choice of an inertial frame of reference in which the (non-zero) angular momentum
is vertical.

The vector field then descends to the quotient by rotations in the horizontal plane.

All reductions done, the phase space has 18 − 10 = 8 dimensions, while the invariant
horizontal sub-problem has 12 − 6 = 6 dimensions. That the Galilean symmetry group
has 10 dimensions is incidental here, inasmuch as we have not taken advantage of in-
variance by time shifts (though we will, later), while we have used the homogeneity of
Newton’s potential, a special property of our problem.

3.2. Linear analysis. — The first step towards understanding the local dynamics
in the neighborhood of the equilibrium is to study the linearization of the vector field.
References are [56, 63, 61]. Recall that for a linear Hamiltonian real vector field the
eigenvalues come by (possibly degenerate) quadruples ±λ,±λ̄.

Lemma 13. — The eigenvalues of the Lagrange equilibrium in the plane are: ±i, ±λ
and ±λ̄, with λ = i +

√
2. The two vertical eigenvalues are ±i.

In restriction to the 4-dimensional central subspace, the Lagrange equilibrium is a non-
degenerate minimum of energy.

That the vertical eigenvalues are ±i, the same as the ones corresponding to the homo-
graphic family, will be explained below. But there seems to be no obvious reason why
the quadruple is resonant with the others: λ = λ̄+2i. Due to this resonance the normal
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form of the vector field will not be integrable (yet its restriction to the central manifold
will).

Thus locally the energy levels are 3-spheres. Each pair of complex conjugate purely
imaginary eigenvalues gives rise to periodic first order solutions. Since the eigenvalue
i has multiplicity 2, the flow of the linearized vector field consists of two harmonic
oscillators in (1, 1)-resonance, i.e., on each 3-sphere of constant energy, the Hopf flow
S3 ⊂ C2 → S3, (u, v) 7→ (eitu, eitv).

It is thrilling to look at the vertical family of first order periodic solutions in the 12-
dimensional phase space, since it is here that the 12th-order symmetry group of the
(transcendent) Eight solution first appears [56]. The vertical variational equation of the
Lagrange relative equilibrium being

δq̈j =
1

3

∑

k 6=j

(δqk − δqj) = −δqj ,

a basis of solutions is formed by the two particular solutions

zL(t) =





Re ζeit

Re ζ2eit

Re ζ2eit



 and zP (t) =





Re ζeit

Re ζeit

Re eit



 , ζ = ei 2π

3 .

A short computation shows that zL corresponds to the Lagrange relative equilibrium
itself, after an infinitesimal rotation around the y-axis (first part of the figure below).
Obviously, all solutions to the vertical variational equation have the same frequency ω =
1. That some of these solutions correspond to infinitesimally rotated Lagrange relative
equilibria now explains why the common frequency is the frequency of the Lagrange
relative equilibrium.

On the other hand, zP corresponds to a new family. Each body still describes a circle in
a sloping plane, but now the planes don’t match: they are obtained from each other by
rotations of 2π/3 (second part of the figure below). Now, look at the first order solution
q = qL ⊕ zP , rightfully living on a cylinder above the basis qL, in a frame rotating with
angular velocity −ω, i.e. making exactly one retrograde rotation per period; each body
is then seen to make +2 horizontal rotations and one vertical oscillation per period. The
corresponding expression is

q̃j(t) =

(

a exp i

(

2ωt + j
2π

3

)

, zP
j (t)

)

.

In this frame the first order solution turns out to be choreographic (third part of the
figure below).
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The choreographic symmetry is only the most spectacular symmetry in the 12-th order
group

Γ1 =
〈
s, σ|s6 = 1, σ2 = 1, sσ = σs−1

〉

whose action is defined by

sq(t) =





Σq1(t − π/3)
Σq2(t − π/3)
Σq0(t − π/3)



 and σq(t) =





∆q1(−t)
∆q0(−t)
∆q2(−t)



 ,

where Σ and ∆ are the orthogonal symmetries about the horizontal plane and about Oy.
(Because we keep the group action of [25], it is the path q̃(·+π/2) which is Γ1-symmetric.)

3.3. Local continuation. — After quotient by horizontal rotations, the relative equi-
librium becomes a true equilibrium. We are concerned with the old problem of finding
periodic solutions in its neighborhood. It is well known that the two horizontal eigen-
values ±i give rise to the homographic family of periodic orbits. We want to show that
there is exactly one additional family corresponding to the vertical eigenvalue i. The
Lyapunov center theorem is the first general result in this direction.

Theorem 14 (Lyapunov center theorem). — Let H be a Hamiltonian on R2n with
an equilibrium point at the origin, and L be the linearization of the Hamiltonian vector
field at the origin. If L has some purely imaginary eigenvalues iω1, · · · , iωk (possibly in
addition to non purely imaginary eigenvalues) such that

ωj

ω1
/∈ N ∀j = 1, · · · , k,

H has a one-parameter family of periodic orbits with period close to 2π
ω1

.

The theorem does not apply, due to the fact that the eigenvalue i has multiplicity 2. Yet
Weinstein remarkably proved that the non-resonance condition is not necessary (and
Moser further generalized the result, showing that the Hamiltonian character of the
equations itself is not necessary):

Theorem 15 (Weinstein-Moser center theorem, [70]). — Let H be a Hamilto-
nian on R2n with an equilibrium point at the origin, and L be the linearization of the
Hamiltonian vector field at the origin. Assume that R2n = E ⊕ F , where E and F are
invariant subspaces of L such that all solutions of L lying in E have some common
period T > 0, while no nontrivial solution in F has this period. Moreover, assume that
the Hessian D2H(0) restricted to E is positive definite. Then, for sufficiently small ε,
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on each energy surface H(z) = H(0) + ε2 the number of periodic orbits of H is at least
1
2dimE.

This theorem applies, although the convexity condition requires some proof (interest-
ingly, the convexity property generalizes to the regular N -gon for all N ; see next sec-
tion). However, this does not say if the second solution resembles the first order solution
qL ⊕ zP , nor if it is unique for that matter. Yet uniqueness is essential for proving that
the periodic orbits belonging to the new family share the symmetries of qL ⊕ zP . As
some simple counter-examples show ([70]), this cannot be decided from the linearized
vector field, but from the third order normal form:

u̇ = iu[1 + α|u|2 + β|v|2 + γhk + γ̄h̄k̄] + O5

v̇ = iv[1 + a|u|2 + b|v|2 + chk + c̄h̄k̄] + Av̄hk̄ + O5

ḣ = λh[1 + r|u|2 + s|v|2 + thk + t′h̄k̄] + Rv2h̄ + O5

k̇ = −λk[1 + r|u|2 + s|v|2 + thk + t′h̄k̄] − Rv̄2k̄ + O5,

where the new coordinates u, v, h and k are complex (see below), where

α = −1, β = −1, γ =
9

2
+ 6i

√
2, a = −1, b = −21

19
, · · ·

and where O5 stands for real analytic functions of order 5 in u, ū, v, v̄, h, h̄, k, k̄. The
coordinates can be chosen so that the involution v 7→ −v is a symmetry about the
horizontal subspace and the normalization transformation, and hence the normal form,
are invariant by this involution. The normal form calls for a few comments:

– For instance the terms Av̄hk̄,Rv2h̄ and −Rv̄2k̄ correspond respectively to the reso-
nances i = −i + λ − λ̄, λ = 2i + λ̄ and −λ = −2i − λ̄.

– The symmetry under T accounts for the absence of some resonant monomials, e.g.
|u|2v in u̇, or u|v|2 and ūv2 in v̇.

– It remains unclear why the normal form is also invariant with respect to u 7→ −u (for
instance u̇ has no term in u2v̄ or ūhk̄); this symmetry holds at order five.

– The equality a = α has an intrinsic meaning and [25, Appendix] explains why this
resonance actually persists in normal forms of every order.

Since there are no obstructing cross-resonances from the central directions (coordinates
u, v) to the hyperbolic directions (coordinates h, k), the central space h = k = 0 is
invariant for the formal infinite-order normal form of the vector field. This holds holo-
morphically, as proof analogous to [34] shows, and further local analysis proves:

Proposition 16. — There exists a unique symplectic analytic central manifold C , in
restriction to which the vector field and the Hamiltonian are

{
u̇ = iu(1 + α|u|2 + β|v|2) + O5

v̇ = iv(1 + a|u|2 + b|v|2) + O5
and H = −1

6
+

|u|2
9

+
|v|2
9

+ O4.

That the Hamiltonian has a local minimum in restriction to C , will generalize to regular
N -gons, interestingly (see next section). The central manifold contains all the recurrence,
and in particular families of periodic orbits.
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Theorem 17 ([25]; see also [56]). — Up to the action of similarities and time shifts,
exactly two families of relatively periodic solutions bifurcate from the Lagrange relative
equilibrium:

– the well known horizontal, (absolutely) periodic, homographic family H ,

– and a vertical family called P12, whose solutions show a 12th-order symmetry which
makes them choreographic (i.e. the three bodies chase each other along the same curve)
in the frame rotating with some frequency close to −ω.

The part on the P12 family follows from the analysis of the normal form of the vector field
restricted to C and its complex blow-up, while the local uniqueness of the homographic
family, due to the resonance a = α explained in the appendix of [25], follows from the
careful analysis of the local dynamics, which boils down to a well known situation:

Theorem 18 ([25]). — In restriction to the 4-dimensional analytic central manifold
C , each energy level is a 3-sphere which possesses a global Poincaré section A having
the topology of a closed annulus and whose two boundary circles are elements of H and
P12 respectively. Moreover, the second return map of A is twist and monotone.

B3
⊂ energy level S3

homographic orbit

a generic orbit of the linearized flow
in the central manifold

element of P12

3.4. Global continuation. — Just as in the two-body problem, the homographic
family extends from the Lagrange relative equilibrium to (and past) the homothetic
motion of total collision (each body indeed undergoing a two-body-problem motion).
But where does the P12 family end?

Christian Marchal had extensively studied the 12th-order symmetry of the P12 family
[56]. In 1999, when he heard about the choreographic figure-eight solution of Chenciner-
Montgomery, at once he imagined that the Eight could be the unknown end of P12.

Partially numerical theorem 19 ([27, 23]). — The P12 family interpolates be-
tween the Lagrange equilibrium and the Eight. When looked at in a frame rotating with
frequency varying in the interval [−ω, 0], the elements of P12 minimize the Lagrangian
action within the class of Γ1-symmetric loops.
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What ’to interpolate’ means is ambiguous, because the minimization argument (as used)
does not show the continuity of the P12 family, nor even its uniqueness for that matter.
In this respect, the existing proof relies on a numerical experiment. However some
theoretical arguments strongly speak in favor of the result.

Consider the following family of loops in the configuration space:

q̟
j (t) =

(

1√
3

(
4π + ̟

2π

)−2/3

exp i

[

(4π + ̟) t + j
2π

3

]

, 0

)

, j ∈ Z/3Z,

parametrized by ̟. They are solutions of Newton’s equation, obtained from each other
by mere rescaling. In a frame rotating uniformly with angular velocity ̟, each member
of the family becomes a Γ1-symmetric, periodic orbit, where each body makes two full
rotations per period, around the origin. A straightforward computation shows that its
action

A̟ :=

∫ 1

0
L(q̟(t), q̟̇(t)) dt,

where

L(q, v) =
∑

j

1

2
mj‖vj‖2 +

∑

j<k

mjmk

‖qj − qk‖

is the Lagrangian, equals

A (q̟) =

(
4π + ̟

2π

)

.

In particular, its absolute minimum 0 is attained for ̟ = −4π, where the three bodies are
at rest at infinity. It increases with ̟ ∈ [−4π, 0]. It stops being a minimum among loops
which are Γ1-symmetric in the rotating frame, precisely when the variational equation
comes to have a Γ1-symmetric, 1-periodic solution in the rotating frame; this solution
can indeed be thought of as a Jacobi field. This happens exactly once, when ̟ = −2π.
When ̟ is slightly larger than −2π, q̟ is not a minimum anymore, for the corresponding
member of the P12 family has a lower action. The global continuation consists, for each
value of ̟ ∈ [−2π, 0], in looking for the minimizer among paths which are 1-periodic
and Γ1-symmetric in the frame rotating with frequency ̟. At the other end, i.e. ̟ = 0,
the minimum is the figure Eight solution, for which the 12th-order symmetry is the
symmetry of the space of similarity classes of plane oriented triangles ([28, 62]).

0 1

2

̟

6π4π2π0−2π−4π−6π

A̟

×− 2

02

1
× + 2

2

0

1
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The thick line on the figure indicates where the Lagrange relative equilibrium is the
absolute minimizer [10, 26].

The proof of existence of physically relevant Γ1-symmetric minimizers requires to show
(by a direct comparison with a well chosen non-collision path) that the minimizers have
no collisions [21]. Marchal’s theorem ([57, 20, 42]) does not show this directly because
the time-reversal symmetry of Γ1 prevents us from choosing a fundamental domain of
time with arbitrary boundary.

If the two Lyapunov families of the equal-mass Lagrange relative equilibrium are thus
quite well understood, there remain many open questions. One of them would be to
determine the global advent of the central manifold C , which interpolates between the
two families [41], and which strongly constrains the recurrent part of the dynamics.

4. Lyapunov families bifurcating from relative equilibria

What are the simplest possible motions for n point bodies in R3 undergoing Newton’s
attraction?

– The homographic solutions and, among them, the relative equilibria (= equilibria
modulo translations and rotations). Configurations admitting such motions, the so-
called central configurations, are very particular and difficult to find. But given such
a central configuration, the corresponding relative equilibria are simply obtained by
rotating the bodies at constant velocity. Examples of relative equilibria for n = 3 bodies
comprise the Lagrange solution, where the three bodies form an equilateral triangle at
each time, which rotates uniformly around the center of mass. When the three bodies
have the same mass, they describe the same circle; such a periodic solution where the
bodies chase each other along some common curve at fixed time distances, has been
called a choreography by C. Simó. This example generalizes obviously to n equal masses
located at the vertices of a regular n-gon.

– Action minimizing periodic orbits. Among critical points of the Lagrangian action

∫ T

0
L(q, q̇) dt,

minima are the simplest. Many recently discovered symmetric periodic orbits minimize
the Lagrangian action within their class of symmetry, e.g. the celebrated D6-symmetric
figure-Eight of Chenciner-Montgomery which we have encountered in the previous sec-
tion, the D4 × Z2-symmetric Hip-Hop [29], the D10-symmetric 5-body Eight, or the
D10-symmetric 5-body 4-loop chain.

We will see that these two types of solutions are closely related. A connection similar
to the one between the Lagrange relative equilibrium and the Eight exists in many
cases. Indeed when a relative equilibrium has an elliptic normal direction, infinitesimally
there is a 1-parameter family of 2-frequency quasi-periodic solutions bifurcating from the
relative equilibrium. In good cases, these infinitesimal solutions can be continued locally.
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It turns out that all of the minimizing solutions mentioned above are resonant (hence
absolutely periodic) members of such families.

This simple continuation principle happens to be embodied in a variety of ways, and
simultaneously to explain the structure of a whole zoology of periodic orbits in the
many-body problem. Numerical evidence is spectacular, but the proofs are difficult and
reach various degrees of achievement.

4.1. Infinitesimal vertical variations and their symmetries. — The first step is
to find a relatively periodic solution to the variational equation of the relative equilibrium
and determine its symmetry group. There are several reasons for focusing on the vertical
variational equation: simplicity (the vertical part is time-independent), spectrum (one
needs at least 6 bodies for some normal horizontal directions to be spectrally stable),
symmetry (usually the symmetry group of horizontal variations is trivial).

Consider a solution of Newton’s equations:

q̈j =
∑

k 6=j

mk
qk − qj

‖qk − qj‖3
, j = 1, ..., n.

Infinitesimally close, solutions satisfy the so-called variational equations,

δq̈j =
∑

k 6=j

mk

(

δqk − δqj

‖qk − qj‖2 − 3
(qk − qj) · (δqk − δqj)

‖qk − qj‖5 (qk − qj)

)

By identifying δqj ∈ R3 to (hj , zj) ∈ C×R, and reordering components, these equations
split into horizontal and vertical variational equations:

(

ḧ
z̈

)

=

(
HV E 0

0 V V E

)(
h
z

)

;

in the endomorphism matrix, the zero of the first line comes from Pythagoras’ theorem
(infinitesimal vertical variations keep mutual distances constant) and the zero on the
second line comes from the invariance of the horizontal problem. The vertical part

z̈ = Wz

defines the Wintner-Conley operator W , which is self-adjoint for the mass scalar product,
and negative definite after quotient by translations [104, 4].

In order to be more specific, we now restrict to the case of the regular N -gon. After
reduction by translations, the phase space of the vertical variational equation has dimen-
sion 2(N − 1). Denote by λk = −ω2

k, k = 1, ..., [N/2] its eigenvalues. The corresponding
eigenspaces have dimension 4 (or 2 if N is even and k = N/2). Solutions are of the
following form:

qj(t) = (hj(t), zj(t)) =

(

exp i

(
2π

N
+ ω1t

)

, cos

(

±2πjk

N
+ ωkt

))

;

the horizontal part is the relative equilibrium (horizontal rotation with frequency ω1),
while the vertical part consists in vertical oscillations of frequency ωk. Note that the
frequency ω1 of the relative equilibrium is one of the vertical frequencies, since obviously
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an infinitesimal rotation of the relative equilibrium around a horizontal axis induces a
vertical oscillation of frequency ω1.

Among quasi-periodic motions with 2 frequencies, these infinitesimal motions are of a
very particular kind, since they become periodic in a rotating frame. In a frame rotating
horizontally with angular velocity ̟, the above infinitesimal solution becomes

q̟
j (t) = (hj(t), zj(t)) =

(

exp i

(
2π

N
+ (ω1 − ̟)t

)

, cos

(

±2πjk

N
+ ωkt

))

;

In particular, it is 2πs/ωk-periodic (s ∈ N∗) if and only if

ω1 − ̟

ωk
=

r

s
∈ Q

for some integer r. The rational number r/s measures the number of horizontal rotations
versus the number of vertical oscillations. We will call Sr/s(N, k,±) the obtained path.

These infinitesimal variations look simple, and as a consequence they have rich symmetry
groups, which can be computed as follows. Assuming the path q̟ is s-periodic in the
rotating frame, q̟ can be thought of as a map

q̟ : R/sZ × {1, ..., n} → R3.

Such paths are being acted on by the group O2 × Sn × O3, where Od is the orthogonal
group of Rd and Sn is the permutation group, in the obvious way:

R/sZ

O2

��

× {1, ..., n}
Sn

��

q̟

// R3

O3

��

R/sZ × {1, ..., n} // R3.

Call Gr/s(n, k,±) ⊂ O2 × Sn × O3 the stabilizer of the above infinitesimal vertical
variation. Note that for different integers r and s, these groups are isomorphic; only
their representation varies. The group structure of Gr/s(n, k,±) can be described in
terms of group extensions which depend on the arithmetic of n, k and s. Yet one case
is simple: for s = 1, Gr(n, k,±) is isomorphic to Dn × Z/nZ.

More important than the group structure is the presence of some special elements:

– the choreography symmetry: after some fraction of the period, bodies have exchanged
relative positions among one another, with one or more cycles,

– or the Hip-Hop symmetry: at all times, some of the bodies share the same position up
to some orthogonal transformation of R3.



38

1 2

Choreographies
4

Hip−Hops

3

1. S4(5, 1,−1) Five-body maximal unchained polygon
2. S2(5, 2,−1) Five-body Eight
3. S1(6, 1,−1) Six-body Hip-Hop
4. S2(6, 2, 1) Yet another six-body Hip-Hop.

The following examples play a major role in the sequel:

– the maximal chain Sn−1(2n + 1, 1,−1), a choreography, where the bodies make n − 1
horizontal rotations per vertical oscillation,

– the Eight S2(2n + 1, n,−1), also a choreography with an odd number of bodies, where
the bodies make 2 horizontal rotations per vertical oscillation,

– and the Hip-Hop S1(2n, n, 1).

4.2. Local continuation. — One may hope that the infinitesimal variations of the
relative equilibrium, described in the previous section, extend to local families of periodic
solutions.

/SO(2)

Lyapunov orbit S

Equilibrium E

Relative equilibrium x̄(t), lift of E

x(t), lift of S

As a result of resonances, whether or not they are expected, this step generally does not
follow from the Lyapunov center theorem 14. The other related general theorem which
might apply is the Weinstein-Moser theorem 15. It requires the existence of a positive
definite first integral in restriction to the correspongin generalized eigenspace.

Interestingly, this hypothesis holds in general for the regular N -gon, provided there is
no unexpected resonance between the horizontal and vertical eigenvalues:

Let Vℓ be the vertical eigenspace of the frequency ωℓ (1 ≤ ℓ ≤ N/2), and H1 be the plane
tangent to the homographic motions. (Recall that the total eigenspace of ω1 contains
V1⊕H1.) If no other frequency, horizontal or vertical, is an integer multiple of (possibly
equal to) ωℓ, in order to apply the Weinstein-Moser theorem it is sufficient to prove that
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the energy is convex on V1 ⊕ H1 for ℓ = 1 and on Vℓ for 2 ≤ ℓ ≤ N/2. Below we will
prove the fact that the quadratic part H is positive definite on the whole vector space

F = H1

⊕

⊕1≤ℓ≤N/2Vℓ.

All the first cases, studied in the following section, satisfy the required non-resonance con-
dition. Furthermore, numerical experiment suggests that the purely imaginary horizon-
tal eigenvalues, in general, cannot resonate with the vertical eigenvalue iωn, at least, for
they are smaller in module. When this is true, the proposition below and the Weinstein-
Moser theorem show in a weak sense the local existence of Lyapunov families associated
with ωn, in particular.

Proposition 20. — After reduction by rotations, the restriction of the quadratic part
of the energy to F is definite positive.

However this theorem does not tell us uniqueness, nor does it give any hint about the
shape of the families in the case of higher multiplicity. The most instructive is to look
to the first few cases, which are all different from each other. Here we restrict to N = 3
or 4.

– The case of N = 3 bodies was fully analyzed in section 3 ([25]). Yet we illustrate the
content of this section by showing a homographic solution in a choreographic frame:

– With four bodies, the horizontal eigenvalues are

±iω1, ≃ (±0.8595325038 ± i) ω1, ≃
(
± 0.6394812009 ± 0.9533814590 i

)
ω1,

and the vertical ones

±iω1, ±iω2 = ±i
4
√

2ω1.

There are now two non-trivial vertical Lyapunov families.

The Weinstein-Moser theorem applied to the reduced vector field and to the eigenvalue
±iω1 (using proposition 20 and the fact that ω1/ω2 = 2−1/4 /∈ N) implies the existence
of at least one more Lyapunov family corresponding to this frequency in addition to the
horizontal homographic family.

Numerical computations show that the Lyapunov cylinder S(4, 1,−1) is tangent to a
family which is choreographic in a rotating frame which starts making two full turns per
period in the negative direction; this is a 4-body, 3-lobe chain family (S(4, 1,−1)). This
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does not follow from the Lyapunov theorem, for the frequency ω1 is also the frequency
of the horizontal homographic family.

Gerver’s choreography

Since ω2 has multiplicity one and since the only other frequency, ω1, is not an integer
multiple of ω2, it follows from Lyapunov’s theorem that there exists a unique family
of relatively periodic orbits bifurcating from the square with vertical frequency close to
ω2. The eigenmode S1(4, 2,±1) is tangent to the family and, by uniqueness, the family
shares its symmetry. Hence the family is the 4-body Hip-Hop family, with symmetry
group G1(4, 2, 1) = Z/2Z × Z/4Z. It is studied in [9]. In the figure below, the middle
orbit is the original Hip-Hop [29].

4.3. Global continuation. — We are interested in the following two questions:

– Existence: Does the range of frequency rotation ̟ of the frame over which the family
exists contain 0, so that the family contains an absolutely periodic orbit sharing its
symmetries?

– Uniqueness: Can one take the frequency ̟ as a monotonous continuous parameter
over the whole family, i.e. has the torsion constant sign?

Minimization of the Lagrangian action under the Gr/s(N, k, η)-symmetry is a natural
tool for the existence question. Now the richness of the symmetry group is not only a
matter of curiosity, but a crucial property to rule out other to-be minimizers completely
elsewhere in the phase space.

There are few known results on the absolute minimizing properties of relative equilibria.
However, the one below is quite an incentive. Generalizing a remarkable argument first
used for choreographies [10], it shows that the first members of some Lyapunov families
bifurcating from regular polygons are absolute minimizers within their symmetry class.
Let

V = inf
p>0

ω1

ω(1+2p)kη
|(1 + 2p)2π|.
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Theorem 21 ([26, p. 47]). — The following condition implies that the relative equi-
librium solution of the equal mass regular N -gon with frequency 2π r

s in a frame rotating
with frequency ̟ is the sole absolute minimizer of the action among paths which in the
rotating frame are s-periodic loops with the Gr/s(N,n, η)-symmetry:

−V ≤ ̟ + 2π
r

s
≤ V.

In the program, there are many additional difficulties, logically greater than for the local
continuation:

1. Minimizers might contain collisions, due to the fact that some symmetries (in partic-
ular time-reversal symmetries) may prohibit the use of Marchal-type arguments.

2. In [26, Appendix], the local torsion was checked for all families bifurcating from
regular polygons with 6 or fewer bodies. But there is no reason in general for the
velocity of the frame of reference to vary monotonically along the family.

3. It turns out that, because of isomorphisms between the actions of different groups
Gr/s(N, k, η), its use is essentially restricted to the case k = n, i.e. to the largest
vertical frequency.

4. As in general minimization problems, the minimum is not always unique, and hence
does not vary continuously with respect to parameters...

Despite all this, numerical evidence does bring back optimism to the general picture.
We will limit ourselves, on the next page, to the minimizations diagrams for 4-bodies,
analogous to that of section 3 for 3-bodies.
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A

The Delaunay and Poincaré coordinates

In this appendix we introduce the (transcendent, symplectic, analytic) Delaunay and
Poincaré coordinates, both gateways to celestial mechanics. The Delaunay coordinates
are angle-action coordinates of the Kepler problem for negative energies, which blow up
circular and horizontal motions; the Poincaré coordinates are analytic in a large neigh-
borhood of prograde circular Keplerian motions (the neighborhood actually includes the
whole phase space of negative energy, with the exception of retrograde circular Keplerian
motions).

A direct construction of the Delaunay coordinates seems to be hard to find in the litera-
ture. In many places, the construction is skipped (see [8], yet a remarkable reference in
celestial mechanics) or involves tedious, unnecessary computations (see [2]; the first edi-
tion even wrongly proved that the coordinates are not symplectic). One possible strategy
is to solve the Hamilton-Jacobi equation by separation of variables ([102, Chap. vii]; the
proof is also explained in [83, 101, 19]). Our method is more direct. It requires almost
no computation, provided one is familiar with the non symplectic aspects of the Kepler
problem (exercise below). It is close to that of Moser [72] and has greatly benefited from
discussions with A. Albouy.

1. Prerequisite. — Consider the Keplerian Hamiltonian, for a point body of position
q ∈ Rd

∗, impulsion p ∈ Rd and mass µ, attracted by a fixed mass M at the origin:

K =
‖p‖2

2µ
− µM

‖q‖ ,

Exercise 22 (The Kepler problem)

1. Show that each Keplerian motion lies in a vector plane (use the invariance of K by
the symmetry about the line or plane spanned by the initial position and velocity).

2. From now on, restricting to motions taking place in some given R2 = {q = (x, y)},
show that C = det(q, q̇) is a first integral; µC is called the angular momentum.

3. Show that

r̈ =
C2

r3
− M

r2
, r :=

√

x2 + y2.

4. (Argumentum egregium of Lagrange, [50, Section deuxième]) Fix a solution
(xo(t), yo(t)) and the corresponding ro(t). Note that ro(t) and the circular mo-
tion r(t) ≡ C2 are particular solutions of the linear, time-dependent equation

r̈ =
C2

ro(t)3
− Mr

ro(t)3
,

and that xo and yo are solutions of the homogeneous part of the same equation:

z̈ = − Mz

ro(t)3
.
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Also note that the space of solutions of the non-homogeneous equation is an affine
plane, directed by the vector plane of solutions of the homogeneous equation. Deduce
that the curve (xo, yo, ro) lies on an affine plane (whether C = 0 or not):

r = C2 + αx + βy for some α, β ∈ R,

and, by eliminating r, that the curve (xo, yo) is conic of eccentricity ǫ =
√

α2 + β2

with a focus at the origin (first Kepler law) and directrix D : C2 + αx + βy = 0:

dist(O, q) = ǫdist(D, q).

5. Let E 4 be the open subset of initial conditions leading to non-circular (eccentricity
> 0), non-degenerate (eccentricity < 1), prograde (angular momentum > 0), elliptic
(energy < 0), Keplerian motions. Let v the polar angle of the planet from the perihe-
lion (closest point of the ellipse to the Sun), a the semi major axis, g the polar angle
of the pericenter from the x-axis and ǫ the eccentricity. Show that the map

E
4 → S1×]0,+∞[×S1×]0, 1[, (x, px, y, py) 7→ (v, a, g, ǫ)

is a diffeomorphism.(7)

6. Show that

K = µ

(
ṙ2

2
+

C2

2r2

)

− µM

r
and C = r2θ̇

and, in the open set E ,

K = −µM

2a
and C2 = Ma(1 − ǫ2)

(use that ṙ = 0 when r reaches its extremum values a(1 ± ǫ)).
7. Using the conservation of the angular momentum, prove that the area swept by the

vector q grows linearly in time (second Kepler law) and deduce that, if T is the period,
MT 2 = 4π2a3 (third Kepler law).

For further description, we refer to the excellent account [3].

Also, the following exercise is the elementary prerequisite to understand the ubiquity of
the angular momentum, as the moment map of of SO2-actions.

Exercise 23 (Symplectic lift of polar coordinates in the plane)

Let ϕ : T×R → C, (θ, r) 7→ r eiθ be the polar coordinates map. Show that its cotangent
map is

(
ϕ(θ, r), tϕ′(θ, r)−1 · (Θ, R)

)
=

(

r eiθ,

(

R + i
Θ

r

)

eiθ

)

= (z, Z).

Deduce that the flow of the Hamiltonian

Θ = r Im
(

Z e−iθ
)

= z1Z2 − z2Z1

(7) Ancestors of perturbation theory, including Newton, used to compute the variations of the “constants”
(elliptic elements a, g, ǫ) under the small influence of other celestial bodies than the Sun. It is remarkable
that Lagrange not only expressed variables (v, a, g, ǫ) as functions of time, but used these variables as
coordinates for the vector field (in replacement of the initial positions and impulsions), thus giving birth
to modern differential geometry with arguably the first abstract (far-from-the-identity, transcendent)
change of coordinates.
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in the space {(z, Z)} with respect to the standard symplectic structure Im (z̄Z) is
φθ(z, Z) = (zeiθ, Zeiθ).

2. Fast Keplerian variables (ℓ, L). — Restrict to the set {(v, a, g, ǫ), 0 < ǫ < 1} ≡
T2×R2 of non-degenerate, non-circular, elliptical, Keplerian motions. Define coordinate
t as the time from the pericenter; it is defined modulo the period T of the orbit. Define
ℓ as the angle obtained by rescaling time: ℓ := 2πt/T (mod 2π). Now, if we want an
action coordinate L(K) conjugate to ℓ: dt ∧ dK = dℓ ∧ dL, we see that

L′(K) =
1

ℓ̇
=

T

2π
=

a3/2

√
M

=
µ3/2M

(−2K)3/2
.

Conventionally choosing L = 0 at infinity where a = +∞, we get

L =
µ3/2M√
−2K

= µ
√

Ma;

in particular,

K = −µ3M2

2L2
.

3. Slow planar variables (g,G). — We wish to define coordinates on the space of
non-circular, non-degenerate, prograde Keplerian ellipses in the plane with fixed L. The
angular momentum

G := µC = µ
√

Ma(1 − ǫ2) = L
√

1 − ǫ2,

which is a first integral of K (and thus descends to the space of Keplerian orbits) and
whose Hamiltonian flow acts by 2π-periodic rotations around the origin, is a natural
action coordinate. Define g as the angle, modulo 2π, measuring time along XG-orbits,
and vanishing when the pericenter meets the Ox-semi-axis.

The coordinates which (ℓ, L, g,G) define over E 4 are symplectic:

– {ℓ, L} = {g,G} = 1 by definition.

– {L, g} = {L,G} = 0 because g and G are first integrals of K(L).

– {ℓ,G} = 0 because the flow of G rotates the Keplerian ellipse without revolving the
planet along the ellipse.

– {ℓ, g} = 0. Due to the Jacobi identity, {L, {ℓ, g}} = {G, {ℓ, g}} = 0. Hence it suffices
to show that {ℓ, g} = 0 in restriction to the section {ℓ = g = 0 (mod π)} of the L- and
G-flows. We may thus assume that the planet is on the major axis and that the major
axis itself is the x-axis. But then the partial derivatives of ℓ and g with respect of x or
py are zero, and

{ℓ, g} =
∂ℓ

∂x
︸︷︷︸

=0

∂g

∂px
− ∂ℓ

∂px

∂g

∂x
︸︷︷︸

=0

+
∂ℓ

∂y

∂g

∂py
︸︷︷︸

=0

− ∂ℓ

∂py
︸︷︷︸

=0

∂g

∂y
= 0.
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4. Slow spatial variables (θ,Θ) in R3. — In the 3-dimensional Kepler problem,
choose R2 ×{0} ⊂ R3 as a reference plane (called horizontal). We will restrict to the set
E 6 of initial conditions leading to non-horizontal, non-circular, non-degenerate, prograde
elliptic Keplerian motions.

Let ~C = q × p be the angular momentum vector and Θ be its projection on the vertical
axis. By exercise 23, the flow of XΘ consists of 2π-periodic rotations in the horizontal
plane (diagonally for positions and impulsions, leaving the horizontal 4-planes invariant).

Each Keplerian oriented plane meets the horizontal plane along a half axis, the ascending
line of the node. Let θ be the angle measuring time along XΘ-orbits, vanishing when
the line of the node is the Ox-semi-axis.

The coordinates which (ℓ, L, g,G, θ,Θ) define in E 6 are symplectic:

– Poisson brackets with L, G and Θ are what they should : 0, except {ℓ, L} = {g,G} =
{θ,Θ} = 1 (we know the flows of L, G and Θ).

– The three Poisson brackets between angles can be checked to vanish as above in the
plane. Indeed, on the submanifold {ℓ = g = θ = 0 (mod π)}, the partial derivatives of
any of these angles with respect to x, py or pz vanish.

The names of the Delaunay elements are:
– ℓ mean anomaly

– L = µ
√

Ma circular angular momentum
– g argument of pericenter

– G = L
√

1 − ǫ2 angular momentum
– θ longitude of the (ascending) node
– Θ = G cos ι vertical component of the angular momentum.

z

~C

ι

g

y

x θ

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

ℓ

u

Oa

b = a
√

1 − ǫ2

5. The Poincaré coordinates. — Define the Poincaré coordinates (λ,Λ, ζ, z) by the
following formulas:

λ = ℓ + g + θ, Λ = L, ζ =
√

2(L − G) e−ig and z =
√

2(G − Θ) e−iθ
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(several sign conventions exist). Obviously they are symplectic. From the above for-
mulas, one checks that the Poincaré coordinates extend to differentiable coordinates at
direct circular coplanar motions (ζ = z = 0), the elliptic singularity of the secular sys-
tem. In fact, their extension is analytic, as one can see by expressing the coordinates as
explicit analytic functions of analytic first integrals; we refer to [1] for an elegant choice
of first integrals.
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[27] A. Chenciner, J. Féjoz, and R. Montgomery. Rotating eights. I. The three Γi

families. Nonlinearity, 18(3):1407–1424, 2005.
[28] A. Chenciner and R. Montgomery. A remarkable periodic solution of the three-

body problem in the case of equal masses. Ann. of Math. (2), 152(3):881–901,
2000.

[29] A. Chenciner and A. Venturelli. Minima de l’intégrale d’action du problème new-
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307–317, 2003. Séminaire Bourbaki. Vol. 2001/2002.
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